EP1922472B1 - Turbine a gaz pourvue d'un dispositif de detection d'une rupture de l'arbre - Google Patents

Turbine a gaz pourvue d'un dispositif de detection d'une rupture de l'arbre Download PDF

Info

Publication number
EP1922472B1
EP1922472B1 EP06775914.2A EP06775914A EP1922472B1 EP 1922472 B1 EP1922472 B1 EP 1922472B1 EP 06775914 A EP06775914 A EP 06775914A EP 1922472 B1 EP1922472 B1 EP 1922472B1
Authority
EP
European Patent Office
Prior art keywords
gas turbine
turbine
sensor element
rotor
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP06775914.2A
Other languages
German (de)
English (en)
Other versions
EP1922472A1 (fr
Inventor
Christopher Bilson
Derek Dewey
Andrew Cox
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Publication of EP1922472A1 publication Critical patent/EP1922472A1/fr
Application granted granted Critical
Publication of EP1922472B1 publication Critical patent/EP1922472B1/fr
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/04Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
    • F01D21/045Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position special arrangements in stators or in rotors dealing with breaking-off of part of rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/90Braking

Definitions

  • the invention relates to a gas turbine with a device for detecting a shaft fracture on a gas turbine.
  • Gas turbines designed as aircraft engines have at least one compressor, at least one combustion chamber and at least one turbine.
  • Aircraft engines are known from the prior art, on the one hand have three upstream of the combustion chamber positioned compressor and three positioned downstream of the combustion chamber turbines.
  • the three compressors are a low-pressure compressor, a medium-pressure compressor and a high-pressure compressor.
  • the three turbines are a high-pressure turbine, a medium-pressure turbine and a low-pressure turbine.
  • the rotors of high-pressure compressor and high-pressure turbine, medium-pressure compressor and medium-pressure turbine and low-pressure compressor and low-pressure turbine are connected to each other by a shaft, wherein the three shafts surround each other concentrically and are thus interleaved.
  • the intermediate-pressure compressor of the medium-pressure turbine can no longer extract any work or power, which can then lead to an overspeed at the medium-pressure turbine.
  • spin-off of the medium-pressure turbine must be avoided, as this can damage the entire aircraft engine.
  • a shaft break on a gas turbine must be reliably detectable in order to interrupt a fuel supply to the combustion chamber when a shaft fracture occurs.
  • Such a detection of a wave fracture is particularly difficult if the gas turbine, as described above, has three concentrically enclosing and thus nested waves. In this case, especially the detection of a shaft breakage of the middle wave, which couples the intermediate-pressure turbine with the medium-pressure compressor, presents difficulties.
  • a similar problem also arises with stationary gas turbines.
  • a protection device for turbomachines is known, which allows detection of a reduction in the radial gap between movable and immovable parts.
  • a gas turbine with an error detection system is known, which comprises a sensor arranged in the flow channel.
  • the present invention is based on the problem to provide a novel device for detecting a shaft fracture on a gas turbine.
  • a device for detecting a shaft fracture on a rotor of a turbine of a gas turbine wherein downstream of the turbine at least one stator-side sensor element is positioned in the region of a stator vane ring of another turbine, in particular a low-pressure turbine, and according to claim 1 in a shaft break the rotor of the turbine, a radially outer portion of a seen in the flow direction last rotor-side blade ring of the turbine with the or each sensor element cooperates to generate a corresponding to the shaft breakage electrical signal.
  • At least one stator-side sensor element is preferably assigned to a low-pressure turbine positioned downstream of a medium-pressure turbine in the direction of flow, wherein in the case of a shaft fracture the radially outer section of the last rotor-side rotor blade of the intermediate-pressure turbine cooperates with the or each sensor element in such a way, that a wave break can be detected.
  • an electrical signal corresponding to the shaft break is generated and transmitted to a switching element in order to interrupt the fuel supply to the combustion chamber in response to the shaft break.
  • the or each sensor element as a conductor, in particular as a mineral-insulated conductor, formed at a shaft breakage of the rotor of the turbine, the radially outer portion of the last seen in the flow direction, rotor-side blade ring or severed each conductor and so a wave breaking corresponding electrical signal generated.
  • Fig. 1 shows a section of a gas turbine according to the invention, namely an aircraft engine, according to a first embodiment of the invention between a rotor of a medium-pressure turbine 10 and a stator of a low-pressure turbine 11.
  • a rotor of a medium-pressure turbine 10 From the rotor of the medium-pressure turbine 10 is a radially outer portion 12 of a blade 13 of the flow direction ( Arrow 14) seen last blade ring of the medium-pressure turbine 10.
  • a radially outer portion 15 of a vane 16 of the first vane ring of the low-pressure turbine 11 and seen in the flow direction (arrow 14) and a housing portion 17 is shown.
  • the first or leading vane ring of the low-pressure turbine 11 seen in the flow direction accordingly adjoins the last or rearmost blade ring of the medium-pressure turbine 10, as seen in the flow direction. Upstream of the medium pressure turbine 10, a high pressure turbine is positioned.
  • At least one sensor element 18 is positioned in the exemplary embodiments shown.
  • the or each sensor element 18 is associated with a radially outer portion of this vane ring of the low-pressure turbine 11 and thus a radially outer portion of a flow channel of the low-pressure turbine 11.
  • the or each sensor element 18 acts to detect a shaft fracture with the radially outer portion 12 of the seen in the flow direction (arrow 14), the last rotor side rotor blade of the intermediate-pressure turbine 10 such that at a shaft break the last seen in the flow direction rearmost or last blade ring of the medium-pressure turbine 10 contacted with the radially outer portion 12, the sensor element 18 and thereby preferably cut, so as to generate a wave breaking corresponding electrical signal and transmitted to a non-illustrated switching element.
  • the or each sensor element is designed as an electrical conductor, preferably as a mineral-insulated conductor, which is severed at a shaft break from the radially outer portion 12 of the last seen in the flow direction of the rotor blade ring of the medium-pressure turbine 10.
  • the rotor of the medium-pressure turbine 10 is moved in the direction of flow (arrow 14) and thus in the direction of the first guide vane ring of the low-pressure turbine 11 in the case of a shaft break of the shaft connecting the medium-pressure turbine 10 with the medium-pressure compressor (not shown).
  • the or each trained as a conductor sensor element 18 is doing is severed by a flow-projecting portion 19 of an outer shroud of the last seen in the flow direction last blade ring of the medium-pressure turbine 10.
  • the or each sensor element 18 is supplied from radially outside the first vane ring of the low-pressure turbine 11 seen in the flow direction and introduced with an end portion 20 in a recess 21 of the first vane ring of the low-pressure turbine 11 seen in the flow direction, said recess 21 to the radially outside lying portion 15 of the vanes 16 of the first vane ring of the low-pressure turbine 11 is assigned.
  • the respective end portion 20 of the or each sensor element 18 projects into the respective recess 21 and is enclosed in the vane ring 16.
  • the recess 21 is in this case limited to the material seen in the flow direction last, rotor-side blade ring of the medium-pressure turbine 10 side of a material thickness which can be severed or penetrated at a shaft break of the portion 19 of the outer shroud of the last flow blade ring in the flow direction of the central pressure turbine 10.
  • the section 19 reaches the end section 20 of the respective sensor element 18, cuts through the sensor element 18 and thus generates an electrical signal corresponding to the shaft break.
  • an opening 22 is formed in the region of the recess 21, which establishes a connection of the recess 21 to the flow channel, so as to guide through the recess 21 a flow for cooling the respective sensor element 18.
  • Fig. 2 clarified with arrows 23 the flow past the respective sensor element 18 for cooling the same. This flow is preferably branched off from a relatively cold bypass flow, guided past the respective sensor element 18 and guided via the opening 22 into the flow channel of the low-pressure turbine 11.
  • the or each sensor element 18 is guided arcuately coming from radially outside to introduce the end portion 20 in the respective recess 21. Radially outside engages the housing 17, a ferrule 24 to guide the respective sensor element 18 and seal.
  • a plurality of such sensor elements 18 are positioned uniformly distributed over the circumference of the vane ring of the low-pressure turbine 11, with a shaft break being closed when severing at least one such sensor element.
  • Fig. 3 and 4 show a second embodiment of the present invention, which substantially the embodiment of the Fig. 1 and 2 equivalent. To avoid unnecessary repetition, therefore, the same reference numerals are used for the same components and it will be discussed below only on the details by which the embodiment of the Fig. 3 and 4 from the embodiment of Fig. 1 and 2 different.
  • the or each sensor element 18 in turn fed from radially outside the first vane ring of the low-pressure turbine 11 seen in the flow direction and inserted into a corresponding recess 21, wherein in the embodiment of Fig. 3 and 4 the sensor element 18 is introduced into the corresponding recess 21 in a straight line without deflections or bends with the end section 20.
  • the sensor element 18 can simply be pulled out of the recess 21 without the gas turbine, in particular the low-pressure turbine 11 of the same, having to be dismantled.
  • the comments on the embodiment of the Fig. 1 and 2 be referred.
  • Fig. 5 shows a third embodiment of the present invention.
  • the or each sensor element 18 is surrounded by a reinforcement 25 or a reinforcement.
  • the or each sensor element 18 penetrates together with the respective reinforcement 25 has a recess 21 of the first vane ring of the low-pressure turbine 11 seen in the flow direction, but in contrast to the embodiment of Fig. 1 and 2 or the Fig. 3 and 4 in the embodiment of Fig. 5 the end portion 20 of the sensor element 18 is not enclosed in the vane ring, but rather protrudes into the flow channel, in a section between the last seen in the flow direction, the rotor side rotor blade of the medium-pressure turbine 10 and the first seen in the flow direction, stator side vane ring of the low-pressure turbine 11.
  • the section 19 of the outer shroud of the rotor blade of the medium-pressure turbine 10 which projects in the direction of flow must penetrate or penetrate the reinforcement 25 so as to cut through the corresponding sensor element 18 and generate an electrical signal corresponding to the shaft break.
  • an opening 26 is integrated into the reinforcement 25 so as to direct a flow between the reinforcement 25 and the respective sensor element 18 for cooling the respective sensor element 18. This flow can then escape via the opening 26 in the flow channel of the low-pressure turbine 11.
  • FIG. 6 Another embodiment of the present invention shows Fig. 6 which essentially in the embodiment of the Fig. 3 equivalent.
  • the difference between the embodiment of Fig. 6 and the embodiment of the Fig. 3 is that in the embodiment of the Fig. 6 in addition, the reinforcement 25 is present.
  • the section 19 of the rotor blade ring of the medium-pressure turbine 10 projecting in the direction of flow must therefore penetrate both the material delimiting the recess 20 on the side facing the rotor blade rim and the reinforcement 25 to get in contact with the sensor 18.
  • the or each sensor element is positioned in the region of a stator vane ring. It should be noted that the or each sensor element can also be assigned to other stator-side assemblies of the gas turbine.
  • a device for detecting a shaft fracture on a rotor of a gas turbine wherein a radially outer end of a seen in the flow direction last blade ring of the turbine, which is connected to the shaft to be monitored with respect to the wave shaft, with at least one sensor element cooperates, which is associated with a stator, in particular a first vane ring of a downstream positioned turbine as seen in the flow direction.
  • the or each sensor element is preferably formed as a mineral-insulated conductor, which is at a shaft break from a flow-projecting portion of an outer shroud of the flow direction seen last blade ring of the turbine, which is connected to the shaft to be monitored with respect to the wave breaking or severed.
  • the mineral-insulated conductor has a diameter between 1 and 4 mm, preferably a diameter between 2 and 3 mm.
  • a gas flow is guided past the mineral-insulated conductor for cooling the same, in order to cool it down to a temperature of about 900 ° Celsius.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Turbines (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Claims (11)

  1. Turbine à gaz avec un dispositif de détection d'une rupture d'arbre sur un rotor d'une turbine (10) de la turbine à gaz, dans laquelle est positionné, en aval de la turbine (10), au moins un élément capteur côté stator (18) du dispositif dans la zone d'une couronne d'aubes directrices côté stator d'une autre turbine (11) et dans lequel, dans le cas d'une rupture d'arbre du rotor de la turbine (10), une section radialement externe (19) d'une couronne de pales côté rotor de la turbine (10) disposée en dernier en se plaçant dans le sens d'écoulement coopère avec le ou chaque élément capteur (18) pour générer un signal électrique correspondant à la rupture d'arbre,
    caractérisée en ce que :
    le ou chaque élément capteur (18) est alimenté par une première couronne d'aubes directrices de l'autre turbine (11) en observant dans le sens d'écoulement radialement vers l'extérieur et est mis en place dans respectivement une cavité (21) de la couronne d'aubes directrices positionnée radialement à l'extérieur.
  2. Turbine à gaz selon la revendication 1,
    caractérisée en ce que :
    le ou chaque élément capteur (18) se présente sous la forme d'un conducteur, dans lequel, lors d'une rupture d'arbre du rotor de la turbine (10), la section radialement externe (19) de la couronne d'aubes directrices côté rotor disposée en premier en observant dans le sens d'écoulement sectionne au moins un conducteur et génère de la sorte un signal électrique correspondant à la rupture d'arbre.
  3. Turbine à gaz selon la revendication 2,
    caractérisée en ce que :
    le ou chaque conducteur se présente sous la forme d'un conducteur à isolation minérale.
  4. Turbine à gaz selon la revendication 3,
    caractérisée en ce que :
    le ou chaque conducteur à isolation minérale présente une épaisseur ou un diamètre compris entre 1 et 4 mm, en particulier entre 2 et 3 mm.
  5. Turbine à gaz selon une ou plusieurs des revendications 1 à 3,
    caractérisée en ce que :
    plusieurs éléments capteurs (18) répartis sur la périphérie sont présents.
  6. Turbine à gaz selon une ou plusieurs des revendications 1 à 5,
    caractérisée en ce que :
    une section d'extrémité (20) du ou de chaque élément capteur (18) fait saillie dans l'évidement respectif (21) du stator et est enserrée dans celui-ci.
  7. Turbine à gaz selon une ou plusieurs des revendications 1 à 6,
    caractérisée en ce que :
    l'évidement respectif (21) est limité sur le côté tourné vers la couronne de pales côté rotor disposée en dernier en observant dans le sens d'écoulement de la turbine (10) par une épaisseur de matériau qui, lors d'une rupture d'arbre, peut être pénétrée par la dernière couronne de pales côté rotor de la turbine (10).
  8. Turbine à gaz selon une ou plusieurs des revendications 1 à 5,
    caractérisée en ce qu'une section d'extrémité (20) du ou de chaque élément capteur (18) pénètre dans l'évidement respectif (21) du stator et fait saillie dans le canal d'écoulement entre la couronne de pales côté rotor de la turbine (10) disposée en dernier en observant dans le sens d'écoulement et le stator.
  9. Turbine à gaz selon une ou plusieurs des revendications 1 à 8,
    caractérisée en ce que :
    le ou chaque élément capteur (18) est gainé par une armure (25) ou un blindage.
  10. Turbine à gaz selon une ou plusieurs des revendications 1 à 9,
    caractérisée en ce que :
    l'évidement (21) et éventuellement l'armure (25) présentent une ouverture (22, 26) de sorte que ceux-ci puissent être parcourus pour refroidir l'élément capteur respectif (18).
  11. Turbine à gaz selon une ou plusieurs des revendications 1 à 10 avec au moins un compresseur, avec au moins une chambre de combustion, avec au moins une turbine.
EP06775914.2A 2005-09-06 2006-08-26 Turbine a gaz pourvue d'un dispositif de detection d'une rupture de l'arbre Ceased EP1922472B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005042271A DE102005042271A1 (de) 2005-09-06 2005-09-06 Einrichtung zur Detektion eines Wellenbruchs an einer Gasturbine sowie Gasturbine
PCT/DE2006/001496 WO2007028354A1 (fr) 2005-09-06 2006-08-26 Turbine a gaz pourvue d'un dispositif de detection d'une rupture de l'arbre

Publications (2)

Publication Number Publication Date
EP1922472A1 EP1922472A1 (fr) 2008-05-21
EP1922472B1 true EP1922472B1 (fr) 2017-08-09

Family

ID=37441075

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06775914.2A Ceased EP1922472B1 (fr) 2005-09-06 2006-08-26 Turbine a gaz pourvue d'un dispositif de detection d'une rupture de l'arbre

Country Status (4)

Country Link
US (1) US8371804B2 (fr)
EP (1) EP1922472B1 (fr)
DE (1) DE102005042271A1 (fr)
WO (1) WO2007028354A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2907839B1 (fr) * 2006-10-25 2011-06-17 Snecma Methode pour reduire la vitesse en cas de rupture d'arbre de turbine de moteur a turbine a gaz
GB2468686A (en) * 2009-03-18 2010-09-22 Weston Aerospace Ltd System and method for detecting abnormal movement in a gas turbine shaft
GB2494703B (en) 2011-09-16 2016-08-03 Weston Aerospace Ltd System and method for detecting abnormal movement in a gas turbine shaft
GB201121639D0 (en) * 2011-12-16 2012-01-25 Rolls Royce Plc Shaft break detection
JP5818717B2 (ja) * 2012-02-27 2015-11-18 三菱日立パワーシステムズ株式会社 ガスタービン
US9316479B2 (en) * 2012-09-20 2016-04-19 United Technologies Corporation Capacitance based clearance probe and housing
US10190440B2 (en) 2015-06-10 2019-01-29 Rolls-Royce North American Technologies, Inc. Emergency shut-down detection system for a gas turbine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1326867A (en) * 1918-12-06 1919-12-30 Gen Electric Elastic-fluid turbine.
CH445949A (de) 1965-03-19 1967-10-31 Prvni Brnenska Strojirna Schutzvorrichtung für Strömungsmaschinen
US3591308A (en) * 1969-06-04 1971-07-06 Chicago Pneumatic Tool Co Rotor guard for centrifugal compressor
GB1443333A (en) * 1972-08-12 1976-07-21 Mtu Muenchen Gmbh Aircraft having apparatus for augmenting the lift of the aircraft
BE854653A (fr) 1977-05-16 1977-11-16 Acec Detecteur de faux rond pour turbines a gaz
SU885572A1 (ru) 1980-03-31 1981-11-30 Ордена Ленина И Ордена Трудового Красного Знамени Производственное Объединение Невский Завод Им.В.И.Ленина Устройство дл обнаружени недопустимых перемещений ротора турбомашины относительно статора
US5411364A (en) * 1993-12-22 1995-05-02 Allied-Signal Inc. Gas turbine engine failure detection system
DE19727296A1 (de) * 1997-06-27 1999-01-07 Mtu Muenchen Gmbh Einrichtung zur Notabschaltung einer Gasturbine
US6607349B2 (en) * 2001-11-14 2003-08-19 Honeywell International, Inc. Gas turbine engine broken shaft detection system
DE102004009595A1 (de) 2004-02-27 2005-09-15 Mtu Aero Engines Gmbh Verfahren und Vorrichtung zur Identifikation eines Wellenbruchs und/oder einer Überdrehzahl an einer Gasturbine
DE102004033924A1 (de) * 2004-07-14 2006-02-09 Mtu Aero Engines Gmbh Einrichtung zur Detektion eines Wellenbruchs an einer Gasturbine sowie Gasturbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102005042271A1 (de) 2007-03-08
WO2007028354A1 (fr) 2007-03-15
EP1922472A1 (fr) 2008-05-21
US8371804B2 (en) 2013-02-12
US20090220333A1 (en) 2009-09-03

Similar Documents

Publication Publication Date Title
EP1922472B1 (fr) Turbine a gaz pourvue d'un dispositif de detection d'une rupture de l'arbre
EP1664490B1 (fr) Dispositif pour detecter une rupture d'arbre sur une turbine a gaz et turbine a gaz
EP1759092B1 (fr) Dispositif de detection d'une rupture d'arbre sur une turbine a gaz et turbine a gaz
EP1794417B1 (fr) Turbine a gaz et procede pour interrompre le fonctionnement d'une turbine a gaz lors de l'identification de la rupture d'un arbre
WO1999000585A1 (fr) Dispositif pour l'arret d'urgence d'une turbine a gaz
DE102007042767A1 (de) Mehrschichtiger Abschirmungsring für einen Flugantrieb
EP3184754B1 (fr) Système de détection et procédé de mesure d'une turbomachine
EP1847688B1 (fr) Système de détection d'arrêt d'urgence pour une turbine à gaz
EP2407652A1 (fr) Turbine à gaz dotée d'un système d'aération secondaire et procédé de fonctionnement d'une telle turbine à gaz
CH701927B1 (de) Statoranordnung, Kompressor und Gasturbinenmotor.
DE102013213386B3 (de) Strömungsmaschinen-Keramikbauteil
CH714205A2 (de) Turbolader.
EP0984138A2 (fr) Turbomachine avec arbre refroidie
EP2358979B1 (fr) Compresseur axial pour turbine a gaz, avec controle passif du jeu radial
EP2526263B1 (fr) Système de boîtier pour une turbomachine axiale
CH714847B1 (de) Verschalung für einen Turbolader und Turbolader.
DE102006017790B3 (de) Einrichtung zur Detektion eines Wellenbruchs an einer Gasturbine sowie Gasturbine
EP3330494B1 (fr) Dispositif, turbomachine et procédé de détection d'une rupture d'arbre
DE102009009079B4 (de) Axialströmungsmaschine
EP1076160B1 (fr) Fixation des boucliers thermiques
EP1505262A1 (fr) Procédé et appareil pour mesurer la largeur d'une fente radiale
EP2439376A1 (fr) Aube de rotor carénée pour une turbine à vapeur
EP4435236A1 (fr) Structure de carter pour une turbomachine
WO2005083237A1 (fr) Procede et dispositif pour detecter une rupture d'arbre et/ou un surregime sur une turbine a gaz
EP2565606B1 (fr) Turbomachine avec un caloduc dans une partie du rotor et un capteur de température

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080305

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES AG

17Q First examination report despatched

Effective date: 20160722

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170425

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006015619

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170928

Year of fee payment: 12

Ref country code: GB

Payment date: 20170928

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170929

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006015619

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006015619

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180826