EP1661645A2 - Process for regulating the flow rate and bottom tap hole for metallurgical vessel - Google Patents

Process for regulating the flow rate and bottom tap hole for metallurgical vessel Download PDF

Info

Publication number
EP1661645A2
EP1661645A2 EP05024382A EP05024382A EP1661645A2 EP 1661645 A2 EP1661645 A2 EP 1661645A2 EP 05024382 A EP05024382 A EP 05024382A EP 05024382 A EP05024382 A EP 05024382A EP 1661645 A2 EP1661645 A2 EP 1661645A2
Authority
EP
European Patent Office
Prior art keywords
nozzle
housing
inert gas
sensor
upper nozzle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05024382A
Other languages
German (de)
French (fr)
Other versions
EP1661645A3 (en
EP1661645B1 (en
Inventor
Martin Kendall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Electro Nite International NV
Original Assignee
Heraeus Electro Nite International NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Electro Nite International NV filed Critical Heraeus Electro Nite International NV
Priority to PL05024382T priority Critical patent/PL1661645T3/en
Publication of EP1661645A2 publication Critical patent/EP1661645A2/en
Publication of EP1661645A3 publication Critical patent/EP1661645A3/en
Application granted granted Critical
Publication of EP1661645B1 publication Critical patent/EP1661645B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/22Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings
    • B22D41/24Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings characterised by a rectilinearly movable plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/22Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings
    • B22D41/42Features relating to gas injection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/502Connection arrangements; Sealing means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/58Pouring-nozzles with gas injecting means

Definitions

  • the invention relates to a method for regulating the flow through a bottom spout of a metallurgical vessel. Furthermore, the invention relates to a floor spout of a metallurgical vessel.
  • the liquid metal is poured from a distributor, for example, in a continuous casting plant. It flows through a floor spout in the bottom of the distributor housing (a so-called Nozzle).
  • Nozzle a floor spout in the bottom of the distributor housing
  • a disadvantage is the adhesion of material to the wall of the floor spout during the flow. This reduces the opening cross section, so that the flow conditions are adversely affected.
  • an inert gas such as argon is often introduced into the flow opening. Excessively large quantities of gas, however, can adversely affect the quality of the steel, for example, by creating voids in the steel which cause surface damage when the steel is rolled out.
  • a material for a floor spout is described, for example, in WO 2004/035249 A1.
  • a floor spout within a metallurgical vessel is disclosed in KR 2003-0017154 A or in US 2003/0116893 A1.
  • inert gas with the aim to reduce the adhesion of material to the inner wall of the floor spout (so-called clogging), similar to that described in JP 2187239.
  • a mechanism with a gas supply regulation from WO 01/56725 A1 is quite well known. Nitrogen is supplied according to Japanese Publication JP 8290250.
  • JP 3193250 discloses a method of observing adherence of material by means of a plurality of temperature sensors arranged longitudinally of the bottom spout.
  • the introduction of inert gas into the interior of the floor spout is also known, inter alia, from JP 2002210545, JP 61206559, JP 58061954 and JP 7290422.
  • the Korean document KR 1020030054769 A describes the arrangement of a housing around the valve of a floor spout.
  • the gas in the housing is sucked by means of a vacuum pump.
  • JP 4270042 describes a similar housing.
  • a non-oxidizing atmosphere is created within the housing.
  • the housing has an opening through which inert gas can be supplied.
  • Another arrangement in which gas is aspirated from the housing partially surrounding the bottom spout to create a vacuum within the housing is known from JP 61003653.
  • the inert gas supply is controlled in the bottom spout on the basis of the measuring signals of the sensor.
  • the flow rate and / or the pressure is reduced until the sensor signals an increase in determinations and / or the flow rate and / or the pressure are increased until the sensor indicates a decrease or a dissolution of the stipulations.
  • the Inergaszulig can be minimized to a minimum, so that little inert gas is fed into the molten metal and as a result less gas inclusions in the finished metal, such as steel, are present.
  • a temperature sensor arranged on or in the outside of the lower nozzle is used as the sensor.
  • the measurement can also be made inductively, resistively, by means of ultrasound or X-rays.
  • the flow rate and / or the pressure be reduced until the measured wall temperature drops faster than a predetermined limit value of the cooling and / or that the flow rate and / or the pressure are increased until the measured wall temperature is less fast decreases as a predetermined limit of cooling.
  • the molten metal flow may be regulated by means of a valve arranged between the upper and the lower nozzle or a valve arranged above the upper nozzle.
  • a slide valve sliding gate
  • the introduction of the inert gas takes place in the flow opening of the bottom spout below the upper nozzle.
  • argon is used as the inert gas.
  • At least one of the nozzles may conveniently have a heater. It makes sense that below or above the upper nozzle a valve (slide valve or stopper rod) is arranged to control the molten metal flow.
  • Another inventive bottom spout for a metallurgical vessel with an upper nozzle arranged in the bottom of a metallurgical vessel and a lower nozzle arranged below the upper nozzle has an at least molten metal flow-tight design Wall of the flow opening through the nozzles and is characterized in that the nozzles are at least partially surrounded by a gas-tight housing, that the housing gas-tight encloses the lower nozzle at its lower end at its periphery, wherein it with a part of its inside on the outside the nozzle abuts and that between the wall of the flow opening and the housing, a thermally insulating solid is disposed.
  • the term "at least partially” is to be understood as meaning that the housing, of course, can not surround the nozzle, for example, at its orifices.
  • the housing prevents the passage of gas, it has an upper and a lower end and is gas-tight in between.
  • the floor spout on two basic seals namely a melt flow seal in the region of the wall of the flow opening and a gas seal in the colder, the flow opening facing away from the bottom spout.
  • less temperature-resistant materials can be used to achieve the gas-tightness.
  • the housing preferably has a plurality of gas-tight connected, preferably superimposed housing parts, wherein at least one housing part with the upper nozzle and / or the bottom of the metallurgical vessel is connected gas-tight, preferably by having a part of its side surface on the outside of the upper Nozzle and / or the soil is applied.
  • a valve for regulating the molten metal flow is arranged above the upper nozzle or between the upper and the lower nozzle.
  • the valve is a stopper rod, in the second case a slide valve.
  • an oxygen getter material in particular from the group of titanium, aluminum, magnesium or zirconium arranged.
  • the housing is expediently at least partially tubular (hollow cylinder) or conical, preferably formed with an oval or circular cross-section.
  • the housing may conveniently be formed of steel and the thermally insulating material may preferably contain alumina. It may make sense that at least one of the nozzles has a heater.
  • the bottom spout shown in Figure 1 in the bottom 1 of a distributor for molten steel 2 has within the bottom 1 an upper nozzle 3.
  • electrodes 4 are arranged to produce an electrochemical effect or as a heater.
  • the floor 1 itself has various layers of a refractory material and on its outer side a steel housing 5.
  • a slide valve 6 is arranged to control the molten steel flow and below a lower nozzle 7, which extends into the molten metal container 8, which belongs for example to a continuous casting plant for the steel.
  • a temperature sensor 10 measures the temperature on the outside of the lower nozzle.
  • FIG. 2 shows a time pressure / temperature profile.
  • the argon pressure is gradually increased so that the flow of argon into the flow passage causes dissolution of the wall fixings.
  • the temperature measured on the outer wall increases again to a constant value. In this way, argon pressure inflow can be minimized, at which the formation of fixes is just prevented or minimized.
  • the bottom spout shown in Figure 3 has a basically two-part seal, namely a melt flow-tight seal along the inside of the flow opening and a housing 14, which realizes a gas-tight seal to the outside (between the ambient atmosphere and the flow opening), wherein the individual seals in a significantly lower temperature range are arranged.
  • the housing 14 consists of several parts 14a and 14b and is in principle continued in the metal sleeve 15, which comprises the upper nozzle 3 on its outer side and opens into a flange 16, on which a part of the outer surface of the upper housing part 14b is sealingly arranged.
  • the various seals are shown.
  • So-called type 1 seals 17 exist between mutually movable parts on the slide valve 6.
  • Type 2 seals 18 are disposed between refractory parts of the bottom spout 1, that is, for example, between the parts of the spool valve 6 and the upper nozzle 3 and the lower nozzle 7. These type 2 seals 18 are the molten metal or the Temperature of liquid steel at least partially exposed directly. Furthermore, the wall of the flow opening of the floor spout 1 itself is a seal (type 3 seal), which is influenced by the choice of material.
  • the above-described seals are in principle also present in all known arrangements. They may be formed of alumina, for example. The sealing effect of the Type 3 seals can be improved, inter alia, by high temperature glass layers.
  • the parts of the outer housing 14 form a type 4 seal which are not exposed to molten steel or temperatures of comparable height. These seals may be formed of metal, for example of steel, or of densely sintered ceramic material.
  • Type 5 seals 19 are located between parts of the housing 14 and moving parts of the flow control, such as the push rods 20 of the slide valve 6. They are not exposed to the liquid steel and can, depending on the specific temperature conditions of Inkonel (up to 800 ° C) , made of aluminum, copper or graphite (up to about 450 ° C) or from one elastomeric material (at temperatures up to about 200 ° C) may be formed, as well as the type 6 seals 20 between the individual housing parts.
  • type 7 seals 21 which prevent gas, especially oxygen at the junction along these building parts in the cavity 22 between the housing part 14b and the slide valve 6 penetrate. Thereby, a negative pressure within the cavity 22 is ensured against its environment during the passage of the molten metal 2 through the bottom spout 1.
  • This type 7 seal can be made and adjusted by the manufacturer of the nozzles.
  • the upper nozzle 3 may be formed of zirconia, the lower nozzle of alumina. Foam alumina with a low density and closed pores may also be used, as well as alumina graphite, other refractory foam or fiber materials.
  • an oxygen getter material such as titanium, aluminum, magnesium, yttrium or zirconium may be arranged as a mixture with the refractory insulating material or as a sepatates part.
  • Type 1 and Type 2 seals have a leak rate of approximately 10 3 to 10 4 and 10 2 to 10 3 ml / s, respectively, and standard materials for the Type 3 seals result in leakage rates of approximately 10 to 100 ml / s.
  • Type 4 seals result in a leakage rate of negligible less than 10 -8 ml / s when metal (such as steel) is used as the material.
  • Type-5 and Type 6 seals can achieve a leak rate of about 10 -4 ml / s using polymer material and using appropriately sized graphite seals of about 1 ml / sec.
  • Type 7 seals are similar to a combination of Type 3 and Type 4 seals and can reach a leak rate of approximately 1 to 10 ml / s.
  • the leak rates refer to the operating condition of the floor spout.
  • the normalized leak rate according to the invention is on the order of about 1 to 10 nml / s, while the combination of type 1, type 2 and type 3 seals leads at best to 150 Nml / s.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Continuous Casting (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Thermal Insulation (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

A method for controlling flow through the bottom outlet of a metallurgical vessel with an upper nozzle (3) in the base (1), a lower nozzle (7) below (3), inert gas inlet(s) (13) and a sensor (10) on or in the lower nozzle (7) to measure the thickness of solid in the nozzle (clogging), in which the inert gas feed to the outlet is controlled by means of the signal from the sensor. Independent claims are also included for (1) a bottom outlet as described above (BO1) in which the inert gas inlet(s) and connection(s) are below the upper nozzle (3) and the sensor (10) is on or in the outside of the lower nozzle (7) and is also connected to an inert gas flow controller (2) a bottom outlet as above (BO2) in which the wall of the connecting opening between (3) and (7) is liquid-tight, at least with regard to molten metal, and the two nozzles (3, 7) are surrounded by a gas-tight housing (14) which forms a gas-tight seal with (7) at the bottom of the housing (14), with part of its inside on the outside of (7) and with a thermally-insulating solid between the wall of the connection (3:7) and the housing (14) .

Description

Die Erfindung betrifft ein Verfahren zur Regelung des Durchflusses durch einen Bodenausguss eines metallurgischen Gefäßes. Des weiteren betrifft die Erfindung einen Bodenausguss eines metallurgisches Gefäßes.The invention relates to a method for regulating the flow through a bottom spout of a metallurgical vessel. Furthermore, the invention relates to a floor spout of a metallurgical vessel.

Insbesondere bei Stahlschmelzen wird das flüssige Metall aus einem Verteiler beispielsweise in eine Stranggussanlage gegossen. Dabei fließt es durch einen im Boden des Verteilergehäuses angeordneten Bodenausguss (eine sog. Nozzle). Nachteilig ist das Anhaften von Material an der Wand des Bodenausgusses während des Durchfließens. Dadurch verkleinert sich der Öffnungsquerschnitt, so dass die Strömungsverhältnisse nachteilig beeinflusst werden. Um ein Anhaften von Material an der Wand zu verhindern, wird vielfach ein Inertgas wie Argon in die Durchflussöffnung eingeleitet. Zu große Gasmengen können jedoch die Stahlqualität negativ beeinflussen, beispielsweise durch die Bildung von Hohlräumen im Stahl, die beim Auswalzen des Stahls zu Oberflächenschäden führen.In particular, with molten steel, the liquid metal is poured from a distributor, for example, in a continuous casting plant. It flows through a floor spout in the bottom of the distributor housing (a so-called Nozzle). A disadvantage is the adhesion of material to the wall of the floor spout during the flow. This reduces the opening cross section, so that the flow conditions are adversely affected. In order to prevent adhesion of material to the wall, an inert gas such as argon is often introduced into the flow opening. Excessively large quantities of gas, however, can adversely affect the quality of the steel, for example, by creating voids in the steel which cause surface damage when the steel is rolled out.

Ein Material für einen Bodenausguss wird beispielsweise in WO 2004/035249 A1 beschrieben. Ein Bodenausguss innerhalb eines metallurgischen Gefäßes wird in KR 2003-0017154 A oder in US 2003/0116893 A1 offenbart. In der letztgenannten Druckschrift ist auf die Verwendung von Inertgas dargestellt mit den Ziel, das Anhaften von Material an der Innenwand des Bodenausgusses (sogenanntes clogging) zu reduzieren, ähnlich wie dies in JP 2187239 beschrieben wird. Recht ausführlich ist ein Mechanismus mit einer Gaszufuhrregulierung aus WO 01/56725 A1 bekannt. Stickstoff wird gemäß der japanischen Druckschrift JP 8290250 zugeführt. JP 3193250 offenbart ein Verfahren zur Beobachtung des Anhaftens bzw. Festsetzens von Material mit Hilfe einer Vielzahl von Längs des Bodenausgusses hintereinander angeordneten Temperatursensoren. Das Einleiten von Inertgas in das Innere des Bodenausgusses ist des weiteren unter anderem aus JP 2002210545, JP 61206559, JP 58061954 und JP 7290422 bekannt.A material for a floor spout is described, for example, in WO 2004/035249 A1. A floor spout within a metallurgical vessel is disclosed in KR 2003-0017154 A or in US 2003/0116893 A1. In the latter document is shown on the use of inert gas with the aim to reduce the adhesion of material to the inner wall of the floor spout (so-called clogging), similar to that described in JP 2187239. A mechanism with a gas supply regulation from WO 01/56725 A1 is quite well known. Nitrogen is supplied according to Japanese Publication JP 8290250. JP 3193250 discloses a method of observing adherence of material by means of a plurality of temperature sensors arranged longitudinally of the bottom spout. The introduction of inert gas into the interior of the floor spout is also known, inter alia, from JP 2002210545, JP 61206559, JP 58061954 and JP 7290422.

Aus einigen dieser Druckschriften ist es außerdem bekannt, zusätzlich zu der Zuleitung von Inertgas den Sauerstoffzutritt möglichst zu verhindern durch Einsatz von Gehäusen um einen Teil des Bodenausgusses herum. Teilweise wird dabei, wie beispielsweise in JP 8290250. ein Inertgas-Überdruck innerhalb eines solchen Gehäuses erzeugt. Zur Verhinderung des Eintritts von Sauerstoff wird um ein Ventil des Bodenausgusses herum ein Gehäuse in JP 11170033 offenbart. Der Durchfluss der Metallschmelze durch den Bodenausguss wird gemäß den vorstehend genannten Druckschriften durch Schieber-Ventile gesteuert. Dieser Schieber gleiten senkrecht zur Durchflussrichtung des Metalls und können dadurch den Bodenausguss verschließen. Eine andere Möglichkeit der Durchflussregelung ist eine sogenannte Stopfenstange (auch Stopper Rod genannt), wie beispielsweise aus JP 2002143994 bekannt.It is also known from some of these documents, in addition to the supply of inert gas, to prevent oxygen access as much as possible by using housings around part of the floor spout. In some cases, as in JP 8290250, for example, an inert gas overpressure is generated within such a housing. To prevent the ingress of oxygen, a housing is disclosed in JP 11170033 around a valve of the floor spout. The flow of molten metal through the bottom spout is controlled by spool valves in accordance with the above references. These slides slide perpendicular to the flow direction of the metal and can thereby close the bottom spout. Another possibility of the flow control is a so-called stopper rod (also called stopper rod), as known for example from JP 2002143994.

In der koreanischen Druckschrift KR 1020030054769 A ist die Anordnung eines Gehäuses um das Ventil eines Bodenausgusses herum beschrieben. Das in dem Gehäuse befindliche Gas wird mittels einer Vakuumpumpe abgesaugt. JP 4270042 beschreibt ein ähnliches Gehäuse.
Hier wird, wie in anderen oben genannten Druckschriften innerhalb des Gehäuses eine nicht oxidierende Atmosphäre erzeugt. Das Gehäuse weist eine Öffnung auf, durch die Inertgas zugeführt werden kann. Eine weitere Anordnung, bei der Gas aus dem den Bodenausguss teilweise umgebenden Gehäuse abgesaugt wird, um innerhalb des Gehäuses ein Vakuum zu erzeugen, ist aus JP 61003653 bekannt.
The Korean document KR 1020030054769 A describes the arrangement of a housing around the valve of a floor spout. The gas in the housing is sucked by means of a vacuum pump. JP 4270042 describes a similar housing.
Here, as in other references mentioned above, a non-oxidizing atmosphere is created within the housing. The housing has an opening through which inert gas can be supplied. Another arrangement in which gas is aspirated from the housing partially surrounding the bottom spout to create a vacuum within the housing is known from JP 61003653.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die vorhandenen Techniken weiterhin zu verbessern, um das Anhaften von Festsetzungen in der Düse eines Bodenausgusses auf einfache und zuverlässige Weise zu minimieren, ohne dabei die Qualität der Metallschmelze bzw. des erstarrten Metalls zu beeinträchtigen.It is an object of the present invention to further improve the existing techniques to easily and reliably minimize the sticking of fixings in the nozzle of a floor spout without compromising the quality of the molten metal or solidified metal.

Die Aufgabe wird gelöst durch die Merkmale der unabhängigen Ansprüche. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.The object is solved by the features of the independent claims. Advantageous embodiments are specified in the subclaims.

Gemäß dem erfindungsgemäßen Verfahren zur Regelung des Durchflusses durch einen Bodenausguss eines metallurgischen Gefäßes mit einer im Boden des metallurgischen Gefäßes angeordneten oberen Düse und einer unterhalb der oberen Düse angeordneten unteren Düse, mit mindestens einer inertgaseinlassöffnung und mit an oder in der unteren Düse angeordnetem Sensor zur Bestimmung der Schichtdicke von Festsetzungen in der Düse wird die lnertgaszufuhr in den Bodenausguss geregelt anhand der Messsignale des Sensors.According to the inventive method for controlling the flow through a bottom spout of a metallurgical vessel with a arranged in the bottom of the metallurgical vessel upper nozzle and a lower nozzle disposed below the lower nozzle, with at least one inertgaseinlassöffnung and arranged on or in the lower nozzle sensor for determining the layer thickness of fixings in the nozzle, the inert gas supply is controlled in the bottom spout on the basis of the measuring signals of the sensor.

Insbesondere wird ausgehend von einer vorhandenen Durchflussmenge des Inertgases oder einem vorhandenen Druck des Inertgases die Durchflussmenge und/oder der Druck solange reduziert, bis der Sensor eine Zunahme von Festsetzungen signalisiert und/oder die Durchflussmenge und/oder der Druck werden solange erhöht, bis der Sensor eine Abnahme oder eine Auflösung der Festsetzungen signalisiert. Dabei kann der Inergaszufluss auf ein Minimum herabgeregelt werden, so dass wenig Inertgas in die Metallschmelze geführt wird und in der Folge weniger Gaseinschlüsse in dem fertigen Metall, beispielsweise dem Stahl, vorhanden sind. Vorzugsweise wird als Sensor ein an oder in der Außenseite der unteren Düse angeordneter Temperatursensor verwendet. Die Messung kann auch induktiv, resistiv, mittels Ultraschall oder Röntgenstrahlen erfolgen. Zweckmäßig ist es, dass die Durchflussmenge und/oder der Druck so lange reduziert werden, bis die gemessene Wandtemperatur schneller sinkt als ein vorbestimmter Grenzwert der Abkühlung und/oder dass die Durchflussmenge und/oder der Druck solange erhöht werden, bis die gemessene Wandtemperatur weniger schnell sinkt als ein vorbestimmter Grenzwert der Abkühlung. Insbesondere kann es vorteilhaft sein, dass der Metallschmelzfluss mittels eines zwischen der oberen und der unteren Düse oder eines oberhalb der oberen Düse angeordneten Ventils geregelt wird. Im erstgenannten Fall wird zwischen der oberen und der unteren Düse ein Schieber-Ventil (Sliding Gate) verwendet, im letztgenannten Fall eine Stopfenstange (Stopper Rod). Zweckmäßig ist es, dass die Einleitung des Inertgases in die Durchflussöffnung des Bodenausgusses unterhalb der oberen Düse erfolgt. Vorzugsweise wird als lnertgas Argon verwendet.In particular, starting from an existing flow rate of the inert gas or an existing pressure of the inert gas, the flow rate and / or the pressure is reduced until the sensor signals an increase in determinations and / or the flow rate and / or the pressure are increased until the sensor indicates a decrease or a dissolution of the stipulations. In this case, the Inergaszufluss can be minimized to a minimum, so that little inert gas is fed into the molten metal and as a result less gas inclusions in the finished metal, such as steel, are present. Preferably, a temperature sensor arranged on or in the outside of the lower nozzle is used as the sensor. The measurement can also be made inductively, resistively, by means of ultrasound or X-rays. It is expedient that the flow rate and / or the pressure be reduced until the measured wall temperature drops faster than a predetermined limit value of the cooling and / or that the flow rate and / or the pressure are increased until the measured wall temperature is less fast decreases as a predetermined limit of cooling. In particular, it may be advantageous for the molten metal flow to be regulated by means of a valve arranged between the upper and the lower nozzle or a valve arranged above the upper nozzle. In the former case, a slide valve (sliding gate) is used between the upper and lower nozzles, in the latter case a stopper rod. It is expedient that the introduction of the inert gas takes place in the flow opening of the bottom spout below the upper nozzle. Preferably, argon is used as the inert gas.

Erfindungsgemäß weist ein Bodenausguss für ein metallurgischen Gefäß zur Durchführung des Verfahrens eine im Boden eines metallurgischen Gefäßes angeordnete obere Düse und eine unterhalb der oberen Düse angeordnete untere Düse auf, wobei unterhalb der unteren Düse mindestens eine Inertgaseinlassöffnung in die Durchflussöffnung des Bodenausgusses mit eine Inertgasanschluss angeordnet ist und wobei an oder in der Außenseite der unteren Düse ein Sensor, vorzugsweise ein Temperatursensor, angeordnet ist zur Bestimmung der Schichtdicke von Festsetzungen (clogging) in der Düse und wobei der Sensor mit einem Inertgasdurchflußregler verbunden ist. Mindestens eine der Düsen kann zweckmäßigerweise eine Heizung aufweisen. Sinnvoll ist es, dass unterhalb oder oberhalb der oberen Düse ein Ventil (Schieber-Ventil bzw- Stopfenstange) zur Regelung des Metallschmelzflusses angeordnet ist.According to the invention, a bottom spout for a metallurgical vessel for carrying out the method comprises an upper nozzle arranged in the bottom of a metallurgical vessel and a lower nozzle arranged below the upper nozzle, wherein at least one inert gas inlet opening is arranged below the lower nozzle in the flow opening of the bottom spout with an inert gas connection and wherein on or in the outside of the lower nozzle, a sensor, preferably a temperature sensor, is arranged for determining the layer thickness of clogging in the nozzle and wherein the sensor is connected to an inert gas flow regulator. At least one of the nozzles may conveniently have a heater. It makes sense that below or above the upper nozzle a valve (slide valve or stopper rod) is arranged to control the molten metal flow.

Ein weiterer erfindungsgemäßer Bodenausguss für ein metallurgisches Gefäß mit einer im Boden eines metallurgischen Gefäßes angeordneten oberen Düse und einer unterhalb der oberen Düse angeordneten unteren Düse weist eine zumindest metallschmelzflussdicht ausgebildete Wand der Durchflussöffnung durch die Düsen auf und ist dadurch gekennzeichnet, dass die Düsen zumindest teilweise von einem gasdichten Gehäuse umgeben sind, dass das Gehäuse an seinem unteren Ende die untere Düse an ihrem Umfang gasdicht umschließt, wobei es mit einem Teil seiner Innenseite an der Außenseite der Düse anliegt und dass zwischen der Wand der Durchflussöffnung und dem Gehäuse ein thermisch isolierender Feststoff angeordnet ist. Der Begriff "zumindest teilweise" ist so zu verstehen, dass das Gehäuse die Düse natürlich zum Beispiel an ihren Öffungen nicht umgeben kann. Das Gehäuse verhindert den Gasdurchtritt, es wiest ein oberes und ein unteres Ende auf und ist dazwischen gasdicht. Mit dieser Anordnung weist der Bodenausguss zwei grundsätzliche Dichtungen auf, nämlich eine Schmelzflussdichtung im Bereich der Wand der Durchlauföffnung und eine Gasdichtung im kälteren, der Durchflussöffnung abgewandten Bereich des Bodenausgusses. Dadurch können für die Erzielung der Gasdichtheit weniger temperaturbeständige Materialien eingesetzt werden. Unter gasdicht ist dabei natürlich keine absolute Gasdichtheit zu verstehen, sondern ein geringer Gasfluss ist möglich, beispielsweise weniger als 10 ml/s, vorzugsweise weniger als 1 ml/s, insbesondere bevorzugt etwa in der Größenordnung 104 ml/s, abhängig von der Art und Lage der Dichtungen / Materialien. Ein solcher Wert ist um mindestens eine Größenordnung geringer als bei dem bekannten Stand der Technik. Diese Gasdichtheit (insbesondere Sauerstoffdichtheit) ist verantwortlich für die Minimierung der Festsetzungen (clogging).Another inventive bottom spout for a metallurgical vessel with an upper nozzle arranged in the bottom of a metallurgical vessel and a lower nozzle arranged below the upper nozzle has an at least molten metal flow-tight design Wall of the flow opening through the nozzles and is characterized in that the nozzles are at least partially surrounded by a gas-tight housing, that the housing gas-tight encloses the lower nozzle at its lower end at its periphery, wherein it with a part of its inside on the outside the nozzle abuts and that between the wall of the flow opening and the housing, a thermally insulating solid is disposed. The term "at least partially" is to be understood as meaning that the housing, of course, can not surround the nozzle, for example, at its orifices. The housing prevents the passage of gas, it has an upper and a lower end and is gas-tight in between. With this arrangement, the floor spout on two basic seals, namely a melt flow seal in the region of the wall of the flow opening and a gas seal in the colder, the flow opening facing away from the bottom spout. As a result, less temperature-resistant materials can be used to achieve the gas-tightness. Under gas-tight course, no absolute gas tightness is to be understood, but a low gas flow is possible, for example, less than 10 ml / s, preferably less than 1 ml / s, more preferably about the order of 10 4 ml / s, depending on the type and location of seals / materials. Such a value is at least an order of magnitude less than in the known prior art. This gas tightness (especially oxygen tightness) is responsible for minimizing clogging.

Das Gehäuse weist vorzugsweise mehrere miteinander gasdicht verbundene, vorzugsweise übereinander angeordnete Gehäuseteile auf, wobei mindestens ein Gehäuseteil mit der oberen Düse und/oder dem Boden des metallurgischen Gefäßes gasdicht verbunden ist, vorzugsweise dadurch, dass es mit einem Teil seiner Seitenfläche an der Außenseite der oberen Düse und/oder des Bodens anliegt. Zweckmäßig ist es weiterhin, dass oberhalb der oberen Düse oder zwischen der oberen und der unteren Düse ein Ventil zur Regelung des Metallschmelzflusses angeordnet ist. Im erstgenanten Fall ist das Ventil eine Stopfenstange, im zweiten Fall ein Schieber-Ventil. Innerhalb des Gehäuses oder in dem thermisch isolierenden Material ist vorzugsweise ein Sauerstoff-Gettermaterial, insbesondere aus der Gruppe Titanium, Aluminium, Magnesium oder Zirkonium angeordnet.The housing preferably has a plurality of gas-tight connected, preferably superimposed housing parts, wherein at least one housing part with the upper nozzle and / or the bottom of the metallurgical vessel is connected gas-tight, preferably by having a part of its side surface on the outside of the upper Nozzle and / or the soil is applied. It is expedient, furthermore, that a valve for regulating the molten metal flow is arranged above the upper nozzle or between the upper and the lower nozzle. In the former case, the valve is a stopper rod, in the second case a slide valve. Within the housing or in the thermally insulating material is preferably an oxygen getter material, in particular from the group of titanium, aluminum, magnesium or zirconium arranged.

Das Gehäuse ist zweckmäßigerweise mindestens teilweise rohrförmig (Hohlzylinder) oder konisch, vorzugsweise mit ovalem oder kreisförmigem Querschnitt ausgebildet. Das Gehäuse kann zweckmäßigerweise aus Stahl gebildet sein und das thermisch isolierende Material kann vorzugsweise Aluminiumoxid enthalten. Sinnvoll kann es sein, dass mindestens eine der Düsen eine Heizung aufweist.The housing is expediently at least partially tubular (hollow cylinder) or conical, preferably formed with an oval or circular cross-section. The housing may conveniently be formed of steel and the thermally insulating material may preferably contain alumina. It may make sense that at least one of the nozzles has a heater.

Nachfolgend wird die Erfindung beispielhaft anhand einer Zeichnung erläutert. In der Zeichnung zeigt:

Figur 1
einen Bodenausguss zur Durchführung des erfindungsgemäßen Verfahrens,
Figur 2
ein Temperatur/Druck-Zeitdiagramm,
Figur 3
einen erfindungsgemäß abgedichteten Bodenausguss.
The invention will be explained by way of example with reference to a drawing. In the drawing shows:
FIG. 1
a floor spout for carrying out the method according to the invention,
FIG. 2
a temperature / pressure time diagram,
FIG. 3
a sealed according to the invention bottom spout.

Der in Figur 1 dargestellte Bodenausguss im Boden 1 eines Verteilers für Stahlschmelze 2 weist innerhalb des Bodens 1 eine obere Düse 3 auf. In dieser sind Elektroden 4 zur Erzeugung eines elektrochemischen Effektes oder als Heizer angeordnet. Der Boden 1 selbst weist verschiedene Schichten aus einem feuerfesten Material und an seiner Außenseite ein Stahlgehäuse 5 auf. Unterhalb der oberen Düse 3 ist ein Schieber-Ventil 6 angeordnet zur Regelung des Stahlschmelzflusses und darunter eine untere Düse 7, die bis in den Metallschmelzebehälter 8 hineinragt, der beispielsweise zu einer Stranggussanlage für den Stahl gehört. Durch Öffnungen 9 fließt die Stahlschmelze 2 in den Metallschmelzbehälter 8. Ein Temperatursensor 10 misst die Temperatur an der Außenseite der unteren Düse. Wenn diese sinkt, deutet dies auf ein Wachsen der Festsetzungen innerhalb der unteren Düse 7 hin, da die Isolation zwischen der Außenseite der unteren Düse 7 und der hindurchfließenden Stahlschmelze 2 zunimmt. Der Temperatursensor 10 bewirkt gemeinsam mit dem Drucksensor 11 über eine Druckregelung 12 die Regelung der Argonzufuhr durch die Inertgaseinlassöffnung 13 zu der Metallschmelze 2.The bottom spout shown in Figure 1 in the bottom 1 of a distributor for molten steel 2 has within the bottom 1 an upper nozzle 3. In this electrodes 4 are arranged to produce an electrochemical effect or as a heater. The floor 1 itself has various layers of a refractory material and on its outer side a steel housing 5. Below the upper nozzle 3, a slide valve 6 is arranged to control the molten steel flow and below a lower nozzle 7, which extends into the molten metal container 8, which belongs for example to a continuous casting plant for the steel. Through openings 9, the molten steel 2 flows into the molten metal container 8. A temperature sensor 10 measures the temperature on the outside of the lower nozzle. If this decreases, this indicates a growth of the fixings within the lower nozzle 7, since the insulation between the outside of the lower nozzle 7 and the flowing molten steel 2 increases. The temperature sensor 10, together with the pressure sensor 11 via a pressure control 12, the control of the argon supply through the Inertgaseinlassöffnung 13 to the molten metal second

In Figur 2 ist ein Zeit-Druck/Temperaturverlauf dargestellt. Bei sinkender Temperatur (dicke Linie) wird stufenweise der Argondruck erhöht, so dass der Argonzufluss in die Durchlauföffnung eine Auflösung der Festsetzungen an der Wand bewirkt. In der Folge steigt die an der Außenwand gemessene Temperatur wieder an bis zu einem gleichbleibenden Wert. Auf diese Weise kann der ArgondrucklArgonzufluss auf ein Minimum eingestellt werden, bei welchem die Bildung von Festsetzungen gerade verhindert oder geringfügig gehelten wird.FIG. 2 shows a time pressure / temperature profile. As the temperature decreases (thick line), the argon pressure is gradually increased so that the flow of argon into the flow passage causes dissolution of the wall fixings. As a result, the temperature measured on the outer wall increases again to a constant value. In this way, argon pressure inflow can be minimized, at which the formation of fixes is just prevented or minimized.

Der in Figur 3 dargestellte Bodenausguss weist eine grundsätzlich zweiteilige Abdichtung auf, nämlich eine schmelzflussdichte Abdichtung längs der Innenseite der Durchflussöffnung und ein Gehäuse 14, welches eine gasdichte Abdichtung nach außen hin (zwischen der Umgebungsatmosphäre und der Durchflußöffnung) realisiert, wobei die einzelnen Dichtungen in einem deutlich niedrigeren Temperaturbereich angeordnet sind. Das Gehäuse 14 besteht aus mehreren Teilen 14a und 14b und ist prinzipiell fortgesetzt in der Metallhülse 15, die die obere Düse 3 an ihrer Außenseite umfasst und in einen Flansch 16 mündet, an dem ein Teil der Außenfläche des oberen Gehäuseteils 14b dichtend angeordnet ist. In der Figur sind die verschiedenen Dichtungen dargestellt. Sogenannte Typ-1-Dichtungen 17 bestehen zwischen gegeneinander bewegbaren Teilen an dem Schieber-Ventil 6. Sie sind der Metallschmelze zumindest teilweise ausgesetzt. Typ-2-Dichtungen 18 sind zwischen Feuerfestteilen des Bodenausgusses 1 angeordnet, also beispielsweise zwischen den Teilen des Schieber-Ventils 6 und der oberen Düse 3 bzw. der unteren Düse 7. Auch diese Typ-2-Dichtungen 18 sind der Metallschmelze bzw. der Temperatur von flüssigem Stahl zumindest teilweise direkt ausgesetzt. Des weiteren stellt die Wand der Durchflussöffnung des Bodenausgusses 1 selbst eine Dichtung (Typ-3-Dichtung) dar, die durch die Wahl des Materials beeinflußt wird. Die vorbeschriebenen Dichtungen sind prinzipiell bei allen bekannten Anordnungen ebenfalls vorhanden. Sie können beispielsweise aus Aluminiumoxid gebildet sein Die Dichtwirkung der Typ-3-Dichtungen kann verbessert werden unter anderem durch Hochtemperaturglasschichten. Die Teile des äußeren Gehäuses 14 bilden eine Typ-4-Dichtung, die nicht der Stahlschmelze oder Temperaturen in vergleichbarer Höhe ausgesetzt sind. Diese Dichtungen können aus Metall, beispielsweise aus Stahl gebildet sein oder aus dicht gesintertem keramischen Material. Typ-5-Dichtungen 19 stehen zwischen Teilen des Gehäuses 14 und beweglichen Teilen der Durchflussregelung, wie den Schubstangen 20 des Schieber-Ventils 6. Sie sind nicht dem flüssigen Stahl ausgesetzt und können, je nach konkreten Temperaturbedingungen aus Inkonel (bis 800°C), aus Aluminium, Kupfer oder Graphit (bis etwa 450° C) oder aus einem
elastomeren Material (bei Temperaturen bis etwa 200°C) gebildet sein, ebenso wie die Typ-6-Dichtungen 20 zwischen den einzelnen Gehäuseteilen. Darüber hinaus bestehen als Übergang zwischen dem feuerfesten Material der oberen Düse 3 bzw. der unteren Düse 7 und dem diese an der Außenseite umgebenden Gehäuse 14 bzw. Metallhülse 15 Typ-7-Dichtungen 21, die verhindern, dass Gas, insbesondere Sauerstoff an der Verbindungsstelle dieser Baueile entlang in den Hohlraum 22 zwischen Gehäuseteil 14b und den Schieber-Ventil 6 eindringen. Dadurch ist ein Unterdruck innerhalb des Hohlraums 22 gegenüber seiner Umgebung gewährleistet während des Durchfließens der Metallschmelze 2 durch den Bodenausguss 1. Diese Typ-7-Dichtung kann beim Hersteller der Düsen hergestellt und eingestellt werden.
The bottom spout shown in Figure 3 has a basically two-part seal, namely a melt flow-tight seal along the inside of the flow opening and a housing 14, which realizes a gas-tight seal to the outside (between the ambient atmosphere and the flow opening), wherein the individual seals in a significantly lower temperature range are arranged. The housing 14 consists of several parts 14a and 14b and is in principle continued in the metal sleeve 15, which comprises the upper nozzle 3 on its outer side and opens into a flange 16, on which a part of the outer surface of the upper housing part 14b is sealingly arranged. In the figure, the various seals are shown. So-called type 1 seals 17 exist between mutually movable parts on the slide valve 6. They are at least partially exposed to molten metal. Type 2 seals 18 are disposed between refractory parts of the bottom spout 1, that is, for example, between the parts of the spool valve 6 and the upper nozzle 3 and the lower nozzle 7. These type 2 seals 18 are the molten metal or the Temperature of liquid steel at least partially exposed directly. Furthermore, the wall of the flow opening of the floor spout 1 itself is a seal (type 3 seal), which is influenced by the choice of material. The above-described seals are in principle also present in all known arrangements. They may be formed of alumina, for example. The sealing effect of the Type 3 seals can be improved, inter alia, by high temperature glass layers. The parts of the outer housing 14 form a type 4 seal which are not exposed to molten steel or temperatures of comparable height. These seals may be formed of metal, for example of steel, or of densely sintered ceramic material. Type 5 seals 19 are located between parts of the housing 14 and moving parts of the flow control, such as the push rods 20 of the slide valve 6. They are not exposed to the liquid steel and can, depending on the specific temperature conditions of Inkonel (up to 800 ° C) , made of aluminum, copper or graphite (up to about 450 ° C) or from one
elastomeric material (at temperatures up to about 200 ° C) may be formed, as well as the type 6 seals 20 between the individual housing parts. In addition, as a transition between the refractory material of the upper nozzle 3 and the lower nozzle 7 and surrounding them on the outside housing 14 and metal sleeve 15 type 7 seals 21, which prevent gas, especially oxygen at the junction along these building parts in the cavity 22 between the housing part 14b and the slide valve 6 penetrate. Thereby, a negative pressure within the cavity 22 is ensured against its environment during the passage of the molten metal 2 through the bottom spout 1. This type 7 seal can be made and adjusted by the manufacturer of the nozzles.

Die obere Düse 3 kann aus Zirkondioxid gebildet sein, die untere Düse aus Aluminiumoxid. Schaumförmiges Aluminiumoxid mit einer niedrigen Dichte und geschlossenen Poren kann ebenfalls verwendet werden, ebenso wie Aluminiumoxid-Graphit, andere feuerfeste schaumförmige oder Fasermaterialien. In dem thermisch isolierenden Material der unteren Düse 7 oder zwischen der unteren Düse 7 und dem Gehäuseteil 14a kann ein Sauerstoffgettermaterial, beispielsweise Titanium, Aluminium, Magnesium, Yttrium oder Zirkonium angeordnet sein als Mischung mit dem feuerfesten isolierenden Material oder als sepatates Teil.The upper nozzle 3 may be formed of zirconia, the lower nozzle of alumina. Foam alumina with a low density and closed pores may also be used, as well as alumina graphite, other refractory foam or fiber materials. In the thermally insulating material of the lower nozzle 7 or between the lower nozzle 7 and the housing part 14a, an oxygen getter material such as titanium, aluminum, magnesium, yttrium or zirconium may be arranged as a mixture with the refractory insulating material or as a sepatates part.

Der erfindungsgemäße Bodenausguss weist eine wesentlich geringere Leckrate auf als bekannte Systeme. Typ-1- bzw. Typ-2-Dichtungen weisen eine Leckrate von etwa 103 bis 104 bzw. 102 bis 103 ml/s auf und Standardmaterialien für die Typ-3-Dichtungen führen zu Leckraten von etwa 10 bis 100 ml/s. Typ-4-Dichtungen führen zu einer Leckrate von vemachlässigbaren weniger als 10-8 ml/s, wenn Metall (beispielsweise Stahl) als Material verwendet wird. Typ-5- und
Typ-6-Dichtungen können bei Verwendung von Polymermaterial eine Leckrate von etwa 10-4 ml/s und bei Verwendung von entsprechend geeigneten Graphitdichtungen von etwa 1 ml/s erreichen. Typ-7-Dichtungen sind ähnlich einer Kombination aus Typ-3- und Typ-4-Dichtungen und können eine Leckrate von etwa 1 bis 10 ml/s erreichen. Die Leckraten beziehen sich auf den Betriebszustand des Bodenausgusses.
Die normierte Leckrate (Nml/s) = Leckrate (ml/s) x pavg/1atm x 273 K/Tavg p avg = ( p in + p out ) / 2 < atm >

Figure imgb0001
T avg = ( T in + T out ) / 2 < κ >
Figure imgb0002
avg = Durchschnittswert.The floor drain according to the invention has a significantly lower leakage rate than known systems. Type 1 and Type 2 seals have a leak rate of approximately 10 3 to 10 4 and 10 2 to 10 3 ml / s, respectively, and standard materials for the Type 3 seals result in leakage rates of approximately 10 to 100 ml / s. Type 4 seals result in a leakage rate of negligible less than 10 -8 ml / s when metal (such as steel) is used as the material. Type-5 and
Type 6 seals can achieve a leak rate of about 10 -4 ml / s using polymer material and using appropriately sized graphite seals of about 1 ml / sec. Type 7 seals are similar to a combination of Type 3 and Type 4 seals and can reach a leak rate of approximately 1 to 10 ml / s. The leak rates refer to the operating condition of the floor spout.
The normalized leak rate (Nml / s) = leak rate (ml / s) xp avg / 1 atm x 273 K / avg p avg = ( p in + p out ) / 2 < atm >
Figure imgb0001
T avg = ( T in + T out ) / 2 < κ >
Figure imgb0002
avg = average value.

Damit ist die normierte Leckrate gemäß der Erfindung in der Größenordnung von etwa 1 bis 10Nml/s, während die Kombination von Typ-1-, Typ-2- und Typ-3-Dichtungen bestenfalls zu 150 Nml/s führt.Thus, the normalized leak rate according to the invention is on the order of about 1 to 10 nml / s, while the combination of type 1, type 2 and type 3 seals leads at best to 150 Nml / s.

Claims (18)

Verfahren zur Regelung des Durchflusses durch einen Bodenausguss eines metallurgischen Gefäßes mit einer im Boden (1) des metallurgischen Gefäßes angeordneten oberen Düse (3) und einer unterhalb der oberen Düse (3) angeordneten unteren Düse (7), mit mindestens einer Inertgaseinlassöffnung (13) und mit an oder in der unteren Düse (7) angeordnetem Sensor (10) mit dem die Schichtdicke von Festsetzungen (clogging) in der Düse bestimmt wird, wobei die Inertgaszufuhr in den Bodenausguss geregelt wird anhand der Messsignale des Sensors (10),Method for regulating the flow through a bottom spout of a metallurgical vessel with an upper nozzle (3) arranged in the bottom (1) of the metallurgical vessel and a lower nozzle (7) arranged below the upper nozzle (3) with at least one inert gas inlet opening (13) and with sensor (10) arranged on or in the lower nozzle (7) with which the layer thickness of clogging in the nozzle is determined, the inert gas feed into the bottom nozzle being regulated on the basis of the measuring signals of the sensor (10), Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ausgehend von einer vorhandenen Durchflussmenge des Inertgases oder einem vorhandenen Druck des Inertgases die Durchflussmenge und/oder der Druck solange reduziert werden, bis der Sensor (10) eine Zunahme von Festsetzungen signalisiert und/oder dass die Durchflussmenge und/oder der Druck solange erhöht werden, bis der Sensor (10) eine Abnahme oder eine Auflösung der Festsetzungen signalisiert.A method according to claim 1, characterized in that starting from an existing flow rate of the inert gas or an existing pressure of the inert gas, the flow rate and / or pressure are reduced until the sensor (10) signals an increase of determinations and / or that the flow rate and / or the pressure is increased until the sensor (10) signals a decrease or a resolution of the determinations. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als Sensor (10) ein an oder in der Außenseite der unteren Düse (7) angeordneter Temperatursensor verwendet wird.A method according to claim 1 or 2, characterized in that as a sensor (10) on or in the outside of the lower nozzle (7) arranged temperature sensor is used. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Durchflussmenge und/oder der Druck solange reduziert werden, bis die gemessene Wandtemperatur schneller sinkt als ein vorbestimmter Grenzwert der Abkühlung und/oder dass die Durchflussmenge und/oder der Druck solange erhöht werden, bis die gemessene Wandtemperatur weniger schnell sinkt als ein vorbestimmter Grenzwert der Abkühlung.A method according to claim 3, characterized in that the flow rate and / or the pressure are reduced until the measured wall temperature decreases faster than a predetermined limit value of the cooling and / or that the flow rate and / or the pressure is increased until the measured wall temperature decreases less rapidly than a predetermined threshold value of the cooling. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Metallschmelzflusses mittels eines oberhalb oder unterhalb der oberen Düse (3) angeordneten Ventils (6) geregelt werden kann.Method according to one of claims 1 to 4, characterized in that the molten metal flow can be regulated by means of a valve (6) arranged above or below the upper nozzle (3). Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Einleitung des Inertgases in die Durchflussöffnung des Bodenausgusses unterhalb der oberen Düse (3) erfolgt.Method according to one of claims 1 to 5, characterized in that the introduction of the inert gas takes place in the flow opening of the bottom spout below the upper nozzle (3). Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass Argon als Inertgas verwendet wird.Method according to one of claims 1 to 6, characterized in that argon is used as the inert gas. Bodenausguss für ein metallurgisches Gefäß zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 7 mit einer im Boden (1) eines metallurgischen Gefäßes angeordneten oberen Düse (3) und einer unterhalb der oberen Düse (3) angeordneten unteren Düse (7), wobei unterhalb der oberen Düse (3) mindestens eine Inertgaseinlassöffnung (13) mit einem Inertgasanschluss angeordnet ist, wobei an oder in der Außenseite der unteren Düse (7) ein Sensor (10) angeordnet ist zur Bestimmung der Schichtdicke von Festsetzungen (clogging) in der Düse und wobei der Sensor mit einem Inertgasdurchflußregler verbunden ist.Floor spout for a metallurgical vessel for carrying out the method according to one of Claims 1 to 7, having an upper nozzle (3) arranged in the bottom (1) of a metallurgical vessel and a lower nozzle (7) arranged below the upper nozzle (3), below at least one inert gas inlet opening (13) with an inert gas connection is arranged on the upper nozzle (3), a sensor (10) being arranged on or in the outer side of the lower nozzle (7) for determining the layer thickness of clogging in the nozzle and wherein the sensor is connected to an inert gas flow regulator. Bodenausguss nach Anspruch 8, dadurch gekennzeichnet, dass der Sensor (10) ein Temperatursensor ist.Floor spout according to claim 8, characterized in that the sensor (10) is a temperature sensor. Bodenausguss nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass mindestens eine der Düsen (3;7) eine Heizung aufweist.Floor spout according to claim 8 or 9, characterized in that at least one of the nozzles (3; 7) has a heater. Bodenausguss nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass oberhalb oder unterhalb der oberen Düse (3) ein Ventil (6) zur Regelung des Metallschmelzflusses angeordnet ist.Floor spout according to one of claims 8 to 10, characterized in that above or below the upper nozzle (3) a valve (6) is arranged for controlling the molten metal flow. Bodenausguss für ein metallurgisches Gefäß mit einer im Boden (1) eines metallurgischen Gefäßes angeordneten oberen Düse (3) und einer unterhalb der oberen Düse (3) angeordneten unteren Düse (7), wobei die Wand der Durchflussöffnung durch die Düsen (3:7) zumindest metallschmelzflussdicht ausgebildet ist, dadurch gekennzeichnet, dass die Düsen (3;7) zumindest teilweise von einem gasdichten Gehäuse (14) umgeben sind, dass das Gehäuse (14) an seinem unteren Ende die untere Düse (7) an ihrem Umfang gasdicht umschließt, wobei es mit einem Teil seiner Innenseite an der Außenseite der Düse (7) anliegt und dass zwischen der Wand der Durchflussöffnung und dem Gehäuse (14) ein thermisch isolierender Feststoff angeordnet ist.Floor spout for a metallurgical vessel with an upper nozzle (3) arranged in the bottom (1) of a metallurgical vessel and one below the upper nozzle (3) arranged lower nozzle (7), wherein the wall of the flow opening through the nozzles (3: 7) is formed at least molten metal flow, characterized in that the nozzles (3; 7) are at least partially surrounded by a gas-tight housing (14) that the Housing (14) at its lower end, the lower nozzle (7) encloses gas-tight at its periphery, wherein it bears with a part of its inner side on the outside of the nozzle (7) and that between the wall of the flow opening and the housing (14) thermally insulating solid is arranged. Bodenausguss nach Anspruch 12, dadurch gekennzeichnet, dass das Gehäuse (14) mehrere miteinander gasdicht verbundene, vorzugsweise übereinander angeordnete Gehäuseteile (14a;14b) aufweist, wobei mindestens ein Gehäuseteil (14b) mit der oberen Düse (3) und/oder dem Boden (1) gasdicht verbunden ist, vorzugsweise dadurch, dass es mit einem Teil seiner Seitenfläche an der Außenseite der oberen Düse (3) und/oder des Bodens (1) anliegt.Floor spout according to Claim 12, characterized in that the housing (14) has a plurality of housing parts (14a, 14b) which are connected to one another in a gas-tight manner, wherein at least one housing part (14b) is connected to the upper nozzle (3) and / or the floor ( 1) is connected in a gastight manner, preferably in that it rests with a part of its side surface on the outside of the upper nozzle (3) and / or the bottom (1). Bodenausguss nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass oberhalb der oberen Düse (3) oder zwischen der oberen und der unteren Düse ein Ventil (6) zur Regelung des Metallschmelzflusses angeordnet ist.Floor spout according to claim 12 or 13, characterized in that above the upper nozzle (3) or between the upper and the lower nozzle, a valve (6) is arranged for controlling the molten metal flow. Bodenausguss nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass innerhalb des Gehäuses (14) oder in dem thermisch isolierenden Material ein Gettermaterial, vorzugsweise aus der Gruppe Titanium, Aluminium, Magnesium oder Zirkonium angeordnet ist.Floor spout according to one of claims 12 to 14, characterized in that within the housing (14) or in the thermally insulating material, a getter material, preferably from the group of titanium, aluminum, magnesium or zirconium is arranged. Bodenausguss nach einem der Ansprüche 12 bis 15, dadurch gekennzeichnet, dass mindestens ein Teil des Gehäuses (14) rohrförmig oder konisch, vorzugsweise mit ovalem oder kreisförmigem Querschnitt, ausgebildet ist.Floor spout according to one of claims 12 to 15, characterized in that at least part of the housing (14) is tubular or conical, preferably with an oval or circular cross-section. Bodenausguss nach einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, dass das Gehäuse (14) aus Stahl gebildet ist und dass das thermisch isolierende Material vorzugsweise überwiegend Aluminiumoxid enthält.Floor spout according to one of claims 12 to 16, characterized in that the housing (14) is formed of steel and that the thermally insulating material preferably contains predominantly alumina. Bodenausguss nach einem der Ansprüche 12 bis 17, dadurch gekennzeichnet, dass mindestens eine der Düsen (3;7) eine Heizung aufweist.Floor spout according to one of claims 12 to 17, characterized in that at least one of the nozzles (3; 7) has a heater.
EP05024382A 2004-11-26 2005-11-09 Process for regulating the flow rate and bottom tap hole for metallurgical vessel Expired - Lifetime EP1661645B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05024382T PL1661645T3 (en) 2004-11-26 2005-11-09 Process for regulating the flow rate and bottom tap hole for metallurgical vessel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004057381A DE102004057381A1 (en) 2004-11-26 2004-11-26 Method for controlling the flow and bottom outlet for a metallurgical vessel

Publications (3)

Publication Number Publication Date
EP1661645A2 true EP1661645A2 (en) 2006-05-31
EP1661645A3 EP1661645A3 (en) 2006-11-08
EP1661645B1 EP1661645B1 (en) 2008-12-10

Family

ID=36097343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05024382A Expired - Lifetime EP1661645B1 (en) 2004-11-26 2005-11-09 Process for regulating the flow rate and bottom tap hole for metallurgical vessel

Country Status (18)

Country Link
US (2) US8273288B2 (en)
EP (1) EP1661645B1 (en)
JP (1) JP4658785B2 (en)
KR (1) KR101092125B1 (en)
CN (1) CN1781626B (en)
AR (1) AR051232A1 (en)
AT (1) ATE416866T1 (en)
AU (1) AU2005234658B2 (en)
BR (1) BRPI0505332A (en)
CA (1) CA2523666C (en)
DE (2) DE102004057381A1 (en)
ES (1) ES2319309T3 (en)
MX (1) MXPA05012744A (en)
PL (1) PL1661645T3 (en)
PT (1) PT1661645E (en)
RU (2) RU2381869C2 (en)
UA (2) UA80339C2 (en)
ZA (1) ZA200509511B (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004057381A1 (en) * 2004-11-26 2006-06-01 Heraeus Electro-Nite International N.V. Method for controlling the flow and bottom outlet for a metallurgical vessel
KR20080113771A (en) * 2007-06-26 2008-12-31 주식회사 포스코 Nozzle blockage preventing device, continuous casting device having the same, nozzle blockage prevention method and continuous casting method using the same
DE102009020990A1 (en) 2009-05-12 2010-11-18 Heraeus Electro-Nite International N.V. Floor spout for use in a container for molten metal
US20110049197A1 (en) * 2009-08-06 2011-03-03 Paul Anthony Withey Liquid device having filter
BE1020419A5 (en) 2010-10-18 2013-10-01 Soudal MANUAL APPLICATOR SUITABLE FOR PISTOL VALVE CONTAINERS.
DE102010050936A1 (en) 2010-11-11 2012-05-16 Heraeus Electro-Nite International N.V. Floor spout nozzle for placement in the bottom of a metallurgical vessel
CN103487249B (en) * 2013-10-08 2017-01-11 首钢京唐钢铁联合有限责任公司 Continuous casting fan-shaped section nozzle working state judgment system and judgment method
KR101646680B1 (en) * 2014-12-04 2016-08-09 주식회사 포스코 Monitoring apparatus for opening ladle and control method thereof
NL2018720B1 (en) * 2017-04-14 2018-10-24 Bond High Performance 3D Tech B V Three-dimensional modeling method and system
KR102115890B1 (en) * 2018-08-03 2020-05-27 주식회사 포스코 Apparatus for casting and method thereof
JP7230782B2 (en) * 2019-11-15 2023-03-01 トヨタ自動車株式会社 casting equipment
KR102324539B1 (en) * 2020-03-18 2021-11-10 조선내화 주식회사 Molten steel casting well block with improved function and manufacturing method
WO2021214513A1 (en) * 2020-04-20 2021-10-28 Arcelormittal Method for determining the remaining service life of an argon injected slide gates
CN112157240B (en) * 2020-09-30 2022-03-22 首钢集团有限公司 Method for detecting blockage of submerged nozzle of crystallizer
US20220111434A1 (en) * 2020-10-08 2022-04-14 Wagstaff, Inc. Material, apparatus, and method for refractory castings
US20240357712A1 (en) 2023-04-21 2024-10-24 Wagstaff, Inc. Material, apparatus, and method for electrically shielding heated components

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861954A (en) 1981-10-09 1983-04-13 Mitsubishi Heavy Ind Ltd Sealed type continuous casting installation
JPS613653B2 (en) 1980-06-05 1986-02-03 Toppan Printing Co Ltd
JPS61206559A (en) 1985-03-12 1986-09-12 Daido Steel Co Ltd Gas sealing method for molten steel flow
JPH02187239A (en) 1989-01-12 1990-07-23 Nippon Steel Corp How to pour water into the tundish
JPH04270042A (en) 1991-02-26 1992-09-25 Daido Steel Co Ltd Continuous casting method and sliding nozzle seal device for continuous casting tundish
JPH07290422A (en) 1994-04-20 1995-11-07 Tokyo Yogyo Co Ltd Cast molding method of tundish upper nozzle
JPH08290250A (en) 1995-04-20 1996-11-05 Daido Steel Co Ltd Tundish nozzle device and continuous casting method for free-cutting steel using the same
JPH11170033A (en) 1997-12-12 1999-06-29 Nippon Steel Corp Sliding nozzle sealing method
JP3193250B2 (en) 1994-12-19 2001-07-30 アサヒビール株式会社 Diaphragm type pressure gauge
WO2001056725A1 (en) 2000-02-02 2001-08-09 Ltv Steel Company, Inc. Preventing air aspiration in slide gate plate throttling mechanisms
JP2002143994A (en) 2000-11-07 2002-05-21 Daido Steel Co Ltd Structure to prevent intrusion of outside air from sliding gate part of continuous casting equipment
JP2002210545A (en) 2001-01-17 2002-07-30 Toshiba Ceramics Co Ltd Nozzle for continuous casting
KR20030017154A (en) 2001-08-24 2003-03-03 주식회사 포스코 Device for compensating inner nagative pressure of submerged entry nozzle
US20030116893A1 (en) 2001-12-21 2003-06-26 Bethlehem Steel Corporation Apparatus and method for delivering an inert gas to prevent plugging in a slide gate
KR20030054769A (en) 2001-12-26 2003-07-02 주식회사 포스코 A continuously casting method for low air inclusions in slab
WO2004035249A1 (en) 2002-10-16 2004-04-29 Vesuvius Crucible Company Permeable refractory material for a gas purged nozzle

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49119424U (en) * 1973-02-12 1974-10-12
US3825241A (en) * 1973-10-26 1974-07-23 Steel Corp Apparatus for introducing gas to hot metal in a bottom pour vessel
CH650176A5 (en) * 1982-08-23 1985-07-15 Daussan & Co DEVICE FOR THE CASTING OF MOLTEN METAL.
JPS59133955A (en) * 1983-01-21 1984-08-01 Nippon Steel Corp Heater for continuous casting nozzle
JPS613653A (en) * 1984-06-15 1986-01-09 Kawasaki Steel Corp Sliding nozzle device having sealing mechanism
DE3512907C2 (en) * 1985-04-11 1991-01-03 Stopinc Ag, Baar Pouring sleeve for a container containing molten metal
JPH0184861U (en) * 1987-11-27 1989-06-06
JPH0688127B2 (en) * 1988-03-09 1994-11-09 川崎製鉄株式会社 Slag outflow detection method
JPH02200362A (en) * 1989-01-30 1990-08-08 Kawasaki Steel Corp Method for predicting and restraining nozzle clogging in continuous casting apparatus
JPH03193250A (en) * 1989-12-25 1991-08-23 Kawasaki Steel Corp Method for detecting clogging of tundish submerged nozzle
DE4007993A1 (en) * 1990-03-13 1991-09-19 Zimmermann & Jansen Gmbh SLIDING CLOSURE FOR A METALLURGICAL CASTING CASE, ESPECIALLY A CASTING PAN
DE4024520A1 (en) * 1990-08-02 1992-02-06 Didier Werke Ag CONNECTION BETWEEN THE OUTLET OF A METALLURGICAL VESSEL AND A PROTECTIVE PIPE OR DIP SPOUT
JP2744853B2 (en) * 1991-03-29 1998-04-28 品川白煉瓦株式会社 Plate brick cartridge for slide valve device and slide valve device using the cartridge
WO1997004901A1 (en) 1995-07-27 1997-02-13 Usx Engineers And Consultants, Inc. Limiting ingress of gas to continuous caster
JPH09126858A (en) * 1995-10-30 1997-05-16 Nittetsu Hokkaido Seigyo Syst Kk Device for measuring molten metal level in continuous casting equipment
JPH11104814A (en) * 1997-10-01 1999-04-20 Toshiba Ceramics Co Ltd Nozzle for casting
JPH11300451A (en) * 1998-04-22 1999-11-02 Furukawa Electric Co Ltd:The Vertical Continuous Casting Cradle and Vertical Continuous Casting Method Using the Cradle
US6322912B1 (en) * 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
JP2000153348A (en) * 1998-11-17 2000-06-06 Nkk Corp Wiring protection structure
JP2002153951A (en) * 2000-11-22 2002-05-28 Akechi Ceramics Co Ltd Immersion nozzle for continuous casting
KR100817146B1 (en) 2001-09-07 2008-03-27 주식회사 포스코 Attachment prevention device of tundish upper nozzle and prevention method
JP2004243407A (en) * 2003-02-17 2004-09-02 Sumitomo Metal Ind Ltd Continuous casting method of molten Mg alloy
DE102004057381A1 (en) * 2004-11-26 2006-06-01 Heraeus Electro-Nite International N.V. Method for controlling the flow and bottom outlet for a metallurgical vessel

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613653B2 (en) 1980-06-05 1986-02-03 Toppan Printing Co Ltd
JPS5861954A (en) 1981-10-09 1983-04-13 Mitsubishi Heavy Ind Ltd Sealed type continuous casting installation
JPS61206559A (en) 1985-03-12 1986-09-12 Daido Steel Co Ltd Gas sealing method for molten steel flow
JPH02187239A (en) 1989-01-12 1990-07-23 Nippon Steel Corp How to pour water into the tundish
JPH04270042A (en) 1991-02-26 1992-09-25 Daido Steel Co Ltd Continuous casting method and sliding nozzle seal device for continuous casting tundish
JPH07290422A (en) 1994-04-20 1995-11-07 Tokyo Yogyo Co Ltd Cast molding method of tundish upper nozzle
JP3193250B2 (en) 1994-12-19 2001-07-30 アサヒビール株式会社 Diaphragm type pressure gauge
JPH08290250A (en) 1995-04-20 1996-11-05 Daido Steel Co Ltd Tundish nozzle device and continuous casting method for free-cutting steel using the same
JPH11170033A (en) 1997-12-12 1999-06-29 Nippon Steel Corp Sliding nozzle sealing method
WO2001056725A1 (en) 2000-02-02 2001-08-09 Ltv Steel Company, Inc. Preventing air aspiration in slide gate plate throttling mechanisms
JP2002143994A (en) 2000-11-07 2002-05-21 Daido Steel Co Ltd Structure to prevent intrusion of outside air from sliding gate part of continuous casting equipment
JP2002210545A (en) 2001-01-17 2002-07-30 Toshiba Ceramics Co Ltd Nozzle for continuous casting
KR20030017154A (en) 2001-08-24 2003-03-03 주식회사 포스코 Device for compensating inner nagative pressure of submerged entry nozzle
US20030116893A1 (en) 2001-12-21 2003-06-26 Bethlehem Steel Corporation Apparatus and method for delivering an inert gas to prevent plugging in a slide gate
KR20030054769A (en) 2001-12-26 2003-07-02 주식회사 포스코 A continuously casting method for low air inclusions in slab
WO2004035249A1 (en) 2002-10-16 2004-04-29 Vesuvius Crucible Company Permeable refractory material for a gas purged nozzle

Also Published As

Publication number Publication date
RU2433887C2 (en) 2011-11-20
ZA200509511B (en) 2006-08-30
PT1661645E (en) 2009-03-17
BRPI0505332A (en) 2006-07-11
CN1781626B (en) 2014-04-16
CA2523666C (en) 2010-06-01
US20100147904A1 (en) 2010-06-17
DE102004057381A1 (en) 2006-06-01
DE502005006195D1 (en) 2009-01-22
US20060113059A1 (en) 2006-06-01
KR101092125B1 (en) 2011-12-12
UA80339C2 (en) 2007-09-10
PL1661645T3 (en) 2009-05-29
JP4658785B2 (en) 2011-03-23
ATE416866T1 (en) 2008-12-15
KR20060059219A (en) 2006-06-01
CN1781626A (en) 2006-06-07
JP2006150453A (en) 2006-06-15
AU2005234658A1 (en) 2006-06-15
US8273288B2 (en) 2012-09-25
RU2381869C2 (en) 2010-02-20
UA85630C2 (en) 2009-02-10
AR051232A1 (en) 2006-12-27
AU2005234658B2 (en) 2008-01-17
CA2523666A1 (en) 2006-05-26
MXPA05012744A (en) 2006-07-10
EP1661645A3 (en) 2006-11-08
ES2319309T3 (en) 2009-05-06
EP1661645B1 (en) 2008-12-10
RU2009135250A (en) 2011-03-27
RU2005136813A (en) 2007-05-27
US8012405B2 (en) 2011-09-06

Similar Documents

Publication Publication Date Title
EP1661645B1 (en) Process for regulating the flow rate and bottom tap hole for metallurgical vessel
DE2734388C2 (en) Method and device for continuous casting
DE69504027T2 (en) CASTING PART WITH AN OUTER LAYER SUITABLE FOR FORMING A GAS-SEAL LAYER AND PRODUCTION METHOD THEREFOR
DE1935401B2 (en) Sliding closure for pouring pans provided with a bottom pouring opening or similar containers for pouring liquid metals, especially steel
DE3339586C2 (en)
DE10392959B4 (en) Cast aluminum alloy strand and process for its manufacture and apparatus therefor
DE3406075C2 (en)
DE69706192T2 (en) PLANT FOR TRANSPORTING LIQUID METAL OPERATING PROCESS AND FIRE-RESISTANT MATERIAL
DE10027324C2 (en) Process for casting a metallic strand and system therefor
WO2012062414A1 (en) Floor casting nozzle for arrangement in the floor of a metallurgical container
DE69808295T2 (en) METHOD AND DEVICE FOR CONTROLLING THE SURFACE TEMPERATURE OF A BLOCK DURING THE MOLDING AND PARTICULARLY DURING THE POURING
DE4100352C2 (en)
DE3638249A1 (en) DEVICE FOR CONTINUOUS DIVING OF CASTING MATERIAL
EP2376243B1 (en) Device for detecting the flow and method therefor
DE69324984T2 (en) Pouring tube for metal and process for its manufacture
DE2118149A1 (en) Process and device for the continuous removal of metals which have been remelted under electrically conductive slag
EP0449771B2 (en) Controlled feeding of molten metal into the moulds of an automatic continuous casting plant
DE7727566U1 (en) PIPE
DE19738466C1 (en) Continuous casting apparatus
DE3227132A1 (en) Process and apparatus for continuous casting of aluminium-containing steel and alloy melts
AU2007249057A1 (en) Regulation method for throughflow and bottom nozzle of a metallurgical vessel
EP1105237A1 (en) Method for process monitoring during die casting or thixoforming of metals
DE2935840A1 (en) Pouring head for continuous casting molds
EP0843166A1 (en) Device and method for measuring the temperature of high-temperature melts, and a crucible equipped with such a device
AT515496B1 (en) Plug in a distribution vessel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051115

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: B22D 41/58 20060101ALI20061002BHEP

Ipc: B22D 41/24 20060101ALI20061002BHEP

Ipc: B22D 41/50 20060101ALI20061002BHEP

Ipc: B22D 41/42 20060101AFI20060411BHEP

Ipc: B22D 11/106 20060101ALI20061002BHEP

Ipc: B22D 11/10 20060101ALI20061002BHEP

17Q First examination report despatched

Effective date: 20070605

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005006195

Country of ref document: DE

Date of ref document: 20090122

Kind code of ref document: P

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20090309

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2319309

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090310

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

26N No opposition filed

Effective date: 20090911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090311

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081210

REG Reference to a national code

Ref country code: NL

Ref legal event code: SD

Effective date: 20120809

REG Reference to a national code

Ref country code: PT

Ref legal event code: PC4A

Owner name: RHI AG, AT

Effective date: 20120823

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: RHI AG

Free format text: HERAEUS ELECTRO-NITE INTERNATIONAL N.V.#CENTRUM ZUID 1105#3530 HOUTHALEN (BE) -TRANSFER TO- RHI AG#WIENERBERGSTRASSE 9,#1100 VIENNA (AT)

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: RHI AG, AT

Effective date: 20120803

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120816 AND 20120822

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: RHI AG

Effective date: 20120907

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005006195

Country of ref document: DE

Representative=s name: BECKER UND KOLLEGEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005006195

Country of ref document: DE

Owner name: RHI AG, AT

Free format text: FORMER OWNER: HERAEUS ELECTRO-NITE INTERNATIONAL N.V., HOUTHALEN, BE

Effective date: 20121129

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005006195

Country of ref document: DE

Representative=s name: PATENTANWAELTE BECKER & MUELLER, DE

Effective date: 20121129

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005006195

Country of ref document: DE

Representative=s name: PATENTANWAELTE BECKER & MUELLER, DE

Effective date: 20121120

REG Reference to a national code

Ref country code: AT

Ref legal event code: PC

Ref document number: 416866

Country of ref document: AT

Kind code of ref document: T

Owner name: RHI AG, AT

Effective date: 20130517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20141120

Year of fee payment: 10

Ref country code: GB

Payment date: 20141120

Year of fee payment: 10

Ref country code: ES

Payment date: 20141120

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20141030

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141121

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20151120

Year of fee payment: 11

Ref country code: DE

Payment date: 20151202

Year of fee payment: 11

Ref country code: TR

Payment date: 20151106

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20151103

Year of fee payment: 11

Ref country code: CZ

Payment date: 20151026

Year of fee payment: 11

Ref country code: NL

Payment date: 20151124

Year of fee payment: 11

Ref country code: FR

Payment date: 20151124

Year of fee payment: 11

Ref country code: SE

Payment date: 20151123

Year of fee payment: 11

Ref country code: AT

Payment date: 20151120

Year of fee payment: 11

Ref country code: BE

Payment date: 20151124

Year of fee payment: 11

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20160509

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151109

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151109

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20161228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005006195

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20161201

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 416866

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161109

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161109

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161109

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20161130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161109