EP1922472B1 - Gas turbine comprising a unit for detecting a shaft rupture - Google Patents

Gas turbine comprising a unit for detecting a shaft rupture Download PDF

Info

Publication number
EP1922472B1
EP1922472B1 EP06775914.2A EP06775914A EP1922472B1 EP 1922472 B1 EP1922472 B1 EP 1922472B1 EP 06775914 A EP06775914 A EP 06775914A EP 1922472 B1 EP1922472 B1 EP 1922472B1
Authority
EP
European Patent Office
Prior art keywords
gas turbine
turbine
sensor element
rotor
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06775914.2A
Other languages
German (de)
French (fr)
Other versions
EP1922472A1 (en
Inventor
Christopher Bilson
Derek Dewey
Andrew Cox
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MTU Aero Engines AG
Original Assignee
MTU Aero Engines AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Aero Engines AG filed Critical MTU Aero Engines AG
Publication of EP1922472A1 publication Critical patent/EP1922472A1/en
Application granted granted Critical
Publication of EP1922472B1 publication Critical patent/EP1922472B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/04Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position
    • F01D21/045Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to undesired position of rotor relative to stator or to breaking-off of a part of the rotor, e.g. indicating such position special arrangements in stators or in rotors dealing with breaking-off of part of rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/90Braking

Definitions

  • the invention relates to a gas turbine with a device for detecting a shaft fracture on a gas turbine.
  • Gas turbines designed as aircraft engines have at least one compressor, at least one combustion chamber and at least one turbine.
  • Aircraft engines are known from the prior art, on the one hand have three upstream of the combustion chamber positioned compressor and three positioned downstream of the combustion chamber turbines.
  • the three compressors are a low-pressure compressor, a medium-pressure compressor and a high-pressure compressor.
  • the three turbines are a high-pressure turbine, a medium-pressure turbine and a low-pressure turbine.
  • the rotors of high-pressure compressor and high-pressure turbine, medium-pressure compressor and medium-pressure turbine and low-pressure compressor and low-pressure turbine are connected to each other by a shaft, wherein the three shafts surround each other concentrically and are thus interleaved.
  • the intermediate-pressure compressor of the medium-pressure turbine can no longer extract any work or power, which can then lead to an overspeed at the medium-pressure turbine.
  • spin-off of the medium-pressure turbine must be avoided, as this can damage the entire aircraft engine.
  • a shaft break on a gas turbine must be reliably detectable in order to interrupt a fuel supply to the combustion chamber when a shaft fracture occurs.
  • Such a detection of a wave fracture is particularly difficult if the gas turbine, as described above, has three concentrically enclosing and thus nested waves. In this case, especially the detection of a shaft breakage of the middle wave, which couples the intermediate-pressure turbine with the medium-pressure compressor, presents difficulties.
  • a similar problem also arises with stationary gas turbines.
  • a protection device for turbomachines is known, which allows detection of a reduction in the radial gap between movable and immovable parts.
  • a gas turbine with an error detection system is known, which comprises a sensor arranged in the flow channel.
  • the present invention is based on the problem to provide a novel device for detecting a shaft fracture on a gas turbine.
  • a device for detecting a shaft fracture on a rotor of a turbine of a gas turbine wherein downstream of the turbine at least one stator-side sensor element is positioned in the region of a stator vane ring of another turbine, in particular a low-pressure turbine, and according to claim 1 in a shaft break the rotor of the turbine, a radially outer portion of a seen in the flow direction last rotor-side blade ring of the turbine with the or each sensor element cooperates to generate a corresponding to the shaft breakage electrical signal.
  • At least one stator-side sensor element is preferably assigned to a low-pressure turbine positioned downstream of a medium-pressure turbine in the direction of flow, wherein in the case of a shaft fracture the radially outer section of the last rotor-side rotor blade of the intermediate-pressure turbine cooperates with the or each sensor element in such a way, that a wave break can be detected.
  • an electrical signal corresponding to the shaft break is generated and transmitted to a switching element in order to interrupt the fuel supply to the combustion chamber in response to the shaft break.
  • the or each sensor element as a conductor, in particular as a mineral-insulated conductor, formed at a shaft breakage of the rotor of the turbine, the radially outer portion of the last seen in the flow direction, rotor-side blade ring or severed each conductor and so a wave breaking corresponding electrical signal generated.
  • Fig. 1 shows a section of a gas turbine according to the invention, namely an aircraft engine, according to a first embodiment of the invention between a rotor of a medium-pressure turbine 10 and a stator of a low-pressure turbine 11.
  • a rotor of a medium-pressure turbine 10 From the rotor of the medium-pressure turbine 10 is a radially outer portion 12 of a blade 13 of the flow direction ( Arrow 14) seen last blade ring of the medium-pressure turbine 10.
  • a radially outer portion 15 of a vane 16 of the first vane ring of the low-pressure turbine 11 and seen in the flow direction (arrow 14) and a housing portion 17 is shown.
  • the first or leading vane ring of the low-pressure turbine 11 seen in the flow direction accordingly adjoins the last or rearmost blade ring of the medium-pressure turbine 10, as seen in the flow direction. Upstream of the medium pressure turbine 10, a high pressure turbine is positioned.
  • At least one sensor element 18 is positioned in the exemplary embodiments shown.
  • the or each sensor element 18 is associated with a radially outer portion of this vane ring of the low-pressure turbine 11 and thus a radially outer portion of a flow channel of the low-pressure turbine 11.
  • the or each sensor element 18 acts to detect a shaft fracture with the radially outer portion 12 of the seen in the flow direction (arrow 14), the last rotor side rotor blade of the intermediate-pressure turbine 10 such that at a shaft break the last seen in the flow direction rearmost or last blade ring of the medium-pressure turbine 10 contacted with the radially outer portion 12, the sensor element 18 and thereby preferably cut, so as to generate a wave breaking corresponding electrical signal and transmitted to a non-illustrated switching element.
  • the or each sensor element is designed as an electrical conductor, preferably as a mineral-insulated conductor, which is severed at a shaft break from the radially outer portion 12 of the last seen in the flow direction of the rotor blade ring of the medium-pressure turbine 10.
  • the rotor of the medium-pressure turbine 10 is moved in the direction of flow (arrow 14) and thus in the direction of the first guide vane ring of the low-pressure turbine 11 in the case of a shaft break of the shaft connecting the medium-pressure turbine 10 with the medium-pressure compressor (not shown).
  • the or each trained as a conductor sensor element 18 is doing is severed by a flow-projecting portion 19 of an outer shroud of the last seen in the flow direction last blade ring of the medium-pressure turbine 10.
  • the or each sensor element 18 is supplied from radially outside the first vane ring of the low-pressure turbine 11 seen in the flow direction and introduced with an end portion 20 in a recess 21 of the first vane ring of the low-pressure turbine 11 seen in the flow direction, said recess 21 to the radially outside lying portion 15 of the vanes 16 of the first vane ring of the low-pressure turbine 11 is assigned.
  • the respective end portion 20 of the or each sensor element 18 projects into the respective recess 21 and is enclosed in the vane ring 16.
  • the recess 21 is in this case limited to the material seen in the flow direction last, rotor-side blade ring of the medium-pressure turbine 10 side of a material thickness which can be severed or penetrated at a shaft break of the portion 19 of the outer shroud of the last flow blade ring in the flow direction of the central pressure turbine 10.
  • the section 19 reaches the end section 20 of the respective sensor element 18, cuts through the sensor element 18 and thus generates an electrical signal corresponding to the shaft break.
  • an opening 22 is formed in the region of the recess 21, which establishes a connection of the recess 21 to the flow channel, so as to guide through the recess 21 a flow for cooling the respective sensor element 18.
  • Fig. 2 clarified with arrows 23 the flow past the respective sensor element 18 for cooling the same. This flow is preferably branched off from a relatively cold bypass flow, guided past the respective sensor element 18 and guided via the opening 22 into the flow channel of the low-pressure turbine 11.
  • the or each sensor element 18 is guided arcuately coming from radially outside to introduce the end portion 20 in the respective recess 21. Radially outside engages the housing 17, a ferrule 24 to guide the respective sensor element 18 and seal.
  • a plurality of such sensor elements 18 are positioned uniformly distributed over the circumference of the vane ring of the low-pressure turbine 11, with a shaft break being closed when severing at least one such sensor element.
  • Fig. 3 and 4 show a second embodiment of the present invention, which substantially the embodiment of the Fig. 1 and 2 equivalent. To avoid unnecessary repetition, therefore, the same reference numerals are used for the same components and it will be discussed below only on the details by which the embodiment of the Fig. 3 and 4 from the embodiment of Fig. 1 and 2 different.
  • the or each sensor element 18 in turn fed from radially outside the first vane ring of the low-pressure turbine 11 seen in the flow direction and inserted into a corresponding recess 21, wherein in the embodiment of Fig. 3 and 4 the sensor element 18 is introduced into the corresponding recess 21 in a straight line without deflections or bends with the end section 20.
  • the sensor element 18 can simply be pulled out of the recess 21 without the gas turbine, in particular the low-pressure turbine 11 of the same, having to be dismantled.
  • the comments on the embodiment of the Fig. 1 and 2 be referred.
  • Fig. 5 shows a third embodiment of the present invention.
  • the or each sensor element 18 is surrounded by a reinforcement 25 or a reinforcement.
  • the or each sensor element 18 penetrates together with the respective reinforcement 25 has a recess 21 of the first vane ring of the low-pressure turbine 11 seen in the flow direction, but in contrast to the embodiment of Fig. 1 and 2 or the Fig. 3 and 4 in the embodiment of Fig. 5 the end portion 20 of the sensor element 18 is not enclosed in the vane ring, but rather protrudes into the flow channel, in a section between the last seen in the flow direction, the rotor side rotor blade of the medium-pressure turbine 10 and the first seen in the flow direction, stator side vane ring of the low-pressure turbine 11.
  • the section 19 of the outer shroud of the rotor blade of the medium-pressure turbine 10 which projects in the direction of flow must penetrate or penetrate the reinforcement 25 so as to cut through the corresponding sensor element 18 and generate an electrical signal corresponding to the shaft break.
  • an opening 26 is integrated into the reinforcement 25 so as to direct a flow between the reinforcement 25 and the respective sensor element 18 for cooling the respective sensor element 18. This flow can then escape via the opening 26 in the flow channel of the low-pressure turbine 11.
  • FIG. 6 Another embodiment of the present invention shows Fig. 6 which essentially in the embodiment of the Fig. 3 equivalent.
  • the difference between the embodiment of Fig. 6 and the embodiment of the Fig. 3 is that in the embodiment of the Fig. 6 in addition, the reinforcement 25 is present.
  • the section 19 of the rotor blade ring of the medium-pressure turbine 10 projecting in the direction of flow must therefore penetrate both the material delimiting the recess 20 on the side facing the rotor blade rim and the reinforcement 25 to get in contact with the sensor 18.
  • the or each sensor element is positioned in the region of a stator vane ring. It should be noted that the or each sensor element can also be assigned to other stator-side assemblies of the gas turbine.
  • a device for detecting a shaft fracture on a rotor of a gas turbine wherein a radially outer end of a seen in the flow direction last blade ring of the turbine, which is connected to the shaft to be monitored with respect to the wave shaft, with at least one sensor element cooperates, which is associated with a stator, in particular a first vane ring of a downstream positioned turbine as seen in the flow direction.
  • the or each sensor element is preferably formed as a mineral-insulated conductor, which is at a shaft break from a flow-projecting portion of an outer shroud of the flow direction seen last blade ring of the turbine, which is connected to the shaft to be monitored with respect to the wave breaking or severed.
  • the mineral-insulated conductor has a diameter between 1 and 4 mm, preferably a diameter between 2 and 3 mm.
  • a gas flow is guided past the mineral-insulated conductor for cooling the same, in order to cool it down to a temperature of about 900 ° Celsius.

Description

Die Erfindung betrifft eine Gasturbine mit einer Einrichtung zur Detektion eines Wellenbruchs an einer Gasturbine.The invention relates to a gas turbine with a device for detecting a shaft fracture on a gas turbine.

Als Flugtriebwerke ausgebildete Gasturbinen verfügen über mindestens einen Verdichter, mindestens eine Brennkammer sowie mindestens eine Turbine. Aus dem Stand der Technik sind Flugtriebwerke bekannt, die einerseits drei stromaufwärts der Brennkammer positionierte Verdichter sowie drei stromabwärts der Brennkammer positionierte Turbinen aufweisen. Bei den drei Verdichtern handelt es sich um einen Niederdruckverdichter, einen Mitteldruckverdichter sowie einen Hochdruckverdichter. Bei den drei Turbinen handelt es sich um eine Hochdruckturbine, eine Mitteldruckturbine sowie eine Niederdruckturbine. Nach dem Stand der Technik sind die Rotoren von Hochdruckverdichter und Hochdruckturbine, von Mitteldruckverdichter und Mitteldruckturbine sowie von Niederdruckverdichter und Niederdruckturbine durch jeweils eine Welle miteinander verbunden, wobei die drei Wellen einander konzentrisch umschließen und demnach ineinander verschachtelt sind.Gas turbines designed as aircraft engines have at least one compressor, at least one combustion chamber and at least one turbine. Aircraft engines are known from the prior art, on the one hand have three upstream of the combustion chamber positioned compressor and three positioned downstream of the combustion chamber turbines. The three compressors are a low-pressure compressor, a medium-pressure compressor and a high-pressure compressor. The three turbines are a high-pressure turbine, a medium-pressure turbine and a low-pressure turbine. According to the state of the art, the rotors of high-pressure compressor and high-pressure turbine, medium-pressure compressor and medium-pressure turbine and low-pressure compressor and low-pressure turbine are connected to each other by a shaft, wherein the three shafts surround each other concentrically and are thus interleaved.

Bricht zum Beispiel die den Mitteldruckverdichter sowie die Mitteldruckturbine verbindende Welle, so kann der Mitteldruckverdichter der Mitteldruckturbine keine Arbeit bzw. Leistung mehr entnehmen, wodurch sich dann eine Überdrehzahl an der Mitteldruckturbine einstellen kann. Ein solches Durchdrehen der Mitteldruckturbine muss vermieden werden, da hierdurch das gesamte Flugtriebwerk beschädigt werden kann. Aus Sicherheitsgründen muss demnach ein Wellenbruch an einer Gasturbine sicher detektierbar sein, um bei Auftreten eines Wellenbruchs eine Brennstoffzufuhr zur Brennkammer zu unterbrechen. Eine derartige Detektion eines Wellenbruchs bereitet insbesondere dann Schwierigkeiten, wenn die Gasturbine, wie oben beschrieben, drei sich konzentrisch umschließende und damit ineinander verschachtelte Wellen aufweist. In diesem Fall bereitet vor allem die Detektion eines Wellenbruchs der mittleren Welle, welche die Mitteldruckturbine mit dem Mitteldruckverdichter koppelt, Schwierigkeiten. Eine ähnliche Problematik stellt sich auch bei stationären Gasturbinen.For example, if the shaft connecting the intermediate-pressure compressor and the intermediate-pressure turbine breaks, the intermediate-pressure compressor of the medium-pressure turbine can no longer extract any work or power, which can then lead to an overspeed at the medium-pressure turbine. Such spin-off of the medium-pressure turbine must be avoided, as this can damage the entire aircraft engine. For safety reasons, accordingly, a shaft break on a gas turbine must be reliably detectable in order to interrupt a fuel supply to the combustion chamber when a shaft fracture occurs. Such a detection of a wave fracture is particularly difficult if the gas turbine, as described above, has three concentrically enclosing and thus nested waves. In this case, especially the detection of a shaft breakage of the middle wave, which couples the intermediate-pressure turbine with the medium-pressure compressor, presents difficulties. A similar problem also arises with stationary gas turbines.

Aus der CH 445 949 ist eine Schutzvorrichtung für Strömungsmaschinen bekannt, die eine Detektion einer Verringerung des radialen Spaltes zwischen beweglichen und unbeweglichen Teilen gestattet. Aus der US 5,411,364 A ist eine Gasturbine mit einem Fehler-Detektions-System bekannt, das einen im Stromkanal angeordneten Sensor umfasst.From the CH 445 949 For example, a protection device for turbomachines is known, which allows detection of a reduction in the radial gap between movable and immovable parts. From the US 5,411,364 A For example, a gas turbine with an error detection system is known, which comprises a sensor arranged in the flow channel.

Hiervon ausgehend liegt der vorliegenden Erfindung das Problem zu Grunde, eine neuartige Einrichtung zur Detektion eines Wellenbruchs an einer Gasturbine zu schaffen.On this basis, the present invention is based on the problem to provide a novel device for detecting a shaft fracture on a gas turbine.

Dieses Problem wird durch eine Gasturbine mit einer Einrichtung zur Detektion eines Wellenbruchs an der Gasturbine im Sinne von Patentanspruch 1 gelöst. Im Sinne der Erfindung wird eine Einrichtung zur Detektion eines Wellenbruchs an einem Rotor einer Turbine einer Gasturbine vorgeschlagen, wobei stromabwärts der Turbine mindestens ein statorseitiges Sensorelement im Bereich eines statorseitigen Leitschaufelkranzes einer weiteren Turbine positioniert ist, insbesondere einer Niederdruckturbine, und gemäss Anspruch 1 bei einem Wellenbruch des Rotors der Turbine ein radial außenliegender Abschnitt eines in Strömungsrichtung gesehen letzten, rotorseitigen Laufschaufelkranzes der Turbine mit dem oder jedem Sensorelement zusammenwirkt, um ein dem Wellenbruch entsprechendes elektrisches Signal zu generieren.This problem is solved by a gas turbine with a device for detecting a shaft fracture on the gas turbine in the sense of claim 1. According to the invention, a device for detecting a shaft fracture on a rotor of a turbine of a gas turbine is proposed, wherein downstream of the turbine at least one stator-side sensor element is positioned in the region of a stator vane ring of another turbine, in particular a low-pressure turbine, and according to claim 1 in a shaft break the rotor of the turbine, a radially outer portion of a seen in the flow direction last rotor-side blade ring of the turbine with the or each sensor element cooperates to generate a corresponding to the shaft breakage electrical signal.

Mit der hier vorliegenden Erfindung wird eine effektive sowie konstruktiv relativ einfache Lösung vorgeschlagen, um einen Wellenbruch einer eine Turbine mit einem Verdichter verbindenden Welle zu detektieren.With the present invention, an effective and structurally relatively simple solution is proposed in order to detect a shaft breakage of a shaft connecting a turbine with a compressor.

Vorzugsweise ist einem in Strömungsrichtung gesehen ersten, statorseitigen Leitschaufelkranz einer stromabwärts einer Mitteldruckturbine positionierten Niederdruckturbine mindestens ein statorseitiges Sensorelement zugeordnet, wobei im Falle eines Wellenbruchs der radial außen liegende Abschnitt des in Strömungsrichtung gesehen letzten, rotorseitigen Laufschaufelkranzes der Mitteldruckturbine mit dem oder jedem Sensorelement derart zusammenwirkt, dass ein Wellenbruch detektiert werden kann. Hierzu wird ein dem Wellenbruch entsprechendes elektrisches Signal generiert und an ein Schaltelement übertragen, um als Reaktion auf den Wellenbruch die Kraftstoffzufuhr zur Brennkammer zu unterbrechen.At least one stator-side sensor element is preferably assigned to a low-pressure turbine positioned downstream of a medium-pressure turbine in the direction of flow, wherein in the case of a shaft fracture the radially outer section of the last rotor-side rotor blade of the intermediate-pressure turbine cooperates with the or each sensor element in such a way, that a wave break can be detected. For this purpose, an electrical signal corresponding to the shaft break is generated and transmitted to a switching element in order to interrupt the fuel supply to the combustion chamber in response to the shaft break.

Vorzugsweise ist das oder jedes Sensorelement als Leiter, insbesondere als mineralisolierter Leiter, ausgebildet, wobei bei einem Wellenbruch des Rotors der Turbine der radial außen liegende Abschnitt des in Strömungsrichtung gesehen letzten, rotorseitigen Laufschaufelkranzes den oder jeden Leiter durchtrennt und so ein dem Wellenbruch entsprechendes elektrisches Signal generiert.Preferably, the or each sensor element as a conductor, in particular as a mineral-insulated conductor, formed at a shaft breakage of the rotor of the turbine, the radially outer portion of the last seen in the flow direction, rotor-side blade ring or severed each conductor and so a wave breaking corresponding electrical signal generated.

Bevorzugte Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen und der nachfolgenden Beschreibung. Ausführungsbeispiele der Erfindung werden, ohne hierauf beschränkt zu sein, an Hand der Zeichnung näher erläutert. Dabei zeigt:

Fig. 1
einen Ausschnitt aus einer erfindungsgemäßen Gasturbine mit einer erfindungsgemäßen Einrichtung zur Detektion eines Wellenbruchs an einer Gasturbine nach einem ersten Ausführungsbeispiel der Erfindung;
Fig. 2
ein vergrößertes Detail der Anordnung der Fig. 1;
Fig. 3
einen Ausschnitt aus einer erfindungsgemäßen Gasturbine mit einer erfindungsgemäßen Einrichtung zur Detektion eines Wellenbruchs an einer Gasturbine nach einem zweiten Ausführungsbeispiel der Erfindung;
Fig. 4
ein vergrößertes Detail der Anordnung der Fig. 3;
Fig. 5
einen Ausschnitt aus einer erfindungsgemäßen Gasturbine mit einer erfindungsgemäßen Einrichtung zur Detektion eines Wellenbruchs an einer Gasturbine nach einem dritten Ausführungsbeispiel der Erfindung; und
Fig. 6
einen Ausschnitt aus einer erfindungsgemäßen Gasturbine mit einer erfindungsgemäßen Einrichtung zur Detektion eines Wellenbruchs an einer Gasturbine nach einem weiteren Ausführungsbeispiel der Erfindung.
Preferred embodiments of the invention will become apparent from the dependent claims and the description below. Embodiments of the invention are, without being limited thereto, explained in more detail with reference to the drawing. Showing:
Fig. 1
a detail of a gas turbine according to the invention with a device according to the invention for detecting a shaft fracture on a gas turbine according to a first embodiment of the invention;
Fig. 2
an enlarged detail of the arrangement of Fig. 1 ;
Fig. 3
a detail of a gas turbine according to the invention with a device according to the invention for detecting a shaft fracture on a gas turbine according to a second embodiment of the invention;
Fig. 4
an enlarged detail of the arrangement of Fig. 3 ;
Fig. 5
a detail of a gas turbine according to the invention with a device according to the invention for detecting a shaft fracture on a gas turbine according to a third embodiment of the invention; and
Fig. 6
a detail of a gas turbine according to the invention with a device according to the invention for detecting a shaft fracture on a gas turbine according to a further embodiment of the invention.

Nachfolgend wird die hier vorliegende Erfindung unter Bezugnahme auf Fig. 1 bis 6 in größerem Detail beschrieben.Hereinafter, the present invention will be described with reference to FIG Fig. 1 to 6 described in more detail.

Fig. 1 zeigt einen Ausschnitt aus einer erfindungsgemäßen Gasturbine, nämlich einem Flugtriebwerk, nach einem ersten Ausführungsbeispiel der Erfindung zwischen einem Rotor einer Mitteldruckturbine 10 und einem Stator einer Niederdruckturbine 11. Vom Rotor der Mitteldruckturbine 10 ist ein radial außen liegender Abschnitt 12 einer Laufschaufel 13 des in Strömungsrichtung (Pfeil 14) gesehen letzten Laufschaufelkranzes der Mitteldruckturbine 10 dargestellt. Vom Stator der Niederdruckturbine 11 ist ein radial außen liegender Abschnitt 15 einer Leitschaufel 16 des in Strömungsrichtung (Pfeil 14) gesehen ersten Leitschaufelkranzes der Niederdruckturbine 11 und ein Gehäuseabschnitt 17 gezeigt. Fig. 1 shows a section of a gas turbine according to the invention, namely an aircraft engine, according to a first embodiment of the invention between a rotor of a medium-pressure turbine 10 and a stator of a low-pressure turbine 11. From the rotor of the medium-pressure turbine 10 is a radially outer portion 12 of a blade 13 of the flow direction ( Arrow 14) seen last blade ring of the medium-pressure turbine 10. From the stator of the low-pressure turbine 11, a radially outer portion 15 of a vane 16 of the first vane ring of the low-pressure turbine 11 and seen in the flow direction (arrow 14) and a housing portion 17 is shown.

Der in Strömungsrichtung gesehen erste bzw. vorderste Leitschaufelkranz der Niederdruckturbine 11 grenzt demnach an den in Strömungsrichtung gesehen letzten bzw. hintersten Laufschaufelkranz der Mitteldruckturbine 10 an. Stromaufwärts der Mitteldruckturbine 10 ist eine Hochdruckturbine positioniert.The first or leading vane ring of the low-pressure turbine 11 seen in the flow direction accordingly adjoins the last or rearmost blade ring of the medium-pressure turbine 10, as seen in the flow direction. Upstream of the medium pressure turbine 10, a high pressure turbine is positioned.

Wie bereits erwähnt, sind bei derartigen Gasturbinen, die drei Turbinen sowie drei Verdichter aufweisen, die Rotoren von Hochdruckturbine sowie Hochdruckverdichter, Mitteldruckturbine sowie Mitteldruckverdichter sowie Niederdruckturbine und Niederdruckverdichter durch jeweils eine Welle miteinander verbunden, wobei diese drei Wellen sich einander konzentrisch umschließen und damit ineinander verschachtelt sind. Es liegt nun im Sinne der hier vorliegenden Erfindung, eine Einrichtung zur Detektion eines Wellenbruchs an einer Gasturbine bereitzustellen, die sich insbesondere zur Detektion eines Wellenbruchs der den Mitteldruckturbinenrotor mit dem Mitteldruckverdichterrotor verbindenden Welle eignet. Bricht nämlich diese Welle, so kann der Mitteldruckverdichter der Mitteldruckturbine keine Arbeit bzw. Leistung mehr entnehmen, was zu einem Überdrehen der Mitteldruckturbine führen kann. Da ein derartiges Überdrehen der Turbine zu schweren Beschädigungen des Flugtriebwerks führen kann, muss ein Wellenbruch sicher detektiert werden.As already mentioned, in such gas turbines, which have three turbines and three compressors, the rotors of high-pressure turbine and high-pressure compressor, medium-pressure turbine and medium-pressure compressor and low-pressure turbine and low-pressure compressor connected by one shaft, these three shafts surround each other concentrically and thus interleaved are. It is now within the meaning of the present invention to provide a device for detecting a shaft fracture on a gas turbine, which is particularly suitable for detecting a shaft fracture of the shaft connecting the intermediate-pressure turbine rotor to the medium-pressure compressor rotor. In fact, if this wave breaks, the intermediate-pressure compressor of the medium-pressure turbine can no longer extract work or power, which can lead to over-rotation of the medium-pressure turbine. Since such over-rotation of the turbine can lead to serious damage to the aircraft engine, a shaft break must be reliably detected.

Im Bereich des in Strömungsrichtung gesehen ersten, statorseitigen Leitschaufelkranzes der Niederdruckturbine 11 ist in den gezeigten Ausführungsbeispielen mindestens ein Sensorelement 18 positioniert. Das oder jedes Sensorelement 18 ist einem radial außen liegenden Abschnitt dieses Leitschaufelkranzes der Niederdruckturbine 11 und damit einem radial außen liegenden Abschnitt eines Strömungskanals der Niederdruckturbine 11 zugeordnet. Das oder jedes Sensorelement 18 wirkt zur Detektion eines Wellenbruchs mit dem radial außen liegenden Abschnitt 12 des in Strömungsrichtung (Pfeil 14) gesehen, letzten rotorseitigen Laufschaufelkranzes der Mitteldruckturbine 10 derart zusammen, dass bei einem Wellenbruch der in Strömungsrichtung gesehen hinterste bzw. letzte Laufschaufelkranz der Mitteldruckturbine 10 mit dem radial außen liegenden Abschnitt 12 das Sensorelement 18 kontaktiert und dabei vorzugsweise durchtrennt, um so ein dem Wellenbruch entsprechendes elektrisches Signal zu generieren und an ein nicht-dargestelltes Schaltelement zu übertragen.In the area of the first stator-side vane ring of the low-pressure turbine 11, as seen in the flow direction, at least one sensor element 18 is positioned in the exemplary embodiments shown. The or each sensor element 18 is associated with a radially outer portion of this vane ring of the low-pressure turbine 11 and thus a radially outer portion of a flow channel of the low-pressure turbine 11. The or each sensor element 18 acts to detect a shaft fracture with the radially outer portion 12 of the seen in the flow direction (arrow 14), the last rotor side rotor blade of the intermediate-pressure turbine 10 such that at a shaft break the last seen in the flow direction rearmost or last blade ring of the medium-pressure turbine 10 contacted with the radially outer portion 12, the sensor element 18 and thereby preferably cut, so as to generate a wave breaking corresponding electrical signal and transmitted to a non-illustrated switching element.

Das oder jedes Sensorelement ist dabei als elektrischer Leiter, vorzugsweise als mineralisolierter Stromleiter, ausgebildet, der bei einem Wellenbruch von dem radial außen liegenden Abschnitt 12 des in Strömungsrichtung gesehen letzten Laufschaufelkranzes der Mitteldruckturbine 10 durchtrennt wird. In Folge der Druckverhältnisse in einer Turbine wird nämlich bei einem Wellenbruch der die Mitteldruckturbine 10 mit dem nicht-dargestellten Mitteldruckverdichter verbindenden Welle der Rotor der Mitteldruckturbine 10 in Strömungsrichtung (Pfeil 14) und damit in Richtung auf den ersten Leitschaufelkranz der Niederdruckturbine 11 bewegt. Das oder jedes als Leiter ausgebildete Sensorelement 18 wird dabei von einem in Strömungsrichtung vorstehenden Abschnitt 19 eines Außendeckbandes des in Strömungsrichtung gesehen letzten Laufschaufelkranzes der Mitteldruckturbine 10 durchtrennt.The or each sensor element is designed as an electrical conductor, preferably as a mineral-insulated conductor, which is severed at a shaft break from the radially outer portion 12 of the last seen in the flow direction of the rotor blade ring of the medium-pressure turbine 10. In consequence of the pressure conditions in a turbine, the rotor of the medium-pressure turbine 10 is moved in the direction of flow (arrow 14) and thus in the direction of the first guide vane ring of the low-pressure turbine 11 in the case of a shaft break of the shaft connecting the medium-pressure turbine 10 with the medium-pressure compressor (not shown). The or each trained as a conductor sensor element 18 is doing is severed by a flow-projecting portion 19 of an outer shroud of the last seen in the flow direction last blade ring of the medium-pressure turbine 10.

Wie Fig. 1 entnommen werden kann, wird das oder jedes Sensorelement 18 von radial außen dem in Strömungsrichtung gesehen ersten Leitschaufelkranz der Niederdruckturbine 11 zugeführt und mit einem Endabschnitt 20 in eine Ausnehmung 21 des in Strömungsrichtung gesehen ersten Leitschaufelkranzes der Niederdruckturbine 11 eingeführt, wobei diese Ausnehmung 21 dem radial außen liegenden Abschnitt 15 der Leitschaufeln 16 des ersten Leitschaufelkranzes der Niederdruckturbine 11 zugeordnet ist. Im Ausführungsbeispiel der Fig. 1 und 2 ragt der jeweilige Endabschnitt 20 des oder jedes Sensorelements 18 in die jeweilige Ausnehmung 21 hinein und ist im Leitschaufelkranz 16 eingeschlossen. Die Ausnehmung 21 wird dabei auf der dem in Strömungsrichtung gesehen letzten, rotorseitigen Laufschaufelkranz der Mitteldruckturbine 10 zugewandten Seite von einer Materialdicke begrenzt, die bei einem Wellenbruch von dem Abschnitt 19 des Außendeckbands des in Strömungsrichtung letzten Laufschaufelkranzes der Mitteldruckturbine 10 durchtrennt bzw. durchdrungen werden kann. Nach Durchdringen dieses Materialabschnitts gelangt der Abschnitt 19 auf den Endabschnitt 20 des jeweiligen Sensorelements 18, durchtrennt das Sensorelement 18 und generiert so ein dem Wellenbruch entsprechendes elektrisches Signal. Wie insbesondere Fig. 2 entnommen werden kann, ist im Bereich der Ausnehmung 21 eine Öffnung 22 ausgebildet, die eine Verbindung der Ausnehmung 21 zum Strömungskanal herstellt, um so durch die Ausnehmung 21 eine Strömung zur Kühlung des jeweiligen Sensorelements 18 zu leiten. Fig. 2 verdeutlicht mit Pfeilen 23 die am jeweiligen Sensorelement 18 vorbeigeführte Strömung zur Kühlung desselben. Diese Strömung wird vorzugsweise von einer relativ kalten Bypass-Strömung abgezweigt, am jeweiligen Sensorelement 18 vorbeigeführt und über die Öffnung 22 in den Strömungskanal der Niederdruckturbine 11 geführt.As Fig. 1 can be removed, the or each sensor element 18 is supplied from radially outside the first vane ring of the low-pressure turbine 11 seen in the flow direction and introduced with an end portion 20 in a recess 21 of the first vane ring of the low-pressure turbine 11 seen in the flow direction, said recess 21 to the radially outside lying portion 15 of the vanes 16 of the first vane ring of the low-pressure turbine 11 is assigned. In the embodiment of Fig. 1 and 2 the respective end portion 20 of the or each sensor element 18 projects into the respective recess 21 and is enclosed in the vane ring 16. The recess 21 is in this case limited to the material seen in the flow direction last, rotor-side blade ring of the medium-pressure turbine 10 side of a material thickness which can be severed or penetrated at a shaft break of the portion 19 of the outer shroud of the last flow blade ring in the flow direction of the central pressure turbine 10. After penetrating this material section, the section 19 reaches the end section 20 of the respective sensor element 18, cuts through the sensor element 18 and thus generates an electrical signal corresponding to the shaft break. In particular Fig. 2 can be removed, an opening 22 is formed in the region of the recess 21, which establishes a connection of the recess 21 to the flow channel, so as to guide through the recess 21 a flow for cooling the respective sensor element 18. Fig. 2 clarified with arrows 23 the flow past the respective sensor element 18 for cooling the same. This flow is preferably branched off from a relatively cold bypass flow, guided past the respective sensor element 18 and guided via the opening 22 into the flow channel of the low-pressure turbine 11.

Im Ausführungsbeispiel der Fig. 1 und 2 wird das oder jedes Sensorelement 18 von radial außen kommend bogenförmig geführt, um den Endabschnitt 20 in die jeweilige Ausnehmung 21 einzuführen. Radial außen greift am Gehäuse 17 eine Ferrule 24 an, um das jeweilige Sensorelement 18 zu führen und abzudichten. Vorzugsweise sind über den Umfang des Leitschaufelkranzes der Niederdruckturbine 11 mehrere derartige Sensorelemente 18 gleichverteilt positioniert, wobei bei Durchtrennen mindestens eines derartigen Sensorelements auf einen Wellenbruch geschlossen wird.In the embodiment of Fig. 1 and 2 For example, the or each sensor element 18 is guided arcuately coming from radially outside to introduce the end portion 20 in the respective recess 21. Radially outside engages the housing 17, a ferrule 24 to guide the respective sensor element 18 and seal. Preferably, a plurality of such sensor elements 18 are positioned uniformly distributed over the circumference of the vane ring of the low-pressure turbine 11, with a shaft break being closed when severing at least one such sensor element.

Fig. 3 und 4 zeigen ein zweites Ausführungsbeispiel der hier vorliegenden Erfindung, welches im Wesentlichen dem Ausführungsbeispiel der Fig. 1 und 2 entspricht. Zur Vermeidung unnötiger Wiederholungen werden daher für gleiche Baugruppen gleiche Bezugsziffern verwendet und es wird nachfolgend nur auf die Details eingegangen, durch die sich das Ausführungsbeispiel der Fig. 3 und 4 vom Ausführungsbeispiel der Fig. 1 und 2 unterscheidet. So wird im Ausführungsbeispiel der Fig. 3 und 4 das oder jedes Sensorelement 18 wiederum von radial außen dem in Strömungsrichtung gesehen ersten Leitschaufelkranz der Niederdruckturbine 11 zugeführt und in eine entsprechende Ausnehmung 21 eingeführt, wobei im Ausführungsbeispiel der Fig. 3 und 4 das Sensorelement 18 geradlinig ohne Umlenkungen bzw. Umbiegungen mit dem Endabschnitt 20 in die entsprechende Ausnehmung 21 eingeführt wird. Hierdurch kann zu Wartungszwecken das Sensorelement 18 einfach aus der Ausnehmung 21 herausgezogen werden, ohne dass die Gasturbine, insbesondere die Niederdruckturbine 11 derselben, zerlegt werden muss. Hinsichtlich der übrigen Details kann auf die Ausführungen zum Ausführungsbeispiel der Fig. 1 und 2 verweisen werden. Fig. 3 and 4 show a second embodiment of the present invention, which substantially the embodiment of the Fig. 1 and 2 equivalent. To avoid unnecessary repetition, therefore, the same reference numerals are used for the same components and it will be discussed below only on the details by which the embodiment of the Fig. 3 and 4 from the embodiment of Fig. 1 and 2 different. Thus, in the embodiment of the Fig. 3 and 4 the or each sensor element 18 in turn fed from radially outside the first vane ring of the low-pressure turbine 11 seen in the flow direction and inserted into a corresponding recess 21, wherein in the embodiment of Fig. 3 and 4 the sensor element 18 is introduced into the corresponding recess 21 in a straight line without deflections or bends with the end section 20. As a result, for maintenance purposes, the sensor element 18 can simply be pulled out of the recess 21 without the gas turbine, in particular the low-pressure turbine 11 of the same, having to be dismantled. With regard to the remaining details, the comments on the embodiment of the Fig. 1 and 2 be referred.

Fig. 5 zeigt ein drittes Ausführungsbeispiel der hier vorliegenden Erfindung. Im Ausführungsbeispiel der Fig. 5 ist das oder jedes Sensorelement 18 von einer Bewehrung 25 bzw. einer Armierung umhüllt. Das oder jedes Sensorelement 18 durchdringt zusammen mit der jeweiligen Bewehrung 25 eine Ausnehmung 21 des in Strömungsrichtung gesehen ersten Leitschaufelkranzes der Niederdruckturbine 11, wobei jedoch im Unterschied zum Ausführungsbeispiel der Fig. 1 und 2 bzw. der Fig. 3 und 4 im Ausführungsbeispiel der Fig. 5 der Endabschnitt 20 des Sensorelements 18 nicht im Leitschaufelkranz eingeschlossen ist, sondern vielmehr in den Strömungskanal hineinragt, und zwar in einen Abschnitt zwischen dem in Strömungsrichtung gesehen letzten, rotorseitigen Laufschaufelkranz der Mitteldruckturbine 10 und dem in Strömungsrichtung gesehen ersten, statorseitigen Leitschaufelkranz der Niederdruckturbine 11. In diesem Fall muss beim Wellenbruch der in Strömungsrichtung vorstehende Abschnitt 19 des Außendeckbands des Laufschaufelkranzes der Mitteldruckturbine 10 die Bewehrung 25 durchdringen bzw. durchschlagen, um so das entsprechende Sensorelement 18 zu durchtrennen und ein dem Wellenbruch entsprechendes elektrisches Signal zu generieren. Wie Fig. 5 entnommen werden kann, ist in die Bewehrung 25 eine Öffnung 26 integriert, um so zwischen der Bewehrung 25 und dem jeweiligen Sensorelement 18 eine Strömung zur Kühlung des jeweiligen Sensorelements 18 zu leiten. Diese Strömung kann dann über die Öffnung 26 in den Strömungskanal der Niederdruckturbine 11 entweichen. Fig. 5 shows a third embodiment of the present invention. In the embodiment of Fig. 5 the or each sensor element 18 is surrounded by a reinforcement 25 or a reinforcement. The or each sensor element 18 penetrates together with the respective reinforcement 25 has a recess 21 of the first vane ring of the low-pressure turbine 11 seen in the flow direction, but in contrast to the embodiment of Fig. 1 and 2 or the Fig. 3 and 4 in the embodiment of Fig. 5 the end portion 20 of the sensor element 18 is not enclosed in the vane ring, but rather protrudes into the flow channel, in a section between the last seen in the flow direction, the rotor side rotor blade of the medium-pressure turbine 10 and the first seen in the flow direction, stator side vane ring of the low-pressure turbine 11. In In this case, in the case of shaft breakage, the section 19 of the outer shroud of the rotor blade of the medium-pressure turbine 10 which projects in the direction of flow must penetrate or penetrate the reinforcement 25 so as to cut through the corresponding sensor element 18 and generate an electrical signal corresponding to the shaft break. As Fig. 5 can be removed, an opening 26 is integrated into the reinforcement 25 so as to direct a flow between the reinforcement 25 and the respective sensor element 18 for cooling the respective sensor element 18. This flow can then escape via the opening 26 in the flow channel of the low-pressure turbine 11.

Ein weiteres Ausführungsbeispiel der hier vorliegenden Erfindung zeigt Fig. 6, welches im Wesentlichen im Ausführungsbeispiel der Fig. 3 entspricht. Der Unterschied zwischen dem Ausführungsbeispiel der Fig. 6 und dem Ausführungsbeispiel der Fig. 3 liegt darin, dass im Ausführungsbeispiel der Fig. 6 zusätzlich die Bewehrung 25 vorhanden ist. Bei einem Wellenbruch der die Mitteldruckturbine 10 mit dem Mitteldruckverdichter verbindenden Welle muss demnach der in Strömungsrichtung vorstehende Abschnitt 19 des in Strömungsrichtung gesehen letzten Laufschaufelkranzes der Mitteldruckturbine 10 sowohl das die Ausnehmung 20 auf der dem Laufschaufelkranz zugewandten Seite begrenzende Material als auch die Bewehrung 25 durchdringen, um in Kontakt mit dem Sensor 18 zu gelangen. Hinsichtlich der übrigen Details kann auf die obigen Ausführungen verwiesen werden.Another embodiment of the present invention shows Fig. 6 which essentially in the embodiment of the Fig. 3 equivalent. The difference between the embodiment of Fig. 6 and the embodiment of the Fig. 3 is that in the embodiment of the Fig. 6 in addition, the reinforcement 25 is present. In the event of a shaft break of the shaft connecting the medium-pressure turbine 10 with the medium-pressure compressor, the section 19 of the rotor blade ring of the medium-pressure turbine 10 projecting in the direction of flow must therefore penetrate both the material delimiting the recess 20 on the side facing the rotor blade rim and the reinforcement 25 to get in contact with the sensor 18. With regard to the remaining details, reference may be made to the above statements.

In den gezeigten Ausführungsbeispielen ist das oder jedes Sensorelement im Bereich eines statorseitigen Leitschaufelkranzes positioniert. Es sei darauf hingewiesen, dass das oder jedes Sensorelement auch anderen statorseitigen Baugruppen der Gasturbine zugeordnet sein kann.In the embodiments shown, the or each sensor element is positioned in the region of a stator vane ring. It should be noted that the or each sensor element can also be assigned to other stator-side assemblies of the gas turbine.

Mit der hier vorliegenden Erfindung wird eine Einrichtung zur Detektion eines Wellenbruchs an einem Rotor einer Gasturbine vorgeschlagen, wobei ein radial außen liegendes Ende eines in Strömungsrichtung gesehen letzten Laufschaufelkranzes der Turbine, die mit der hinsichtlich des Wellenbruchs zu überwachenden Welle verbunden ist, mit mindestens einem Sensorelement zusammenwirkt, welches einem Stator, insbesondere einem in Strömungsrichtung gesehen ersten Leitschaufelkranz einer stromabwärts positionierten Turbine, zugeordnet ist. Das oder jedes Sensorelement ist vorzugsweise als mineralisolierter Leiter ausgebildet, der bei einem Wellenbruch von einem in Strömungsrichtung vorstehenden Abschnitt eines Außendeckbands des in Strömungsrichtung gesehen letzten Laufschaufelkranzes der Turbine, die mit der hinsichtlich des Wellenbruchs zu überwachenden Welle verbunden ist, durchschlagen bzw. durchtrennt wird. Bei Durchtrennung mindestens eines derartigen mineralisolierten Leiters kann auf einen Wellenbruch geschlossen werden. Der mineralisolierte Leiter verfügt über einen Durchmesser zwischen 1 und 4 mm, vorzugsweise über einen Durchmesser zwischen 2 und 3 mm. Im Betrieb der Gasturbine wird an dem mineralisolierten Leiter zur Kühlung desselben eine Gasströmung vorbeigeführt, um denselben auf eine Temperatur von etwa 900° Celsius herabzukühlen.With the present invention, a device for detecting a shaft fracture on a rotor of a gas turbine is proposed, wherein a radially outer end of a seen in the flow direction last blade ring of the turbine, which is connected to the shaft to be monitored with respect to the wave shaft, with at least one sensor element cooperates, which is associated with a stator, in particular a first vane ring of a downstream positioned turbine as seen in the flow direction. The or each sensor element is preferably formed as a mineral-insulated conductor, which is at a shaft break from a flow-projecting portion of an outer shroud of the flow direction seen last blade ring of the turbine, which is connected to the shaft to be monitored with respect to the wave breaking or severed. When severing at least one such mineral-insulated conductor can be concluded that a shaft break. The mineral-insulated conductor has a diameter between 1 and 4 mm, preferably a diameter between 2 and 3 mm. During operation of the gas turbine, a gas flow is guided past the mineral-insulated conductor for cooling the same, in order to cool it down to a temperature of about 900 ° Celsius.

Claims (11)

  1. A gas turbine comprising a device for detecting a shaft rupture in a rotor of a turbine (10) of the gas turbine, wherein, on a downstream side of the turbine (10), at least one stator-side sensor element (18) of the device is positioned in the region of a stator-side guide blade ring of another turbine (11), and wherein, if the rotor of the turbine (10) experiences a shaft rupture, a radially externally situated section (19) of a rotor-side moving blade ring of the turbine (10) that is last as seen in the direction of flow interacts with the sensor element(s) (18) in order to generate an electrical signal corresponding to the shaft rupture, characterized in that the sensor element(s) (18) is/are led from radially outside to a guide blade ring of the other turbine (11) that is first as seen in the direction of flow, and is/are respectively introduced into a recess (21) of the guide blade ring that is positioned radially externally.
  2. The gas turbine according to claim 1, characterized in that the sensor element(s) (18) is/are configured as a conductor/conductors, wherein, if the turbine (10) experiences a shaft rupture, the radially externally situated section (19) of the rotor-side moving blade ring that is last as seen in the direction of flow cuts through at least one conductor and thus generates an electrical signal corresponding to the shaft rupture.
  3. The gas turbine according to claim 2, characterized in that the conductor(s) is/are configured as a mineral-insulated conductor/mineral-insulated conductors.
  4. The gas turbine according to claim 3, characterized in that the mineral-insulated conductor(s) has/have a conductor thickness or diameter between 1 and 4 mm, in particular, between 2 and 3 mm.
  5. The gas turbine according to one or more of claims 1 to 3, characterized in that a plurality of sensor elements (18) are distributed over the circumference.
  6. The gas turbine according to one or more of claims 1 to 5, characterized in that an end section (20) of (each of) the sensor element(s) (18) protrudes into the respective recess (21) of the stator, and is enclosed therein.
  7. The gas turbine according to one or more of claims 1 to 6, characterized in that the respective recess (21) is bounded, on the side facing the rotor-side moving blade ring of the turbine (10) that is last as seen in the direction of flow, by a material thickness that is capable of being penetrated by the last, rotor-side moving blade ring of the turbine (10) when there is a shaft rupture.
  8. The gas turbine according to one or more of claims 1 to 5, characterized in that an end section (20) of (each of) the sensor element(s) (18) penetrates a respective recess (21) of the stator, and protrudes into the flow duct between the stator and the rotor-side moving blade ring of the turbine (10) that is last as seen in the direction of flow.
  9. The gas turbine according to one or more of claims 1 to 8, characterized in that the sensor element(s) (18) is/are sheathed by an armor (25) or reinforcement.
  10. The gas turbine according to one or more of claims 1 to 9, characterized in that the recess (21) and optionally the armor (25) comprise(s) an opening (22, 26) so as to allow a flow therethrough in order to cool the respective sensor element (18).
  11. The gas turbine according to one or more of claims 1 to 10, having at least one compressor, having at least one combustion chamber, having at least one turbine.
EP06775914.2A 2005-09-06 2006-08-26 Gas turbine comprising a unit for detecting a shaft rupture Expired - Fee Related EP1922472B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005042271A DE102005042271A1 (en) 2005-09-06 2005-09-06 Device for detecting a shaft fracture on a gas turbine and gas turbine
PCT/DE2006/001496 WO2007028354A1 (en) 2005-09-06 2006-08-26 Gas turbine comprising a unit for detecting a shaft rupture

Publications (2)

Publication Number Publication Date
EP1922472A1 EP1922472A1 (en) 2008-05-21
EP1922472B1 true EP1922472B1 (en) 2017-08-09

Family

ID=37441075

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06775914.2A Expired - Fee Related EP1922472B1 (en) 2005-09-06 2006-08-26 Gas turbine comprising a unit for detecting a shaft rupture

Country Status (4)

Country Link
US (1) US8371804B2 (en)
EP (1) EP1922472B1 (en)
DE (1) DE102005042271A1 (en)
WO (1) WO2007028354A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2907839B1 (en) * 2006-10-25 2011-06-17 Snecma METHOD FOR REDUCING SPEED IN CASE OF TURBINE SHAFT BREAKAGE OF GAS TURBINE ENGINE
GB2468686A (en) * 2009-03-18 2010-09-22 Weston Aerospace Ltd System and method for detecting abnormal movement in a gas turbine shaft
GB2494703B (en) 2011-09-16 2016-08-03 Weston Aerospace Ltd System and method for detecting abnormal movement in a gas turbine shaft
GB201121639D0 (en) * 2011-12-16 2012-01-25 Rolls Royce Plc Shaft break detection
JP5818717B2 (en) * 2012-02-27 2015-11-18 三菱日立パワーシステムズ株式会社 gas turbine
US9316479B2 (en) * 2012-09-20 2016-04-19 United Technologies Corporation Capacitance based clearance probe and housing
US10190440B2 (en) 2015-06-10 2019-01-29 Rolls-Royce North American Technologies, Inc. Emergency shut-down detection system for a gas turbine

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1326867A (en) * 1918-12-06 1919-12-30 Gen Electric Elastic-fluid turbine.
CH445949A (en) * 1965-03-19 1967-10-31 Prvni Brnenska Strojirna Protective device for turbomachines
US3591308A (en) * 1969-06-04 1971-07-06 Chicago Pneumatic Tool Co Rotor guard for centrifugal compressor
GB1443333A (en) * 1972-08-12 1976-07-21 Mtu Muenchen Gmbh Aircraft having apparatus for augmenting the lift of the aircraft
BE854653A (en) * 1977-05-16 1977-11-16 Acec FALSE ROUND DETECTOR FOR GAS TURBINES
SU885572A1 (en) * 1980-03-31 1981-11-30 Ордена Ленина И Ордена Трудового Красного Знамени Производственное Объединение Невский Завод Им.В.И.Ленина Device for detecting unpermissible displacement of turbomachine rotor relative to stator
US5411364A (en) 1993-12-22 1995-05-02 Allied-Signal Inc. Gas turbine engine failure detection system
DE19727296A1 (en) 1997-06-27 1999-01-07 Mtu Muenchen Gmbh Device for the emergency shutdown of a gas turbine
US6607349B2 (en) * 2001-11-14 2003-08-19 Honeywell International, Inc. Gas turbine engine broken shaft detection system
DE102004009595A1 (en) * 2004-02-27 2005-09-15 Mtu Aero Engines Gmbh Method and device for identifying a shaft break and / or an overspeed on a gas turbine
DE102004033924A1 (en) * 2004-07-14 2006-02-09 Mtu Aero Engines Gmbh Device for detecting a shaft fracture on a gas turbine and gas turbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US8371804B2 (en) 2013-02-12
DE102005042271A1 (en) 2007-03-08
WO2007028354A1 (en) 2007-03-15
US20090220333A1 (en) 2009-09-03
EP1922472A1 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
EP1922472B1 (en) Gas turbine comprising a unit for detecting a shaft rupture
EP1664490B1 (en) Device for detecting a fractured shaft of a gas turbine and gas turbine
EP1759092B1 (en) Device for detecting a fracture in the shaft of a gas turbine, and gas turbine
EP1794417B1 (en) Gas turbine and method for shutting off a gas turbine when breakage of a shaft is identified
WO1999000585A1 (en) Device for the emergency stop of a gas turbine
CH700957B1 (en) Error detection and protection system for multi-stage presses.
EP3184754B1 (en) Sensor assembly and measuring method for a turboengine
EP1847688B1 (en) Emergency shutdown detection system for a gas turbine
CH701927B1 (en) Stator, compressor and gas turbine engine.
DE102013213386B3 (en) Turbomachinery ceramic component
CH714205A2 (en) Turbocharger.
EP0984138A2 (en) Turbomachine with shaft cooling
EP2358979B1 (en) Axial compressor for a gas turbine having passive radial gap control
CH714847B1 (en) Casing for a turbocharger and turbocharger.
EP1727970B1 (en) Method and apparatus for establishing the state of the rotor of a turbomachine
DE102006017790B3 (en) Shaft breakage detecting device for e.g. aircraft engine, has rotor-sided blade rim with section separating sensor unit to generate electrical signal that corresponds to shaft breakage, where sensor unit is designed as line replaceable unit
EP3330494B1 (en) Arrangement, turbomachine and method of detection a shaft rupture
EP2770191A2 (en) Aircraft gas turbine engine with a first rotatable shaft
DE102009009079B4 (en) axial flow
EP1505262A1 (en) Apparatus and method for measuring the width of a radial gap
EP3045676A1 (en) Method for avoiding a rotating stall
WO2005083237A1 (en) Method and device for identifying a shaft fracture and/or an excessive rotational speed in a gas turbine
DE102019118555A1 (en) Device and method for the thermal monitoring of a plain bearing
EP2669670A1 (en) Method for detecting a crack in rotor blades in the operation of a turboengine
EP2565606A1 (en) Flow engine with a heat-pipe in a part of the the rotor and a temperature sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080305

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MTU AERO ENGINES AG

17Q First examination report despatched

Effective date: 20160722

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170425

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006015619

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170928

Year of fee payment: 12

Ref country code: GB

Payment date: 20170928

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170929

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006015619

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180511

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006015619

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180826