EP1668654B1 - Unabhängig adressierbare widerstandsmatrizen und verfahren zu ihrer herstellung - Google Patents

Unabhängig adressierbare widerstandsmatrizen und verfahren zu ihrer herstellung Download PDF

Info

Publication number
EP1668654B1
EP1668654B1 EP04805719A EP04805719A EP1668654B1 EP 1668654 B1 EP1668654 B1 EP 1668654B1 EP 04805719 A EP04805719 A EP 04805719A EP 04805719 A EP04805719 A EP 04805719A EP 1668654 B1 EP1668654 B1 EP 1668654B1
Authority
EP
European Patent Office
Prior art keywords
resistor
resistors
resistance
array according
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04805719A
Other languages
English (en)
French (fr)
Other versions
EP1668654A1 (de
Inventor
Adrien Gasse
Guy Parat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP1668654A1 publication Critical patent/EP1668654A1/de
Application granted granted Critical
Publication of EP1668654B1 publication Critical patent/EP1668654B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C13/00Resistors not provided for elsewhere
    • H01C13/02Structural combinations of resistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C1/00Details
    • H01C1/16Resistor networks not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof
    • B01L2400/0677Valves, specific forms thereof phase change valves; Meltable, freezing, dissolvable plugs; Destructible barriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49082Resistor making

Definitions

  • the invention relates to matrices of passive components, more particularly to resistors connected together by lines and columns, and to their manufacture. These matrices of resistors can be used in various fields, in particular to activate components by Joule effect.
  • resistance matrices In order to gain space and control density, resistance matrices have been developed where a large number of resistive elements are condensed on a small surface, while being individually activatable.
  • EP-A-0 813 088 discloses an optical relay which is activated by thermal stimulation.
  • the relay consists of a matrix of resistors.
  • EP-A-1 188 840 a matrix of selectively operable heating elements is described.
  • a resistance matrix comprises N command lines (indexed N i , with i strictly positive integer), M control columns (indexed M j , with j strictly positive integer), and NM resistors (indexed R ij , each resistor R ij being controlled by the line N i and the column M j ).
  • the "switches" of its line and column are "closed”: for example, the voltage "+ V” can be applied to the line N i and "0" to the column M j ; the resistance R ij is then "addressed", that is to say subjected to a current, unlike the others.
  • one of the challenges is to precisely locate the control power on a determined resistance in order to achieve the effect expected by the control, while limiting the power dissipated in the other elements of the matrix.
  • the resistors because of induced or derived currents, both to increase the power in the resistor addressed and for the control to remain specific.
  • Another technique would be to segment the matrix into subunits such that the power loss is reduced, which reduces the number of diodes. This solution does not eliminate the complexity problems inherent to the diodes, nor the residual parasitic heating in each of the matrices.
  • the object of the invention is to propose a simple solution, which avoids the drawbacks inherent in existing solutions, for the production of a matrix of resistors making it possible to locate power on one of the resistors of the matrix by limiting the dissipated power. in the rest of the matrix. Thermally, this resistance activates an associated component.
  • one of the aspects of the invention concerns the choice of the thermal properties of at least one resistor, in order to increase its addressing efficiency, that is to say the power dissipated by this resistance compared to the total power dissipated, power to thermally activate an associated component.
  • This resistance (or these resistances) is thus chosen to negative temperature coefficient, that is to say that the value of the resistance decreases with its temperature.
  • the temperature of the resistant element increases; according to the invention, the value of its resistance will then decrease, and therefore its power increase at constant voltage during heating. The accuracy of the activation of associated components is thus increased.
  • the invention thus relates to a resistance matrix of which one of the resistors has a negative temperature coefficient and is associated with a thermally activatable component.
  • these negative temperature coefficient resistors consist of a single material having this property, which simplifies all the manufacturing process.
  • a preferred embodiment relates to a matrix whose all resistors are negative temperature coefficient, and in particular identical. Indeed, whatever the matrix, the power released in the unaddressed resistors is lower than the power dissipated at the addressed point. The temperature of the resistor addressed therefore increases faster than the temperature of the rest of the circuit: even if all the resistors are at a negative temperature coefficient, or even identical, the value of the unaddressed resistances will decrease less rapidly over time than that of the resistance addressed. A phenomenon of increase in power released by the unaddressed resistances occurs, but less than the increase in the power dissipated by the resistance addressed. There is therefore also in this case a gain in yield compared to that achieved in a conventional matrix.
  • the material used for some or all of the rows and columns has a positive temperature coefficient, which leads to an increase in the resistance of these elements and therefore a decrease in lost power.
  • resistors of the matrix according to the invention can be coupled to components to activate them.
  • the invention also relates to a device using this matrix, such as a biochip or a reaction card.
  • the invention also relates to the method of manufacturing a resistor matrix whose resistance, associated with a thermally activatable component, is formed of a material put in place, for example by depositing, on a substrate, the material having a resistance to negative temperature coefficient.
  • FIG. 1 represents a conventional matrix of separately addressable resistors comprising N rows, M columns and NM resistors. These resistors can be controlled either simultaneously, or successively, or again according to a combination of these two modes.
  • the power P ij may in particular be used to thermally activate a component associated with the resistor R ij .
  • the efficiency Q ij of the resistor R ij addressed is equal to the power P ij referred to the total power released.
  • the other elements of the matrix also react to the addressing voltage: an example of induced current is thus represented in dotted lines, which causes in this configuration a power release in particular by the resistors R i + 1 j , R i + 1 j + 1 , R i j + 1 , R i j + 2 , as well as by the segments of lines and columns separating them.
  • any dissipation of power is accompanied by a heating of the resistance concerned and an increase in temperature.
  • the temperature of the addressed resistance increases more and faster than that of the other elements.
  • the resistance R ij a material whose resistance decreases with temperature, that is to say a negative temperature coefficient resistance, or NTCR (" Negative Thermal Coefficient Resistance " ).
  • This material may be one of the components of the resistor or the resistor may be made entirely of such material. Examples are the Nitride of Tantalum, Nickel-Chrome alloys, or nitrides of refractory materials.
  • the temperature coefficient (TCR) can be adjusted either by the combination of materials or by the parameters chosen during the manufacture of the resistor. Depending on the needs, the NTCR can thus vary from -100 to -3000 ppm / ° C.
  • the resistor R ij is addressed by a control power which determines the voltage U at the terminals and the power P ij dissipated by this resistor.
  • a modulation factor of P ij other than the value of each resistor is therefore the power "really" addressed to R ij .
  • This power is lower than the initial control power, with partial losses in the other resistors as described above, but also losses related to the intrinsic resistance of the rows and columns.
  • a positive TCR material such as aluminum or copper
  • the material used in the rows and columns is capable of heating. Thanks to the use of a positive TCR material for these lines and columns, the resistance of the lines and columns will then increase, and the power lost in them will decrease, increasing the power addressed, and thereby even the efficiency of the resistance addressed.
  • the power addressed, and therefore the voltage across the resistor addressed can also be modulated during use by adjusting the duration of application of this voltage.
  • This last time parameter makes it possible to optimize the desired efficiency for each resistor R ij addressed, and the desired temperature to activate the component concerned by this resistor.
  • the process allowing heating by Joule effect is a dynamic phenomenon.
  • the application of a voltage for a short duration, for example 0.2 s will make it possible to obtain moderate temperature increases, of the order of 100 ° C., and the application of the control for a period of time. longer, for example 10 s, will result in higher temperatures, of the order of 500 ° C (see Figure 2b).
  • a pulse generator (1) connected to the rows and columns, which makes it possible to apply voltages determined in amplitude and duration across said lines (N) and columns.
  • the resistors have a TCR of -2500 ppm / ° C, when the temperature of the resistor addressed reaches 300 ° C, the other resistances have a maximum of 100 ° C, and the power dissipated by the resistor addressed reaches 40% of the resistance. total power instead of 15%, that is, more than doubling.
  • the matrix according to the invention therefore makes it possible to obtain very high temperatures, of 500 ° C. and more, at very localized points, for matrices which make it possible to address many points (50 to 1000 and more), and this fast way.
  • An adjustment of the maximum power required is possible by checking the value of the resistance TCR.
  • microelectronics including deposition and photolithography
  • deposition and photolithography are used in a preferred manner.
  • any other technique that can be used for the manufacture of microsystems is conceivable: screen printing of glues, adhesives, conductive or non-conductive polymers, screen printing pastes, inkjet technology, etc.
  • FIG. 3 represents an example of a manufacturing method: a substrate (10) such as silicon is chosen.
  • An aluminum layer (12) is deposited by sputtering (FIG. 3a). Photolithography and chemical etching make it possible to obtain line patterns (14) (FIG. 3b).
  • a layer of NTCR resistive material (16) is deposited by sputtering (FIG.3c); the resistive patterns (18) are obtained by photolithography and etching (FIG. 3d).
  • a dielectric layer (20) is then deposited to isolate rows (14) and columns (FIG. 3e), with photolithography of the contact resumption patterns (22) on the columns (FIG. 3f).
  • an aluminum layer (12) is deposited by cathodic sputtering (FIG. 3g), the column patterns (24) being made by photolithography and etching (FIG. 3h).
  • the thermally activatable compounds are combined according to known techniques.
  • the aluminum layer (12) has a thickness of 500 to 50000 ⁇ (50 to 5000 nm), preferably 500 nm; the thickness of NTCR (16) is typically between 500 to 5000 ⁇ (50 to 500 nm), preferably 100 nm.
  • the NTCR can be adjusted preferably between -100 and -3000 ppm / ° C depending on the deposition conditions and the desired use parameters.
  • the dielectric insulator (20) it is possible to use a polymer or a mineral such as SiO 2 or Si 3 N 4 .
  • the substrate (10) is insulating and comprises, for example, silicon, a polymer, a glass, a ceramic, etc., or a combination of these materials.
  • the matrices according to the invention find their application in many fields, such as, for example, biology, imaging or flat screens, where the control systems must be miniaturized. More particularly, the matrices according to the invention can be used to manufacture biochips or " Lab On Chips ", also called reaction cards. Such a reaction map is known for example from WO 02/18823. In general, we will call later device for use biological any structure suitable for use in applications in biology, such as reaction maps or biochips.
  • a microfluidic network is integrated on the support card of the device: the liquid to be analyzed must flow for example between the different reagents.
  • micro-valves are actuated.
  • Micro valves have been developed for applications in microsystems, biochips and reaction maps.
  • An example is given in document FR-A-2 828 244, which relates to micro-valves actuated by pyrotechnic effect.
  • the startup of the micro-valves requires localized heating below the microsystem, for example by heating a resistance under each micro-valve which will then be actuated by Joule effect.
  • the network of micro-valves must be consistent, with a high density of these components to activate: for example 50 to 1000 micro valves on a surface typically of the order of the size of a credit card must be addressed separately.
  • the use of matrices of resistors therefore seems appropriate.
  • the matrices according to the invention add the advantage of optimizing the efficiency of each addressing, and therefore a better efficiency and specificity of the analyzes performed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electronic Switches (AREA)
  • Non-Adjustable Resistors (AREA)
  • Electron Tubes For Measurement (AREA)
  • Thermistors And Varistors (AREA)
  • Networks Using Active Elements (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Glass Compositions (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Claims (22)

  1. Widerstandsmatrix, N Ansteuerungszeilen Ni, mit i strikt positiv ganzzahlig, M Ansteuerungsspaiten Mj, mit j strikt positiv ganzzahlig, und NM Widerstände Ri,j umfassend, wobei jeder Widerstand Rij durch die Zeile Ni und die Spalte Mj angesteuert wird,
    dadurch gekennzeichnet, dass wenigstens einer der Widerstände einen negativen Temperaturkoeffizienten hat und einer thermisch aktivierbaren Komponente zugeordnet ist.
  2. Matrix nach Anspruch 1, dadurch gekennzeichnet, dass jeder Widerstand Rij einer thermisch aktivierbaren Komponente zugeordnet ist.
  3. Matrix nach einem der Widerstände 1 oder 2, bei der wenigstens eine der aktivierbaren Komponenten ein Mikroventil ist.
  4. Matrix nach einem der Widerstände 1 bis 3, bei der alle Widerstände Rij einen negativen Temperaturkoeffizienten haben.
  5. Matrix nach einem der Widerstände 1 bis 4, dadurch gekennzeichnet, dass wenigstens einer der Widerstände mit negativem Temperaturkoeffizienten durch ein einziges Material gebildet wird.
  6. Matrix nach Anspruch 4, dadurch gekennzeichnet, dass alle Widerstände mit negativem Temperaturkoeffizienten durch ein einziges Material gebildet werden.
  7. Matrix nach einem der Widerstände 1 bis 6, dadurch gekennzeichnet, dass alle Widerstände identisch sind.
  8. Matrix nach einem der vorangehenden Ansprüche, deren Widerstand mit negativem Temperaturkoeffizienten Tantalnitrid, eine Nickel-Chrom-Legierung oder ein Nitrid eines refraktären Materials umfasst.
  9. Matrix nach einem der vorangehenden Ansprüche, deren Widerstand mit negativem Temperaturkoeffizienten einen zwischen -100 und -3000 ppm/°C enthaltenen Temperaturkoeffizienten aufweist.
  10. Matrix nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das für wenigstens eine Zeile und/oder wenigstens eine Spalte verwendete Material einen positiven Temperaturkoeffizienten hat.
  11. Matrix nach Anspruch 10, dadurch gekennzeichnet, dass alle Zeilen und/oder alle Spalten aus einem Material mit positivem Temperaturkoeffizienten sind.
  12. Matrix nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass alle Zeilen und alle Spalten aus demselben Material sind.
  13. Matrix nach einem der Ansprüche 1 bis 12, ausgebildet auf einem isolierenden Substrat.
  14. Matrix nach einem der vorangehenden Ansprüche, außerdem Einrichtungen zur Anpassung der Steuerstromanwendungsdauer bei wenigstens einem der Widerstände Rij umfassend, um den gewünschten Nutzeffekt bzw. Wirkungsgrad zu erzielen, insbesondere bei jedem Widerstand Rij.
  15. Verfahren zur Herstellung einer Widerstandsmatrix, bei der wenigstens einer der Widerstände durch das Abscheiden eines resistiven Materials (16) mit einem Widerstand mit negativem Temperaturkoeffizienten auf einem Substrat (10) realisiert wird, und dieser Widerstand mit einer thermisch aktivierbaren Komponente verbunden wird.
  16. Herstellungsverfahren nach Anspruch 15 mit Abscheidung des resistiven Materials durch Sputtern.
  17. Herstellungsverfahren nach einem der Ansprüche 15 oder 16, bei dem auf dem Substrat (10) ein leitfähiges Material (12) abgeschieden wird, um vor dem Abscheiden des resistiven Materials die Zeilen (14) auszubilden.
  18. Herstellungsverfahren nach einem der Ansprüche 15 bis 17, bei dem ein leitfähiges Material (12) abgeschieden wird, um nach dem Abscheiden des resistiven Materials die Spalten (24) auszubilden.
  19. Verfahren nach einem der Ansprüche 15 bis 18, mit einem Schritt zur Abscheidung eines die Leitungen der Spalten isolierenden Materials (20) auf dem genannten Substrat.
  20. Verfahren nach einem der Ansprüche 17 bis 19, das die Auswahl eines Materials für die Zeilen und/oder Spalten umfasst, dessen Widerstand einen positiven Temperaturkoeffizienten aufweist.
  21. Verfahren nach einem der Ansprüche 15 bis 20, das die Verbindung der Matrix mit einem Mikroventilgitter umfasst.
  22. Vorrichtung zur biologischen Anwendung, mit einer Matrix nach einem der Ansprüche 1 bis 14, verbunden mit einem mikrofluidischen Gitter.
EP04805719A 2003-10-03 2004-10-01 Unabhängig adressierbare widerstandsmatrizen und verfahren zu ihrer herstellung Not-in-force EP1668654B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0350651A FR2860641B1 (fr) 2003-10-03 2003-10-03 Matrice de resistances adressables independamment, et son procede de realisation
PCT/FR2004/050476 WO2005034148A1 (fr) 2003-10-03 2004-10-01 Matrice de resistances adressables independamment, et son procede de realisation

Publications (2)

Publication Number Publication Date
EP1668654A1 EP1668654A1 (de) 2006-06-14
EP1668654B1 true EP1668654B1 (de) 2007-01-24

Family

ID=34307568

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04805719A Not-in-force EP1668654B1 (de) 2003-10-03 2004-10-01 Unabhängig adressierbare widerstandsmatrizen und verfahren zu ihrer herstellung

Country Status (6)

Country Link
US (1) US7642893B2 (de)
EP (1) EP1668654B1 (de)
AT (1) ATE352845T1 (de)
DE (1) DE602004004554T2 (de)
FR (1) FR2860641B1 (de)
WO (1) WO2005034148A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101507807B1 (ko) * 2008-08-14 2015-04-03 삼성전자주식회사 열구동 방식 잉크젯 프린트헤드 및 그 구동방법

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2031805A (en) * 1978-10-13 1980-04-30 Leeds & Northrup Ltd Thermal printing device
US4463359A (en) * 1979-04-02 1984-07-31 Canon Kabushiki Kaisha Droplet generating method and apparatus thereof
US4803457A (en) * 1987-02-27 1989-02-07 Chapel Jr Roy W Compound resistor and manufacturing method therefore
US5846708A (en) * 1991-11-19 1998-12-08 Massachusetts Institiute Of Technology Optical and electrical methods and apparatus for molecule detection
DE4333065A1 (de) * 1993-09-29 1995-03-30 Bosch Gmbh Robert Elektronische Schaltung
US5699462A (en) * 1996-06-14 1997-12-16 Hewlett-Packard Company Total internal reflection optical switches employing thermal activation
US5781211A (en) * 1996-07-23 1998-07-14 Bobry; Howard H. Ink jet recording head apparatus
CN1137999C (zh) * 2000-07-04 2004-02-11 清华大学 集成式微阵列装置
US6309053B1 (en) * 2000-07-24 2001-10-30 Hewlett-Packard Company Ink jet printhead having a ground bus that overlaps transistor active regions
EP1188840A3 (de) 2000-07-26 2003-04-23 Agilent Technologies, Inc. (a Delaware corporation) Chemisches Reaktionsverfahren und Vorrichtung
FR2813207B1 (fr) 2000-08-28 2002-10-11 Bio Merieux Carte reactionnelle et utilisation d'une telle carte
FR2828245B1 (fr) * 2001-04-27 2005-11-11 Poudres & Explosifs Ste Nale Microactionneurs pyrotechniques pour microsystemes
US6538508B2 (en) * 2001-04-27 2003-03-25 Broadcom Corporation Programmable gain amplifier with glitch minimization
FR2828244A1 (fr) 2001-04-27 2003-02-07 Poudres & Explosifs Ste Nale Microactionneurs pyrotechniques pour microsystemes
US20030059807A1 (en) * 2001-06-07 2003-03-27 Proligo Llc Microcalorimetric detection of analytes and binding events
JP2003030224A (ja) * 2001-07-17 2003-01-31 Fujitsu Ltd 文書クラスタ作成装置、文書検索システムおよびfaq作成システム

Also Published As

Publication number Publication date
ATE352845T1 (de) 2007-02-15
FR2860641B1 (fr) 2006-10-13
US7642893B2 (en) 2010-01-05
FR2860641A1 (fr) 2005-04-08
US20070247274A1 (en) 2007-10-25
DE602004004554D1 (de) 2007-03-15
EP1668654A1 (de) 2006-06-14
DE602004004554T2 (de) 2007-10-31
WO2005034148A1 (fr) 2005-04-14

Similar Documents

Publication Publication Date Title
EP1639613B1 (de) Bistabiler mikroschalter mit geringer stromaufnahme
EP1040492B1 (de) Mikrostruktur mit einem verformbaren element durch einwirkung eines thermischen antriebes
DE102017106593B4 (de) MEMS-Heiz- oder Emitter-Struktur für schnelle Heiz- und Kühlzyklen
EP1778976B1 (de) Elektrodenadressierungsverfahren
EP1376846B1 (de) Vorrichtung zum Austragen kleiner Volumen Flüssigkeit einer Mikrokettenlinie entlang
FR2866493A1 (fr) Dispositif de controle du deplacement d'une goutte entre deux ou plusieurs substrats solides
FR2749391A1 (fr) Procede et appareil de detection moleculaire fondes sur la magnetoresistance
EP3381060A1 (de) Beleuchtete frontplatte und verfahren zur herstellung solch einer beleuchteten frontplatte
FR2990320A1 (fr) Haut-parleur digital a performance amelioree
SE1050461A1 (sv) Metoder för tillverkning av en startsubstratskiva för halvledartillverkning, med skivgenomgående anslutningar
FR3030995A1 (fr) Source de lumiere electroluminescente a parametre de luminance ajuste ou ajustable en luminance et procede d'ajustement d'un parametre de luminance de la source de lumiere electroluminescente
EP1668654B1 (de) Unabhängig adressierbare widerstandsmatrizen und verfahren zu ihrer herstellung
JP2007510954A (ja) 電気力学的マイクロミラー素子およびその製造方法
EP3109900B1 (de) Herstellungsverfahren einer vielzahl von dipolen in form von inseln, die selbstausrichtende elektroden umfassen
EP2145854B1 (de) MEMS-Vorrichtung mit einer elektromechanischen Schnittstelle auf Nanoröhrenbasis zwischen einen Komponenten und dessen Träger
EP3616471B1 (de) Verfahren und system zur steuerung des elektrischen stroms in einer halbleiterlichtquelle, die mindestens zwei unterschiedliche lichtemissionsregionen definiert
EP1900679A1 (de) Formen einer Opferschicht, um ein aufgehängtes Element herzustellen
WO2020094812A1 (fr) Dispositif lumineux pour un vehicule automobile comprenant une source lumineuse matricielle
EP3926392B1 (de) Optisches gerät und herstellungsprozess
EP0861496A1 (de) Elektrische schalvorrichtung und anzeigevorrichtung der diese schalvorrichtung verwendet
EP3267767B1 (de) Vorrichtung zur beleuchtung und/oder signalisierung mit lichtlaufeffekt
WO2020231711A1 (en) Liquid lenses and liquid lens articles with low reflectivity electrode structures
FR3022638A1 (fr) Procede de caracterisation d'un dispositif de connexion electrique destine a etre hybride a un dispositif electronique
WO2020094936A1 (fr) Procédé de liaison par brasage permettant d'améliorer la tenue en fatigue de joints brasés
FR3008228A1 (fr) Procede d'assemblage de deux composants electroniques, de type flip-chip par recuit uv, assemblage obtenu

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20060404

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

DAX Request for extension of the european patent (deleted)
AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602004004554

Country of ref document: DE

Date of ref document: 20070315

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070424

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070424

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070505

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

BERE Be: lapsed

Owner name: COMMISSARIAT A L'ENERGIE ATOMIQUE

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070725

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101022

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151019

Year of fee payment: 12

Ref country code: DE

Payment date: 20151014

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004004554

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161001