EP1698852B1 - Penetrator - Google Patents

Penetrator Download PDF

Info

Publication number
EP1698852B1
EP1698852B1 EP20060004455 EP06004455A EP1698852B1 EP 1698852 B1 EP1698852 B1 EP 1698852B1 EP 20060004455 EP20060004455 EP 20060004455 EP 06004455 A EP06004455 A EP 06004455A EP 1698852 B1 EP1698852 B1 EP 1698852B1
Authority
EP
European Patent Office
Prior art keywords
penetrator
damping
jacket
damping means
explosive charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20060004455
Other languages
German (de)
French (fr)
Other versions
EP1698852A1 (en
Inventor
Werner Dr. Arnold
Helmut Dr. Muthig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Original Assignee
TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH filed Critical TDW Gesellschaft fuer Verteidigungstechnische Wirksysteme mbH
Publication of EP1698852A1 publication Critical patent/EP1698852A1/en
Application granted granted Critical
Publication of EP1698852B1 publication Critical patent/EP1698852B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/72Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
    • F42B12/76Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the casing
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/02Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect
    • F42B12/04Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the warhead or the intended effect of armour-piercing type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B12/00Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material
    • F42B12/72Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material
    • F42B12/76Projectiles, missiles or mines characterised by the warhead, the intended effect, or the material characterised by the material of the casing
    • F42B12/80Coatings

Definitions

  • the invention relates to a penetrator consisting of a high-strength shell and arranged in the interior of the shell explosive charge, comprising a voltage applied to the inside of the shell, acting on the jacket shock waves damping layer, which starting from the tip of the penetrator, at least over part of the extending to the stern extending jacket of the penetrator.
  • Penetrators are known active ingredients which are used in particular for the neutralization of so-called high-value targets. These include strongly hardened structures or objects, such as command centers or communication centers.
  • the penetrators are capable of penetrating the target, optionally using a drive for further acceleration. The initiation takes place with the help of intelligent ignition devices inside the target, whereby the destruction of the target can be brought about.
  • a damping layer in a warhead results from the DE 101 25 226 C2 , Here it is proposed to divide the explosive charge and to arrange in the intermediate layers another explosive, which is bounded laterally by thin separating layers. These separating layers can also consist of shock-absorbing insulating material. The actual purpose of the separation layers is the thermal insulation, which prevents explosive charge components, which are adjacent to already for deflagration excited explosive charge components are not themselves excited to deflagration. This description also gives no direct indication of the use of damping measures in the These are the conditions imposed on a penetrator described above.
  • a penetrator which has a thin layer on the inside of its jacket which is suitable for reducing an unexpectedly occurring heat effect due to a fire to such an extent that the explosive charge is not initiated.
  • the requirements of such a thermally insulating layer are different due to the properties of fire than to a layer which is intended to reduce acting shock waves. Fire usually occurs flat, while the amplitude maxima of shockwaves have a very limited local effect.
  • the US-A 5,054,399 which forms the basis for the preamble of claim 1, describes a penetrator consisting of a high-strength shell and located in the interior of the shell explosive charge, wherein on the inside of the shell, a against the outside acting shock waves attenuating layer is arranged, which differs from the Extending tip of the penetrator starting at least over part of the extending to the rear shell of the penetrator.
  • This object is achieved in a simple manner in that at least part of the explosive charge in the form of spheres of different sizes (a few centimeters to a few 10 cm, depending on the size of the penetrator) is present and the cavities between the balls are filled with a damping agent.
  • a damping agent With the help of this arrangement of a damping layer, the power of the penetrator not significantly reduced and at the same time the very strong loads occurring on impact are reduced to the jacket of the penetrator.
  • an arbitrarily dense sphere packing is to be sought, which can be adjusted to the desired size with the help of the ball size distribution. This measure can be matched to the expected bending loads of the penetrator.
  • the cavities are filled with the said damping means, in which the explosive balls are embedded. Bending motions and associated compressions and strains are thus captured by the damping matrix and kept away from the macroscopic explosive spheres altogether.
  • porous material for the cushioning layer or damping means, which by deformation due to the introduced shock wave energy and its conversion to heat, largely assists the cushioning effect.
  • Suitable materials are plastics, ceramics or metals also in the form of foams, powders or hollow spheres.
  • This effect can be further increased by skillful combination of at least two different damping materials or damping means.
  • the greatest effect can be achieved by the skillful choice of the impedances of the damping layers or damping means among themselves by the adjustment between the two impedances is set as bad as possible. This leads to reflections of the shock waves within the damping material, in which a essential part of the energy is consumed. If the material is still porous, energy is dissipated as desired in each pass.
  • FIG. 1 is illustrated by means of a penetrator P according to the prior art, which problems occur when the impact of the penetrator on a hard target 7 , for example, a concrete target.
  • shock waves 8 propagate in the interior 2 of the penetrator since the interior is generally completely filled with explosive 3, the shock waves have a direct effect on them.
  • axially coupled shock wave pressures are immediately reduced by laterally incoming dilution waves and thus the dynamic pressure load is reduced, the shock waves run in the case of the penetrator. 8 even in the jacket 1 ahead so that no laterally incoming dilution waves can enter the explosive charge.
  • the initiation threshold is lowered by up to a factor of 4 due to this effect, thus significantly increasing the detonation sensitivity. This greatly increases the risk of premature detonation.
  • the described shock waves 8 entering axially into the explosive charge 3 are not the only problem which can occur when a penetrator impacts on a hard target.
  • FIG. 2 Figure 12 illustrates penetration of the penetrator into a target 7 at an angle to the solder on the target surface. This case is most common in practice, so that the consequences for the concept of a penetrator are relevant. With oblique impact and asymmetric penetration, the penetrator can be bent. As a result, locally both compressions 9 and dilutions 10 occur in the explosive. The latter result in an unpleasant side effect in that, in the micro range, separation phenomena between the explosive grain and the binder matrix lead to pore formation and to the generation of small voids which are found in the microstructure FIG. 2 in the dilution 10 are shown schematically. Such pores act at shock wave loading of the penetrator as so-called germ cells (hot spots) for the unwanted charge initiation.
  • germ cells hot spots
  • the FIG. 3 shows a not according to the invention Lösusngsvorschlag, with the aid of which the effects mentioned can be avoided or at least reduced to an order of magnitude, which is no longer harmful to the explosive charge.
  • the proposed measure comprises the integration of damping means within the shell 1 of the penetrator P. These can be embodied as a damping layer 4 arranged circumferentially within the shell 1.
  • the wall thickness of this layer can be constant or, as shown in the exemplary embodiment, be most pronounced in the region of the tip 5 and decrease in the direction of the tail 6.
  • a compound of the shell with the damping layer 4 by means of an adhesive supports their effect.
  • damping layer 4 even more compressible damping layers 12 to install inside the penetrator. These damping layers are transverse to the longitudinal axis of the penetrator and divide the interior 2 into several spaces that are completely filled with explosives.
  • the damping layer is made with the aid of suitable materials which have a damping effect against the shock waves.
  • these materials should be porous in order to convert kinetic energy into heat when exposed to shock waves by closing the pores (energy dissipation).
  • Porous plastics and rubber materials may be mentioned representative of porous plastics and rubber materials. Porous ceramics, foams as well as metals and also Metal powder or metal or glass beads are just as suitable. Through skillful combination, the skilled person receives a wide selection of possible damping layers, which can be matched in their porosity and impedance to their needs.
  • damping layers 12, 13 compensate for the deformation of the penetrator jacket in the event of an oblique impact on a target 7 .
  • the damping layers 13 are already compressed in the embodiment by the deformation so far that the available pores are already closed.
  • These damping layers must therefore have a certain minimum thickness D in order to compensate for the paths required for compensation and at the same time to dissipate energy by deformation. According to the invention, therefore, a thickness D of a few centimeters for the damping layers 12, 13 is provided. Substitution of the damping layers by thin separation layers does not bring the desired success. With the help of the proposed thickness of the damping layers deformations of the explosive charge and the associated pore formation in the explosive are avoided from the outset. At the same time the further transport of shock waves in the respective adjacent segment of the explosive charge 3 is avoided.
  • the FIG. 6 shows a further variant of the invention.
  • Part of the explosive which is in the area of the penetrator which is subjected to the greatest load, is arranged in the form of spheres of different sizes (a few centimeters to a few 10 cm, depending on the size of the penetrator) in the interior of the penetrator.
  • the jacket of the penetrator can already be provided on the inside with a damping layer 4. It is desirable to have any density ball packing, which can be adjusted to the desired size with the help of the ball size distribution. This measure can be matched to the expected bending loads of the penetrator.
  • the cavities are filled with a damping means 14, in which the explosive balls 15 be embedded. Bending motions and associated compressions and strains are thus captured by this damping matrix and kept away from the macroscopic explosive spheres 15 entirely.
  • the lateral boundary of the described part can be done by means of partitions 16, which in turn can also consist of damping material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Vibration Prevention Devices (AREA)

Description

Die Erfindung betrifft einem Penetrator bestehend aus einem hochfesten Mantel und einer im Innenraum des Mantels angeordneten Sprengladung, umfassend eine auf der Innenseite des Mantels anliegende, gegenüber auf den Mantel einwirkende Stoßwellen dämpfende Schicht, welche sich von der Spitze des Penetrators ausgehend wenigstens über einen Teil des bis zum Heck verlaufenden Mantels des Penetrators erstreckt.The invention relates to a penetrator consisting of a high-strength shell and arranged in the interior of the shell explosive charge, comprising a voltage applied to the inside of the shell, acting on the jacket shock waves damping layer, which starting from the tip of the penetrator, at least over part of the extending to the stern extending jacket of the penetrator.

Penetratoren sind bekannte Wirkmittel, die insbesondere zur Neutralisation von sogenannten Hochwertzielen eingesetzt werden. Darunter werden stark gehärtete Strukturen oder Objekte verstanden wie zum Beispiel Kommandozentralen oder Kommunikationszentren. Die Penetratoren sind geeignet, in das Ziel einzudringen, wobei gegebenenfalls ein Antrieb zur weiteren Beschleunigung verwendet wird. Die Initiierung erfolgt mit Hilfe intelligenter Zündeinrichtungen im Inneren des Zieles, wodurch die Zerstörung des Zieles herbeigeführt werden kann.Penetrators are known active ingredients which are used in particular for the neutralization of so-called high-value targets. These include strongly hardened structures or objects, such as command centers or communication centers. The penetrators are capable of penetrating the target, optionally using a drive for further acceleration. The initiation takes place with the help of intelligent ignition devices inside the target, whereby the destruction of the target can be brought about.

Die Anforderungen an derartige Penetratoren werden zunehmend höher. Beispielsweise wird zum Bau moderner Bunker hochfester Beton eingesetzt. Daneben existieren Stellungen in natürlicher Umgebung wie beispielsweise Höhlen in Felsen. Dieser Fels ist in der Regel noch härter als der hochfeste Beton. Um den daraus resultierenden Anforderungen gerecht zu werden, reduziert man die Kalibergröße und erhöht die Geschwindigkeit noch weiter. Die Erhöhung der Geschwindigkeit hat aber unerwünschte Auswirkungen zur Folge. Bei der Penetration der äußeren Schichten eines Zieles wird die Struktur des Penetrators stärker belastet. Beim Aufprall werden sehr starke Belastungen auf den Mantel des Penetrators ausgeübt und die entstehenden Stoßwellen werden in das Innere des Penetrators geleitet. Beim Aufprall in einem vom Lot auf die Zieloberfläche abweichenden Winkel kann sogar der Mantel des Penetrators gekrümmt werden.The demands on such penetrators are increasingly higher. For example, high-strength concrete is used to construct modern bunkers. In addition, there are positions in natural environment such as caves in rocks. This rock is usually even harder than the high-strength concrete. To meet the resulting requirements, you reduce the caliber size and increases the speed even further. The increase in speed, however, has undesirable effects. Upon penetration of the outer layers of a target, the structure of the penetrator is more heavily loaded. Upon impact, very strong loads are exerted on the jacket of the penetrator and the resulting shock waves are conducted into the interior of the penetrator. Upon impact in a deviating angle from the solder to the target surface, even the jacket of the penetrator can be curved.

Diese Abläufe haben eine wesentliche Auswirkung auf die im Inneren des Mantels gelagerte Sprengladung, da diese unterschiedlichen Belastungen ausgesetzt wird. Zum einen entsteht eine stationäre Belastung durch die Verzögerung, die der Penetrator erfährt. Weiterhin tritt eine Schockwelle auf, die durch den Penetrator läuft. Zusätzlich gibt es eine Schwingungsbelastung durch die Eigenschwingung und die Strukturschwingung des Penetrators. Schließlich sind noch Kompression oder Dehnung aller in einem Penetrator vorhandenen Materialien zu berücksichtigen.These processes have a significant effect on the stored inside the shell explosive charge, as it is exposed to different loads. On the one hand, there is a stationary load due to the delay experienced by the penetrator. Furthermore, a shock wave occurs, which passes through the penetrator. In addition, there is a vibration load due to the natural vibration and the structural vibration of the penetrator. Finally, compression or elongation of all materials present in a penetrator must be considered.

Es sind verschiedene Gestaltungsformen von Gefechtsköpfen bekannt geworden, die Schockwellen dämpfende Elemente enthalten, welche jedoch immer in Zusammenhang mit der Leistungssteuerung der im Gefechtskopf enthaltenen Sprengladung genannt werden. Zum einen beschreibt die DE 100 25 055 C2 einen splittererzeugenden Gefechtskopf, bei dem zur lokalen Leistungsminderung der initiierten Sprengladung eine verschiebbare Dämpfungsschicht vorgesehen ist, die ein Teil der Innenhülle im Bereich desjenigen Teils des Gefechtskopfmantels ist, welcher zur Splittererzeugung dient. Ein Hinweis auf die Bedämpfung von Materialien im Bereich des Mantels eines Penetrators wird dem Fachmann nicht gegeben, da hier eine andere Zielrichtung bei der Anwendung dämpfenden Materials vorliegt.There have been known various designs of warheads containing shock wave attenuating elements, which, however, are always called in connection with the power control of the explosive charge contained in the warhead. For one thing, that describes DE 100 25 055 C2 a splitter-generating warhead, in which a displaceable damping layer is provided for the local reduction in performance of the initiated explosive charge, which is a part of the inner shell in the region of that part of the warhead jacket, which serves for splinter generation. An indication of the attenuation of materials in the region of the shell of a penetrator is not given to the expert, since there is another direction in the application of damping material.

Eine weitere Anwendung einer Dämpfungsschicht in einem Gefechtskopf ergibt sich aus der DE 101 25 226 C2 . Hier wird vorgeschlagen, die Sprengladung zu unterteilen und in den Zwischenschichten einen weiteren Sprengstoff anzuordnen, der seitlich von dünnen Trennschichten begrenzt wird. Diese Trennschichten können auch aus schockabsorbierendem Isolationsmaterial bestehen. Der eigentliche Zweck der Trennschichten ist die thermische Isolation, welche verhindert, dass Sprengladungsanteile, welche benachbart zu bereits zur Deflagration angeregten Sprengladungsanteilen liegen, nicht selbst zur Deflagration angeregt werden. Auch diese Beschreibung gibt keinen unmittelbaren Hinweis auf die Anwendung von Dämpfungsmaßnahmen im Rahmen derjenigen Bedingungen, die an einen oben beschriebenen Penetrator gestellt werden.Another application of a damping layer in a warhead results from the DE 101 25 226 C2 , Here it is proposed to divide the explosive charge and to arrange in the intermediate layers another explosive, which is bounded laterally by thin separating layers. These separating layers can also consist of shock-absorbing insulating material. The actual purpose of the separation layers is the thermal insulation, which prevents explosive charge components, which are adjacent to already for deflagration excited explosive charge components are not themselves excited to deflagration. This description also gives no direct indication of the use of damping measures in the These are the conditions imposed on a penetrator described above.

Aus der US-A 5,939,662 ist ein Penetrator bekannt geworden, der auf der Innenseite seines Mantels eine dünne Schicht aufweist, welche geeignet ist, eine unerwartet auftretende Hitzeeinwirkung aufgrund eines Feuers so weit zu reduzieren, dass die Sprengladung nicht initiiert wird. Die Anforderungen an eine derartige thermisch isolierende Schicht sind jedoch aufgrund der Eigenschaften von Feuer anders geartet als an eine Schicht, die einwirkende Schockwellen mindern soll. Feuer tritt in der Regel flächig auf während die Amplitudenmaxima von Schockwellen lokal sehr begrenzt einwirken.From the US Pat. No. 5,939,662 For example, a penetrator has been disclosed which has a thin layer on the inside of its jacket which is suitable for reducing an unexpectedly occurring heat effect due to a fire to such an extent that the explosive charge is not initiated. The requirements of such a thermally insulating layer, however, are different due to the properties of fire than to a layer which is intended to reduce acting shock waves. Fire usually occurs flat, while the amplitude maxima of shockwaves have a very limited local effect.

Die US-A 5,054,399 ,welche die Grundlage für den Oberbegriff des Anspruches 1 bildet, beschreibt einen Penetrator bestehend aus einem hochfesten Mantel und einer im Innenraum des Mantels befindlichen Sprengladung, wobei auf der Innenseite des Mantels eine gegenüber von außen einwirkende Stoßwellen dämpfende Schicht angeordnet ist, welche sich von der Spitze des Penetrators ausgehend wenigstens über einen Teil des bis zum Heck verlaufenden Mantels des Penetrators erstreckt.The US-A 5,054,399 , which forms the basis for the preamble of claim 1, describes a penetrator consisting of a high-strength shell and located in the interior of the shell explosive charge, wherein on the inside of the shell, a against the outside acting shock waves attenuating layer is arranged, which differs from the Extending tip of the penetrator starting at least over part of the extending to the rear shell of the penetrator.

Es ist deshalb Aufgabe der Erfindung, einen Penetrator so zu gestalten, dass die vorgenannten Effekte der mechanischen Belastung durch Stosswellen weitgehend vermindert werden oder zumindest auf eine Größenordnung reduziert werden, die für die Sprengladung nicht mehr schädlich wirkt, und dass die Kopplung zweier oder mehrerer beschriebener Effekte unterdrückt wird.It is therefore an object of the invention to design a penetrator so that the aforementioned effects of the mechanical stress are substantially reduced by shock waves or at least reduced to an order that does not affect the explosive charge harmful, and that the coupling of two or more described Effects is suppressed.

Diese Aufgabe wird in einfacher Weise dadurch gelöst, dass zumindest ein Teil der Sprengladung in Form von Kugeln unterschiedlicher Größe (einige Zentimeter bis einige 10 cm, abhängig von der Größe des Penetrators) vorliegt und die Hohlräume zwischen den Kugeln mit einem Dämpfungsmittel ausgefüllt sind. Mit Hilfe dieser Anordnung einer Dämpfungsschicht wird die Leistung des Penetrators nicht wesentlich gemindert und gleichzeitig werden die beim Aufprall auftretenden sehr starken Belastungen auf den Mantel des Penetrators reduziert.This object is achieved in a simple manner in that at least part of the explosive charge in the form of spheres of different sizes (a few centimeters to a few 10 cm, depending on the size of the penetrator) is present and the cavities between the balls are filled with a damping agent. With the help of this arrangement of a damping layer, the power of the penetrator not significantly reduced and at the same time the very strong loads occurring on impact are reduced to the jacket of the penetrator.

Hierbei wird eine beliebig dichte Kugelpackung angestrebt werden, die sich mit Hilfe der Kugelgrößenverteilung auf das gewünschte Maß einstellen lässt. Dieses Maß kann auf die zu erwartenden Biegebelastungen des Penetrators abgestimmt werden. Die Hohlräume werden dabei mit den genannten Dämpfungsmitteln ausgefüllt, in das die Sprengstoffkugeln eingebettet werden. Biegebewegungen und damit verbundene Kompressionen und Dehnungen werden auf diese Weise von der Dämpfungsmatrix aufgefangen und von den makroskopischen Sprengstoffkugeln gänzlich ferngehalten.Here, an arbitrarily dense sphere packing is to be sought, which can be adjusted to the desired size with the help of the ball size distribution. This measure can be matched to the expected bending loads of the penetrator. The cavities are filled with the said damping means, in which the explosive balls are embedded. Bending motions and associated compressions and strains are thus captured by the damping matrix and kept away from the macroscopic explosive spheres altogether.

Von besonderem Nutzen ist die Verwendung von porösem Material für die dämpfende Schicht oder das Dämpfungsmittel, welches mittels Verformung aufgrund der eingeleiteten Stoßwellenenergie und deren Umwandlung in Wärme den Dämpfungseffekt weitgehend unterstützt. Als Materialien kommen Kunststoffe, Keramiken oder Metalle auch in der Form von Schäumen, Pulvern oder Hohlkugeln in Betracht. Dieser Effekt kann durch geschickte Kombination von wenigstens zwei unterschiedlichen Dämpfungsmaterialien oder Dämpfungsmitteln noch gesteigert werden. Den größtmöglichen Effekt erzielt man durch die geschickte Wahl der Impedanzen der Dämpfungsschichten oder Dämpfungsmittel untereinander, indem die Anpassung zwischen beiden Impedanzen als möglichst schlecht eingestellt wird. Dadurch kommt es zu Reflexionen der Stoßwellen innerhalb des Dämpfungsmaterials, bei denen ein wesentlicher Anteil der Energie aufgezehrt wird. Falls das Material auch noch porös ist, so wird bei jedem Durchgang in gewünschter Weise Energie dissipiert.Of particular use is the use of porous material for the cushioning layer or damping means, which by deformation due to the introduced shock wave energy and its conversion to heat, largely assists the cushioning effect. Suitable materials are plastics, ceramics or metals also in the form of foams, powders or hollow spheres. This effect can be further increased by skillful combination of at least two different damping materials or damping means. The greatest effect can be achieved by the skillful choice of the impedances of the damping layers or damping means among themselves by the adjustment between the two impedances is set as bad as possible. This leads to reflections of the shock waves within the damping material, in which a essential part of the energy is consumed. If the material is still porous, energy is dissipated as desired in each pass.

Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und werden im Folgenden anhand der Figuren näher beschrieben. Es zeigen:

  • Fig. 1: einen Penetrator herkömmlicher Bauart beim senkrechten Aufprall auf ein hartes Ziel,
  • Fig. 2: einen Penetrator herkömmlicher Bauart beim schrägen Aufprall auf ein Ziel,
  • Fig. 3: einen nicht erfindugsgemäßen. Penetrator mit einer am Mantel anliegenden dämpfenden Schicht,
  • Fig. 4: einen nicht erfindugsgemäßen. Penetrator mit weiteren Dämpfungsschichten innerhalb der Sprengladung,
  • Fig. 5: einen nicht erfindugsgemäßen mit Dämpfungsschichten ausgestatteten Penetrator beim schrägen Aufprall auf ein hartes Ziel,
  • Fig. 6: einen Penetrator mit Sprengstoff in Kugelform mit dazwischen angeordnetem Dämpfungsmittel.
Embodiments of the invention are shown in simplified form in the drawing and will be described in more detail below with reference to FIGS. Show it:
  • Fig. 1 : a penetrator of conventional design in vertical impact on a hard target,
  • Fig. 2 : a penetrator of conventional design when obliquely impacting a target,
  • Fig. 3 : a non-inventive. Penetrator with a damping layer on the jacket,
  • Fig. 4 : a non-inventive. Penetrator with further damping layers within the explosive charge,
  • Fig. 5 : a non-inventive penetrator equipped with damping layers when obliquely impacting a hard target,
  • Fig. 6 : a penetrator with explosive in spherical form with interposed damping means.

In der Figur 1 wird anhand eines Penetrators P nach dem bisherigen Stand der Technik verdeutlicht, welche Probleme beim Aufschlag des Penetrators auf ein hartes Ziel 7 , beispielsweise ein Betonziel, auftreten. Ausgehend von der Spitze 5 des Penetrators breiten sich Schockwellen 8 im Innenraum 2 des Penetrators aus da der Innenraum in der Regel vollständig mit Sprengstoff 3 gefüllt ist wirken sich die Schockwellen unmittelbar auf diesen aus. Während bei einer unverkleideten Sprengladung axial eingekoppelte Stoßwellendrücke sofort durch seitlich einlaufende Verdünnungswellen abgebaut werden und damit die dynamische Druckbelastung reduziert wird, laufen im Fall des Penetrators die Stoßwellen 8 sogar im Mantel 1 voraus, so dass keine lateral einlaufenden Verdünnungswellen in die Sprengladung einlaufen können. Im Sprengstoff wird aufgrund dieses Effekts die Initiierschwelle um bis zu einem Faktor 4 abgesenkt und damit die Detonationsempfindlichkeit erheblich erhöht. Dadurch steigt die Gefahr einer vorzeitigen Detonation ganz erheblich.In the FIG. 1 is illustrated by means of a penetrator P according to the prior art, which problems occur when the impact of the penetrator on a hard target 7 , for example, a concrete target. Starting from the tip 5 of the penetrator, shock waves 8 propagate in the interior 2 of the penetrator since the interior is generally completely filled with explosive 3, the shock waves have a direct effect on them. While in an uncovered explosive charge axially coupled shock wave pressures are immediately reduced by laterally incoming dilution waves and thus the dynamic pressure load is reduced, the shock waves run in the case of the penetrator. 8 even in the jacket 1 ahead so that no laterally incoming dilution waves can enter the explosive charge. In the explosive, the initiation threshold is lowered by up to a factor of 4 due to this effect, thus significantly increasing the detonation sensitivity. This greatly increases the risk of premature detonation.

Die beschriebenen axial in die Sprengladung 3 einlaufenden Stoßwellen 8 sind jedoch nicht das einzige Problem, das beim Aufschlag eines Penetrators auf ein hartes Ziel auftreten kann. In der Figur 2 ist das Eindringen des Penetrators in ein Ziel 7 unter einem Winkel zum Lot auf die Zieloberfläche dargestellt. Dieser Fall tritt in der Praxis am häufigsten auf, so dass die hieraus erfolgenden Konsequenzen für das Konzept eines Penetrators maßgeblich sind. Beim schrägen Aufschlag und bei asymmetrischer Penetration kann der Penetrator verbogen werden. Dadurch treten lokal sowohl Verdichtungen 9 als auch Verdünnungen 10 im Sprengstoff auf. Letztere haben einen unangenehmen Nebeneffekt dadurch zur Folge, dass im Mikrobereich Ablösungserscheinungen zwischen dem Sprengstoffkorn und der Bindermatrix zur Porenbildung und zur Erzeugung von kleinen Lunkern führen, die in der Figur 2 im Bereich der Verdünnung 10 schematisch dargestellt sind. Derartige Poren wirken bei Stoßwellenbelastung des Penetrators als sogenannte Keimzellen (hot spots) für die unerwünschte Ladungsinitiierung.However, the described shock waves 8 entering axially into the explosive charge 3 are not the only problem which can occur when a penetrator impacts on a hard target. In the FIG. 2 Figure 12 illustrates penetration of the penetrator into a target 7 at an angle to the solder on the target surface. This case is most common in practice, so that the consequences for the concept of a penetrator are relevant. With oblique impact and asymmetric penetration, the penetrator can be bent. As a result, locally both compressions 9 and dilutions 10 occur in the explosive. The latter result in an unpleasant side effect in that, in the micro range, separation phenomena between the explosive grain and the binder matrix lead to pore formation and to the generation of small voids which are found in the microstructure FIG. 2 in the dilution 10 are shown schematically. Such pores act at shock wave loading of the penetrator as so-called germ cells (hot spots) for the unwanted charge initiation.

Bereits einer der Effekte Stoßwellenbelastung, Verstärkung der Stoßwelleneinwirkung über den Mantel und die Poren-, Lunkerbildung kann bereits die Funktion des Penetrators erheblich einschränken. Im Fall eines Hochgeschwindigkeits-Pentrators tritt auch die Überlagerung der genannten Effekte auf. Dies führt zur Potenzierung der Gefahr einer frühzeitigen Detonation und damit zum Ausfall des Penetrators.Already one of the effects shock load, amplification of the shock wave effect on the mantle and the pore, Lunkerbildung can already significantly restrict the function of the penetrator. In the case of a high-speed pentrator, the superposition of said effects also occurs. This leads to the potentiation of the risk of premature detonation and thus the failure of the penetrator.

Die Figur 3 zeigt einen nicht erfindungsgemäßen Lösusngsvorschlag, mit dessen Hilfe die genannten Effekte vermieden oder zumindest auf eine Größenordnung vermindert werden können, die für die Sprengladung nicht mehr schädlich ist. Die vorgeschlagene Maßnahme umfasst die Integration von Dämpfungsmitteln innerhalb des Mantels 1 des Penetrators P. Diese können als innerhalb des Mantels 1 umlaufend angeordnete dämpfende Schicht 4 ausgeführt sein. Die Wandstärke dieser Schicht kann konstant sein oder wie im Ausführungsbeispiel gezeigt, im Bereich der Spitze 5 am stärksten ausgeprägt sein und in Richtung Heck 6 abnehmen. Eine Verbindung des Mantels mit der dämpfenden Schicht 4 mittels eines Klebers unterstützt deren Wirkung.The FIG. 3 shows a not according to the invention Lösusngsvorschlag, with the aid of which the effects mentioned can be avoided or at least reduced to an order of magnitude, which is no longer harmful to the explosive charge. The proposed measure comprises the integration of damping means within the shell 1 of the penetrator P. These can be embodied as a damping layer 4 arranged circumferentially within the shell 1. The wall thickness of this layer can be constant or, as shown in the exemplary embodiment, be most pronounced in the region of the tip 5 and decrease in the direction of the tail 6. A compound of the shell with the damping layer 4 by means of an adhesive supports their effect.

Dieser Vorgang ist in der Figur 3 angedeutet. Die von der Spitze des Penetrators her eindringende Stoßwelle 11 ist im Vergleich zur in der in Figur 1 dargestellten Situation erheblich mit Hilfe des Bereichs 4a der dämpfenden Schicht in ihrer Intensität vermindert. Da dies mittels Kompression der dämpfenden Schicht abläuft, sind zur Verdeutlichung in diesem Bereich keine Poren in der dämpfenden Schicht eingezeichnet.This process is in the FIG. 3 indicated. The penetrating from the tip of the penetrator forth shockwave 11 is compared to in the in FIG. 1 significantly reduced by means of the area 4a of the damping layer in intensity. Since this takes place by means of compression of the damping layer, no pores are shown in the damping layer for clarification in this area.

In der Figur 4 ist eine weitere Möglichkeit dargestellt, zur Unterstützung der entlang der Innenseite des Mantels 1 angeordneten dämpfenden Schicht 4 noch weitere komprimierbare Dämpfungsschichten 12 im Inneren des Penetrators anzubringen. Diese Dämpfungsschichten liegen quer zur Längsachse des Penetrators und unterteilen den Innenraum 2 in mehrere Räume, die vollständig mit Sprengstoff gefüllt sind.In the FIG. 4 is shown a further possibility, to support the arranged along the inside of the shell 1 damping layer 4 even more compressible damping layers 12 to install inside the penetrator. These damping layers are transverse to the longitudinal axis of the penetrator and divide the interior 2 into several spaces that are completely filled with explosives.

Die dämpfende Schicht wird unter Zuhilfenahme geeigneter Werkstoffe, die dämpfende Wirkung gegenüber den Stoßwellen aufweisen, hergestellt. Auf der anderen Seite sollen diese Werkstoffe porös sein, um bei Beaufschlagung durch Stoßwellen mittels Schließung der Poren Bewegungsenergie in Wärme umzuwandeln (Energiedissipation).The damping layer is made with the aid of suitable materials which have a damping effect against the shock waves. On the other hand, these materials should be porous in order to convert kinetic energy into heat when exposed to shock waves by closing the pores (energy dissipation).

Als verwendbare Materialien seien stellvertretend porenhaltige Kunststoffe und Gummimaterialien genannt. Poröse Keramiken, Schäume sowie Metalle und auch Metallpulver oder Metall- oder Glaskugeln kommen ebenso gut in Frage. Durch geschickte Kombination erhält der Fachmann eine breite Auswahl an möglichen dämpfenden Schichten, die in ihrer Porosität und Impedanz auf die jeweiligen Bedürfnisse abgestimmt werden können.As useful materials may be mentioned representative of porous plastics and rubber materials. Porous ceramics, foams as well as metals and also Metal powder or metal or glass beads are just as suitable. Through skillful combination, the skilled person receives a wide selection of possible damping layers, which can be matched in their porosity and impedance to their needs.

Wie aus der Figur 5 unschwer zu erkennen ist, kompensieren die Dämpfungsschichten 12, 13 im Fall die Verformung des Penetratormantels im Fall des schrägen Auftreffens auf ein Ziel 7. Die Dämpfungsschichten 13 sind im Ausführungsbeispiel durch die Verformung bereits soweit komprimiert, dass die verfügbaren Poren bereits geschlossen sind. Diese Dämpfungsschichten müssen deshalb über eine bestimmte Mindestdicke D verfügen, um die zum Ausgleich erforderlichen Wege zu kompensieren und gleichzeitig Energie durch Verformung zu dissipieren. Entsprechend der Erfindung ist deshalb eine Dicke D von einigen Zentimetern für die Dämpfungsschichten 12, 13 vorgesehen. Eine Substituierung der Dämpfungsschichten durch dünne Trennschichten bringt nicht den gewünschten Erfolg. Mit Hilfe der vorgeschlagenen Dicke der Dämpfungsschichten werden Deformationen der Sprengladung und die damit verbundene Porenbildung im Sprengstoff von vorne herein vermieden. Gleichzeitig wird der Weitertransport von Stoßwellen in das jeweils benachbarte Segment der Sprengladung 3 vermieden.Like from the FIG. 5 It is not difficult to see that the damping layers 12, 13 compensate for the deformation of the penetrator jacket in the event of an oblique impact on a target 7 . The damping layers 13 are already compressed in the embodiment by the deformation so far that the available pores are already closed. These damping layers must therefore have a certain minimum thickness D in order to compensate for the paths required for compensation and at the same time to dissipate energy by deformation. According to the invention, therefore, a thickness D of a few centimeters for the damping layers 12, 13 is provided. Substitution of the damping layers by thin separation layers does not bring the desired success. With the help of the proposed thickness of the damping layers deformations of the explosive charge and the associated pore formation in the explosive are avoided from the outset. At the same time the further transport of shock waves in the respective adjacent segment of the explosive charge 3 is avoided.

Die Figur 6 zeigt eine weitere Variante der Erfindung. Ein Teil der Sprengstoffes, der in demjenigen Bereich des Penetrators liegt, der am stärksten belastet wird, ist in der Form von Kugeln unterschiedlicher Größe (einige Zentimeter bis einige 10 cm, abhängig von der Größe des Penetrators) im Innenraum des Penetrators angeordnet. Der Mantel des Penetrators kann dabei auf der Innenseite bereits mit einer dämpfenden Schicht 4 versehen sein. Es wird eine beliebig dichte Kugelpackung angestrebt, die sich mit Hilfe der Kugelgrößenverteilung auf das gewünschte Maß einstellen lässt. Dieses Maß kann auf die zu erwartenden Biegebelastungen des Penetrators abgestimmt werden. Die Hohlräume werden dabei mit einem Dämpfungsmittel 14 ausgefüllt, in das die Sprengstoffkugeln 15 eingebettet werden. Biegebewegungen und damit verbundene Kompressionen und Dehnungen werden auf diese Weise von dieser Dämpfungsmatrix aufgefangen und von den makroskopischen Sprengstoffkugeln 15 gänzlich ferngehalten. Die seitliche Begrenzung des beschriebenen Teils kann mittels Trennwänden 16 erfolgen, die ihrerseits auch aus Dämpfungsmaterial bestehen können.The FIG. 6 shows a further variant of the invention. Part of the explosive, which is in the area of the penetrator which is subjected to the greatest load, is arranged in the form of spheres of different sizes (a few centimeters to a few 10 cm, depending on the size of the penetrator) in the interior of the penetrator. The jacket of the penetrator can already be provided on the inside with a damping layer 4. It is desirable to have any density ball packing, which can be adjusted to the desired size with the help of the ball size distribution. This measure can be matched to the expected bending loads of the penetrator. The cavities are filled with a damping means 14, in which the explosive balls 15 be embedded. Bending motions and associated compressions and strains are thus captured by this damping matrix and kept away from the macroscopic explosive spheres 15 entirely. The lateral boundary of the described part can be done by means of partitions 16, which in turn can also consist of damping material.

Claims (6)

  1. A penetrator P consisting of a high-strength jacket (1) and a explosive charge (3) arranged in the interior (2) of the jacket, including a layer (4) bearing against the inside of the jacket (1) and damping in relation to shock waves acting on the jacket (1), said layer extending, starting from the nose cone (5) of the penetrator P, at least over a portion of the jacket (1) of the penetrator proceeding as far as the tail (6), characterised in that at least a portion of the explosive charge (3) is present in the form of spheres (15) of varying size, and the cavities between the spheres are filled out with a damping means (14).
  2. A penetrator according to Claim 1, characterised
    in that the damping means (14) consists of a porous material.
  3. A penetrator according to one of Claims 1 to 2, characterised in that the damping means (14) consists of pore-containing plastic or rubber or porous metal.
  4. A penetrator according to one of Claims 1 to 3, characterised in that the damping means (14) consists of a metal foam or ceramic foam or of a powder or of hollow spheres of an appropriate material.
  5. A penetrator according to one of Claims 1 to 4, characterised in that the damping means (14) consists of at least two different materials which are arranged in locally distributed manner.
  6. A penetrator according to Claim 5, characterised
    in that the materials of the damping means (14) differ greatly from one another in their impedance (product of density and shock-wave velocity).
EP20060004455 2005-03-04 2006-03-06 Penetrator Active EP1698852B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200510009931 DE102005009931B3 (en) 2005-03-04 2005-03-04 penetrator

Publications (2)

Publication Number Publication Date
EP1698852A1 EP1698852A1 (en) 2006-09-06
EP1698852B1 true EP1698852B1 (en) 2008-04-23

Family

ID=36384438

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20060004455 Active EP1698852B1 (en) 2005-03-04 2006-03-06 Penetrator

Country Status (2)

Country Link
EP (1) EP1698852B1 (en)
DE (2) DE102005009931B3 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005050973A1 (en) * 2005-10-25 2007-04-26 Rheinmetall Waffe Munition Gmbh explosive projectile
DE102009050162A1 (en) 2009-10-21 2011-04-28 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Damping device for mounting parts in penetrators
CN102192690B (en) * 2011-04-23 2012-04-11 中北大学 Overload test and detection device of gas gun
DE102013021030A1 (en) * 2013-12-17 2015-06-18 Rheinmetall Waffe Munition Gmbh Warhead and explosive charge module for such a warhead
EP3120106B1 (en) * 2014-03-20 2020-10-21 Aerojet Rocketdyne, Inc. Lightweight munition
CN111879188B (en) * 2020-07-20 2022-05-13 中北大学 Intelligent dual-channel triggering device and method for penetration of multilayer hard targets

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2682224A (en) * 1950-08-12 1954-06-29 Braverman Shelley Bullet
US3992998A (en) * 1975-02-10 1976-11-23 The United States Of America As Represented By The Secretary Of The Navy Warhead, penetrating nose shape
US5852256A (en) * 1979-03-16 1998-12-22 The United States Of America As Represented By The Secretary Of The Air Force Non-focusing active warhead
US4615272A (en) * 1984-09-12 1986-10-07 The United States Of America As Represented By The Secretary Of The Air Force Bomb and bomb liner
US5054399A (en) * 1988-07-05 1991-10-08 The United States Of America As Represented By The Secretary Of The Air Force Bomb or ordnance with internal shock attenuation barrier
US5535679A (en) * 1994-12-20 1996-07-16 Loral Vought Systems Corporation Low velocity radial deployment with predetermined pattern
US5939662A (en) * 1997-12-03 1999-08-17 Raytheon Company Missile warhead design
DE10025055C2 (en) 2000-05-23 2003-12-24 Eads Deutschland Gmbh Splinter-producing warhead to combat semi-hard technical targets
SG99362A1 (en) * 2001-04-30 2003-10-27 Chartered Ammunition Ind Pte L Small caliber projectile and method for manufacturing the projectile
DE10125226C2 (en) * 2001-05-23 2003-11-27 Tdw Verteidigungstech Wirksys Explosive charge for a warhead

Also Published As

Publication number Publication date
DE102005009931B3 (en) 2006-09-28
DE502006000665D1 (en) 2008-06-05
EP1698852A1 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
EP1698852B1 (en) Penetrator
EP1000311B1 (en) Projectile or warhead
DE3121506A1 (en) HYDRAULIC ACTUATOR AND METHOD FOR PRODUCING A SHELL-RESISTANT HYDRAULIC ACTUATOR
DE102008062363A1 (en) Fan housing for a jet engine
EP1851503A1 (en) Bullet
DE60007237T2 (en) USE OF METAL FOAMS IN ARMORING SYSTEMS
DE3724491A1 (en) EXPLOSIVE CHARGE THAT RELEASES A CORE
EP0343389A1 (en) Core for a disintegrating projectile
EP2024706B1 (en) Projectile, active body or warhead for fighting massive, structured and planar targets
EP2325596B1 (en) Penetrator with explosive charge and ignition device
DE3117091C2 (en)
DE2848309A1 (en) LAMINATED PLATE PART, IN PARTICULAR AIRCRAFT CONTROL SYSTEM PART AND AIRCRAFT CONTROL SYSTEM EQUIPPED WITH IT
DE102004035385A1 (en) Partial decomposition projectile with solid core and core of pressed powder
EP1464915B2 (en) Mine protection device
EP2020586B1 (en) Support device for an explosive charge of a penetrator
EP2314980B1 (en) Damping device for built-in parts in penetrators
EP1656533B1 (en) Partial decomposition projectile with a massive core and a core made of pressed powder
DE102021002470B4 (en) Scalable active system and warhead
DE102018005371B4 (en) Projectile casing and manufacturing process
DE3822375A1 (en) Detonation body
EP2381211B1 (en) Penetrator
DE19633113B3 (en) Warhead for controlling airborne target e.g. tactical ballistic missiles, has fragments which are fixedly connected to covers of facing surfaces, where fragments and covers are made of layers having different shock wave impedances
DE10151573A1 (en) Splinter protection to minimize collateral damage
DE102006061445B4 (en) penetration Levels
EP3034990B1 (en) Projectile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061201

AKX Designation fees paid
RBV Designated contracting states (corrected)

Designated state(s): AT BE BG

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502006000665

Country of ref document: DE

Date of ref document: 20080605

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230322

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230321

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230331

Year of fee payment: 18