EP1922472B1 - Turbine a gaz pourvue d'un dispositif de detection d'une rupture de l'arbre - Google Patents
Turbine a gaz pourvue d'un dispositif de detection d'une rupture de l'arbre Download PDFInfo
- Publication number
- EP1922472B1 EP1922472B1 EP06775914.2A EP06775914A EP1922472B1 EP 1922472 B1 EP1922472 B1 EP 1922472B1 EP 06775914 A EP06775914 A EP 06775914A EP 1922472 B1 EP1922472 B1 EP 1922472B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas turbine
- turbine
- sensor element
- rotor
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000004020 conductor Substances 0.000 claims description 18
- 230000002787 reinforcement Effects 0.000 claims description 9
- 238000002485 combustion reaction Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 238000001816 cooling Methods 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 239000000446 fuel Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D21/00—Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
- F01D21/04—Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
- F01D21/045—Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position special arrangements in stators or in rotors dealing with breaking-off of part of rotor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/80—Diagnostics
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/90—Braking
Definitions
- the invention relates to a gas turbine with a device for detecting a shaft fracture on a gas turbine.
- Gas turbines designed as aircraft engines have at least one compressor, at least one combustion chamber and at least one turbine.
- Aircraft engines are known from the prior art, on the one hand have three upstream of the combustion chamber positioned compressor and three positioned downstream of the combustion chamber turbines.
- the three compressors are a low-pressure compressor, a medium-pressure compressor and a high-pressure compressor.
- the three turbines are a high-pressure turbine, a medium-pressure turbine and a low-pressure turbine.
- the rotors of high-pressure compressor and high-pressure turbine, medium-pressure compressor and medium-pressure turbine and low-pressure compressor and low-pressure turbine are connected to each other by a shaft, wherein the three shafts surround each other concentrically and are thus interleaved.
- the intermediate-pressure compressor of the medium-pressure turbine can no longer extract any work or power, which can then lead to an overspeed at the medium-pressure turbine.
- spin-off of the medium-pressure turbine must be avoided, as this can damage the entire aircraft engine.
- a shaft break on a gas turbine must be reliably detectable in order to interrupt a fuel supply to the combustion chamber when a shaft fracture occurs.
- Such a detection of a wave fracture is particularly difficult if the gas turbine, as described above, has three concentrically enclosing and thus nested waves. In this case, especially the detection of a shaft breakage of the middle wave, which couples the intermediate-pressure turbine with the medium-pressure compressor, presents difficulties.
- a similar problem also arises with stationary gas turbines.
- a protection device for turbomachines is known, which allows detection of a reduction in the radial gap between movable and immovable parts.
- a gas turbine with an error detection system is known, which comprises a sensor arranged in the flow channel.
- the present invention is based on the problem to provide a novel device for detecting a shaft fracture on a gas turbine.
- a device for detecting a shaft fracture on a rotor of a turbine of a gas turbine wherein downstream of the turbine at least one stator-side sensor element is positioned in the region of a stator vane ring of another turbine, in particular a low-pressure turbine, and according to claim 1 in a shaft break the rotor of the turbine, a radially outer portion of a seen in the flow direction last rotor-side blade ring of the turbine with the or each sensor element cooperates to generate a corresponding to the shaft breakage electrical signal.
- At least one stator-side sensor element is preferably assigned to a low-pressure turbine positioned downstream of a medium-pressure turbine in the direction of flow, wherein in the case of a shaft fracture the radially outer section of the last rotor-side rotor blade of the intermediate-pressure turbine cooperates with the or each sensor element in such a way, that a wave break can be detected.
- an electrical signal corresponding to the shaft break is generated and transmitted to a switching element in order to interrupt the fuel supply to the combustion chamber in response to the shaft break.
- the or each sensor element as a conductor, in particular as a mineral-insulated conductor, formed at a shaft breakage of the rotor of the turbine, the radially outer portion of the last seen in the flow direction, rotor-side blade ring or severed each conductor and so a wave breaking corresponding electrical signal generated.
- Fig. 1 shows a section of a gas turbine according to the invention, namely an aircraft engine, according to a first embodiment of the invention between a rotor of a medium-pressure turbine 10 and a stator of a low-pressure turbine 11.
- a rotor of a medium-pressure turbine 10 From the rotor of the medium-pressure turbine 10 is a radially outer portion 12 of a blade 13 of the flow direction ( Arrow 14) seen last blade ring of the medium-pressure turbine 10.
- a radially outer portion 15 of a vane 16 of the first vane ring of the low-pressure turbine 11 and seen in the flow direction (arrow 14) and a housing portion 17 is shown.
- the first or leading vane ring of the low-pressure turbine 11 seen in the flow direction accordingly adjoins the last or rearmost blade ring of the medium-pressure turbine 10, as seen in the flow direction. Upstream of the medium pressure turbine 10, a high pressure turbine is positioned.
- At least one sensor element 18 is positioned in the exemplary embodiments shown.
- the or each sensor element 18 is associated with a radially outer portion of this vane ring of the low-pressure turbine 11 and thus a radially outer portion of a flow channel of the low-pressure turbine 11.
- the or each sensor element 18 acts to detect a shaft fracture with the radially outer portion 12 of the seen in the flow direction (arrow 14), the last rotor side rotor blade of the intermediate-pressure turbine 10 such that at a shaft break the last seen in the flow direction rearmost or last blade ring of the medium-pressure turbine 10 contacted with the radially outer portion 12, the sensor element 18 and thereby preferably cut, so as to generate a wave breaking corresponding electrical signal and transmitted to a non-illustrated switching element.
- the or each sensor element is designed as an electrical conductor, preferably as a mineral-insulated conductor, which is severed at a shaft break from the radially outer portion 12 of the last seen in the flow direction of the rotor blade ring of the medium-pressure turbine 10.
- the rotor of the medium-pressure turbine 10 is moved in the direction of flow (arrow 14) and thus in the direction of the first guide vane ring of the low-pressure turbine 11 in the case of a shaft break of the shaft connecting the medium-pressure turbine 10 with the medium-pressure compressor (not shown).
- the or each trained as a conductor sensor element 18 is doing is severed by a flow-projecting portion 19 of an outer shroud of the last seen in the flow direction last blade ring of the medium-pressure turbine 10.
- the or each sensor element 18 is supplied from radially outside the first vane ring of the low-pressure turbine 11 seen in the flow direction and introduced with an end portion 20 in a recess 21 of the first vane ring of the low-pressure turbine 11 seen in the flow direction, said recess 21 to the radially outside lying portion 15 of the vanes 16 of the first vane ring of the low-pressure turbine 11 is assigned.
- the respective end portion 20 of the or each sensor element 18 projects into the respective recess 21 and is enclosed in the vane ring 16.
- the recess 21 is in this case limited to the material seen in the flow direction last, rotor-side blade ring of the medium-pressure turbine 10 side of a material thickness which can be severed or penetrated at a shaft break of the portion 19 of the outer shroud of the last flow blade ring in the flow direction of the central pressure turbine 10.
- the section 19 reaches the end section 20 of the respective sensor element 18, cuts through the sensor element 18 and thus generates an electrical signal corresponding to the shaft break.
- an opening 22 is formed in the region of the recess 21, which establishes a connection of the recess 21 to the flow channel, so as to guide through the recess 21 a flow for cooling the respective sensor element 18.
- Fig. 2 clarified with arrows 23 the flow past the respective sensor element 18 for cooling the same. This flow is preferably branched off from a relatively cold bypass flow, guided past the respective sensor element 18 and guided via the opening 22 into the flow channel of the low-pressure turbine 11.
- the or each sensor element 18 is guided arcuately coming from radially outside to introduce the end portion 20 in the respective recess 21. Radially outside engages the housing 17, a ferrule 24 to guide the respective sensor element 18 and seal.
- a plurality of such sensor elements 18 are positioned uniformly distributed over the circumference of the vane ring of the low-pressure turbine 11, with a shaft break being closed when severing at least one such sensor element.
- Fig. 3 and 4 show a second embodiment of the present invention, which substantially the embodiment of the Fig. 1 and 2 equivalent. To avoid unnecessary repetition, therefore, the same reference numerals are used for the same components and it will be discussed below only on the details by which the embodiment of the Fig. 3 and 4 from the embodiment of Fig. 1 and 2 different.
- the or each sensor element 18 in turn fed from radially outside the first vane ring of the low-pressure turbine 11 seen in the flow direction and inserted into a corresponding recess 21, wherein in the embodiment of Fig. 3 and 4 the sensor element 18 is introduced into the corresponding recess 21 in a straight line without deflections or bends with the end section 20.
- the sensor element 18 can simply be pulled out of the recess 21 without the gas turbine, in particular the low-pressure turbine 11 of the same, having to be dismantled.
- the comments on the embodiment of the Fig. 1 and 2 be referred.
- Fig. 5 shows a third embodiment of the present invention.
- the or each sensor element 18 is surrounded by a reinforcement 25 or a reinforcement.
- the or each sensor element 18 penetrates together with the respective reinforcement 25 has a recess 21 of the first vane ring of the low-pressure turbine 11 seen in the flow direction, but in contrast to the embodiment of Fig. 1 and 2 or the Fig. 3 and 4 in the embodiment of Fig. 5 the end portion 20 of the sensor element 18 is not enclosed in the vane ring, but rather protrudes into the flow channel, in a section between the last seen in the flow direction, the rotor side rotor blade of the medium-pressure turbine 10 and the first seen in the flow direction, stator side vane ring of the low-pressure turbine 11.
- the section 19 of the outer shroud of the rotor blade of the medium-pressure turbine 10 which projects in the direction of flow must penetrate or penetrate the reinforcement 25 so as to cut through the corresponding sensor element 18 and generate an electrical signal corresponding to the shaft break.
- an opening 26 is integrated into the reinforcement 25 so as to direct a flow between the reinforcement 25 and the respective sensor element 18 for cooling the respective sensor element 18. This flow can then escape via the opening 26 in the flow channel of the low-pressure turbine 11.
- FIG. 6 Another embodiment of the present invention shows Fig. 6 which essentially in the embodiment of the Fig. 3 equivalent.
- the difference between the embodiment of Fig. 6 and the embodiment of the Fig. 3 is that in the embodiment of the Fig. 6 in addition, the reinforcement 25 is present.
- the section 19 of the rotor blade ring of the medium-pressure turbine 10 projecting in the direction of flow must therefore penetrate both the material delimiting the recess 20 on the side facing the rotor blade rim and the reinforcement 25 to get in contact with the sensor 18.
- the or each sensor element is positioned in the region of a stator vane ring. It should be noted that the or each sensor element can also be assigned to other stator-side assemblies of the gas turbine.
- a device for detecting a shaft fracture on a rotor of a gas turbine wherein a radially outer end of a seen in the flow direction last blade ring of the turbine, which is connected to the shaft to be monitored with respect to the wave shaft, with at least one sensor element cooperates, which is associated with a stator, in particular a first vane ring of a downstream positioned turbine as seen in the flow direction.
- the or each sensor element is preferably formed as a mineral-insulated conductor, which is at a shaft break from a flow-projecting portion of an outer shroud of the flow direction seen last blade ring of the turbine, which is connected to the shaft to be monitored with respect to the wave breaking or severed.
- the mineral-insulated conductor has a diameter between 1 and 4 mm, preferably a diameter between 2 and 3 mm.
- a gas flow is guided past the mineral-insulated conductor for cooling the same, in order to cool it down to a temperature of about 900 ° Celsius.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Control Of Turbines (AREA)
- Control Of Positive-Displacement Air Blowers (AREA)
Claims (11)
- Turbine à gaz avec un dispositif de détection d'une rupture d'arbre sur un rotor d'une turbine (10) de la turbine à gaz, dans laquelle est positionné, en aval de la turbine (10), au moins un élément capteur côté stator (18) du dispositif dans la zone d'une couronne d'aubes directrices côté stator d'une autre turbine (11) et dans lequel, dans le cas d'une rupture d'arbre du rotor de la turbine (10), une section radialement externe (19) d'une couronne de pales côté rotor de la turbine (10) disposée en dernier en se plaçant dans le sens d'écoulement coopère avec le ou chaque élément capteur (18) pour générer un signal électrique correspondant à la rupture d'arbre,
caractérisée en ce que :le ou chaque élément capteur (18) est alimenté par une première couronne d'aubes directrices de l'autre turbine (11) en observant dans le sens d'écoulement radialement vers l'extérieur et est mis en place dans respectivement une cavité (21) de la couronne d'aubes directrices positionnée radialement à l'extérieur. - Turbine à gaz selon la revendication 1,
caractérisée en ce que :le ou chaque élément capteur (18) se présente sous la forme d'un conducteur, dans lequel, lors d'une rupture d'arbre du rotor de la turbine (10), la section radialement externe (19) de la couronne d'aubes directrices côté rotor disposée en premier en observant dans le sens d'écoulement sectionne au moins un conducteur et génère de la sorte un signal électrique correspondant à la rupture d'arbre. - Turbine à gaz selon la revendication 2,
caractérisée en ce que :le ou chaque conducteur se présente sous la forme d'un conducteur à isolation minérale. - Turbine à gaz selon la revendication 3,
caractérisée en ce que :le ou chaque conducteur à isolation minérale présente une épaisseur ou un diamètre compris entre 1 et 4 mm, en particulier entre 2 et 3 mm. - Turbine à gaz selon une ou plusieurs des revendications 1 à 3,
caractérisée en ce que :plusieurs éléments capteurs (18) répartis sur la périphérie sont présents. - Turbine à gaz selon une ou plusieurs des revendications 1 à 5,
caractérisée en ce que :une section d'extrémité (20) du ou de chaque élément capteur (18) fait saillie dans l'évidement respectif (21) du stator et est enserrée dans celui-ci. - Turbine à gaz selon une ou plusieurs des revendications 1 à 6,
caractérisée en ce que :l'évidement respectif (21) est limité sur le côté tourné vers la couronne de pales côté rotor disposée en dernier en observant dans le sens d'écoulement de la turbine (10) par une épaisseur de matériau qui, lors d'une rupture d'arbre, peut être pénétrée par la dernière couronne de pales côté rotor de la turbine (10). - Turbine à gaz selon une ou plusieurs des revendications 1 à 5,
caractérisée en ce qu'une section d'extrémité (20) du ou de chaque élément capteur (18) pénètre dans l'évidement respectif (21) du stator et fait saillie dans le canal d'écoulement entre la couronne de pales côté rotor de la turbine (10) disposée en dernier en observant dans le sens d'écoulement et le stator. - Turbine à gaz selon une ou plusieurs des revendications 1 à 8,
caractérisée en ce que :le ou chaque élément capteur (18) est gainé par une armure (25) ou un blindage. - Turbine à gaz selon une ou plusieurs des revendications 1 à 9,
caractérisée en ce que :l'évidement (21) et éventuellement l'armure (25) présentent une ouverture (22, 26) de sorte que ceux-ci puissent être parcourus pour refroidir l'élément capteur respectif (18). - Turbine à gaz selon une ou plusieurs des revendications 1 à 10 avec au moins un compresseur, avec au moins une chambre de combustion, avec au moins une turbine.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005042271A DE102005042271A1 (de) | 2005-09-06 | 2005-09-06 | Einrichtung zur Detektion eines Wellenbruchs an einer Gasturbine sowie Gasturbine |
PCT/DE2006/001496 WO2007028354A1 (fr) | 2005-09-06 | 2006-08-26 | Turbine a gaz pourvue d'un dispositif de detection d'une rupture de l'arbre |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1922472A1 EP1922472A1 (fr) | 2008-05-21 |
EP1922472B1 true EP1922472B1 (fr) | 2017-08-09 |
Family
ID=37441075
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06775914.2A Ceased EP1922472B1 (fr) | 2005-09-06 | 2006-08-26 | Turbine a gaz pourvue d'un dispositif de detection d'une rupture de l'arbre |
Country Status (4)
Country | Link |
---|---|
US (1) | US8371804B2 (fr) |
EP (1) | EP1922472B1 (fr) |
DE (1) | DE102005042271A1 (fr) |
WO (1) | WO2007028354A1 (fr) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2907839B1 (fr) * | 2006-10-25 | 2011-06-17 | Snecma | Methode pour reduire la vitesse en cas de rupture d'arbre de turbine de moteur a turbine a gaz |
GB2468686A (en) * | 2009-03-18 | 2010-09-22 | Weston Aerospace Ltd | System and method for detecting abnormal movement in a gas turbine shaft |
GB2494703B (en) | 2011-09-16 | 2016-08-03 | Weston Aerospace Ltd | System and method for detecting abnormal movement in a gas turbine shaft |
GB201121639D0 (en) * | 2011-12-16 | 2012-01-25 | Rolls Royce Plc | Shaft break detection |
JP5818717B2 (ja) * | 2012-02-27 | 2015-11-18 | 三菱日立パワーシステムズ株式会社 | ガスタービン |
US9316479B2 (en) * | 2012-09-20 | 2016-04-19 | United Technologies Corporation | Capacitance based clearance probe and housing |
US10190440B2 (en) | 2015-06-10 | 2019-01-29 | Rolls-Royce North American Technologies, Inc. | Emergency shut-down detection system for a gas turbine |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1326867A (en) * | 1918-12-06 | 1919-12-30 | Gen Electric | Elastic-fluid turbine. |
CH445949A (de) | 1965-03-19 | 1967-10-31 | Prvni Brnenska Strojirna | Schutzvorrichtung für Strömungsmaschinen |
US3591308A (en) * | 1969-06-04 | 1971-07-06 | Chicago Pneumatic Tool Co | Rotor guard for centrifugal compressor |
GB1443333A (en) * | 1972-08-12 | 1976-07-21 | Mtu Muenchen Gmbh | Aircraft having apparatus for augmenting the lift of the aircraft |
BE854653A (fr) | 1977-05-16 | 1977-11-16 | Acec | Detecteur de faux rond pour turbines a gaz |
SU885572A1 (ru) | 1980-03-31 | 1981-11-30 | Ордена Ленина И Ордена Трудового Красного Знамени Производственное Объединение Невский Завод Им.В.И.Ленина | Устройство дл обнаружени недопустимых перемещений ротора турбомашины относительно статора |
US5411364A (en) * | 1993-12-22 | 1995-05-02 | Allied-Signal Inc. | Gas turbine engine failure detection system |
DE19727296A1 (de) * | 1997-06-27 | 1999-01-07 | Mtu Muenchen Gmbh | Einrichtung zur Notabschaltung einer Gasturbine |
US6607349B2 (en) * | 2001-11-14 | 2003-08-19 | Honeywell International, Inc. | Gas turbine engine broken shaft detection system |
DE102004009595A1 (de) | 2004-02-27 | 2005-09-15 | Mtu Aero Engines Gmbh | Verfahren und Vorrichtung zur Identifikation eines Wellenbruchs und/oder einer Überdrehzahl an einer Gasturbine |
DE102004033924A1 (de) * | 2004-07-14 | 2006-02-09 | Mtu Aero Engines Gmbh | Einrichtung zur Detektion eines Wellenbruchs an einer Gasturbine sowie Gasturbine |
-
2005
- 2005-09-06 DE DE102005042271A patent/DE102005042271A1/de not_active Ceased
-
2006
- 2006-08-26 WO PCT/DE2006/001496 patent/WO2007028354A1/fr active Application Filing
- 2006-08-26 EP EP06775914.2A patent/EP1922472B1/fr not_active Ceased
- 2006-08-26 US US12/065,707 patent/US8371804B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
DE102005042271A1 (de) | 2007-03-08 |
WO2007028354A1 (fr) | 2007-03-15 |
EP1922472A1 (fr) | 2008-05-21 |
US8371804B2 (en) | 2013-02-12 |
US20090220333A1 (en) | 2009-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1922472B1 (fr) | Turbine a gaz pourvue d'un dispositif de detection d'une rupture de l'arbre | |
EP1664490B1 (fr) | Dispositif pour detecter une rupture d'arbre sur une turbine a gaz et turbine a gaz | |
EP1759092B1 (fr) | Dispositif de detection d'une rupture d'arbre sur une turbine a gaz et turbine a gaz | |
EP1794417B1 (fr) | Turbine a gaz et procede pour interrompre le fonctionnement d'une turbine a gaz lors de l'identification de la rupture d'un arbre | |
WO1999000585A1 (fr) | Dispositif pour l'arret d'urgence d'une turbine a gaz | |
DE102007042767A1 (de) | Mehrschichtiger Abschirmungsring für einen Flugantrieb | |
EP3184754B1 (fr) | Système de détection et procédé de mesure d'une turbomachine | |
EP1847688B1 (fr) | Système de détection d'arrêt d'urgence pour une turbine à gaz | |
EP2407652A1 (fr) | Turbine à gaz dotée d'un système d'aération secondaire et procédé de fonctionnement d'une telle turbine à gaz | |
CH701927B1 (de) | Statoranordnung, Kompressor und Gasturbinenmotor. | |
DE102013213386B3 (de) | Strömungsmaschinen-Keramikbauteil | |
CH714205A2 (de) | Turbolader. | |
EP0984138A2 (fr) | Turbomachine avec arbre refroidie | |
EP2358979B1 (fr) | Compresseur axial pour turbine a gaz, avec controle passif du jeu radial | |
EP2526263B1 (fr) | Système de boîtier pour une turbomachine axiale | |
CH714847B1 (de) | Verschalung für einen Turbolader und Turbolader. | |
DE102006017790B3 (de) | Einrichtung zur Detektion eines Wellenbruchs an einer Gasturbine sowie Gasturbine | |
EP3330494B1 (fr) | Dispositif, turbomachine et procédé de détection d'une rupture d'arbre | |
DE102009009079B4 (de) | Axialströmungsmaschine | |
EP1076160B1 (fr) | Fixation des boucliers thermiques | |
EP1505262A1 (fr) | Procédé et appareil pour mesurer la largeur d'une fente radiale | |
EP2439376A1 (fr) | Aube de rotor carénée pour une turbine à vapeur | |
EP4435236A1 (fr) | Structure de carter pour une turbomachine | |
WO2005083237A1 (fr) | Procede et dispositif pour detecter une rupture d'arbre et/ou un surregime sur une turbine a gaz | |
EP2565606B1 (fr) | Turbomachine avec un caloduc dans une partie du rotor et un capteur de température |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080305 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: MTU AERO ENGINES AG |
|
17Q | First examination report despatched |
Effective date: 20160722 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20170425 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502006015619 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20170928 Year of fee payment: 12 Ref country code: GB Payment date: 20170928 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170929 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006015619 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20180511 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006015619 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180826 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180826 |