EP1666618B2 - Superalliage à base Ni et son utilisation comme disques, arbres et rotors de turbines à gaz - Google Patents

Superalliage à base Ni et son utilisation comme disques, arbres et rotors de turbines à gaz Download PDF

Info

Publication number
EP1666618B2
EP1666618B2 EP06001713.4A EP06001713A EP1666618B2 EP 1666618 B2 EP1666618 B2 EP 1666618B2 EP 06001713 A EP06001713 A EP 06001713A EP 1666618 B2 EP1666618 B2 EP 1666618B2
Authority
EP
European Patent Office
Prior art keywords
percent
article
mass
temperature
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP06001713.4A
Other languages
German (de)
English (en)
Other versions
EP1666618B1 (fr
EP1666618A1 (fr
Inventor
David Paul Mourer
Daniel Gustov Backman
Paul Leray Reynolds
Timothy Paul Gabb
Eric Scott Huron
Kenneth Rees Bain
John Joseph Schirra
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8173302&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1666618(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by General Electric Co filed Critical General Electric Co
Priority to DE60041936T priority Critical patent/DE60041936D1/de
Priority to EP06001713.4A priority patent/EP1666618B2/fr
Publication of EP1666618A1 publication Critical patent/EP1666618A1/fr
Publication of EP1666618B1 publication Critical patent/EP1666618B1/fr
Application granted granted Critical
Publication of EP1666618B2 publication Critical patent/EP1666618B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0433Nickel- or cobalt-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment

Definitions

  • This invention relates to a superalloy having nickel as the major component, and, more particularly, to such a superalloy particularly useful in the production of gas turbine disks, impellers, and shafts by powder metallurgy techniques.
  • a gas turbine (jet) engine air is drawn into the front end of the engine, compressed by a shaft-mounted compressor disk, and mixed with fuel. The mixture is ignited, producing a hot exhaust gas that is passed through a turbine which provides the power to the compressor, and then exhausted rearwardly to drive the engine and the aircraft, in which it is mounted, forwardly.
  • the turbine In the axial flow jet engine, the turbine has a turbine disk which is mounted to a drive shaft, and turbine blades extending from the periphery of the turbine disk.
  • the compressor disk is mounted to its shaft, which is driven by the turbine shaft.
  • Turbine disk must carry high multiaxial loads in tension, and must exhibit good creep resistance and dwell fatigue capability as well as good fracture toughness.
  • Turbine disks for use at moderately high temperatures have in the past typically been forged, which tends to produce a degree of anisotropy in the disk. As the operating temperatures have been increased through improvements in alloy compositions, other fabrication techniques have been developed.
  • the alloy material of construction is provided in the form of fine powders. These powders are compacted together in the form of the turbine disk or shaft, usually by extrusion and isothermal forging, and then heat treated and final machined as necessary.
  • the final article is largely isotropic due to the use of the powders, and has properties determined by the composition of the powder particles and the heat treatment.
  • US-A-5120373 discloses a process for producing a fine grain forged superalloy article having a high yield strength at intermediate temperatures.
  • a preferred starting composition comprises, by weight, 15% Cr, 13.6%Co, 4.1% Mo, 4.6% Ti, 2.2% Al, 0.01 % C, 0.007%B, 0.07%Zr, balance Ni.
  • This material is forged at a temperature above the gamma prime solvus temperature and a truestrain of at least 0.5. Alternatively the material may be forged below the gamma prime solvus.
  • EP-A-0373298 discloses a composition consisting of, in weight percent, 12-18 Co, 7-13 Cr, 2-4 Mo, 0-1.0 W, 2.0-5.0 Al, 5.0-7.0 Ti, 2.0-3.2 Ta, 1.0-1.7 Nb, 0-0.75 Hf, 0-0.1 Zr, 0.0-2.0 V, 0-0.2 C, 0-0.1 B, 0-1.0 Re, 0-0.1 Y, balance Ni.
  • EP-A-0849370 discloses a nickel base superalloy article having a machined surface having a composition in weight percent, 1.2-3.5 Al, 3.0-7.0 Ti, 12.0-20 Cr, 2.0-3.9 Mo, 10.0-20.0 Co, 1-4.5 W, 0.005-0.025 C, 0.005-0.05 B, 0.01-0.1 Zr, 0-0.005 Mg, 0-1.0 Ta, 0-1.0 Nb, 0-2.0 Fe, 0-0.3 Hf, 0-0.02 Y, 0-0.1 V, 0-1.0 Re, balance Ni.
  • the article has a plurality of discrete carbides essentially free from molybdenum, for increased fatigues strength.
  • the present invention provides compositions of matter, articles using the compositions of matter, and processing methods for the compositions of matter that achieve improved combinations of properties in conditions experienced in aircraft gas turbine disk and shaft applications. Both dwell fatigue crack growth rate and time to creep specific amounts or elongation are improved as compared with other alloys used for these applications. This combination of improved properties is particularly advantageous for use in aircraft engines which are not operated at the temperatures required for advanced military fighter engines but which spend long periods at moderately elevated temperature in cruise conditions.
  • the selected compositions reflect careful balancing of the amounts of both the major and minor elements.
  • a composition of matter consists of, in weight percent, from 16 percent to 20 percent cobalt, from 11 percent to 15 percent chromium, from 2 percent to 4 percent tantalum, from 0.5 to 3 percent tungsten, from 3 to 5 percent molybdenum, from 0.015 to 0.15 percent zirconium, from 1 to 3 percent niobium, from 2.6 to 4.6 percent titanium, from 2.6 to 4.6 percent aluminum, from 0 to 2.5 percent rhenium, from 0 to 2 percent vanadium, from 0 to 2 percent iron, from 0 to 2 percent hafnium, from 0 to 0.1 percent magnesium, from 0.015 to 0.1 percent carbon, from 0.015 percent to 0.045 percent boron, balance nickel and impurities.
  • the ratio (percent zirconium + percent boron)/percent carbon is greater than 1.0.
  • compositions of the invention are prepared in powder form, and processed into articles by combinations of extrusion, hot isostatic pressing, isothermal forging, heat treating, and other operable techniques.
  • the preferred articles made with these compositions are turbine and compressor disks and shafts, and compressor impellers for gas turbine engines.
  • the articles may be heat treated, either by solution treating and ageing or by solution treating followed by a controlled cooling to below the solvus temperature to control residual stresses.
  • the articles made according to the invention exhibit a combination of low dwell fatigue crack growth rate and long creep times that are unexpectedly improved over prior materials used for the same applications.
  • compositions, articles, and methods of the present invention result in improved dwell fatigue crack growth rate and creep properties, while retaining acceptable density and other physical and mechanical properties.
  • This combination of properties is particularly advantageous for use in turbine disk applications in advanced civilian aircraft engines, where the engine has an extended operating cycle at elevated temperature, but where the temperature requirements of the engine are not as great as in military aircraft.
  • Figure 1A shows a turbine disk 20
  • Figure 1B shows a compressor impeller 22
  • Figure 2 shows a turbine shaft 24 used in a gas turbine engine, each of which may be made by the approach of the invention.
  • a compressor disk has an appearance which is generally similar to that of a turbine disk
  • a compressor shaft has an appearance which is generally similar to that of a turbine shaft.
  • Figure 3 depicts a method of fabricating articles such as those of Figures 1 and 2 .
  • a metallic composition of matter is furnished, numeral 30.
  • the composition of matter of the present invention is, in weight percent, from 16 percent to 20 percent cobalt, from 11 percent to 15 percent chromium, from 2 percent to 4 percent tantalum, from 0.5 to 3 percent tungsten, from 3 to 5 percent molybdenum, from 0.015 to 0.15 percent zirconium, from 1 to 3 percent niobium, from 2.6 to 4.6 percent titanium, from 2.6 to 4.6 percent aluminum, from 0 to 2.5 percent rhenium, from 0 to 2 percent vanadium, from 0 to 2 percent iron, from 0 to 2 percent hafnium, from 0 to 0.1 percent magnesium from 0.015 to 0.1 percent carbon, from 0.015 percent to 0.045 percent boron, balance nickel and impurities.
  • This alloy composition produces a gamma/gamma prime microstructure, which may be controlled through heat treatments, with minor amounts of other phases present such as borides and carbides.
  • the gamma prime phase is present in an amount, based on calculation, of from 47 to 55 volume percent of the total volume of the material, in order to produce the desirable properties of the alloy.
  • the types and amounts of the elements in the alloy composition are chosen in cooperation with each other to achieve the desired properties, based upon testing and the analysis undertaken by the inventors. Due to the interaction between the elements, the experimental compositions defined the trends for alloying, but only limited ranges of alloy compositions exhibit the final effects of compositional influences, microstructures, and resulting properties. Together the alloying trends and the absolute elemental levels define the preferred ranges of compositions. The effects of individual elements and the results of their amounts in the alloys falling outside the indicated ranges may be summarized as follows.
  • the cobalt level is selected to control the gamma prime solvus temperature. Increasing amounts of cobalt lower the gamma prime solvus temperature, which is desirable to achieve a large processing temperature range and reduce the stresses induced by controlled cooling or quenching of the alloy used to define a portion of the gamma prime distribution and the preferred combination of mechanical properties. If the amount of cobalt is substantially less than that indicated, the gamma prime solvus temperature is too high and there is a risk of incipient melting or thermally induced porosity. If the cobalt content is substantially greater than that indicated, the alloy has an undesirably higher elemental cost.
  • chromium is beneficial to oxidation resistance, corrosion resistance, and fatigue crack growth resistance. If the amount of chromium present is substantially less than that indicated, these properties may suffer. If it is substantially more than that indicated, there may be alloy, chemical, or phase instability during extended exposure to elevated temperatures, and creep performance suffers.
  • the control of the refractory elements tantalum, tungsten, niobium, and molybdenum is important to achieving the balance required in the alloy and articles of the invention.
  • Tantalum whose presence and percentage content of tantalum is important to achieving the beneficial results obtained for the alloys of the invention, primarily enters the gamma-prime phase and has the effect of improving the stability of the gamma-prime phase and improving the creep resistance and fatigue crack growth resistance of the alloy. If the tantalum content is substantially lower than these amounts, the creep life of the alloy is reduced and the dwell fatigue crack growth resistance is insufficient. Increasing the tantalum substantially above the indicated amounts has the undesirable effect of raising the gamma-prime solvus temperature so as to reduce the processibility of the alloy and increase its density.
  • Tungsten and niobium are two relatively dense elements which function together to achieve synergistic positive results with respect to creep capability.
  • Figure 4 shows the time for a standard tensile specimen to creep to 0.2 percent elongation at 649°C (1200°F) and under a load of 793 MPa (115,000 pounds per square inch), With less than 0.5 weight percent tungsten and less than 1 weight percent niobium, or with one or the other of the two elements present but not both, the creep properties are relatively poor. If both tungsten and niobium are present above these indicated minimum limits, the creep properties are markedly better.
  • Tungsten enters the matrix as a solid-solution strengthening element, and also aids in forming gamma prime precipitates. If the amount of tungsten is substantially less than that indicated, the creep properties may be insufficient. However, tungsten is relatively dense and also can lead to notch sensitivity and chemical instability. If the amount of tungsten is substantially greater than that indicated, the density of the alloy is too high, and, in addition, notch sensitivity is enhanced and chemical instability is of concern.
  • niobium is relatively dense and also can lead to notch sensitivity, chemical instability, and loss of dwell fatigue crack growth capability. If the amount of niobium is substantially greater than that indicated, the density of the alloy is too high, and, in addition, notch sensitivity is enhanced and chemical instability and reduced dwell fatigue crack growth capability are of concern.
  • Molybdenum is another relatively dense refractory element that partitions primarily to the gamma phase and has a beneficial effect on creep capability. If the amount of molybdenum is substantially less than 3 weight percent, the creep capability of the material may be reduced below desirable levels. If the amount of molybdenum is greater than about 5 weight percent, alloy stability is reduced and alloy density is increased above the desired level.
  • Titanium is a relatively light element and therefore may be added more freely to the alloy, from a density standpoint, to contribute to gamma prime formation. If titanium is present in an amount substantially less than that indicated, the tensile and dwell fatigue crack growth properties may be insufficient. If titanium is present in an amount substantially greater than that indicated, the heat treat window may be unacceptably reduced because the gamma prime solvus temperature is raised excessively. Substantially greater titanium levels may also stabilize or produce undesirable phases such as eta phase, which ties up the titanium and prevents it from participating in the production of the desired gamma prime microstructure.
  • Aluminum is present to contribute to gamma prime phase formation and to promote gamma prime phase stability.
  • Aluminum is the lowest-density gamma prime forming element and offsets the presence of higher-density elements. If aluminum is present in an amount substantially less than or greater than that indicated, then too little or too much of the gamma prime phase is present, and the stability of the alloy is adversely affected.
  • Carbon is present to aid in controlling grain size of the alloy. If the carbon content is substantially less than that indicated, the grain size of the alloy tends to grow too large, particularly during supersolvus processing. However, if the carbon content is substantially greater than that indicated, the carbon may have an adverse effect on the fracture properties of the alloy through premature failure. The higher carbon content also adversely affects the dwell fatigue crack growth resistance and creep capability.
  • Boron in moderate amounts improves the dwell fatigue crack growth resistance. If the boron is substantially less than that indicated, the alloy has insufficient dwell fatigue crack growth resistance. However, boron in an amount substantially greater than that indicated tends to cause residual porosity or thermally induced porosity and incipient melting during processing, and to reduce creep capability.
  • Zirconium is present in an amount of from 0.015 percent to 0.15 percent, more preferably from 0.35 to 0.055 percent, and most preferably from 0.04 to 0.05 percent.
  • the presence of zirconium in controlled small amounts improves the elongation and ductility of the alloy, and also reduces the crack growth rate.
  • Zirconium in amounts substantially in excess of the indicated levels tends to increase the creep rate of the alloy.
  • rhenium in an amount up to 2.5 percent by weight, magnesium in an amount up to 0.1 percent by weight, vanadium in an amount up to 2 percent by weight, iron in an amount up to 2 percent by weight, and hafnium in an amount up to 2 percent by weight may be present without adversely affecting the properties.
  • the hafnium may improve the dwell fatigue crack growth rate but with a slight negative effect on low cycle fatigue.
  • alloy ME1-16 has a composition of, in weight percent, 18.2 percent cobalt, 13.1 percent chromium, 2.7 percent tantalum, 1.9 percent tungsten, 3.8 percent molybdenum, 0.050 percent zirconium, 1.4 percent niobium, 3.5 percent titanium, 3.5 percent aluminum, 0.030 percent carbon, 0.030 percent boron, balance nickel and impurities.
  • Another specific most preferred alloy has a composition, in weight percent, of 20 percent cobalt, 13 percent chromium, 2 percent tantalum, 2 percent tungsten, 3.8 percent molybdenum, 0.050 percent zirconium, 1.2 percent niobium, 3.7 percent titanium, 3.7 percent aluminum, 0.05 percent carbon, 0.03 percent boron, balance nickel and impurities.
  • compositions are a result of the selection of the combination of elements, not any one element in isolation.
  • the more preferred and most preferred compositions yield progressively improved results than the broad composition within the operable range, but it is also possible to attain improved results by combining the narrowed composition ranges of some elements producing improved results with the broader composition ranges of other elements.
  • the alloy composition is formed into a powder, numeral 32, by any operable technique. Gas or vacuum atomization is preferred.
  • the powder particles are preferably finer than -60 mesh, and most preferably -140 mesh or -270 mesh.
  • the powder is consolidated to a billet or forging preform shape and then subsequently deformed to a final shape, numeral 34.
  • the preferred approach to consolidation is extrusion processing at an extrusion temperature of from 1010°C (1850°F) to 1107°C (2025°F), and a 3:1 to 6:1 extrusion ratio.
  • the alloy is deformed to a shaped contour oversize to, but approximating the outline of, the final part.
  • the deformation step is preferably accomplished by isothermal forging in a strain-controlled mode.
  • the consolidation, deformation, and a subsequent supersolvus solution heat treatment are preferably selected to yield a grain size of from ASTM 2 to ASTM 8, preferably from ASTM 5 to ASTM 8.
  • the consolidation, deformation, and a subsequent subsolvus solution heat treatment are selected to yield a grain size of from ASTM 9 to ASTM 12, preferably from ASTM 10 to ASTM 12.
  • the extruded article is heat treated, numeral 36, to produce the desired microstructure.
  • the article is solution heat treated by heating to a supersolvus temperature, such as from 1149°C (2100°F) to 1218°C (2225°F) for a period of time sufficient that the entire article reaches this temperature range.
  • the solution-treated article is quenched (cooled) to room temperature by a fan air cool, optionally followed by an oil quench.
  • the solution-treated-and-quenched article is then aged by reheating to a temperature below the solvus temperature, preferably from 732°C (1350°F) to 816°C (1500°F) for a time of about 8 hours.
  • the article may be stress relieved by heating it to a stress-relieving temperature of from 816°C (1500°F) to 982°C (1800°F), most preferably 843°C (1550°F) for 4 hours, either after the quenching step and before the aging step, or after the final age step.
  • a stress-relieving temperature of from 816°C (1500°F) to 982°C (1800°F), most preferably 843°C (1550°F) for 4 hours, either after the quenching step and before the aging step, or after the final age step.
  • the article is solution treated at a partial subsolvus solution-treating temperature of from 1093°C (2000°F) to 1149°C (2100°F), quenched as described above and aged, or cooled, stress relieved and aged, as described above.
  • the article is slow cooled from a supersolvus solution temperature at rates of less than 260°C (500°F) per hour to a subsolvus temperature.
  • the article is then quenched as described above and aged, or stress relieved and aged, as described above.
  • Figure 6 also illustrates data for the time for reach 0.2 percent creep when measured at 649°C (1200°F) and a stress of 793 MPa (115,000 pounds per square inch).
  • compositions of the present invention achieve significantly improved dwell fatigue crack growth rates and improved creep times, as compared with conventional alloys.
  • data is presented for IN100 and Rene 88DT, standard disk and shaft alloys.
  • Alloy ME 1-16 and ME2 are within the scope of the present invention, alloy ME1-12 is outside the scope of the invention.
  • Alloy CH98 is the preferred composition disclosed in US Patent 5,662,749 .
  • the alloys of the present invention achieve an improvement of approximately a factor of 50 over IN100 in creep life and approximately a factor of 200 over Rene 88DT in dwell fatigue crack growth rate.
  • the alloys of the present invention have about the same dwell fatigue crack growth performance as alloy CH98, and exhibit substantially improved creep life over alloy CH98.
  • the present alloys provide a level of enhanced performance for both dwell fatigue crack growth rate and time to creep that is desirable for articles such as gas turbine disks and shafts that are subjected to both types of loading during service.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Claims (20)

  1. Composition de matière constituée, en pour-cent en poids, de 16 à 20 pour-cent de cobalt, de 11 à 15 pour-cent de chrome, de 2 à 4 pour-cent de tantale, de 0,5 à 3 pour-cent de tungstène, de 3 à 5 pour-cent de molybdène, de 0,015 à 0,15 pour-cent de zirconium, de 1 à 3 pour-cent de niobium, de 2,6 à 4,6 pour-cent de titane, de 2,6 à 4,6 pour-cent d'aluminium, de 0 à 2,5 pour-cent de rhénium, de 0 à 2 pour-cent de vanadium, de 0 à 2 pour-cent de fer, de 0 à 2 pour-cent d'hafnium, de 0 à 0, 1 pour-cent de magnésium, de 0,015 à 0,1 pour- cent de carbone, de 0,015 à 0,045 pour-cent de bore, le complément étant du nickel et des impuretés ; dans laquelle le rapport (pour-cent de zirconium + pour-cent de bore)/ pour-cent de carbone est supérieur à 1.
  2. Composition de matière selon la revendication 1, dans laquelle la somme de tungstène plus niobium est comprise entre 2,2 pour-cent et 4 pour-cent.
  3. Composition de matière de la revendication 1, dans laquelle la composition est constituée, en pour-cent en poids, de 18,2 pour-cent environ de cobalt, 13,1 pour-cent environ de chrome, 2,7 pour-cent environ de tantale, 1,9 pour-cent environ de tungstène, 3,8 pour-cent environ de molybdène, 0,050 pour-cent environ de zirconium, 1,4 pour-cent environ de niobium, 3,5 pour-cent environ de titane, 3,5 pour-cent environ d'aluminium, 0,030 pour-cent environ de carbone, 0,030 pour-cent environ de bore, le complément étant du nickel et des impuretés.
  4. Composition de matière selon la revendication 1, dans laquelle la composition est constituée, en pour-cent en poids, de 20 pour-cent environ de cobalt, 13 pour-cent environ de chrome, 2 pour-cent environ de tantale, 2 pour-cent environ de tungstène, 3,8 pour-cent environ de molybdène, 0,050 pour- cent environ de zirconium, 1,2 pour-cent environ de niobium, 3,7 pour-cent environ de titane, 3,7 pour-cent environ d'aluminium, 0,05 pour-cent environ de carbone, 0,03 pour-cent environ de bore, le complément étant du nickel et des impuretés.
  5. Article présentant une composition selon la revendication 1.
  6. Article selon la revendication 5, dans lequel l'article comprend une masse de poudres compactées.
  7. Article selon la revendication 6, dans lequel l'article présente une taille de grain de ASTM 2 à ASTM 8.
  8. Article selon la revendication 5, dans lequel l'article présente une taille de grain de ASTM 9 à ASTM 12.
  9. Article selon la revendication 5, dans lequel l'article est sélectionné à partir du groupe constitué par un disque de turbine (20), un arbre de turbine (24), un disque de compresseur (20), un arbre de compresseur (24), et un rotor de compresseur (22).
  10. Procédé de préparation d'un article, comprenant les étapes de Fourniture d'une masse de poudres compactées présentant une composition constituée, en pour-cent en poids, de 16 à 20 pour-cent de cobalt, de 11 à 15 pour-cent de chrome, de 2 à 4 pour-cent de tantale, de 0,5 à 3 pour- cent de tungstène, de 3 à 5 pour-cent de molybdène, de 0,015 à 0,15 pour-cent de zirconium, de 1 à 3 pour-cent de niobium, de 2,6 à 4,6 pour-cent de titane, de 2,6 à 4,6 pour-cent d'aluminium, de 0 à 2,5 pour-cent de rhénium, de 0 à 2 pour-cent de vanadium, de 0 à 2 pour-cent de fer, de 0 à 2 pour-cent de hafnium, de 0 à 0,1 pour-cent de magnésium, de 0,015 à 0,1 pour-cent de carbone, de 0,015 à 0,045 pour-cent de bore, le complément étant du nickel et des impuretés ; dans lequel le rapport (pour-cent de zirconium + pour-cent de bore)/ pour-cent de carbone est supérieur à 1.
    traitement thermique de la masse par les étapes de
    traitement en solution de la masse à une température de traitement supérieure à sa température de limite de solubilité,
    et refroidissement de la masse traitée en solution à une température inférieure à sa température de limite de solubilité.
  11. Procédé selon la revendication 10, dans lequel l'étape de traitement thermique comprend une étape supplémentaire, après l'étape de refroidissement, de maturation de la masse traitée en solution et recuite à une température de maturation inférieure à sa température de limite de solubilité.
  12. Procédé selon la revendication 11, dans lequel l'étape de maturation comporte l'étape de chauffage de la masse à une température de maturation de 732°C (1350°F) à 816°C (1500°F).
  13. Procédé selon la revendication 11, comportant une étape supplémentaire, après l'étape de refroidissement, de libération de contraintes de l'article par chauffage de l'article à une température de libération de contraintes de 816°C (1500°F) à 982°C (1800°F).
  14. Procédé selon la revendication 10, dans lequel l'étape de traitement en solution comporte l'étape de chauffage de la masse à une température de traitement en solution de 1149°C (2100°F) à 1218°C (2225°F).
  15. Procédé selon la revendication 10, dans lequel l'étape de traitement en solution comporte l'étape de chauffage de la masse à une température de traitement en solution inférieure à la limite de solubilité partielle de 1093°C (2000°F) à 1149°C environ (2100°F).
  16. Procédé selon la revendication 15, dans lequel l'étape de traitement thermique comporte une étape supplémentaire, après l'étape de refroidissement,
    de maturation de la masse traitée en solution et refroidie au-dessous de la limite de solubilité partielle à une température de maturation inférieure à sa limite de solubilité.
  17. Procédé selon la revendication 16, dans lequel l'étape de maturation comprend l'étape de
    chauffage de la masse traitée en solution et refroidie au-dessous de la limite de solubilité partielle à une température de maturation de 732°C (1350°F) à 816°C (1500°F).
  18. Procédé selon la revendication 16, comportant une étape supplémentaire, après l'étape de refroidissement, de libération de contraintes de l'article à une température de libération de contraintes de 816°C (1500°F) à 982°C (1800°F).
  19. Composition de matière selon la revendication 1, dans laquelle la teneur en tungstène est de 1,4 à 3 pour-cent en poids.
  20. Article selon la revendication 6, dans lequel la teneur en tungstène est de 1,4 à 3 pour-cent en poids.
EP06001713.4A 2000-10-04 2000-10-04 Superalliage à base Ni et son utilisation comme disques, arbres et rotors de turbines à gaz Expired - Lifetime EP1666618B2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE60041936T DE60041936D1 (de) 2000-10-04 2000-10-04 Ni-basis-Superlegierung und ihre Verwendung als Gasturbinen-Scheiben, -Wellen und -Laufräder
EP06001713.4A EP1666618B2 (fr) 2000-10-04 2000-10-04 Superalliage à base Ni et son utilisation comme disques, arbres et rotors de turbines à gaz

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP06001713.4A EP1666618B2 (fr) 2000-10-04 2000-10-04 Superalliage à base Ni et son utilisation comme disques, arbres et rotors de turbines à gaz
EP00308759A EP1195446A1 (fr) 2000-10-04 2000-10-04 Superalliage à base Ni et son utilisation comme disques, arbres et rotors de turbines à gaz

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP00308759A Division EP1195446A1 (fr) 2000-10-04 2000-10-04 Superalliage à base Ni et son utilisation comme disques, arbres et rotors de turbines à gaz

Publications (3)

Publication Number Publication Date
EP1666618A1 EP1666618A1 (fr) 2006-06-07
EP1666618B1 EP1666618B1 (fr) 2009-04-01
EP1666618B2 true EP1666618B2 (fr) 2015-06-03

Family

ID=8173302

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06001713.4A Expired - Lifetime EP1666618B2 (fr) 2000-10-04 2000-10-04 Superalliage à base Ni et son utilisation comme disques, arbres et rotors de turbines à gaz
EP00308759A Ceased EP1195446A1 (fr) 2000-10-04 2000-10-04 Superalliage à base Ni et son utilisation comme disques, arbres et rotors de turbines à gaz

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP00308759A Ceased EP1195446A1 (fr) 2000-10-04 2000-10-04 Superalliage à base Ni et son utilisation comme disques, arbres et rotors de turbines à gaz

Country Status (2)

Country Link
EP (2) EP1666618B2 (fr)
DE (1) DE60041936D1 (fr)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6974508B1 (en) 2002-10-29 2005-12-13 The United States Of America As Represented By The United States National Aeronautics And Space Administration Nickel base superalloy turbine disk
US6866727B1 (en) * 2003-08-29 2005-03-15 Honeywell International, Inc. High temperature powder metallurgy superalloy with enhanced fatigue and creep resistance
US6969431B2 (en) 2003-08-29 2005-11-29 Honeywell International, Inc. High temperature powder metallurgy superalloy with enhanced fatigue and creep resistance
US20050069450A1 (en) * 2003-09-30 2005-03-31 Liang Jiang Nickel-containing alloys, method of manufacture thereof and articles derived thereform
US7138020B2 (en) * 2003-10-15 2006-11-21 General Electric Company Method for reducing heat treatment residual stresses in super-solvus solutioned nickel-base superalloy articles
CN101948969A (zh) * 2004-12-02 2011-01-19 独立行政法人物质·材料研究机构 耐热超级合金
US20100008790A1 (en) 2005-03-30 2010-01-14 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
US7708846B2 (en) 2005-11-28 2010-05-04 United Technologies Corporation Superalloy stabilization
FR2899240B1 (fr) * 2006-03-31 2008-06-27 Snecma Sa Alliage a base de nickel
GB0719195D0 (en) * 2007-10-02 2007-11-14 Rolls Royce Plc A nickel base superalloy
EP2103700A1 (fr) 2008-03-14 2009-09-23 Siemens Aktiengesellschaft Alliages à base de nickel et leur utilisateur, pale ou aube de turbine et turbine à gaz
US8349250B2 (en) * 2009-05-14 2013-01-08 General Electric Company Cobalt-nickel superalloys, and related articles
US8613810B2 (en) * 2009-05-29 2013-12-24 General Electric Company Nickel-base alloy, processing therefor, and components formed thereof
US8992700B2 (en) 2009-05-29 2015-03-31 General Electric Company Nickel-base superalloys and components formed thereof
US8992699B2 (en) 2009-05-29 2015-03-31 General Electric Company Nickel-base superalloys and components formed thereof
US20100329876A1 (en) 2009-06-30 2010-12-30 General Electric Company Nickel-base superalloys and components formed thereof
US20100329883A1 (en) 2009-06-30 2010-12-30 General Electric Company Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloys
US9216453B2 (en) 2009-11-20 2015-12-22 Honeywell International Inc. Methods of forming dual microstructure components
EP2602336B1 (fr) * 2010-11-10 2014-12-17 Honda Motor Co., Ltd. Alliage de nickel
US10227678B2 (en) 2011-06-09 2019-03-12 General Electric Company Cobalt-nickel base alloy and method of making an article therefrom
US9752215B2 (en) 2012-02-14 2017-09-05 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
US9783873B2 (en) 2012-02-14 2017-10-10 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
WO2015100074A1 (fr) * 2013-12-27 2015-07-02 Chin Herbert A Alliage de nickel corroyé à haute résistance et haute conductivité thermique
GB201400352D0 (en) 2014-01-09 2014-02-26 Rolls Royce Plc A nickel based alloy composition
EP3183372B1 (fr) * 2014-08-18 2018-11-28 General Electric Company Superalliages améliorés par l'ajout de zirconium
US9452827B2 (en) * 2014-09-26 2016-09-27 Goodrich Corporation Landing gear components having improved joints
EP3042973B1 (fr) * 2015-01-07 2017-08-16 Rolls-Royce plc Alliage de nickel
GB2539957B (en) 2015-07-03 2017-12-27 Rolls Royce Plc A nickel-base superalloy
US20170291265A1 (en) 2016-04-11 2017-10-12 United Technologies Corporation Braze material for hybrid structures
US10280498B2 (en) 2016-10-12 2019-05-07 Crs Holdings, Inc. High temperature, damage tolerant superalloy, an article of manufacture made from the alloy, and process for making the alloy
CN113122789B (zh) * 2016-11-16 2022-07-08 三菱重工业株式会社 镍基合金模具和该模具的修补方法
JP6931545B2 (ja) * 2017-03-29 2021-09-08 三菱重工業株式会社 Ni基合金積層造形体の熱処理方法、Ni基合金積層造形体の製造方法、積層造形体用Ni基合金粉末、およびNi基合金積層造形体
US10793934B2 (en) 2017-05-02 2020-10-06 United Technologies Corporation Composition and method for enhanced precipitation hardened superalloys
US10718041B2 (en) 2017-06-26 2020-07-21 Raytheon Technologies Corporation Solid-state welding of coarse grain powder metallurgy nickel-based superalloys
GB2565063B (en) * 2017-07-28 2020-05-27 Oxmet Tech Limited A nickel-based alloy
FR3097876B1 (fr) * 2019-06-28 2022-02-04 Safran Poudre de superalliage, piece et procede de fabrication de la piece a partir de la poudre
CN111906311B (zh) * 2020-08-30 2021-05-28 中南大学 一种预防选区激光熔融镍基高温合金开裂的方法
CN115747577B (zh) * 2022-11-21 2024-04-12 北京钢研高纳科技股份有限公司 涡轮盘用变形高温合金及其制备方法
CN115679157B (zh) * 2022-12-29 2023-03-28 北京钢研高纳科技股份有限公司 镍基高温合金及其制备方法和结构件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1810246A1 (de) 1967-11-24 1969-10-09 Martin Marietta Corp Nickellegierungen und daraus hergestellte Formteile
DE1608242A1 (de) 1966-08-30 1971-01-14 Martin Marietta Corp Hochwarmfeste Nickellegierungen
EP0403682A1 (fr) 1987-10-02 1990-12-27 General Electric Company Superalliages à base de nickel résistant aux fendillements par fatique et produit obtenu
US5328659A (en) 1982-10-15 1994-07-12 United Technologies Corporation Superalloy heat treatment for promoting crack growth resistance
EP0803585A1 (fr) 1996-04-24 1997-10-29 ROLLS-ROYCE plc Alliage de nickel pour composant de moteur à turbine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129970A (en) * 1988-09-26 1992-07-14 General Electric Company Method of forming fatigue crack resistant nickel base superalloys and product formed
US5129969A (en) * 1988-09-28 1992-07-14 General Electric Company Method of forming in100 fatigue crack resistant nickel base superalloys and product formed
US5120373A (en) * 1991-04-15 1992-06-09 United Technologies Corporation Superalloy forging process
US5662749A (en) 1995-06-07 1997-09-02 General Electric Company Supersolvus processing for tantalum-containing nickel base superalloys
US5938863A (en) * 1996-12-17 1999-08-17 United Technologies Corporation Low cycle fatigue strength nickel base superalloys

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1608242A1 (de) 1966-08-30 1971-01-14 Martin Marietta Corp Hochwarmfeste Nickellegierungen
DE1810246A1 (de) 1967-11-24 1969-10-09 Martin Marietta Corp Nickellegierungen und daraus hergestellte Formteile
US5328659A (en) 1982-10-15 1994-07-12 United Technologies Corporation Superalloy heat treatment for promoting crack growth resistance
EP0403682A1 (fr) 1987-10-02 1990-12-27 General Electric Company Superalliages à base de nickel résistant aux fendillements par fatique et produit obtenu
EP0803585A1 (fr) 1996-04-24 1997-10-29 ROLLS-ROYCE plc Alliage de nickel pour composant de moteur à turbine

Also Published As

Publication number Publication date
DE60041936D1 (de) 2009-05-14
EP1666618B1 (fr) 2009-04-01
EP1195446A1 (fr) 2002-04-10
EP1666618A1 (fr) 2006-06-07

Similar Documents

Publication Publication Date Title
EP1666618B1 (fr) Superalliage à base Ni et son utilisation comme disques, arbres et rotors de turbines à gaz
US6521175B1 (en) Superalloy optimized for high-temperature performance in high-pressure turbine disks
JP6576379B2 (ja) チタン−アルミニウム基合金から成る部材の製造方法及び部材
JP3010050B2 (ja) 耐疲労亀裂進展性のニッケル基物品および合金並びに製造方法
EP1842934B1 (fr) Superalliage resistant a la chaleur
JP5398123B2 (ja) ニッケル系合金
EP2778241B1 (fr) Superalliage à base de nickel à haute résistance
US5891272A (en) Nickel-base superalloy having improved resistance to abnormal grain growth
US6974508B1 (en) Nickel base superalloy turbine disk
EP3336209B1 (fr) Alliage de titane résistant à la chaleur et son procédé de production
US5746846A (en) Method to produce gamma titanium aluminide articles having improved properties
EP0803585A1 (fr) Alliage de nickel pour composant de moteur à turbine
EP1201777B1 (fr) Superalliage optimalise pour performance a haute temperature dans disques de turbine a haute pression
EP2894234B1 (fr) Composition d'alliage à base de nickel
US5571345A (en) Thermomechanical processing method for achieving coarse grains in a superalloy article
EP3572541B1 (fr) Superalliage à base de nickel
CN115747577B (zh) 涡轮盘用变形高温合金及其制备方法
JP2009149976A (ja) 三元ニッケル共晶合金
US7138020B2 (en) Method for reducing heat treatment residual stresses in super-solvus solutioned nickel-base superalloy articles
JP5645054B2 (ja) アニーリングツインを含有するニッケル基耐熱超合金と耐熱超合金部材
CN115466867B (zh) 一种能够改善其均匀变形能力的TiAl合金及其制备方法
WO2017123186A1 (fr) Alliages à base de titane/aluminium ayant une meilleure résistance au fluage par renforcement de la phase gamma
Zhao et al. Evaluations of P/M gamma titanium aluminides
RU2777775C1 (ru) ИНТЕРМЕТАЛЛИДНЫЙ СПЛАВ НА ОСНОВЕ γ-TiAl ФАЗЫ ДЛЯ ИЗГОТОВЛЕНИЯ ЛОПАТКИ ТУРБИНЫ НИЗКОГО ДАВЛЕНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И СПОСОБ ИЗГОТОВЛЕНИЯ ЗАГОТОВКИ ЛОПАТКИ ИЗ ИНТЕРМЕТАЛЛИДНОГО СПЛАВА НА ОСНОВЕ γ-TiAl ФАЗЫ
EP3572540B1 (fr) Superalliage à base de nickel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1195446

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20061207

AKX Designation fees paid

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20070215

RTI1 Title (correction)

Free format text: NI BASED SUPERALLOY AND ITS USE AS GAS TURBINE DISKS, SHAFTS AND IMPELLERS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1195446

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60041936

Country of ref document: DE

Date of ref document: 20090514

Kind code of ref document: P

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SIEMENS AG

Effective date: 20091015

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PLAF Information modified related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSCOBS2

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SIEMENS AKTIENGESELLSCHAFT

Effective date: 20091015

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20150603

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 60041936

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151028

Year of fee payment: 16

Ref country code: IT

Payment date: 20151026

Year of fee payment: 16

Ref country code: GB

Payment date: 20151027

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151019

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60041936

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161004

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161004