US20100329883A1 - Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloys - Google Patents

Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloys Download PDF

Info

Publication number
US20100329883A1
US20100329883A1 US12/494,896 US49489609A US2010329883A1 US 20100329883 A1 US20100329883 A1 US 20100329883A1 US 49489609 A US49489609 A US 49489609A US 2010329883 A1 US2010329883 A1 US 2010329883A1
Authority
US
United States
Prior art keywords
superalloy
worked article
grain size
article
gamma prime
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/494,896
Inventor
David Paul Mourer
Kenneth Rees Bain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US12/494,896 priority Critical patent/US20100329883A1/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAIN, KENNETH REES, MOURER, DAVID PAUL
Priority to CA2707782A priority patent/CA2707782A1/en
Priority to JP2010144348A priority patent/JP2011012346A/en
Priority to EP10167751A priority patent/EP2295612A1/en
Priority to CN2010102269828A priority patent/CN101935780A/en
Publication of US20100329883A1 publication Critical patent/US20100329883A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/057Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being less 10%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2230/00Manufacture
    • F05B2230/20Manufacture essentially without removing material
    • F05B2230/21Manufacture essentially without removing material by casting

Definitions

  • the present invention generally relates to nickel-base superalloys and methods for processing such superalloys. More particularly, this invention relates to a nickel-base superalloy and a method of forging an article from the nickel-base superalloy to promote a more controlled grain growth during supersolvus heat treatment, such that the article is characterized by a microstructure with a finer uniform grain size and exhibits improved low cycle fatigue behavior.
  • the turbine section of a gas turbine engine is located downstream of a combustor section and contains a rotor shaft and one or more turbine stages, each having a turbine disk (rotor) mounted or otherwise carried by the shaft and turbine blades mounted to and radially extending from the periphery of the disk.
  • Components within the combustor and turbine sections are often formed of superalloy materials in order to achieve acceptable mechanical properties while at elevated temperatures resulting from the hot combustion gases. Higher compressor exit temperatures in modern high pressure ratio gas turbine engines can also necessitate the use of high performance nickel superalloys for compressor disks, blisks, and other components.
  • Suitable alloy compositions and microstructures for a given component are dependent on the particular temperatures, stresses, and other conditions to which the component is subjected.
  • airfoil components such as blades and vanes are often formed of equiaxed, directionally solidified (DS), or single crystal (SX) superalloys
  • turbine disks are typically formed of superalloys that must undergo carefully controlled forging, heat treatments, and surface treatments such as peening to produce a polycrystalline microstructure having a controlled grain structure and desirable mechanical properties.
  • Turbine disks are often formed of gamma prime ( ⁇ ′) precipitation-strengthened nickel-base superalloys (hereinafter, gamma prime nickel-base superalloys) containing chromium, tungsten, molybdenum, rhenium and/or cobalt as principal elements that combine with nickel to form the gamma ( ⁇ ) matrix, and contain aluminum, titanium, tantalum, niobium, and/or vanadium as principal elements that combine with nickel to form the desirable gamma prime precipitate strengthening phase, principally Ni 3 (Al,Ti).
  • gamma prime nickel-base superalloys include René 88DT (R88DT; U.S. Pat. No.
  • R88DT has a composition of, by weight, about 15.0-17.0% chromium, about 12.0-14.0% cobalt, about 3.5-4.5% molybdenum, about 3.5-4.5% tungsten, about 1.5-2.5% aluminum, about 3.2-4.2% titanium, about 0.5.0-1.0% niobium, about 0.010-0.060% carbon, about 0.010-0.060% zirconium, about 0.010-0.040% boron, about 0.0-0.3% hafnium, about 0.0-0.01 vanadium, and about 0.0-0.01 yttrium, the balance nickel and incidental impurities.
  • R104 has a nominal composition of, by weight, about 16.0-22.4% cobalt, about 6.6-14.3% chromium, about 2.6-4.8% aluminum, about 2.4-4.6% titanium, about 1.4-3.5% tantalum, about 0.9-3.0% niobium, about 1.9-4.0% tungsten, about 1.9-3.9% molybdenum, about 0.0-2.5% rhenium, about 0.02-0.10% carbon, about 0.02-0.10% boron, about 0.03-0.10% zirconium, the balance nickel and incidental impurities.
  • Another notable gamma prime nickel-base superalloy is disclosed in European Patent Application EP1195446, and has a composition of, by weight, about 14-23% cobalt, about 11-15% chromium, about 0.5-4% tantalum, about 0.5-3% tungsten, about 2.7-5% molybdenum, about 0.25-3% niobium, about 3-6% titanium, about 2-5% aluminum, up to about 2.5% rhenium, up to about 2% vanadium, up to about 2% iron, up to about 2% hafnium, up to about 0.1% magnesium, about 0.015-0.1% carbon, about 0.015-0.045% boron, about 0.015-0.15% zirconium, the balance nickel and incidental impurities.
  • Disks and other critical gas turbine engine components are often forged from billets produced by powder metallurgy (P/M), conventional cast and wrought processing, and spraycast or nucleated casting forming techniques.
  • Powder metallurgy P/M
  • Gamma prime nickel-base superalloys formed by powder metallurgy are particularly capable of providing a good balance of creep, tensile, and fatigue crack growth properties to meet the performance requirements of turbine disks and certain other gas turbine engine components.
  • a powder of the desired superalloy undergoes consolidation, such as by hot isostatic pressing (HIP) and/or extrusion consolidation.
  • HIP hot isostatic pressing
  • the resulting billet is then isothermally forged at temperatures slightly below the gamma prime solvus temperature of the alloy to approach superplastic forming conditions, which allows the filling of the die cavity through the accumulation of high geometric strains without the accumulation of significant metallurgical strains.
  • These processing steps are designed to retain the fine grain size originally within the billet (for example, ASTM 10 to 13 or finer), achieve high plasticity to fill near-net-shape forging dies, avoid fracture during forging, and maintain relatively low forging and die stresses.
  • Forged gas turbine engine components often contain grains with sizes of about ASTM 9 and coarser, such as ASTM 2 to 9, though a much tighter range is typically preferred, such as grain sizes within a limited range of 2 to 3 ASTM units. Such a limited range can be considered uniform, which as used herein refers to grain size and growth characterized by the substantial absence of non-uniform critical grain growth.
  • critical grain growth refers to localized excessive grain growth in an alloy that results in the formation of grains outside typical uniform grain size distributions whose size sufficiently exceeds the average grain size in the alloy (such as regions as coarse as ASTM 00 in a field of ASTM 6-10) to negatively affect the low cycle fatigue (LCF) properties of an article formed from the alloy, manifested by early preferential crack nucleation in the CGG regions.
  • Critical grain growth can also have a negative impact on other mechanical properties, such as tensile strength. Critical grain growth occurs during supersolvus heat treatment following hot forging operations in which a wide range of local strains and strain rates are introduced into the material.
  • critical grain growth is believed to be driven by excessive stored energy within the worked article, and may involve individual grains, multiple individual grains within a small region, or large areas of adjacent grains.
  • the grain diameters of the effected grains are often substantially coarser than the desired grain size.
  • Disks and other critical gas turbine engine components forged from billets produced by powder metallurgy and extrusion consolidation have appeared to exhibit a lesser propensity for critical grain growth than if forged from billets produced by conventional cast and wrought processing or spraycast forming techniques, but in any event are susceptible to critical grain growth during supersolvus heat treatment.
  • the maximum strain rate is composition, microstructure, and temperature dependent, and can be determined for a given superalloy by deforming test samples under various strain rate conditions, followed by a suitable supersolvus heat treatment.
  • the maximum (critical) strain rate is then defined as the strain rate that, if exceeded during deformation and working of a superalloy and accompanied by a sufficient amount of total strain, will result in critical grain growth after supersolvus heat treatment.
  • Another processing limitation identified by Krueger et al. as avoiding critical grain growth in a nickel-base superalloy having a gamma prime content of, for example, 30-46 volume percent and higher, is to ensure superplastic deformation of the billet during forging.
  • the billet is processed to have a fine grain microstructure that achieves a minimum strain rate sensitivity (m) of about 0.3 or greater for the superalloy within the forging temperature and strain rate ranges.
  • m strain rate sensitivity
  • the ability of a fine grain billet to deform superplastically is dependent on strain rate sensitivity, and superplastic materials exhibit a low flow stress as represented by the following equation:
  • is the flow stress
  • K is a constant
  • ⁇ dot over ( ⁇ ) ⁇ is the strain rate
  • m is the strain rate sensitivity, with higher values of m corresponding to greater superplasticity.
  • Yoon et al. cites an upper limit strain rate of below about 0.032 per second (s ⁇ 1 ) for R88DT (identified by Raymond et al. as Alloy D).
  • Yoon et al. also identifies a maximum strain rate of not more than about 0.032 s ⁇ 1 , particularly in reference to forging R88DT (identified in Yoon et al. as Alloy A).
  • Yoon et al. further place an upper limit on the maximum strain rate gradient during forging, and requires extended annealing of the forging at a subsolvus temperature to remove stored strain energy prior to performing a supersolvus heat treatment.
  • the present invention provides a gamma prime precipitation-strengthened nickel-base superalloy and a method of forging an article from the superalloy to promote a more controlled grain growth during supersolvus heat treatment, such that the article is characterized by a microstructure with a finer uniform grain size and exhibits improved low cycle fatigue behavior.
  • the method includes formulating the superalloy to have a composition of, by weight, about 16.0-22.4% cobalt, about 6.6-14.3% chromium, about 2.6-4.8% aluminum, about 2.4-4.6% titanium, about 1.4-3.5% tantalum, about 0.9-3.0% niobium, about 1.9-4.0% tungsten, about 1.9-3.9% molybdenum, about 0.0-2.5% rhenium, greater than 0.05% and in certain embodiments greater than 0.1% carbon, at least 0.1% hafnium, about 0.02-0.10% boron, about 0.03-0.10% zirconium, the balance nickel and incidental impurities.
  • the superalloy is similar in composition to R104, with the notable exceptions that R104 does not contain hafnium and has a carbon content of 0.02-0.10 weight percent.
  • a billet is formed of the superalloy and worked at a temperature below the gamma prime solvus temperature of the superalloy so as to form a worked article. In particular, the billet is worked while maintaining strain rates as high as possible to control average grain size, but below an upper strain rate limit of greater than 0.03 per second to avoid critical grain growth.
  • the worked article is then heat treated at a temperature above the gamma prime solvus temperature of the superalloy for a duration sufficient to uniformly coarsen the grains of the worked article, after which the worked article is cooled at a rate sufficient to reprecipitate gamma prime within the worked article.
  • the cooled worked article has an average grain size of not coarser than ASTM 7 and preferably not coarser than ASTM 8, and is substantially free of grains in excess of three ASTM units coarser than the average grain size.
  • the superalloy has a sufficiently high carbon content and is forged at sufficiently high local strain rates so that, following a supersolvus heat treatment, the resulting forged component is characterized by a fine and substantially uniform grain size distribution. Also preferably avoided is critical grain growth that would produce individual grains or small regions of grains having grain sizes of more than five and preferably three ASTM units coarser than the average grain size in the component, or large regions that are uniform in grain size but with a grain size coarser than a desired grain size range of about two ASTM units. As a result, the forged component is capable of exhibiting improved mechanical properties, particularly low cycle fatigue behavior.
  • FIG. 1 is a schematic graph representing low cycle fatigue versus average grain size data for a variety of nickel-base superalloys.
  • FIG. 2 is a perspective view of a turbine disk of a type used in gas turbine engines.
  • FIG. 3 is a table listing a series of nickel-base superalloy compositions initially identified to evaluate the effects of carbon and hafnium contents on the low cycle fatigue behavior and hold time fatigue crack growth rate behavior.
  • FIG. 4 is a table listing a series of nickel-base superalloy compositions obtained and thermomechanically processed under various conditions, including those in accordance with embodiments of the present invention.
  • FIG. 5 is a table listing the compositions of FIG. 4 and average grain size resulting from the use of different forging conditions.
  • FIG. 6 shows four scanned images of two specimens from FIG. 4 .
  • FIG. 7 is a graph plotting average grain size versus carbon content, forging temperature, and forging rate for R104 and the specimens of FIG. 4 .
  • FIGS. 8 and 9 are graphs plotting the tensile strength behavior of three specimens of FIG. 5 versus ASTM grain size whose variation was achieved by the use of carbide enhanced grain size control.
  • the present invention is directed to gamma prime nickel-base superalloys, and particular those suitable for components produced by a hot working (e.g., forging) operation to have a polycrystalline microstructure.
  • a particular example represented in FIG. 2 is a high pressure turbine disk 10 for a gas turbine engine.
  • the invention will be discussed in reference to processing of a high-pressure turbine disk for a gas turbine engine, though those skilled in the art will appreciate that the teachings and benefits of this invention are also applicable to compressor disks and blisks of gas turbine engines, as well as numerous other components that are subjected to stresses at high temperatures and require low cycle fatigue and high temperature dwell capabilities.
  • Disks of the type shown in FIG. 2 are typically produced by isothermally forging a fine-grained billet formed by powder metallurgy (PM), a cast and wrought processing, or a spraycast or nucleated casting type technique. Such processes are carried out to yield a billet with a fine grain size, typically about ASTM 10 or finer, to achieve low flow stresses during forging.
  • the billet can be formed by consolidating a superalloy powder, such as by hot isostatic pressing (HIP) or extrusion consolidation.
  • HIP hot isostatic pressing
  • the billet is typically forged at a temperature at or near the recrystallization temperature of the alloy but less than the gamma prime solvus temperature of the alloy, and under conditions to enable filling of the forging die cavity through the accumulation of high geometric strains without the accumulation of significant metallurgical strains.
  • superplastic forming conditions corresponding to a strain rate sensitivity (m) of 0.3 or higher at the forging temperature
  • an aspect of the invention is that the billet can be worked without the forging process being fully superplastic, i.e., at strain rate sensitivity values of less than about 0.3, for example, non-superplastically at a strain rate sensitivity value of about 0.2 at the working (e.g., forging) temperature.
  • a supersolvus (solution) heat treatment is performed, during which grain growth occurs.
  • the supersolvus heat treatment is performed at a temperature above the gamma prime solvus temperature (but below the incipient melting temperature) of the superalloy to recrystallize the worked grain structure and dissolve (solution) the gamma prime precipitates in the superalloy.
  • the component is cooled at an appropriate rate to re-precipitate gamma prime within the gamma matrix or at grain boundaries, so as to achieve the particular mechanical properties desired.
  • the component may also be aged using known techniques with a short stress relief cycle at a temperature above the aging temperature of the alloy if desirable to reduce residual stresses.
  • a supersolvus heat treatment of a type described above has typically yielded an acceptable but not wholly optimal average grain size range of about ASTM 5 to 7, with the result that the low cycle fatigue behavior of the resulting turbine disk is less than optimal, particularly at temperatures of about 400° F. to about 800° F. (about 200° C. to about 425° C.).
  • the present invention provides modifications to the chemistry of R104 to control and limit grain growth during supersolvus heat treatment to achieve and maintain a finer grain size following supersolvus heat treatment, as well as avoid critical grain growth.
  • a finer and more controllable average grain size can be achieved by modifying the R104 alloy to have a relatively high carbon content, for example, greater than 0.05 weight percent carbon and in some cases greater than 0.1 weight percent carbon.
  • improved high temperature dwell behavior can be achieved by modifying the R104 alloy to contain at least 0.1 weight percent hafnium.
  • grain refinement can be further promoted by utilizing relatively high strain rates and relatively low temperatures during forging.
  • a series of targeted alloy compositions were defined (by weight percent) as set forth in a table in FIG. 3 .
  • the targeted compositions reflect the intent to evaluate alloys with carbon contents at and above the maximum carbon content of 0.1 weight percent for R104, as well as additions of hafnium.
  • nine alloys were procured whose actual chemistries are indicated in a table in FIG. 4 .
  • Processing of the alloys included consolidating a powder of the alloy compositions to produce multiple billets of each alloy, which were then hot worked (forged) followed by a supersolvus heat treatment. Two sets of forging conditions were used.
  • a first, referred to as “Hot/Slow” in FIG. 5 entailed forging conditions that included a maximum strain rate of about 0.003/sec at a forging temperature of about 2060° F. (about 1130° C.).
  • the second, referred to as “Conventional” in FIG. 5 entailed forging conditions that included a conventional maximum strain rate of about 0.03/sec at a forging temperature of about 1925° F. (about 1050° C.).
  • the supersolvus heat treatments were performed at a temperature of about 2140° F. (about 1170° C.), which is above the gamma prime solvus temperature (but below the incipient melting temperature) of R104. During the heat treatment, the worked grain structures of the forged specimens were recrystallized and the gamma prime precipitates were dissolved (solutioned).
  • the specimens were cooled at rates that ensured re-precipitation of gamma prime within the gamma matrix or at grain boundaries.
  • a controlled air cooling was employed to yield an approximately constant cooling rate of about 200° F./minute for all specimens.
  • the specimens were aged at about 1550° F. (about 845° C.) for about four hours, followed by about eight hours at about 1400° F. (about 760° C.).
  • FIG. 5 indicates the average ASTM grain size observed for each alloy composition. From FIG. 5 , it can be seen that the “Hot/Slow” forging method produced significantly coarser grains than the “Conventional” forging method. The finer average grain sizes observed in the latter, which were typically ASTM 8 or finer, would be expected to promote improved mechanical properties of the forged specimens, including low cycle fatigue resistance, tensile strength, fatigue strength, and other mechanical properties desired for a turbine or compressor disk.
  • the critical strain rate is then defined as the strain rate that, if exceeded during deformation and working of a superalloy and accompanied by a sufficient amount of total strain, will result in critical grain growth after supersolvus heat treatment.
  • the upper strain rate limit for the alloy specimens is greater than 0.03 per second, and possibly as high as 0.32 per second.
  • FIG. 6 contains scanned images of two microphotographs of the forged specimen identified as 101 B in FIG. 5 , as well as scanned images of two microphotographs of a forged R104 specimen.
  • the images evidence that the carbide network within the 101 B specimen was significantly increased over that of R104.
  • the increased carbide network was attributed to the high carbon content and the presence of hafnium in the 101 B specimen.
  • hafnium is a strong primary MC carbide former the hafnium content of the 101 B specimen may have promoted the formation of highly stable carbides, contributing to high temperature carbide stability and aiding in the ability to control grain size by the dispersion of primary MC carbides in the matrix.
  • FIG. 7 is a plot comparing ASTM average grain size versus carbon content, and evidences the significant influence carbon content had on average grain size in the forged specimens. For example, at forging temperatures of about 2060° F. (about 1130° C.) carbon contents above 0.1 weight percent resulted in average grain sizes of finer than ASTM 7, and at forging temperatures of about 1925° F. (about 1050° C.) carbon contents above 0.05 weight percent and above 0.1 weight percent resulted in average grain sizes of finer than ASTM 8 and ASTM 8.5, respectively. On the basis of FIG. 1 , the finer average grain sizes achieved with the higher carbon contents would be expected to correspond to improved low cycle fatigue resistance.
  • FIG. 1 the finer average grain sizes achieved with the higher carbon contents would be expected to correspond to improved low cycle fatigue resistance.
  • FIGS. 8 and 9 show tensile behavior and ductility at about 800° F. (about 425° C.) versus ASTM grain size. Improved tensile properties were attributed to the presence of increased carbon and the forging technique used, resulting in refining of the specimen grain size.
  • compositions and weight percent ranges were devised for the purpose of obtaining improvements in low cycle fatigue resistance and dwell crack growth behavior over the conventional R104 superalloy. These compositions and ranges are set forth below in Table I.

Abstract

A gamma prime precipitation-strengthened nickel-base superalloy and method of forging an article from the superalloy to promote a low cycle fatigue resistance and high temperature dwell behavior of the article. The superalloy has a composition of, by weight, 16.0-22.4% cobalt, 6.6-14.3% chromium, 2.6-4.8% aluminum, 2.4-4.6% titanium, 1.4-3.5% tantalum, 0.9-3.0% niobium, 1.9-4.0% tungsten, 1.9-3.9% molybdenum, 0.0-2.5% rhenium, greater than 0.05% carbon, at least 0.1% hafnium, 0.02-0.10% boron, 0.03-0.10% zirconium, the balance nickel and incidental impurities. A billet is formed of the superalloy and worked at a temperature below the gamma prime solvus temperature of the superalloy so as to form a worked article, which is then heat treated above the gamma prime solvus temperature of the superalloy to uniformly coarsen the grains of the article, after which the article is cooled to reprecipitate gamma prime. The article has an average grain size of not coarser than ASTM 7 and is substantially free of critical grain growth.

Description

    BACKGROUND OF THE INVENTION
  • The present invention generally relates to nickel-base superalloys and methods for processing such superalloys. More particularly, this invention relates to a nickel-base superalloy and a method of forging an article from the nickel-base superalloy to promote a more controlled grain growth during supersolvus heat treatment, such that the article is characterized by a microstructure with a finer uniform grain size and exhibits improved low cycle fatigue behavior.
  • The turbine section of a gas turbine engine is located downstream of a combustor section and contains a rotor shaft and one or more turbine stages, each having a turbine disk (rotor) mounted or otherwise carried by the shaft and turbine blades mounted to and radially extending from the periphery of the disk. Components within the combustor and turbine sections are often formed of superalloy materials in order to achieve acceptable mechanical properties while at elevated temperatures resulting from the hot combustion gases. Higher compressor exit temperatures in modern high pressure ratio gas turbine engines can also necessitate the use of high performance nickel superalloys for compressor disks, blisks, and other components. Suitable alloy compositions and microstructures for a given component are dependent on the particular temperatures, stresses, and other conditions to which the component is subjected. For example, airfoil components such as blades and vanes are often formed of equiaxed, directionally solidified (DS), or single crystal (SX) superalloys, whereas turbine disks are typically formed of superalloys that must undergo carefully controlled forging, heat treatments, and surface treatments such as peening to produce a polycrystalline microstructure having a controlled grain structure and desirable mechanical properties.
  • Turbine disks are often formed of gamma prime (γ′) precipitation-strengthened nickel-base superalloys (hereinafter, gamma prime nickel-base superalloys) containing chromium, tungsten, molybdenum, rhenium and/or cobalt as principal elements that combine with nickel to form the gamma (γ) matrix, and contain aluminum, titanium, tantalum, niobium, and/or vanadium as principal elements that combine with nickel to form the desirable gamma prime precipitate strengthening phase, principally Ni3(Al,Ti). Particularly notable gamma prime nickel-base superalloys include René 88DT (R88DT; U.S. Pat. No. 4,957,567 to Krueger et al.) and René 104 (R104; U.S. Pat. No. 6,521,175 to Mourer et al.), as well as certain nickel-base superalloys commercially available under the trademarks Inconel®, Nimonic®, and Udimet®. R88DT has a composition of, by weight, about 15.0-17.0% chromium, about 12.0-14.0% cobalt, about 3.5-4.5% molybdenum, about 3.5-4.5% tungsten, about 1.5-2.5% aluminum, about 3.2-4.2% titanium, about 0.5.0-1.0% niobium, about 0.010-0.060% carbon, about 0.010-0.060% zirconium, about 0.010-0.040% boron, about 0.0-0.3% hafnium, about 0.0-0.01 vanadium, and about 0.0-0.01 yttrium, the balance nickel and incidental impurities. R104 has a nominal composition of, by weight, about 16.0-22.4% cobalt, about 6.6-14.3% chromium, about 2.6-4.8% aluminum, about 2.4-4.6% titanium, about 1.4-3.5% tantalum, about 0.9-3.0% niobium, about 1.9-4.0% tungsten, about 1.9-3.9% molybdenum, about 0.0-2.5% rhenium, about 0.02-0.10% carbon, about 0.02-0.10% boron, about 0.03-0.10% zirconium, the balance nickel and incidental impurities. Another notable gamma prime nickel-base superalloy is disclosed in European Patent Application EP1195446, and has a composition of, by weight, about 14-23% cobalt, about 11-15% chromium, about 0.5-4% tantalum, about 0.5-3% tungsten, about 2.7-5% molybdenum, about 0.25-3% niobium, about 3-6% titanium, about 2-5% aluminum, up to about 2.5% rhenium, up to about 2% vanadium, up to about 2% iron, up to about 2% hafnium, up to about 0.1% magnesium, about 0.015-0.1% carbon, about 0.015-0.045% boron, about 0.015-0.15% zirconium, the balance nickel and incidental impurities.
  • Disks and other critical gas turbine engine components are often forged from billets produced by powder metallurgy (P/M), conventional cast and wrought processing, and spraycast or nucleated casting forming techniques. Gamma prime nickel-base superalloys formed by powder metallurgy are particularly capable of providing a good balance of creep, tensile, and fatigue crack growth properties to meet the performance requirements of turbine disks and certain other gas turbine engine components. In a typical powder metallurgy process, a powder of the desired superalloy undergoes consolidation, such as by hot isostatic pressing (HIP) and/or extrusion consolidation. The resulting billet is then isothermally forged at temperatures slightly below the gamma prime solvus temperature of the alloy to approach superplastic forming conditions, which allows the filling of the die cavity through the accumulation of high geometric strains without the accumulation of significant metallurgical strains. These processing steps are designed to retain the fine grain size originally within the billet (for example, ASTM 10 to 13 or finer), achieve high plasticity to fill near-net-shape forging dies, avoid fracture during forging, and maintain relatively low forging and die stresses. (Reference throughout to ASTM grain sizes is in accordance with the scale established in ASTM Standard E 112.) In order to improve fatigue crack growth resistance and mechanical properties at elevated temperatures, these alloys are then heat treated above their gamma prime solvus temperature (generally referred to as supersolvus heat treatment), to cause significant, uniform coarsening of the grains.
  • Forged gas turbine engine components often contain grains with sizes of about ASTM 9 and coarser, such as ASTM 2 to 9, though a much tighter range is typically preferred, such as grain sizes within a limited range of 2 to 3 ASTM units. Such a limited range can be considered uniform, which as used herein refers to grain size and growth characterized by the substantial absence of non-uniform critical grain growth. As used herein, critical grain growth (CGG) refers to localized excessive grain growth in an alloy that results in the formation of grains outside typical uniform grain size distributions whose size sufficiently exceeds the average grain size in the alloy (such as regions as coarse as ASTM 00 in a field of ASTM 6-10) to negatively affect the low cycle fatigue (LCF) properties of an article formed from the alloy, manifested by early preferential crack nucleation in the CGG regions. Critical grain growth can also have a negative impact on other mechanical properties, such as tensile strength. Critical grain growth occurs during supersolvus heat treatment following hot forging operations in which a wide range of local strains and strain rates are introduced into the material. Though not wishing to be held to any particular theory, critical grain growth is believed to be driven by excessive stored energy within the worked article, and may involve individual grains, multiple individual grains within a small region, or large areas of adjacent grains. The grain diameters of the effected grains are often substantially coarser than the desired grain size. Disks and other critical gas turbine engine components forged from billets produced by powder metallurgy and extrusion consolidation have appeared to exhibit a lesser propensity for critical grain growth than if forged from billets produced by conventional cast and wrought processing or spraycast forming techniques, but in any event are susceptible to critical grain growth during supersolvus heat treatment.
  • The above-noted U.S. Pat. No. 4,957,567 to Krueger et al. teaches a process for eliminating critical (abnormal) grain growth in fine grained component formed of R88DT by controlling the localized strain rates experienced during the hot forging operation. Strain rate is defined as the instantaneous rate of change of geometric strain with time. Krueger et al. teach that local strain rates must generally remain below a critical value, {dot over (ε)}c, in order to avoid detrimental critical grain growth during subsequent supersolvus heat treatment. According to Krueger et al., the maximum strain rate is composition, microstructure, and temperature dependent, and can be determined for a given superalloy by deforming test samples under various strain rate conditions, followed by a suitable supersolvus heat treatment. The maximum (critical) strain rate is then defined as the strain rate that, if exceeded during deformation and working of a superalloy and accompanied by a sufficient amount of total strain, will result in critical grain growth after supersolvus heat treatment.
  • Another processing limitation identified by Krueger et al. as avoiding critical grain growth in a nickel-base superalloy having a gamma prime content of, for example, 30-46 volume percent and higher, is to ensure superplastic deformation of the billet during forging. For this purpose, the billet is processed to have a fine grain microstructure that achieves a minimum strain rate sensitivity (m) of about 0.3 or greater for the superalloy within the forging temperature and strain rate ranges. As known in the art, the ability of a fine grain billet to deform superplastically is dependent on strain rate sensitivity, and superplastic materials exhibit a low flow stress as represented by the following equation:

  • σ=K{dot over (ε)}m
  • where σ is the flow stress, K is a constant, {dot over (ε)} is the strain rate, and m is the strain rate sensitivity, with higher values of m corresponding to greater superplasticity.
  • Further improvements in the control of final grain size have been achieved with the teachings of commonly-assigned U.S. Pat. No. 5,529,643 to Yoon et al. and U.S. Pat. No. 5,584,947 to Raymond et al. In addition to the requirement for superplasticity during forging (in other words, maintaining a high m value), Raymond et al. teach the importance of a maximum strain rate in combination with chemistry control, particularly the carbon and/or yttrium content of the alloy to achieve grain boundary pinning in alloys having a gamma prime content of up to 65 volume percent. In a particular example, Raymond et al. cites an upper limit strain rate of below about 0.032 per second (s−1) for R88DT (identified by Raymond et al. as Alloy D). In addition to maintaining a high m value, Yoon et al. also identifies a maximum strain rate of not more than about 0.032 s−1, particularly in reference to forging R88DT (identified in Yoon et al. as Alloy A). Yoon et al. further place an upper limit on the maximum strain rate gradient during forging, and requires extended annealing of the forging at a subsolvus temperature to remove stored strain energy prior to performing a supersolvus heat treatment. Finally, Yoon et al. achieve optimum superplasticity by forming the billet to have a grain size of finer than about ASTM 12, and maintaining the billet microstructure to achieve a minimum strain rate sensitivity of about m=0.3 within the forging temperature range.
  • In addition to the absence of critical grain growth, mechanical properties of components forged from fine grain nickel-base superalloys further benefit from improved control of the grain size distribution to achieve a distribution and average grain size that are, respectively, as narrow and fine as possible. Such a capability is particularly beneficial for high temperature, high gamma prime content (e.g., about 30 volume percent and above) superalloys, such as R88DT and R104, for which a desired uniform grain size is generally not coarser than ASTM 6 for gas turbine disks. Though prior forging practices of the type described above have achieved grain sizes in a range of ASTM 5 to 8, less than optimal mechanical properties can still result. For example, FIG. 1 is a graph evidencing that low cycle fatigue life tends to decrease with coarser average grain sizes, even if uniform. The impact of average grain size on low cycle fatigue properties of supersolvus heat treated P/M superalloys is most apparent at low to intermediate temperatures, such as in a range of about 400° F. to about 800° F. (about 200° C. to about 425° C.) for R104. While the overall temperature capability and balance of properties that R104 and other P/M alloys offer are very attractive and relied on for the most advanced current engine applications, even more benefit from these alloys could be obtained if their low cycle fatigue properties and tensile behavior at low to intermediate temperatures could be improved.
  • BRIEF DESCRIPTION OF THE INVENTION
  • The present invention provides a gamma prime precipitation-strengthened nickel-base superalloy and a method of forging an article from the superalloy to promote a more controlled grain growth during supersolvus heat treatment, such that the article is characterized by a microstructure with a finer uniform grain size and exhibits improved low cycle fatigue behavior.
  • The method includes formulating the superalloy to have a composition of, by weight, about 16.0-22.4% cobalt, about 6.6-14.3% chromium, about 2.6-4.8% aluminum, about 2.4-4.6% titanium, about 1.4-3.5% tantalum, about 0.9-3.0% niobium, about 1.9-4.0% tungsten, about 1.9-3.9% molybdenum, about 0.0-2.5% rhenium, greater than 0.05% and in certain embodiments greater than 0.1% carbon, at least 0.1% hafnium, about 0.02-0.10% boron, about 0.03-0.10% zirconium, the balance nickel and incidental impurities. The superalloy is similar in composition to R104, with the notable exceptions that R104 does not contain hafnium and has a carbon content of 0.02-0.10 weight percent. A billet is formed of the superalloy and worked at a temperature below the gamma prime solvus temperature of the superalloy so as to form a worked article. In particular, the billet is worked while maintaining strain rates as high as possible to control average grain size, but below an upper strain rate limit of greater than 0.03 per second to avoid critical grain growth. The worked article is then heat treated at a temperature above the gamma prime solvus temperature of the superalloy for a duration sufficient to uniformly coarsen the grains of the worked article, after which the worked article is cooled at a rate sufficient to reprecipitate gamma prime within the worked article. The cooled worked article has an average grain size of not coarser than ASTM 7 and preferably not coarser than ASTM 8, and is substantially free of grains in excess of three ASTM units coarser than the average grain size.
  • In view of the above, the superalloy has a sufficiently high carbon content and is forged at sufficiently high local strain rates so that, following a supersolvus heat treatment, the resulting forged component is characterized by a fine and substantially uniform grain size distribution. Also preferably avoided is critical grain growth that would produce individual grains or small regions of grains having grain sizes of more than five and preferably three ASTM units coarser than the average grain size in the component, or large regions that are uniform in grain size but with a grain size coarser than a desired grain size range of about two ASTM units. As a result, the forged component is capable of exhibiting improved mechanical properties, particularly low cycle fatigue behavior. Though not wishing to be held to any particular theory, it is believed that formulating a superalloy to have a chemistry similar to R104 but formulated to contain relatively high carbon levels, especially carbon levels above the upper limit of R104 (0.10 weight percent), allows the use of high strain rates, resulting in a forged component capable of exhibiting a more refined average grain size and substantially free of critical grain growth, which together improve the low cycle fatigue life of the component. Low cycle fatigue life can be particularly improved within a temperature range of about 400° F. to about 800° F. (about 200° C. to about 425° C.) relative to R104 with a conventional carbon content of up to 0.10 weight percent. Other benefits of the finer average grain size achieved with this invention include improved sonic inspection capability due to lower sonic noise, and improved yield behavior in service due to improved yield strength with finer grain size.
  • Other aspects and advantages of this invention will be better appreciated from the following detailed description.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic graph representing low cycle fatigue versus average grain size data for a variety of nickel-base superalloys.
  • FIG. 2 is a perspective view of a turbine disk of a type used in gas turbine engines.
  • FIG. 3 is a table listing a series of nickel-base superalloy compositions initially identified to evaluate the effects of carbon and hafnium contents on the low cycle fatigue behavior and hold time fatigue crack growth rate behavior.
  • FIG. 4 is a table listing a series of nickel-base superalloy compositions obtained and thermomechanically processed under various conditions, including those in accordance with embodiments of the present invention.
  • FIG. 5 is a table listing the compositions of FIG. 4 and average grain size resulting from the use of different forging conditions.
  • FIG. 6 shows four scanned images of two specimens from FIG. 4.
  • FIG. 7 is a graph plotting average grain size versus carbon content, forging temperature, and forging rate for R104 and the specimens of FIG. 4.
  • FIGS. 8 and 9 are graphs plotting the tensile strength behavior of three specimens of FIG. 5 versus ASTM grain size whose variation was achieved by the use of carbide enhanced grain size control.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention is directed to gamma prime nickel-base superalloys, and particular those suitable for components produced by a hot working (e.g., forging) operation to have a polycrystalline microstructure. A particular example represented in FIG. 2 is a high pressure turbine disk 10 for a gas turbine engine. The invention will be discussed in reference to processing of a high-pressure turbine disk for a gas turbine engine, though those skilled in the art will appreciate that the teachings and benefits of this invention are also applicable to compressor disks and blisks of gas turbine engines, as well as numerous other components that are subjected to stresses at high temperatures and require low cycle fatigue and high temperature dwell capabilities.
  • Disks of the type shown in FIG. 2 are typically produced by isothermally forging a fine-grained billet formed by powder metallurgy (PM), a cast and wrought processing, or a spraycast or nucleated casting type technique. Such processes are carried out to yield a billet with a fine grain size, typically about ASTM 10 or finer, to achieve low flow stresses during forging. In a preferred embodiment utilizing a powder metallurgy process, the billet can be formed by consolidating a superalloy powder, such as by hot isostatic pressing (HIP) or extrusion consolidation. The billet is typically forged at a temperature at or near the recrystallization temperature of the alloy but less than the gamma prime solvus temperature of the alloy, and under conditions to enable filling of the forging die cavity through the accumulation of high geometric strains without the accumulation of significant metallurgical strains. While superplastic forming conditions (corresponding to a strain rate sensitivity (m) of 0.3 or higher at the forging temperature) are often employed for this purpose, an aspect of the invention is that the billet can be worked without the forging process being fully superplastic, i.e., at strain rate sensitivity values of less than about 0.3, for example, non-superplastically at a strain rate sensitivity value of about 0.2 at the working (e.g., forging) temperature. After forging, a supersolvus (solution) heat treatment is performed, during which grain growth occurs. The supersolvus heat treatment is performed at a temperature above the gamma prime solvus temperature (but below the incipient melting temperature) of the superalloy to recrystallize the worked grain structure and dissolve (solution) the gamma prime precipitates in the superalloy. Following the supersolvus heat treatment, the component is cooled at an appropriate rate to re-precipitate gamma prime within the gamma matrix or at grain boundaries, so as to achieve the particular mechanical properties desired. The component may also be aged using known techniques with a short stress relief cycle at a temperature above the aging temperature of the alloy if desirable to reduce residual stresses.
  • In the case of the nickel-base superalloy R104, a supersolvus heat treatment of a type described above has typically yielded an acceptable but not wholly optimal average grain size range of about ASTM 5 to 7, with the result that the low cycle fatigue behavior of the resulting turbine disk is less than optimal, particularly at temperatures of about 400° F. to about 800° F. (about 200° C. to about 425° C.). The present invention provides modifications to the chemistry of R104 to control and limit grain growth during supersolvus heat treatment to achieve and maintain a finer grain size following supersolvus heat treatment, as well as avoid critical grain growth. According to one aspect of the invention, a finer and more controllable average grain size can be achieved by modifying the R104 alloy to have a relatively high carbon content, for example, greater than 0.05 weight percent carbon and in some cases greater than 0.1 weight percent carbon. According to a second aspect of the invention, improved high temperature dwell behavior can be achieved by modifying the R104 alloy to contain at least 0.1 weight percent hafnium. According to additional aspects of the invention, grain refinement can be further promoted by utilizing relatively high strain rates and relatively low temperatures during forging. The teachings of U.S. Pat. Nos. 4,957,567 to Krueger et al., 5,529,643 to Yoon et al., and 5,584,947 to Raymond et al. are incorporated herein by reference, particularly regarding the use of high strain rates during forging and the placement of an upper limit on the strain rate (critical strain rate) to avoid critical grain growth during supersolvus heat treatment.
  • In an investigation leading to the present invention, a series of targeted alloy compositions were defined (by weight percent) as set forth in a table in FIG. 3. For reference, the first two compositions listed in the table fall within the disclosed range for R104. The targeted compositions reflect the intent to evaluate alloys with carbon contents at and above the maximum carbon content of 0.1 weight percent for R104, as well as additions of hafnium. On the basis of these targeted compositions, nine alloys were procured whose actual chemistries are indicated in a table in FIG. 4. Processing of the alloys included consolidating a powder of the alloy compositions to produce multiple billets of each alloy, which were then hot worked (forged) followed by a supersolvus heat treatment. Two sets of forging conditions were used. A first, referred to as “Hot/Slow” in FIG. 5, entailed forging conditions that included a maximum strain rate of about 0.003/sec at a forging temperature of about 2060° F. (about 1130° C.). The second, referred to as “Conventional” in FIG. 5, entailed forging conditions that included a conventional maximum strain rate of about 0.03/sec at a forging temperature of about 1925° F. (about 1050° C.). The supersolvus heat treatments were performed at a temperature of about 2140° F. (about 1170° C.), which is above the gamma prime solvus temperature (but below the incipient melting temperature) of R104. During the heat treatment, the worked grain structures of the forged specimens were recrystallized and the gamma prime precipitates were dissolved (solutioned).
  • Following the supersolvus heat treatment, the specimens were cooled at rates that ensured re-precipitation of gamma prime within the gamma matrix or at grain boundaries. A controlled air cooling was employed to yield an approximately constant cooling rate of about 200° F./minute for all specimens. Finally, the specimens were aged at about 1550° F. (about 845° C.) for about four hours, followed by about eight hours at about 1400° F. (about 760° C.).
  • As noted above and well known in the art, in addition to grain recrystallization and solutioning gamma prime precipitates, the supersolvus heat treatment also resulted in grain growth (coarsening), typically resulting in grain sizes coarser than the original billet grain size. FIG. 5 indicates the average ASTM grain size observed for each alloy composition. From FIG. 5, it can be seen that the “Hot/Slow” forging method produced significantly coarser grains than the “Conventional” forging method. The finer average grain sizes observed in the latter, which were typically ASTM 8 or finer, would be expected to promote improved mechanical properties of the forged specimens, including low cycle fatigue resistance, tensile strength, fatigue strength, and other mechanical properties desired for a turbine or compressor disk. In addition, uniform average grain sizes within a range of about two or three ASTM units were obtained, which would be further expected to promote the low cycle fatigue resistance and other mechanical properties of the specimens. The absence of excessively large grains caused by critical grain growth was attributed to maintaining strain rates during forging of the specimens below a critical (maximum) strain rate for the superalloy compositions, though at rates higher than those taught by Krueger et al. According to Krueger et al., the critical strain rate of a gamma prime nickel-base superalloy is composition, microstructure, and temperature dependent, and can be determined for a given superalloy by deforming test samples under various strain rate conditions, and then performing suitable supersolvus heat treatments. The critical strain rate is then defined as the strain rate that, if exceeded during deformation and working of a superalloy and accompanied by a sufficient amount of total strain, will result in critical grain growth after supersolvus heat treatment. In the present investigation, it was concluded that the upper strain rate limit for the alloy specimens is greater than 0.03 per second, and possibly as high as 0.32 per second.
  • FIG. 6 contains scanned images of two microphotographs of the forged specimen identified as 101B in FIG. 5, as well as scanned images of two microphotographs of a forged R104 specimen. The images evidence that the carbide network within the 101B specimen was significantly increased over that of R104. The increased carbide network was attributed to the high carbon content and the presence of hafnium in the 101B specimen. Without wishing to be held to any particular theory, because hafnium is a strong primary MC carbide former the hafnium content of the 101B specimen may have promoted the formation of highly stable carbides, contributing to high temperature carbide stability and aiding in the ability to control grain size by the dispersion of primary MC carbides in the matrix. FIG. 7 is a plot comparing ASTM average grain size versus carbon content, and evidences the significant influence carbon content had on average grain size in the forged specimens. For example, at forging temperatures of about 2060° F. (about 1130° C.) carbon contents above 0.1 weight percent resulted in average grain sizes of finer than ASTM 7, and at forging temperatures of about 1925° F. (about 1050° C.) carbon contents above 0.05 weight percent and above 0.1 weight percent resulted in average grain sizes of finer than ASTM 8 and ASTM 8.5, respectively. On the basis of FIG. 1, the finer average grain sizes achieved with the higher carbon contents would be expected to correspond to improved low cycle fatigue resistance. FIG. 7 also evidences that significantly finer average grain sizes were obtained by forging at higher maximum strain rates and lower forging temperatures. From these results, it was concluded that finer average grain sizes can be achieved with increasing carbon content above the disclosed upper limit for R104. In part, the effect of the increased carbon content is believed to be an increased pinning force that inhibits abnormal grain growth. Generally, the finely dispersed carbides observed in FIGS. 6( a) and 6(b) were concluded to have restricted grain boundary motion during supersolvus heat treatment, such that the grains are not permitted to grow excessively and/or randomly to the extent that critical grain growth occurs. From this investigation, another benefit appears to be the ability to perform the forging operation at relatively low temperatures, for example, about 1925° F. (about 1050° C.) and likely in a range of about 1875 to about 1975° F. (about 1025 to about 1080° C.).
  • A relationship between ASTM grain size and tensile behavior of the forged specimens is evidenced in FIGS. 8 and 9, which show tensile behavior and ductility at about 800° F. (about 425° C.) versus ASTM grain size. Improved tensile properties were attributed to the presence of increased carbon and the forging technique used, resulting in refining of the specimen grain size.
  • In view of the above results, broad, narrower, and preferred compositions and weight percent ranges were devised for the purpose of obtaining improvements in low cycle fatigue resistance and dwell crack growth behavior over the conventional R104 superalloy. These compositions and ranges are set forth below in Table I.
  • TABLE I
    Broad Narrower Preferred
    Co 16.0-22.4 18 to 22 20.2 to 20.9
    Cr  6.6-14.3 10 to 14 12.3 to 13.3
    Al 2.6-4.8 2.5 to 4.0 3.1 to 3.7
    Ti 2.4 to 4.6 3.0 to 4.2 3.4 to 3.8
    W 1.9-4.0 1.9 to 3.0 1.7 to 2.2
    Mo 1.9-3.9 2.5 to 3.9 3.5 to 3.9
    Nb 0.9-3.0 0.9 to 2.0 0.9 to 1.0
    Ta 1.4-3.5 1.7 to 3.0 2.1 to 2.6
    Hf at least 0.1 0.1 to 0.6 0.2 to 0.5
    C >0.05 >0.10 to 0.125 0.11 to 0.12
    B 0.02-0.10 0.02 to 0.05 0.02 to 0.03
    Zr 0.03-0.10 0.03 to 0.08 0.04 to 0.06
    Ni Balance Balance Balance
  • While the invention has been described in terms of particular processing parameters and compositions, the scope of the invention is not so limited. Instead, modifications could be adopted by one skilled in the art, such as by modifying the disclosed processing by substituting other processing steps or including additional processing steps. Accordingly, the scope of the invention is to be limited only by the following claims.

Claims (20)

1. A method of forming an article from a gamma prime precipitation-strengthened nickel-base superalloy having a gamma prime solvus temperature, the method comprising the steps of:
formulating the gamma prime precipitation-strengthened nickel-base superalloy to have a composition of, by weight, about 16.0-22.4% cobalt, about 6.6-14.3% chromium, about 2.6-4.8% aluminum, about 2.4-4.6% titanium, about 1.4-3.5% tantalum, about 0.9-3.0% niobium, about 1.9-4.0% tungsten, about 1.9-3.9% molybdenum, about 0.0-2.5% rhenium, greater than 0.05% carbon, at least 0.1% hafnium, about 0.02-0.10% boron, about 0.03-0.10% zirconium, the balance nickel and incidental impurities;
forming a billet of the superalloy;
working the billet at a temperature below the gamma prime solvus temperature of the superalloy so as to form a worked article, wherein the billet is worked to undergo deformation and to achieve a maximum strain rate that is below an upper strain rate limit to avoid critical grain growth yet sufficiently high to control average grain size;
heat treating the worked article at a temperature above the gamma prime solvus temperature of the superalloy for a duration sufficient to uniformly coarsen the grains of the worked article; and
cooling the worked article at a rate sufficient to reprecipitate gamma prime within the worked article, wherein the worked article has an average grain size of not coarser than ASTM 7 and is substantially free of grains in excess of three ASTM units coarser than the average grain size.
2. The method according to claim 1, wherein the forming step comprises a process chosen from the group consisting of powder metallurgy, cast and wrought, and spraycast forming techniques.
3. The method according to claim 1, wherein the forming step comprises hot isostatic pressing or extrusion consolidation of a powder of the superalloy to form the billet.
4. The method according to claim 1, wherein the superalloy contains greater than 0.1 weight percent carbon.
5. The method according to claim 1, wherein the superalloy contains greater than 0.1 weight percent up to about 0.125 weight percent carbon.
6. The method according to claim 1, wherein the superalloy contains 0.1 to 0.6 weight percent hafnium.
7. The worked article formed by the method of claim 1, wherein the worked article is a component chosen from the group consisting of turbine disks and compressor disks and blisks of gas turbine engines.
8. The method according to claim 1, wherein the maximum strain rate is at least 0.003 per second.
9. The method according to claim 8, wherein the worked article has an average grain size of not coarser than ASTM 8.
10. The worked article formed by the method of claim 9, wherein the worked article is a component chosen from the group consisting of turbine disks and compressor disks and blisks of gas turbine engines.
11. The method according to claim 1, wherein the maximum strain rate is at least 0.03 per second.
12. The method according to claim 11, wherein the worked article has an average grain size of not coarser than ASTM 8.
13. The worked article formed by the method of claim 12, wherein the worked article is a component chosen from the group consisting of turbine disks and compressor disks and blisks of gas turbine engines.
14. A method of forming an article from a gamma prime precipitation-strengthened nickel-base superalloy having a gamma prime solvus temperature, the method comprising the steps of:
formulating the gamma prime precipitation-strengthened nickel-base superalloy to have a composition of, by weight, about 16.0-22.4% cobalt, about 6.6-14.3% chromium, about 2.6-4.8% aluminum, about 2.4-4.6% titanium, about 1.4-3.5% tantalum, about 0.9-3.0% niobium, about 1.9-4.0% tungsten, about 1.9-3.9% molybdenum, about 0.0-2.5% rhenium, greater than 0.05% to about 0.125% carbon, about 0.1-0.6% hafnium, about 0.02-0.10% boron, about 0.03-0.10% zirconium, the balance nickel and incidental impurities;
forming a billet of the superalloy to have a fine grain size;
working the billet at a temperature below the gamma prime solvus temperature of the superalloy so as to form a worked article, the working step being performed so that the billet undergoes non-superplastic deformation and achieves a maximum strain rate that is below an upper strain rate limit to avoid critical grain growth yet sufficiently high to control average grain size, wherein the maximum strain rate is at least 0.03 per second;
heat treating the worked article at a temperature above the gamma prime solvus temperature of the superalloy for a duration sufficient to uniformly coarsen the grains of the worked article; and
cooling the worked article at a rate sufficient to reprecipitate gamma prime within the worked article, wherein the worked article has an average grain size of not coarser than ASTM 7 and is substantially free of grains in excess of two ASTM units coarser than the average grain size.
15. The method according to claim 14, wherein the superalloy contains greater than 0.10 weight percent carbon.
16. The method according to claim 14, wherein the worked article has an average grain size of not coarser than ASTM 8.
17. The worked article formed by the method of claim 16, wherein the worked article is a component chosen from the group consisting of turbine disks and compressor disks and blisks of gas turbine engines.
18. The method according to claim 14, wherein the maximum strain rate is at least 0.03 to about 0.3 per second.
19. The method according to claim 18, wherein the worked article has an average grain size of not coarser than ASTM 8.
20. The worked article formed by the method of claim 19, wherein the worked article is a component chosen from the group consisting of turbine disks and compressor disks and blisks of gas turbine engines.
US12/494,896 2009-06-30 2009-06-30 Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloys Abandoned US20100329883A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/494,896 US20100329883A1 (en) 2009-06-30 2009-06-30 Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloys
CA2707782A CA2707782A1 (en) 2009-06-30 2010-06-17 Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloys
JP2010144348A JP2011012346A (en) 2009-06-30 2010-06-25 Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloy
EP10167751A EP2295612A1 (en) 2009-06-30 2010-06-29 Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloys
CN2010102269828A CN101935780A (en) 2009-06-30 2010-06-30 The method of control and refinement final size in super solvus thermal treatment nickel based super alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/494,896 US20100329883A1 (en) 2009-06-30 2009-06-30 Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloys

Publications (1)

Publication Number Publication Date
US20100329883A1 true US20100329883A1 (en) 2010-12-30

Family

ID=42797247

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/494,896 Abandoned US20100329883A1 (en) 2009-06-30 2009-06-30 Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloys

Country Status (5)

Country Link
US (1) US20100329883A1 (en)
EP (1) EP2295612A1 (en)
JP (1) JP2011012346A (en)
CN (1) CN101935780A (en)
CA (1) CA2707782A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2471965A1 (en) * 2010-12-28 2012-07-04 Hitachi Ltd. Ni-based superalloy, and turbine rotor and stator blades for gas turbine using the same
WO2012047352A3 (en) * 2010-07-09 2012-08-16 General Electric Company Nickel-base alloy, processing therefor, and components formed thereof
EP2520679A1 (en) * 2011-05-05 2012-11-07 General Electric Company Method of controlling grain size in forged precipitation-strengthened alloys and components formed thereby
CN103032330A (en) * 2013-01-16 2013-04-10 东莞市金瑞五金制品有限公司 Compressor and application thereof
RU2483835C1 (en) * 2012-01-19 2013-06-10 Открытое акционерное общество "Всероссийский Институт Легких сплавов" (ОАО ВИЛС) Method of producing gas turbine engine long-life parts from nickel alloy powders
US20130224049A1 (en) * 2012-02-29 2013-08-29 Frederick M. Schwarz Lightweight fan driving turbine
US8613810B2 (en) 2009-05-29 2013-12-24 General Electric Company Nickel-base alloy, processing therefor, and components formed thereof
CN103820678A (en) * 2014-03-02 2014-05-28 王文姣 Nickel-base superalloy with high crack extension resistance
CN103866162A (en) * 2014-03-02 2014-06-18 王文姣 Nickel-based powder metallurgical superalloy with high crack propagation resistance
EP2879821A4 (en) * 2012-07-31 2015-11-04 United Technologies Corp Powder metallurgy method for making components
US9518310B2 (en) 2009-05-29 2016-12-13 General Electric Company Superalloys and components formed thereof
WO2017100169A1 (en) * 2015-12-07 2017-06-15 Ati Properties Llc Methods for processing nickel-base alloys
US9752215B2 (en) 2012-02-14 2017-09-05 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
US9783873B2 (en) 2012-02-14 2017-10-10 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
EP3290536A1 (en) * 2016-08-31 2018-03-07 General Electric Company Grain refinement in in706 using laves phase precipitation
CN113560565A (en) * 2021-07-30 2021-10-29 广东省科学院中乌焊接研究所 Tungsten (molybdenum) alloy with double-size crystal grains, preparation method thereof and stirring tool for friction stir welding
US11326230B2 (en) 2017-05-22 2022-05-10 Kawasaki Jukogyo Kabushiki Kaisha High temperature component and method for producing same
WO2023151747A1 (en) * 2022-02-14 2023-08-17 MTU Aero Engines AG Nickel alloy, powder for producing a nickel alloy, and component comprising a nickel alloy

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8918996B2 (en) * 2011-05-04 2014-12-30 General Electric Company Components and processes of producing components with regions having different grain structures
US9156113B2 (en) * 2011-06-03 2015-10-13 General Electric Company Components and processes of producing components with regions having different grain structures
JP5791430B2 (en) 2011-08-29 2015-10-07 三菱日立パワーシステムズ株式会社 Disc lifting jig
CH705750A1 (en) * 2011-10-31 2013-05-15 Alstom Technology Ltd A process for the production of components or portions, which consist of a high-temperature superalloy.
US20140373979A1 (en) 2011-12-15 2014-12-25 National Institute For Material Science Nickel-based heat-resistant superalloy
US20130167979A1 (en) * 2011-12-29 2013-07-04 General Electric Company Method of predicting quench cracking in components formed by high deformation processes
US9291057B2 (en) * 2012-07-18 2016-03-22 United Technologies Corporation Tie shaft for gas turbine engine and flow forming method for manufacturing same
CN103115818B (en) * 2013-01-25 2016-03-02 南昌航空大学 A kind of Efficient superplastic deformation method based on minimum m value
CN104988442B (en) * 2015-07-10 2017-03-08 中南大学 A kind of thinning method of GH4169 alloy forged piece grain structure
JP6826821B2 (en) * 2016-05-12 2021-02-10 三菱重工業株式会社 Manufacturing method of metal parts
US20200010930A1 (en) * 2017-02-21 2020-01-09 Hitachi Metals, Ltd. Ni-based super heat-resistant alloy and method for manufacturing same
CN108425037B (en) * 2018-04-12 2019-07-23 北京钢研高纳科技股份有限公司 A kind of powder metallurgy superalloy and preparation method thereof
CN110643856B (en) * 2018-06-26 2021-11-30 中南大学 Nickel-based alloy, preparation method thereof and manufactured article
CN110640152A (en) * 2018-06-26 2020-01-03 中南大学 Nickel-based alloy, preparation method thereof and manufactured article
CN110640151A (en) * 2018-06-26 2020-01-03 中南大学 Nickel-based alloy, preparation method thereof and manufactured article
WO2021025744A2 (en) * 2019-05-06 2021-02-11 Northwestern University Ni-w based medium heavy alloy and forming methods and applications of same
FR3100144B1 (en) * 2019-09-04 2021-10-01 Safran Aircraft Engines PROCESS FOR MANUFACTURING A METAL PART LIMITING THE APPEARANCE OF RECRISTALLIZED GRAINS IN THE SAID PART
CN110484841B (en) * 2019-09-29 2020-09-29 北京钢研高纳科技股份有限公司 Heat treatment method of GH4780 alloy forging
CN110666174B (en) * 2019-10-23 2022-03-04 航天材料及工艺研究所 Method for improving end face buckling deformation of hot isostatic pressing powder metallurgy flat component
FR3104613B1 (en) * 2019-12-11 2021-12-10 Safran NICKEL-BASED SUPERALLY

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890816A (en) * 1973-09-26 1975-06-24 Gen Electric Elimination of carbide segregation to prior particle boundaries
US4894089A (en) * 1987-10-02 1990-01-16 General Electric Company Nickel base superalloys
US4957567A (en) * 1988-12-13 1990-09-18 General Electric Company Fatigue crack growth resistant nickel-base article and alloy and method for making
US5529643A (en) * 1994-10-17 1996-06-25 General Electric Company Method for minimizing nonuniform nucleation and supersolvus grain growth in a nickel-base superalloy
US5584947A (en) * 1994-08-18 1996-12-17 General Electric Company Method for forming a nickel-base superalloy having improved resistance to abnormal grain growth
US6521175B1 (en) * 1998-02-09 2003-02-18 General Electric Co. Superalloy optimized for high-temperature performance in high-pressure turbine disks
US20070240793A1 (en) * 2006-04-18 2007-10-18 General Electric Company Method of controlling final grain size in supersolvus heat treated nickel-base superalloys and articles formed thereby
US20090000706A1 (en) * 2007-06-28 2009-01-01 General Electric Company Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloys

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60041936D1 (en) 2000-10-04 2009-05-14 Gen Electric Ni-base superalloy and its use as gas turbine disks, shafts and impellers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890816A (en) * 1973-09-26 1975-06-24 Gen Electric Elimination of carbide segregation to prior particle boundaries
US4894089A (en) * 1987-10-02 1990-01-16 General Electric Company Nickel base superalloys
US4957567A (en) * 1988-12-13 1990-09-18 General Electric Company Fatigue crack growth resistant nickel-base article and alloy and method for making
US5584947A (en) * 1994-08-18 1996-12-17 General Electric Company Method for forming a nickel-base superalloy having improved resistance to abnormal grain growth
US5529643A (en) * 1994-10-17 1996-06-25 General Electric Company Method for minimizing nonuniform nucleation and supersolvus grain growth in a nickel-base superalloy
US6521175B1 (en) * 1998-02-09 2003-02-18 General Electric Co. Superalloy optimized for high-temperature performance in high-pressure turbine disks
US20070240793A1 (en) * 2006-04-18 2007-10-18 General Electric Company Method of controlling final grain size in supersolvus heat treated nickel-base superalloys and articles formed thereby
US20090000706A1 (en) * 2007-06-28 2009-01-01 General Electric Company Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloys

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8613810B2 (en) 2009-05-29 2013-12-24 General Electric Company Nickel-base alloy, processing therefor, and components formed thereof
US9518310B2 (en) 2009-05-29 2016-12-13 General Electric Company Superalloys and components formed thereof
WO2012047352A3 (en) * 2010-07-09 2012-08-16 General Electric Company Nickel-base alloy, processing therefor, and components formed thereof
EP2471965A1 (en) * 2010-12-28 2012-07-04 Hitachi Ltd. Ni-based superalloy, and turbine rotor and stator blades for gas turbine using the same
US9574451B2 (en) 2010-12-28 2017-02-21 Mitsubishi Hitachi Power Systems, Ltd. Ni-based superalloy, and turbine rotor and stator blades for gas turbine using the same
US9034248B2 (en) 2010-12-28 2015-05-19 Mitsubishi Hitachi Power Systems, Ltd. Ni-based superalloy, and turbine rotor and stator blades for gas turbine using the same
US9322090B2 (en) 2011-05-05 2016-04-26 General Electric Company Components formed by controlling grain size in forged precipitation-strengthened alloys
EP2520679A1 (en) * 2011-05-05 2012-11-07 General Electric Company Method of controlling grain size in forged precipitation-strengthened alloys and components formed thereby
US8679269B2 (en) 2011-05-05 2014-03-25 General Electric Company Method of controlling grain size in forged precipitation-strengthened alloys and components formed thereby
RU2483835C1 (en) * 2012-01-19 2013-06-10 Открытое акционерное общество "Всероссийский Институт Легких сплавов" (ОАО ВИЛС) Method of producing gas turbine engine long-life parts from nickel alloy powders
US9783873B2 (en) 2012-02-14 2017-10-10 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
US9752215B2 (en) 2012-02-14 2017-09-05 United Technologies Corporation Superalloy compositions, articles, and methods of manufacture
US20130224049A1 (en) * 2012-02-29 2013-08-29 Frederick M. Schwarz Lightweight fan driving turbine
WO2013130280A1 (en) * 2012-02-29 2013-09-06 United Technologies Corporation Lightweight fan driving turbine
EP4245965A3 (en) * 2012-02-29 2023-12-20 RTX Corporation Lightweight fan driving turbine
US10309232B2 (en) * 2012-02-29 2019-06-04 United Technologies Corporation Gas turbine engine with stage dependent material selection for blades and disk
EP2879821A4 (en) * 2012-07-31 2015-11-04 United Technologies Corp Powder metallurgy method for making components
US10245639B2 (en) 2012-07-31 2019-04-02 United Technologies Corporation Powder metallurgy method for making components
EP2879821B1 (en) 2012-07-31 2023-03-08 Raytheon Technologies Corporation Powder metallurgy method for making nickel or cobalt superalloy components
CN103032330A (en) * 2013-01-16 2013-04-10 东莞市金瑞五金制品有限公司 Compressor and application thereof
CN103866162A (en) * 2014-03-02 2014-06-18 王文姣 Nickel-based powder metallurgical superalloy with high crack propagation resistance
CN103820678A (en) * 2014-03-02 2014-05-28 王文姣 Nickel-base superalloy with high crack extension resistance
WO2017100169A1 (en) * 2015-12-07 2017-06-15 Ati Properties Llc Methods for processing nickel-base alloys
CN108291274A (en) * 2015-12-07 2018-07-17 冶联科技地产有限责任公司 Method for processing nickel-base alloy
US10563293B2 (en) 2015-12-07 2020-02-18 Ati Properties Llc Methods for processing nickel-base alloys
US11725267B2 (en) 2015-12-07 2023-08-15 Ati Properties Llc Methods for processing nickel-base alloys
KR102325136B1 (en) 2016-08-31 2021-11-15 제네럴 일렉트릭 컴퍼니 Grain refinement in in706 using laves phase precipitation
KR20180025206A (en) * 2016-08-31 2018-03-08 제네럴 일렉트릭 컴퍼니 Grain refinement in in706 using laves phase precipitation
EP3290536A1 (en) * 2016-08-31 2018-03-07 General Electric Company Grain refinement in in706 using laves phase precipitation
US11326230B2 (en) 2017-05-22 2022-05-10 Kawasaki Jukogyo Kabushiki Kaisha High temperature component and method for producing same
US11773470B2 (en) 2017-05-22 2023-10-03 Kawasaki Jukogyo Kabushiki Kaisha High temperature component and method for producing same
CN113560565A (en) * 2021-07-30 2021-10-29 广东省科学院中乌焊接研究所 Tungsten (molybdenum) alloy with double-size crystal grains, preparation method thereof and stirring tool for friction stir welding
WO2023151747A1 (en) * 2022-02-14 2023-08-17 MTU Aero Engines AG Nickel alloy, powder for producing a nickel alloy, and component comprising a nickel alloy

Also Published As

Publication number Publication date
JP2011012346A (en) 2011-01-20
CA2707782A1 (en) 2010-12-30
EP2295612A1 (en) 2011-03-16
CN101935780A (en) 2011-01-05

Similar Documents

Publication Publication Date Title
US20100329883A1 (en) Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloys
US20090000706A1 (en) Method of controlling and refining final grain size in supersolvus heat treated nickel-base superalloys
EP3441489B1 (en) Method for manufacturing ni-based alloy member
US8613810B2 (en) Nickel-base alloy, processing therefor, and components formed thereof
EP2591135B1 (en) Nickel-base alloy, processing therefor, and components formed thereof
US9322090B2 (en) Components formed by controlling grain size in forged precipitation-strengthened alloys
US9518310B2 (en) Superalloys and components formed thereof
JP6150192B2 (en) Method for producing Ni-base superalloy
JP5554468B2 (en) Method for controlling final crystal grain size of supersolvus heat-treated nickel-base superalloy and product formed by the method
US5891272A (en) Nickel-base superalloy having improved resistance to abnormal grain growth
JP5652730B1 (en) Ni-base superalloy and manufacturing method thereof
US5529643A (en) Method for minimizing nonuniform nucleation and supersolvus grain growth in a nickel-base superalloy
US20180223395A1 (en) Enhanced superalloys by zirconium addition
WO2019097663A1 (en) Ni-based wrought alloy material and high-temperature turbine member using same
US9562276B2 (en) Nickel alloy and articles
EP2281907A1 (en) Nickel-Base Superalloys and Components Formed Thereof
JP2012517524A (en) Method for manufacturing parts made from nickel-based superalloys and corresponding parts
EP2872661A2 (en) Nickel-based superalloy, process therefore, and components formed therefrom

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MOURER, DAVID PAUL;BAIN, KENNETH REES;REEL/FRAME:022927/0054

Effective date: 20090701

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION