EP1664490B1 - Dispositif pour detecter une rupture d'arbre sur une turbine a gaz et turbine a gaz - Google Patents

Dispositif pour detecter une rupture d'arbre sur une turbine a gaz et turbine a gaz Download PDF

Info

Publication number
EP1664490B1
EP1664490B1 EP05766945A EP05766945A EP1664490B1 EP 1664490 B1 EP1664490 B1 EP 1664490B1 EP 05766945 A EP05766945 A EP 05766945A EP 05766945 A EP05766945 A EP 05766945A EP 1664490 B1 EP1664490 B1 EP 1664490B1
Authority
EP
European Patent Office
Prior art keywords
turbine
sensor element
gas turbine
actuation element
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP05766945A
Other languages
German (de)
English (en)
Other versions
EP1664490A2 (fr
Inventor
Christopher Bilson
Ian Fitzgerald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines GmbH filed Critical MTU Aero Engines GmbH
Publication of EP1664490A2 publication Critical patent/EP1664490A2/fr
Application granted granted Critical
Publication of EP1664490B1 publication Critical patent/EP1664490B1/fr
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/02Shutting-down responsive to overspeed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/04Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
    • F01D21/045Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position special arrangements in stators or in rotors dealing with breaking-off of part of rotor

Definitions

  • the invention relates to a device for detecting a shaft fracture on a gas turbine. Furthermore, the invention relates to a gas turbine with such a device.
  • Gas turbines designed as aircraft engines have at least one compressor, at least one combustion chamber and at least one turbine.
  • Aircraft engines are known from the prior art, on the one hand have three upstream of the combustion chamber positioned compressor and three positioned downstream of the combustion chamber turbines.
  • the three compressors are a low-pressure compressor, a medium-pressure compressor and a high-pressure compressor.
  • the three turbines are a high-pressure turbine, a medium-pressure turbine and a low-pressure turbine.
  • the rotors of high-pressure compressor and high-pressure turbine, medium-pressure compressor and medium-pressure turbine and low-pressure compressor and low-pressure turbine are connected to each other by a shaft, wherein the three shafts surround each other concentrically and are thus interleaved.
  • the intermediate-pressure compressor of the medium-pressure turbine can no longer extract any work or power, which can then lead to an overspeed at the medium-pressure turbine.
  • spin-off of the medium-pressure turbine must be avoided, as this can damage the entire aircraft engine.
  • a shaft break on a gas turbine must be reliably detectable in order to interrupt a fuel supply to the combustion chamber when a shaft fracture occurs.
  • Such a detection of a wave fracture is particularly difficult if the gas turbine, as described above, has three concentrically enclosing and thus nested waves. In this case, especially the detection of a shaft breakage of the middle wave, which couples the intermediate-pressure turbine with the medium-pressure compressor, presents difficulties.
  • a device for emergency shutdown of a gas turbine which in the case of a shaft break on the resulting axial displacement of the turbine rotor an interruption the fuel supply to the combustion chamber causes.
  • the device has at least one mechanical, with respect to a flow channel radially inner actuating element which generates an electric signal at shaft break via at least one sensor element and this transmits to an outside of the flow channel to a housing of the gas turbine - positioned switching element.
  • the or each actuating element is preferably designed as a turbine tooth mounted on the separating tooth, which interrupts an electrical line in the at least one sensor element. Due to its construction and arrangement, this device is de facto only suitable for monitoring a shaft accessible from the rear, ie either the single shaft or the low-pressure shaft.
  • the present invention is based on the problem to provide a relatively simple, reliable and space-saving device for detecting a shaft fracture on a gas turbine with multiple turbines and waves, which is particularly suitable for monitoring the high pressure or medium pressure wave.
  • a device for detecting a shaft fracture on a gas turbine in the sense of claim 1.
  • a device for detecting a shaft fracture on a rotor of a turbine of a gas turbine, in particular an aircraft engine proposed, wherein downstream of the turbine, a second turbine is positioned with a positioned between the rotor of the first turbine and a stator of the second turbine Actuator, and with a guided in the stator of the second turbine sensor element.
  • a device for detecting a shaft fracture with a mechanical actuating element which is positioned radially inwardly between a rotor and a stator of two adjacent turbines with respect to a flow channel of the gas turbine.
  • a shaft breakage of the upstream positioned turbine can be detected, whereby in the case of a shaft break the actuating element is axially displaced and strikes the sensor element.
  • the sensor element is preferably designed as an impact sensor whose structure is changed upon impact of the actuating element on the sensor element and thus generates an electrical signal representing the shaft break.
  • the sensor element is guided in the stator of the turbine positioned downstream and conducts the electrical signal representing the shaft break radially outward to a switching element.
  • the sensor element can be pulled out of the same in the radial direction when the gas turbine is mounted.
  • the sensor element can be easily pulled out of the assembled gas turbine in the radial direction, the switching element is positioned radially on the outside of the housing of the gas turbine.
  • the gas turbine according to the invention is defined in claim 9.
  • Fig. 1 shows a partial cross-section through a gas turbine according to the invention, namely an aircraft engine, in the radially inner region between a rotor of a medium-pressure turbine 10 and a stator of a low-pressure turbine 11.
  • a radially inner sealing structure 13 of a first vane ring of the low-pressure turbine 11 seen in the flow direction is shown.
  • the sealing structure 13 comprises honeycomb seals 14 of a so-called "inner air seal" seal.
  • the flow direction through the gas turbine is visualized in FIG. 1 by an arrow 15.
  • the stator of the low-pressure turbine 11 is accordingly positioned downstream of the rotor of the medium pressure turbine 10.
  • the first or foremost guide vane ring of the low-pressure turbine 11, as seen in the flow direction adjoins the last or rearmost rotor blade ring of the medium-pressure turbine 10, as seen in the flow direction.
  • a high-pressure turbine is preferably positioned upstream of the medium-pressure turbine 10.
  • an actuator 16 between the rotor of the medium-pressure turbine 10 and the stator of the low-pressure turbine 11, wherein the actuator 16 in the embodiment shown between the last seen in the flow direction of the rotor blade of the central-pressure turbine 10 and the first seen in the flow direction Guide vane ring of the low-pressure turbine 11 is positioned.
  • the actuating element 16 is positioned radially inwardly of the gas turbine adjacent to a flow channel adjacent to the rotor disk 12 of the last rotor blade ring of the medium-pressure turbine 10 as seen in the flow direction.
  • the actuating element 16 is aligned axially and guided in the sealing structure 13 serving as a seal carrier.
  • a bore is introduced into the sealing structure 13 with an internal thread, wherein a nut 17 is fastened with a corresponding external thread in the bore of the sealing structure 13.
  • the nut 17 in turn has a central bore in which the actuating element 16 is guided displaceably in the axial direction.
  • the actuating element 16 which is displaceably mounted or guided in the nut 17 in the axial direction, is fixed in the axial position via a shear-off pin 18.
  • the abschbarer pin 18 extends substantially radially from the outside through the nut 17 and projects into a corresponding opening within the actuating element 16 in substantially.
  • the shear-off pin 18 and the axial fixation of the actuating element 16 caused thereby ensure that no axial displacement of the actuating element 16 occurs during normal or regular operation of the gas turbine.
  • a washer 19 is arranged between the sealing structure 13 and the nut 17. Through the thickness of this washer 19, a distance between the rotor disk 12 and one of the rotor disk 12 adjacent end 20 of the actuator 16 can be adjusted.
  • the device according to the invention for detecting a shaft fracture via a sensor element 21.
  • the sensor element 21 is formed as an impact sensor or impact sensor or impact sensor and cooperates with an end 20 opposite end 22 of the actuating element 16 such that then When the second end 22 of the actuating element 16 strikes the sensor element 21 as a result of a shaft break, the sensor element 21 generates an electrical signal representing the shaft break, in order to transmit this electrical signal to a switching element positioned radially on the outside of a housing of the gas turbine.
  • the sensor element 21 is guided in the stator of the low-pressure turbine 11 and can be removed in the radial direction from the stator of the low-pressure turbine 11.
  • the radially inner end of the sensor element 21 is guided in a receptacle 23, the receptacle 23 being fastened to the sealing structure 13 via a carrier 24.
  • the carrier 23 is fixedly connected via a rivet connection 25 with the sealing structure 13.
  • the holder 23 held by the carrier 24 has an opening in the region of the end 22 of the actuating element 16 so that the actuating element 16 can be moved in the direction of the sensor element 21 in the event of a shaft break.
  • Fig. 1 shows the device according to the invention for the detection of a shaft break or the corresponding gas turbine in an arrangement which corresponds to the regular or normal operation of a gas turbine.
  • the actuating element 16 is fixed in its axial displaceability by the shear-off pin 18. If a shaft break now occurs on the shaft connecting the medium-pressure turbine 11 with a medium-pressure compressor (not shown), then the medium-pressure compressor of the medium-pressure turbine 10 can no longer take work or power and spinning of the medium-pressure turbine 10 can occur. Due to the pressure conditions at the medium-pressure turbine 10, the rotor, namely the rotor disk 12 shown in FIG.
  • the sensor element 21 designed as an impact sensor or impact sensor preferably has an electrical circuit integrated into a ceramic base body whose structure or integrity is monitored by the switching element. If the actuating element 16 strikes the ceramic base body of the sensor element 21 due to a shaft break, it is destroyed and the integrated circuit in the ceramic base body is interrupted. The resulting change in the signal provided by the sensor element 21 represents a shaft break and can be evaluated or further processed in a simple manner by the switching element, in order to ultimately interrupt the supply of fuel to the combustion chamber.
  • the sensor element 21 is guided in the stator of the low-pressure turbine 11 such that the sensor element 21 can be pulled out of the stator in the radial direction.
  • the extraction of the sensor element 21 in the radial direction from the stator, in particular a vane of a vane ring, the low-pressure turbine 11 can be carried out with mounted or assembled gas engine. This makes it possible to easily subject the sensor element 21 to inspection or maintenance. All electrical or electronic components of the device according to the invention for detecting a shaft break are therefore accessible without great installation effort. The remaining, accessible only with disassembled gas turbine assemblies of the device according to the invention for detecting a shaft fracture, such. As the actuator 16 are purely mechanical, very robust and therefore less frequently inspected or maintained, as the electrical or electronic components thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Measuring Fluid Pressure (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Claims (9)

  1. Dispositif destiné à détecter une rupture d'arbre sur un rotor d'une turbine (10) d'une turbine à gaz, en particulier d'un groupe motopropulseur d'avion, ledit dispositif comportant un élément d'actionnement (16) qui, par rapport à un canal d'écoulement, est positionné radialement à l'intérieur, afin qu'une rupture d'arbre détectée par cet élément d'actionnement (16) soit transformée en un signal électrique et que ce signal électrique soit transmis à un élément de commutation qui, par rapport au canal d'écoulement, est positionné radialement à l'extérieur sur un carter de la turbine à gaz, caractérisé en ce qu'en aval de la turbine (10) est positionnée une deuxième turbine (11), et le dispositif est agencé entre le rotor de la première turbine (10) et un stator de la deuxième turbine (11), un élément capteur (21), coopérant avec l'élément d'actionnement (16), étant guidé par le stator de la deuxième turbine (11).
  2. Dispositif selon la revendication 1,
    caractérisé en ce que l'élément d'actionnement (16) est positionné entre, par référence au sens d'écoulement, une dernière couronne d'aubes mobiles de la première turbine (10) et, par référence au sens d'écoulement, une première couronne d'aubes fixes de la deuxième turbine (11).
  3. Dispositif selon la revendication 2,
    caractérisé en ce que l'élément d'actionnement (16) est positionné radialement à l'intérieur à proximité d'un disque de rotor (12) de la dernière couronne d'aubes mobiles, par référence au sens d'écoulement, de la première turbine (10).
  4. Dispositif selon une ou plusieurs des revendications 1 à 3, caractérisé en ce que l'élément d'actionnement (16) est logé dans le sens axial, plus précisément dans le sens d'écoulement, dans une structure d'étanchéité (13), radialement intérieure, du stator de la deuxième turbine (11), l'élément d'actionnement (16) étant immobilisé dans le sens axial par l'intermédiaire d'une broche (18) cisaillable.
  5. Dispositif selon une ou plusieurs des revendications 1 à 4, caractérisé en ce que l'élément capteur (21) est logé dans le sens radial dans le stator de la deuxième turbine (11) et peut être retiré dans le sens radial hors du stator de la deuxième turbine (11).
  6. Dispositif selon la revendication 5,
    caractérisé en ce que l'élément capteur (21) est logé, par référence au sens d'écoulement, dans une première couronne d'aubes fixes de la deuxième turbine (11).
  7. Dispositif selon une ou plusieurs des revendications 1 à 6, caractérisé en ce que l'élément capteur (21), au niveau d'une extrémité radialement intérieure, coopère avec l'élément d'actionnement (16) de telle sorte qu'en cas de rupture de l'arbre, l'élément d'actionnement (16) est déplacé moyennant le cisaillement de la broche (18) vers l'élément capteur (21) et vient buter contre celui-ci, l'élément capteur (21) générant à partir de là un signal électrique signifiant la rupture de l'arbre.
  8. Dispositif selon une ou plusieurs des revendications 1 à 7, caractérisé en ce que l'élément capteur (21) est réalisé sous forme de capteur de chocs, dont la structure varie lorsque l'élément d'actionnement (16) vient buter contre celui-ci.
  9. Turbine à gaz, en particulier groupe motopropulseur d'avion, comportant un dispositif destiné à détecter une rupture d'arbre sur un rotor d'une turbine (10), selon une ou plusieurs des revendications 1 à 8.
EP05766945A 2004-07-14 2005-07-07 Dispositif pour detecter une rupture d'arbre sur une turbine a gaz et turbine a gaz Ceased EP1664490B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004033924A DE102004033924A1 (de) 2004-07-14 2004-07-14 Einrichtung zur Detektion eines Wellenbruchs an einer Gasturbine sowie Gasturbine
PCT/DE2005/001206 WO2006005319A2 (fr) 2004-07-14 2005-07-07 Dispositif pour detecter une rupture d'arbre sur une turbine a gaz et turbine a gaz

Publications (2)

Publication Number Publication Date
EP1664490A2 EP1664490A2 (fr) 2006-06-07
EP1664490B1 true EP1664490B1 (fr) 2007-10-24

Family

ID=35458000

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05766945A Ceased EP1664490B1 (fr) 2004-07-14 2005-07-07 Dispositif pour detecter une rupture d'arbre sur une turbine a gaz et turbine a gaz

Country Status (5)

Country Link
US (1) US7758301B2 (fr)
EP (1) EP1664490B1 (fr)
DE (2) DE102004033924A1 (fr)
RU (1) RU2377420C2 (fr)
WO (1) WO2006005319A2 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004026366A1 (de) * 2004-05-29 2005-12-15 Mtu Aero Engines Gmbh Einrichtung zur Detektion eines Wellenbruchs an einer Gasturbine sowie Gasturbine
DE102005042271A1 (de) * 2005-09-06 2007-03-08 Mtu Aero Engines Gmbh Einrichtung zur Detektion eines Wellenbruchs an einer Gasturbine sowie Gasturbine
DE102006017790B3 (de) * 2006-04-15 2007-07-26 Mtu Aero Engines Gmbh Einrichtung zur Detektion eines Wellenbruchs an einer Gasturbine sowie Gasturbine
US9355571B2 (en) * 2008-01-23 2016-05-31 Sikorsky Aircraft Corporation Modules and methods for biasing power to a multi-engine power plant suitable for one engine inoperative flight procedure training
GB2468686A (en) * 2009-03-18 2010-09-22 Weston Aerospace Ltd System and method for detecting abnormal movement in a gas turbine shaft
US9169742B2 (en) * 2010-02-26 2015-10-27 Pratt & Whitney Canada Corp. Electronic shaft shear detection conditioning circuit
GB2488805A (en) * 2011-03-09 2012-09-12 Rolls Royce Plc Shaft break detection
FR2974841B1 (fr) * 2011-05-04 2013-06-07 Snecma Dispositif d'etancheite pour distributeur de turbine de turbomachine
US8864446B2 (en) * 2011-05-23 2014-10-21 Siemens Energy, Inc. Wear pin gap closure detection system for gas turbine engine
US8505364B2 (en) 2011-11-04 2013-08-13 General Electric Company Systems and methods for use in monitoring operation of a rotating component
US10167784B2 (en) 2012-10-26 2019-01-01 Pratt & Whitney Canada Corp. System for detecting shaft shear event
DE102013213386B3 (de) 2013-07-09 2014-08-14 MTU Aero Engines AG Strömungsmaschinen-Keramikbauteil
GB2540784A (en) * 2015-07-27 2017-02-01 Weston Aerospace Ltd Magnetic sensor system for detecting abnormal movement in a gas turbine shaft
US10113937B2 (en) 2017-03-03 2018-10-30 Siemens Energy, Inc. System and method for monitoring hook wear in a gas turbine engine
GB2583078B (en) * 2019-04-09 2022-10-05 Weston Aerospace Ltd System for detecting abnormal movement of a shaft in a gas turbine engine
US11504813B2 (en) 2020-05-18 2022-11-22 Rolls-Royce Plc Methods for health monitoring of ceramic matrix composite components in gas turbine engines
US11618580B2 (en) 2020-08-31 2023-04-04 General Electric Company Hybrid electric aircraft engine

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2815818A (en) * 1957-12-10 Certificate of correction
US1326867A (en) * 1918-12-06 1919-12-30 Gen Electric Elastic-fluid turbine.
US2977758A (en) * 1955-02-18 1961-04-04 Rolls Royce Propeller driving gas-turbine engines
GB903945A (en) 1957-10-29 1962-08-22 Rolls Royce Improvements in or relating to gas-turbine engines
GB982292A (en) 1960-06-30 1965-02-03 Fairfield Shipbuilding & Engin Trip gear for turbines
US3159166A (en) * 1961-10-16 1964-12-01 Gen Motors Corp Engine safety control
DE1915930B2 (de) 1968-04-03 1971-06-09 Motoren und Turbinen Union München GmbH, 8000 München Vorrichtung an tirbomaschinen zum fruehzeitigen erkennen von schaufelschaeden
DE2062047A1 (de) 1970-12-16 1972-07-06 Motoren Turbinen Union Warnvorrichtung
US3696612A (en) * 1970-12-30 1972-10-10 Westinghouse Electric Corp Fuel pump system for gas turbines
GB1443333A (en) * 1972-08-12 1976-07-21 Mtu Muenchen Gmbh Aircraft having apparatus for augmenting the lift of the aircraft
US3989408A (en) * 1974-05-20 1976-11-02 Westinghouse Electric Corporation Positioning device for a turbine rotor position sensor
JPS5274737A (en) * 1975-12-19 1977-06-23 Hitachi Ltd Operation stopper of hydraulical machinery
GB2002857A (en) * 1977-08-16 1979-02-28 Rolls Royce Means for detecting relative movement between parts of machines
US4406117A (en) * 1979-10-26 1983-09-27 General Electric Company Cyclic load duty control for gas turbine
GB2124788B (en) * 1982-06-30 1986-05-21 Rolls Royce Torque-sensitive control of gas turbines
US4498291A (en) * 1982-10-06 1985-02-12 Rolls-Royce Limited Turbine overspeed limiter for turbomachines
JPH03121219A (ja) 1989-10-03 1991-05-23 Mitsubishi Heavy Ind Ltd エンジンの緊急停止装置
US5301499A (en) * 1990-06-28 1994-04-12 General Electric Company Overspeed anticipation and control system for single shaft combined cycle gas and steam turbine unit
US5363317A (en) * 1992-10-29 1994-11-08 United Technologies Corporation Engine failure monitor for a multi-engine aircraft having partial engine failure and driveshaft failure detection
US5411364A (en) * 1993-12-22 1995-05-02 Allied-Signal Inc. Gas turbine engine failure detection system
DE19524992C1 (de) 1995-07-08 1996-08-08 Mtu Muenchen Gmbh Regelung eines Wellentriebwerks mit einem Mikrosteuergerät
DE19727296A1 (de) * 1997-06-27 1999-01-07 Mtu Muenchen Gmbh Einrichtung zur Notabschaltung einer Gasturbine
DE19857552A1 (de) * 1998-12-14 2000-06-15 Rolls Royce Deutschland Verfahren zum Erkennen eines Wellenbruches in einer Strömungskraftmaschine
US6546735B1 (en) * 2001-03-07 2003-04-15 General Electric Company Methods and apparatus for operating turbine engines using rotor temperature sensors
US6607349B2 (en) * 2001-11-14 2003-08-19 Honeywell International, Inc. Gas turbine engine broken shaft detection system
DE10310900A1 (de) * 2003-03-13 2004-09-23 Rolls-Royce Deutschland Ltd & Co Kg Elekronisches Sicherheitssystem zur Vermeidung eines Überdrehzahlzustandes bei einem Wellenbruch
US7043896B2 (en) * 2003-11-21 2006-05-16 Pratt & Whitney Canada Corp. Method and apparatus for controlling fuel flow to an engine
DE102004026366A1 (de) * 2004-05-29 2005-12-15 Mtu Aero Engines Gmbh Einrichtung zur Detektion eines Wellenbruchs an einer Gasturbine sowie Gasturbine
DE102004047892A1 (de) * 2004-10-01 2006-04-06 Mtu Aero Engines Gmbh Gasturbine und Verfahren zum Abschalten einer Gasturbine bei Identifikation eines Wellenbruchs
US7207768B2 (en) * 2005-01-15 2007-04-24 Siemens Power Generation, Inc. Warning system for turbine component contact

Also Published As

Publication number Publication date
RU2377420C2 (ru) 2009-12-27
WO2006005319A3 (fr) 2006-02-23
RU2006116454A (ru) 2008-09-27
US7758301B2 (en) 2010-07-20
DE502005001773D1 (de) 2007-12-06
DE102004033924A1 (de) 2006-02-09
WO2006005319A2 (fr) 2006-01-19
EP1664490A2 (fr) 2006-06-07
US20070160457A1 (en) 2007-07-12

Similar Documents

Publication Publication Date Title
EP1664490B1 (fr) Dispositif pour detecter une rupture d'arbre sur une turbine a gaz et turbine a gaz
EP1759092B1 (fr) Dispositif de detection d'une rupture d'arbre sur une turbine a gaz et turbine a gaz
DE602005004239T2 (de) Gemeinsame Entkopplungsvorrichtung für das erste und das zweite Lager der Antriebswelle einer Turbomaschine, und Verdichter und Turbomaschine mit einer solchen Vorrichtung
DE102005039820B4 (de) Containment-Sicherung für Strömungsmaschinen mit radial durchströmtem Verdichterrad
WO1999000585A1 (fr) Dispositif pour l'arret d'urgence d'une turbine a gaz
EP2690266B1 (fr) Turbine pour moteur à combustion interne
DE102007042767A1 (de) Mehrschichtiger Abschirmungsring für einen Flugantrieb
EP1383987A1 (fr) Dispositif de protection en cas d'eclatement pour compresseur radial de turbocompresseurs
EP1922472B1 (fr) Turbine a gaz pourvue d'un dispositif de detection d'une rupture de l'arbre
WO2007051443A1 (fr) Turbomoteur dote d'un tirant d'ancrage constitue de douilles de traction et de poussee
CH698022B1 (de) Strömungsmaschine, insbesondere Abgasturbolader.
EP1794417B1 (fr) Turbine a gaz et procede pour interrompre le fonctionnement d'une turbine a gaz lors de l'identification de la rupture d'un arbre
DE69913625T2 (de) Gasturbine
EP2824281B1 (fr) Turbomachine
EP0806547A1 (fr) Turbine axiale pour turbocompresseurs
DE102010036071A1 (de) Gehäuseseitige Struktur einer Turbomaschine
DE102009009079B4 (de) Axialströmungsmaschine
EP1001139A1 (fr) Dispositif d'étanchéité pour les extrémités des aubes de turbine
EP2770191A2 (fr) Turbine à gaz d'aéronef dotée d'un premier arbre rotatif
EP1727970B1 (fr) Methode et appareil permettant d'etablir l'etat d'un rotor de turbomachine
WO2008055717A1 (fr) Liaison de carter d'un turbocompresseur à gaz d'échappement
DE102006017790B3 (de) Einrichtung zur Detektion eines Wellenbruchs an einer Gasturbine sowie Gasturbine
WO2010081466A1 (fr) Aube directrice pour un stator d'un turbocompresseur et module correspondant
DE102004016244B4 (de) Rotor für eine Turbomaschine
DE102009054408B4 (de) Gasturbine mit elektromechanischem Wellenbruch-Erkennungssystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060126

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

R17D Deferred search report published (corrected)

Effective date: 20060223

17Q First examination report despatched

Effective date: 20060929

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502005001773

Country of ref document: DE

Date of ref document: 20071206

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071115

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080725

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190724

Year of fee payment: 15

Ref country code: DE

Payment date: 20190723

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190725

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005001773

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200707

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200707

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210202