EP1649530A2 - Method for preparing an electrode from a porous material, resulting electrode and corresponding electrochemical system - Google Patents

Method for preparing an electrode from a porous material, resulting electrode and corresponding electrochemical system

Info

Publication number
EP1649530A2
EP1649530A2 EP04737895A EP04737895A EP1649530A2 EP 1649530 A2 EP1649530 A2 EP 1649530A2 EP 04737895 A EP04737895 A EP 04737895A EP 04737895 A EP04737895 A EP 04737895A EP 1649530 A2 EP1649530 A2 EP 1649530A2
Authority
EP
European Patent Office
Prior art keywords
silicon
preparing
electrode
anode
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04737895A
Other languages
German (de)
French (fr)
Inventor
Karim Zaghib
Abdelbast Guerfi
Patrick Charest
Robert Kostecki
Kimio Kinoshita
Michel Armand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydro Quebec
Original Assignee
Hydro Quebec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydro Quebec filed Critical Hydro Quebec
Priority to EP12157204.4A priority Critical patent/EP2475032B1/en
Publication of EP1649530A2 publication Critical patent/EP1649530A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0459Electrochemical doping, intercalation, occlusion or alloying
    • H01M4/0461Electrochemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/049Manufacturing of an active layer by chemical means
    • H01M4/0495Chemical alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Definitions

  • the subject of the present invention is methods of preparing electrodes from a porous material, in particular the methods of preparing electrodes involving the preparation of an alloy and those in which the electrodes are at least partially covered. of carbon.
  • the present invention also relates to the electrodes obtained from a porous material or containing a porous material, in particular negative electrodes for lithium micro batteries which contain a porous silicon.
  • Another object of the present invention consists of any electrochemical system containing at least one electrode obtained from a porous material or containing a porous material, and more particularly electrochemical systems containing micro batteries consisting of at least one electrode according to the invention.
  • Newly developed polymer electrolyte generators use metallic lithium, sometimes sodium, or other alkali metals, as anode strips.
  • the alkali metals are malleable and can be used in the form of thin films as mentioned in patents CA-A-2,099,526 and CA-A-2,099,524.
  • alloyed anode strips also called alloy-based strips.
  • the lithium intermetallic compounds which can be used as anodes such as LiAl, Li 2 iSi 5 , Li 2 iSn 5 , Li 22 Pb 5 and others, are hard and brittle and cannot be laminated like lithium or weakly like lithium ally.
  • the volume expansion of the structure in the direction the thickness of the strips could only be compensated by an appropriate design of the cell, by accommodating for example the increase in total thickness of the overlapping strips, all the more that in the direction of the thickness, the variation is very short and therefore much more negligible.
  • Figure 1-4 shows the mechanism for inserting lithium into silicon by a method according to the invention with the formation of a Li x Si y alloy.
  • Figure 2-4 shows the electrochemical formation mechanism, according to an embodiment of the invention, of a porous silicon which serves as an anode for micro batteries.
  • Figure 3-4 relates to the manufacture of a micro battery according to the invention from an electrode based on porous silicon coated with carbon.
  • the role of this carbon is to establish an electrochemical bridge between silicon and lithium.
  • carbon provides the electronic conductivity of the negative electrode based on porous silicon. It is also used for the adhesion of silicon particles during volume expansion.
  • Figure 4-4 relates to an optical image of a carbon structure obtained by laser pyrolysis of a layer of photoresist.
  • the graph at the top represents the Raman spectrum of the carbon obtained.
  • Methods of preparing an electrode for an electrochemical system from a porous material make it possible to prepare electrodes for an electrochemical system exhibiting very advantageous properties with regard to their physicochemical performance but also mechanical.
  • the technology presented makes it possible to create micro batteries, directly in the electrochemical circuits.
  • a first object of the present invention consists of a method for preparing an electrode for an electrochemical system from a porous material.
  • the porous material used has a porosity, measured according to the mercury method hereinafter referred to, which varies from 1 to 99%, limits included. Even more advantageously, the porosity of the material varies from 20 to 80%, limits included.
  • the porous material used is such that the average size of the pores therein varies from 1 nanometer to 1 micrometer, limits included. Even more preferably, the size of the pores varies from 10 to 250 nanometers, limits included.
  • the dispersion of the pores is substantially uniform.
  • this distribution is chosen so that its d50 is between 100 and 150 nanometers. >
  • the pores are advantageously located on the surface of the porous material and extend through said porous material.
  • the pores Preferably, the pores have a depth between 1 micrometer and 3 millimeters and said porous material a thickness between 2 micrometers and 3.5 millimeters. It is desirable that the majority of the pores present in the porous material do not pass through all of the porous material right through. This would result in weakening the electrode film.
  • said porous material is chosen from materials capable of forming an alloy with an alkali metal.
  • the porous material can be chosen from the group consisting of silicon, tin, aluminum, silver, gold, platinum and mixtures of at least two of these materials put in porous form.
  • the preparation of the alloy is carried out chemically and / or electrochemically. It has been surprisingly found that particularly interesting results are obtained when the porosity rate of the material used to form the electrode is such that the cavities of the porous material can absorb the volume extension generated during the formation of the alloy. with the alkali metal.
  • an anode is prepared from a porous silicon.
  • An anode according to the invention can thus be obtained by forming an alloy from at least one source of porous silicon and from at least one alkali metal chosen from the group consisting of Li, Na, Ca and mixtures at least two of these.
  • an anode is prepared from a porous silicon, the porosity of which, measured according to the mercury porosimeter method, varies from 5 to 95% by volume, limits included. Even more advantageously, the porosity of the silicon used is approximately 75% by volume.
  • porous silicon used as porous material is obtained from a source of silicon chosen from the group consisting of: silicon waffles, silicon wafers, silicon films and mixtures of at least 2 of these.
  • the porous silicon used as the porous material is obtained from a single crystal silicon.
  • the porous silicon is obtained from a source of silicon, by electrochemical treatment, in a bath comprising at least one salt, said salt preferably being chosen from the group consisting by NHxFy with X being 4 or 5 and Y being 1 or 2, more preferably still the salt chosen is NH 4 F.
  • the treatment of the silicon source contains at least one salt in solution, which is preferably a mixture of H 2 S0 4 , NH 4 F and H 2 0, and at least one non-aqueous solvent.
  • the non-aqueous solvent (s) is (are) preferably chosen from the group consisting of methanol, ethanol and acetone and mixtures of at least two of these.
  • a bath advantageously contains, by volume:
  • the alloy is based on porous silicon and it is in the form Si x Li y , with x representing a number between 1 and 5, and y representing a number between 5 and 21. More preferably still, in the alloy, x represents approximately 4 and y represents approximately 21.
  • the alloy formed is of the Si x Li y type and it is obtained electrochemically by contacting a source of silicon with lithium and / or metallic lithium in the form of strips or waffles, at a temperature between 40 and 100 ° Celsius, preferably at a temperature of about 80 ° Celsius.
  • the duration of the contacting of the silicon source, with lithium and / or metallic lithium in the form of strips or waffles, is between 1 and 12 hours, preferably said duration is approximately 3 hours.
  • a second object of the present invention consists of the electrodes obtained by the implementation of a method according to any one of the methods described in the first object of the invention.
  • An advantageous sub-family of anodes according to the invention consists of anodes containing at least 60% by mass and preferably at least 40% of a porous material, preferably porous silicon.
  • Another particularly interesting sub-family consists of the anodes, which are at least partially covered with carbon.
  • a third object of the present invention consists of electrochemical systems such as those comprising at least one electrode that obtained by any of the preparation methods defined in the first object of the invention or as defined in the second subject of the invention.
  • the batteries in which the electrolyte. is of type, liquid, gel, or polymer.
  • the cathode is of the LiCo0 2 , LiFeP0 4 , LiNi0 2 , LiNio, 5 Mno, 5 ⁇ 2 , LiNio, 33 Coo, 33 Mn 0) 33 0 2 type , and the cathode is preferably of the 1 to 5 Volts.
  • Rechargeable type batteries offering particularly significant performance are thus obtained, preferably they are of the lithium ion type.
  • a subfamily of batteries of the invention of interest consists of those in the form of micro batteries, preferably having dimensions of between 1 mm 2 and 10 cm 2, and which exhibit at least one of the following electrochemical properties:
  • a lifetime, measured according to the storage test carried out under ambient conditions which is greater than 3 years, preferably greater than 5 years.
  • a fourth object of the present invention is constituted by the use of the electrodes, and preferably the anodes of the invention, in an electrochemical system.
  • the anode is used as a negative electrode for micro lithium batteries.
  • a fifth object of the present invention consists of the methods of manufacturing an electrode, based on porous silicon and covered at least partially with carbon, obtained by thermal pyrolysis of a layer of polymer, preferably deposited in a thin layer on a support preferably insulating in porous silicon such as Si3N4.
  • the pyrolysis of the polymer is advantageously carried out at a temperature between 600 and 1,100 ° C and, preferably, for a duration between 30 minutes and 3 hours.
  • laser pyrolysis is carried out of a preferably deposited polymer layer as a thin layer on a silicon support (insulator).
  • the beam used preferably provides an intensity of between 10 and 100 milliwatts and it is preferably placed at a distance of between 0.5 micrometers and 1 millimeter from the silicon support.
  • the photoresist layer carbonizes by laser pyrolysis, exposing the layer to it. This implies the conversion of the C-H-0 functions into carbon.
  • the exposure is carried out for a period of between 1 second and one minute.
  • the silicon support consists of a single crystal of silicon and it has a thickness of between 100 microns and 3 millimeters.
  • a sixth object of the present invention consists of the electrodes obtained by implementing one of the methods defined in the fourth object of the invention.
  • a seventh object of the present invention consists of electrochemical systems comprising at least one electrode according to the fifth object of the invention.
  • the present invention relates to the use of a porous material in a micro battery. More particularly, the invention relates to an electrochemical generator including a negative electrode comprising a host porous metal, in particular silicon.
  • the host metal strip being intended to subsequently constitute a negative electrode and having the property of absorbing lateral expansion and substantially preventing the change in the plane of the porous metal during the formation of alloy between the host metal and the alkali metal.
  • the alloy after formation of the host material lithium alloy, the alloy cracks during electrochemical activity.
  • the possibility of having a volume expansion plays a major role in the integrity of the electrode.
  • Porous silicon is thus advantageously used in this technology as the active material constituting the anode for the li-ion battery.
  • the theoretical capacity of porous silicon is 1970 mAh grams and 2280 mAh / 1.
  • the volume extension associated with the silicon and lithium alloy is preferably between 30 and 40%.
  • the cavities formed in the porous silicon serve to compensate for the volume expansion of the alloy based on Li and Si.
  • the empty space generated by the porosity of the silicon is occupied by the volume extension of the alloy Si x Li y , with x varying from 1 to 5 and y varying from 4 to 21.
  • the alloy has the formula Li 21 Si 5 .
  • a mixture of NH 4 F is advantageously used to dissolve Si and Si0 2 present as impurities.
  • the porous silicon is obtained electrochemically in an electrolyte based on NH 4 F (50%) + H 2 0 + Methanol in a ratio of (2: 2: 1), the addition of methanol avoids the formation of l on the surface.
  • the porosity rate is calculated according to the lithium intercalation rate which is proportional to the volume extension of the alloy If x Li y .
  • the porosity is measured by the mercury method described in the reference: The Powder Porosity Characterization The bat NYS College of Ceramics at Alfred University, June 18, 2002, http://nyscc.alfred.edu/external/ppc/ppc.html.
  • micro batteries according to the invention, using microelectrodes containing carbon and based on porous silicon can be manufactured by different original techniques hereinafter explained in detail.
  • Both techniques involve the conversion of C-H-0 functions to carbon, but they differ in the procedure by the formation of microstructures which form the microelectrodes in the micro battery. In both techniques, it is preferable to start from a commercial grade of silicon called dense silicon available in the form of waffles.
  • the semiconductor preparation techniques involve the "patteming" of carbon by the photolithography methods involving a photo mask which is used to "model” the electrode structures which can be interdigitalized surfaces of the electrodes.
  • a conventional "waffle" transfer silicon with an insulation layer can serve as a substrate for microelectrodes.
  • Carbon electrodes are formed from regular photo-resistors by heat treatment (usually at temperatures of 600 to 1,100 ° Celsius in an inert atmosphere for one hour) which carbonizes them and which makes the photo-resistance electrically conductive.
  • Electrochemically active electrode materials can be selectively deposited on carbons by electrochemical methods, and for some applications, the carbon itself can serve as the electrode.
  • the process which is used to fabricate the structures of the microelectrodes implements a succession of steps.
  • a thin layer of Si 3 N 4 (around 100 nm) is deposited by chemical vapor deposition (CVD), which serves as an insulator to separate the conductive silicon "wafer” from the carbon structure.
  • CVD chemical vapor deposition
  • Subsequent steps involving spin coating, "patteming” and photo-resistance pyrolysis are used to form the final carbon structure. Both negative and positive photoresist can be used to form the carbonaceous conductive micro-electrodes.
  • the second approach does not involve the use of a photo mask. Indeed, we only use a narrow laser beam with "path”, controlled to move along a specific path "path”.
  • the control of the movement of the laser beam on the surface of the photoresistor by computer control allows the preparation of a wide variety of microelectrode devices comprising channels.
  • the intensity of the power of the laser vapor is controlled in order to avoid the vaporization of the photo-resistance, instead of its conversion to carbon, and this also minimizes the loss of carbon by laser ablation.
  • the unreacted photo resistors in certain areas which are not exposed to laser vapor are dissolved to leave only the carbonaceous microelectrodes on the silicon waffle.
  • the radiation from the laser beam is capable of converting the photoresist polymer to carbon.
  • results comparable to those obtained by thermal pyrolysis are obtained by implementing a Raman spectrum.
  • a photoresistor (Oir 897-101, Olin Corp., Norwalk, CT) was used to produce a thin film of an organic precursor on an Si substrate.
  • An integrated Raman microscope Labram system manufactured by the ISA Horiba group was used to laser pyrolysis of photoresistor, and also to analyze the structure of the carbon product.
  • the excitation wavelength was either supplied by internal HeNe (632 nm), a 20 mW laser or by an external Ar-ion (514nm), 2 W Laser.
  • the power of the laser beam was adjusted to the desired levels with neutral filters of various variable optical density.
  • the size of the laser beam on the surface of the sample can be varied from 1.6 to a few hundred microns; and it is controlled by the characteristics of the optical microscopes and the distance between the sample and the objective lenses.
  • the diameter of the laser beam applied in our experiments was 5 microns.
  • a motorized scanning XY microscope 0.1 micron resolution was used.
  • the exposure time of the photoresistor to the laser beam was controlled either by the XY scanning speed or by a digital shutter laser beam (model 845 HP by Newport Corp.), which was used in the static experiments.
  • the power density of the laser beam must be controlled in order to avoid vaporization of the photoresistor without converting it to carbon or to minimize the loss of carbon by laser ablation.
  • FIG. 4-4 An optical image which illustrates the result obtained by laser pyrolysis for the production of carbon structure from a positive photoresistor is shown in Figure 4-4.
  • a computer program was used to control the movement of the sample to form the carbon configurations.
  • the speed of movement of the motorized XY sample was 8 mm per second.
  • the width of the imprint in the interdigital structure is approximately 20 micrometers. It is slightly wider than the carbon bond that connects them because each finger has been exposed to the laser beam twice.
  • a new high-performance technology based on the use of the laser is thus proposed for the preparation of capacities of a size suitable for small electronic devices.
  • This new method of the invention called - direct laser lithography (DDL) - makes it possible to produce micro electrodes from organic and inorganic precursors, suitable for Li-ion batteries and creation, from any type of substrate. , fully rechargeable functional micro batteries.
  • DDL direct laser lithography
  • DLL technology allows the tailor-made production of micro-power sources which can be distributed and integrated directly into electronic components.
  • the DLL technology does not require a photo mask to achieve the desired configuration for the microelectrodes.
  • micro batteries obtained offer improved specific energy and power due to their reduced weight and volume, when the electronic substrate becomes part of the elements of the battery.
  • a second technique for preparing the cathode by laser is carried out using a compound in pasty form formed from a mixture of cathode powder and a carrier solution which is preferably toluene, heptane or a mixture of these.
  • the pasty solution is coated on a support plate which is preferably made of glass and placed at 100 ⁇ m from the substrate (silicon or other).
  • the laser beam of UV radiation is applied through the support plate and the cathode is projected onto the substrate by pyrolysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Silicon Compounds (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

The invention concerns a method for preparing electrodes from a porous material to obtain electrodes useful in electrochemical systems and which exhibit at least one of the following properties: high mAh/gram capacity, high mAh/litre capacity, good cyclability, low self-discharge rate, and good environmental tolerance.

Description

PROCÉDÉ DE PREPARATION D'ÉLECTRODE À PARTIR D'UN PROCESS FOR THE PREPARATION OF ELECTRODE FROM A
MATÉRIAU POREUX, ÉLECTRODE AINSI OBTENUE ETPOROUS MATERIAL, ELECTRODE THUS OBTAINED AND
SYSTÈME ÉLECTROCHIMIQUE CORRESPONDANTCORRESPONDING ELECTROCHEMICAL SYSTEM
Domaine technique de l'inventionTechnical field of the invention
La présente invention a pour objet, des procédés de préparation d'électrodes à partir d'un matériau poreux, en particulier les procédés de préparation d'électrodes impliquant la préparation d'un alliage et ceux au cours desquels les électrodes sont au moins partiellement recouvertes de carbone.The subject of the present invention is methods of preparing electrodes from a porous material, in particular the methods of preparing electrodes involving the preparation of an alloy and those in which the electrodes are at least partially covered. of carbon.
La présente invention a également pour objet les électrodes obtenues à partir d'un matériau poreux ou contenant un matériau poreux, en particulier des électrodes négatives pour les micro batteries au lithium qui contiennent un silicium poreux.The present invention also relates to the electrodes obtained from a porous material or containing a porous material, in particular negative electrodes for lithium micro batteries which contain a porous silicon.
Un autre objet de la présente invention est constitué par tout système électrochimique contenant au moins une électrode obtenue à partir d'un matériaux poreux ou contenant un matériau poreux, et plus particulièrement les systèmes électrochimiques contenant des micro batteries constituées d'au moins une électrode selon l'invention.Another object of the present invention consists of any electrochemical system containing at least one electrode obtained from a porous material or containing a porous material, and more particularly electrochemical systems containing micro batteries consisting of at least one electrode according to the invention.
Description de l'état de la technique ( Description of the state of the art (
Les générateurs à électrolytes polymères récemment développés utilisent le lithium métallique, parfois le sodium, ou d'autres métaux alcalins, comme feuillards d'anode. Les métaux alcalins sont malléables et peuvent être mis en oeuvre sous forme de films minces comme cela est mentionné dans les brevets CA-A-2.099.526 et CA-A-2.099.524.Newly developed polymer electrolyte generators use metallic lithium, sometimes sodium, or other alkali metals, as anode strips. The alkali metals are malleable and can be used in the form of thin films as mentioned in patents CA-A-2,099,526 and CA-A-2,099,524.
Toutefois, l'usage du lithium métallique ou d'autres métaux alcalins présente, dans certains cas d'utilisation extrême, e.g. à des températures supérieures à 100° Celsius, des risques de fusion du lithium ou du métal alcalin et de destruction de la cellule électrochimique. De plus, dans des conditions forcées de cyclage électrochimique, la formation de dendrites, par exemple de dendrites de lithium peut se produire, notamment en présence de courants de recharge trop élevés. La formation de dendrites s'accompagne de nombreux désavantages. Alors que le même alliage, lorsqu'il fonctionne à un potentiel plus anodique, par exemple à un potentiel dont la valeur est comprise entre +300 à 450 mVolts pour le lithium aluminium vs le lithium, ne permet par le dépôt de lithium ni la croissance dendritique.However, the use of metallic lithium or other alkali metals presents, in certain cases of extreme use, eg at temperatures above 100 ° Celsius, risks of fusion of lithium or alkali metal and destruction of the cell. electrochemical. In addition, under forced conditions of electrochemical cycling, the formation of dendrites, for example lithium dendrites can occur, in particular if the charging currents are too high. The formation of dendrites has many disadvantages. While the same alloy, when operating at a more anodic potential, for example at a potential whose value is between +300 to 450 mVolts for lithium aluminum vs lithium, does not allow the deposition of lithium or growth dendritic.
L'usage d'alliages de métaux alcalins, notamment le lithium, est ainsi décrit dans le brevet US-A-4.489.143, dans le cas de générateurs fonctionnant en milieux sels fondus.The use of alloys of alkali metals, in particular lithium, is thus described in patent US-A-4,489,143, in the case of generators operating in molten salt media.
En milieux organiques, et plus particulièrement en milieu polymère, où les épaisseurs des films d'électrodes sont inférieures à 100 micromètres, il devient très difficile de mettre en oeuvre des feuillards d'anode alliés (aussi appelés feuillards à base d'alliages). En effet, les composés intermétalliques du lithium utilisables comme anodes, tels que LiAl, Li2iSi5, Li2iSn5, Li22Pb5 et autres, sont durs et cassants et ne peuvent être laminés comme le lithium ou comme le lithium faiblement allié. Il est par ailleurs mentionné dans le brevet C A- A- 1.222.543, que ces anodes peuvent être élaborées en films minces en produisant des composites constituées de poudres du composé intermétallique liées par l'électrolyte polymère, ou encore, dans le brevet US-A-4.590.840, qu'il est possible dans certaines conditions de pré-lithié le feuillard du métal hôte de l'anode, en en traitant chimiquement la surface ou en chargeant électrochimiquement une partie du feuillard.In organic media, and more particularly in polymeric media, where the thicknesses of the electrode films are less than 100 micrometers, it becomes very difficult to use alloyed anode strips (also called alloy-based strips). Indeed, the lithium intermetallic compounds which can be used as anodes, such as LiAl, Li 2 iSi 5 , Li 2 iSn 5 , Li 22 Pb 5 and others, are hard and brittle and cannot be laminated like lithium or weakly like lithium ally. It is also mentioned in patent C A-A-1,222,543, that these anodes can be produced in thin films by producing composites consisting of powders of the intermetallic compound bonded by the polymer electrolyte, or also in US patent -A-4,590,840, that it is possible under certain conditions to pre-lithiate the strip of the host metal of the anode, by chemically treating the surface or by electrochemically charging part of the strip.
Toutefois, ces techniques quoique fonctionnelles dans certaines conditions, mettent en oeuvre des matériaux réactifs, et les alliages pré-insérés sont souvent pyrophoriques ou posent des difficultés de mise en oeuvre et d'optimisation des performances. Lorsque les anodes sont préparées à l'état déchargé, une des difficultés majeures à surmonter vient de l'importante variation volumique résultant de la formation de l'alliage qui entraîne des stress importants sur la structure.However, these techniques, although functional under certain conditions, use reactive materials, and the pre-inserted alloys are often pyrophoric or pose difficulties in implementation and performance optimization. When the anodes are prepared in the discharged state, one of the major difficulties to be overcome comes from the large volume variation resulting from the formation of the alloy which causes significant stresses on the structure.
Lorsque l'on cherche à former l'alliage à partir d'un feuillard du métal hôte non-lithié lors de l'assemblage ou après l'assemblage d'un générateur à electrolyte polymère, l'expansion volumique de la structure dans le sens de l'épaisseur des feuillards n'a pu être compensée que par une conception appropriée de la cellule, en accommodant par exemple l'augmentation d'épaisseur totale des feuillards superposés, d'autant plus que dans le sens de l'épaisseur, la variation est très courte et donc beaucoup plus négligeable.When one seeks to form the alloy from a strip of non-lithiated host metal during assembly or after assembly of a generator with polymer electrolyte, the volume expansion of the structure in the direction the thickness of the strips could only be compensated by an appropriate design of the cell, by accommodating for example the increase in total thickness of the overlapping strips, all the more that in the direction of the thickness, the variation is very short and therefore much more negligible.
Des technologies connues pour la réalisation de micro batteries dans un système électrochimique sont décrites dans la conférence, lth ABA BRNO 2000, Advanced Batteries and Accumulators, June 28.8-1.9, 2000 Brno University of technology, Antoninska 1, Brmno, Czech Republic http://www.aba-brno.cz/aba2000/part 1/13- bludska.pdf. et dans la référence : Bull. Master. Science., Vol.26, No.7, December 2003, pp.673-681 http://www.ias.ac.in/matersci/bmsdec2003/673.pdf, et nécessitent l'importation de la micro batterie dans le système.Known technologies for the realization of micro batteries in an electrochemical system are described in the conference, lth ABA BRNO 2000, Advanced Batteries and Accumulators, June 28.8-1.9, 2000 Brno University of technology, Antoninska 1, Brmno, Czech Republic http: / /www.aba-brno.cz/aba2000/part 1 / 13- bludska.pdf. and in the reference: Bull. Master. Science., Vol.26, No.7, December 2003, pp.673-681 http://www.ias.ac.in/matersci/bmsdec2003/673.pdf, and require the import of the micro battery in the system.
Il existait donc un besoin pour de nouveaux matériaux susceptibles d'être utilisés comme élément constitutif d'une électrode et dépourvus d'un ou de plusieurs des inconvénients des matériaux traditionnellement utilisés dans cette application.There was therefore a need for new materials capable of being used as a component of an electrode and devoid of one or more of the drawbacks of the materials traditionally used in this application.
Il existait plus particulièrement un besoin pour un nouveau matériau d'électrode présentant au moins une des propriétés suivantes:There was more particularly a need for a new electrode material having at least one of the following properties:
- une grande capacité en mAh/gramme; - une grande capacité en mAh/litre;- a large capacity in mAh / gram; - a large capacity in mAh / liter;
- une bonne cyclabilité;- good cyclability;
- un faible taux d'autodécharge; et- a low self-discharge rate; and
- une bonne tolérance environnementale.- good environmental tolerance.
II existait également un grand besoin pour des nouveaux matériaux d'électrode adaptés pour la microtechnologie telle que les micro-batteries.There was also a great need for new electrode materials suitable for microtechnology such as micro-batteries.
Il existait de plus un besoin pour des électrodes très peu fissurées à l'issue de leur fabrication et ce, dans un soucis de longévité. Brève description des dessinsThere was also a need for electrodes with very little cracking at the end of their manufacture and this, for the sake of longevity. Brief description of the drawings
La Figure 1-4 montre le mécanisme d'insertion du lithium dans le silicium par un procédé selon l'invention avec formation d'un alliage LixSiy.Figure 1-4 shows the mechanism for inserting lithium into silicon by a method according to the invention with the formation of a Li x Si y alloy.
La Figure 2-4 montre le mécanisme de formation électrochimique, selon un mode .de réalisation de l'invention, d'un silicium poreux qui sert comme anode pour micro batteries.Figure 2-4 shows the electrochemical formation mechanism, according to an embodiment of the invention, of a porous silicon which serves as an anode for micro batteries.
La Figure 3-4 est relative à la fabrication d'une micro batterie selon l'invention à partir d'une électrode à base de silicium poreux enrobé de carbone. Le rôle de ce carbone est d'établir un pont électrochimique entre le silicium et le lithium. De plus, le carbone assure la conductivité électronique de l'électrode négative à base de silicium poreux. Il sert également à l'adhésion des particules de silicium lors de l'extension volumique.Figure 3-4 relates to the manufacture of a micro battery according to the invention from an electrode based on porous silicon coated with carbon. The role of this carbon is to establish an electrochemical bridge between silicon and lithium. In addition, carbon provides the electronic conductivity of the negative electrode based on porous silicon. It is also used for the adhesion of silicon particles during volume expansion.
Les différentes étapes de cette fabrication sont les suivantes :The different stages of this manufacturing are as follows:
1- déposition des couches minces de la photo-résiste;1- deposition of thin layers of photo-resist;
2- placement d'un masque, puis passage d'un faisceau UV pour réticuler les zones désirées;2- placement of a mask, then passage of a UV beam to crosslink the desired areas;
3- Dissolution des zones non réticulées par un décapage chimique;3- Dissolution of non-crosslinked areas by chemical pickling;
4- Carbonisation de la photo-résiste non décapée (qui formera l'anode dans la micro batterie);4- Carbonization of the photo-resist not pickled (which will form the anode in the micro battery);
5- Introduction de l'électrolyte, suivie de la cathode; 6- Découpage dans les zones décapées pour avoir des micro batteries.5- Introduction of the electrolyte, followed by the cathode; 6- Cutting in the pickled areas to have micro batteries.
La Figure 4-4 est relative à une image optique d'.une structure de carbone obtenue par pyrolyse laser d'une couche de phqto-résiste. Le graphe en haut représente le spectre Raman du carbone obtenu.Figure 4-4 relates to an optical image of a carbon structure obtained by laser pyrolysis of a layer of photoresist. The graph at the top represents the Raman spectrum of the carbon obtained.
Résumé de l'inventionSummary of the invention
Procédés de préparation d'électrode pour système électrochimique à partir d'un matériau poreux permettent de préparer des électrodes pour systèmes électrochimiques présentant des propriétés très intéressantes en ce qui concerne leurs performances physico-chimiques mais aussi mécaniques. La technologie présentée permet de créer des micro batteries, directement dans les circuits électrochimiques.Methods of preparing an electrode for an electrochemical system from a porous material make it possible to prepare electrodes for an electrochemical system exhibiting very advantageous properties with regard to their physicochemical performance but also mechanical. The technology presented makes it possible to create micro batteries, directly in the electrochemical circuits.
Description générale de l'inventionGeneral description of the invention
Un premier objet de la présente invention est constitué par un procédé de préparation d'une électrode pour système électrochimique à partir d'un matériau poreux. De préférence, le matériau poreux utilisé présente une porosité, mesurée selon la méthode au mercure ci-apres référée, qui varie de 1 à 99 %, bornes comprises. Plus avantageusement encore, la porosité du matériau varie de 20 à 80 %, bornes comprises.A first object of the present invention consists of a method for preparing an electrode for an electrochemical system from a porous material. Preferably, the porous material used has a porosity, measured according to the mercury method hereinafter referred to, which varies from 1 to 99%, limits included. Even more advantageously, the porosity of the material varies from 20 to 80%, limits included.
Selon un mode avantageux de réalisation de l'invention, le matériau poreux utilisé est tel que la taille moyenne des pores qui s'y trouvent varie de 1 nanomètre à 1 micromètre, bornes comprises. Plus préférentiellement encore la taille des pores varie de 10 à 250 nanomètres, bornes comprises.According to an advantageous embodiment of the invention, the porous material used is such that the average size of the pores therein varies from 1 nanometer to 1 micrometer, limits included. Even more preferably, the size of the pores varies from 10 to 250 nanometers, limits included.
Selon un autre mode avantageux de réalisation, la dispersion des pores est sensiblement uniforme. De préférence, cette distribution est choisie de façon que sa d50 se situe entre 100 et 150 nanomètres. >According to another advantageous embodiment, the dispersion of the pores is substantially uniform. Preferably, this distribution is chosen so that its d50 is between 100 and 150 nanometers. >
Les pores sont avantageusement situés en surface du matériau poreux et s'étendent au travers dudit matériau poreux. De préférence, les pores présentent une profondeur comprise entre 1 micromètre et 3 millimètres et ledit matériaux poreux une épaisseur comprise entre 2 micromètres et 3,5 millimètres. Il est souhaitable que la majorité des pores présents dans le matériau poreux ne traversent pas tout le matériau poreux de part en part. Cela aurait pour conséquence de fragiliser le film d'électrode.The pores are advantageously located on the surface of the porous material and extend through said porous material. Preferably, the pores have a depth between 1 micrometer and 3 millimeters and said porous material a thickness between 2 micrometers and 3.5 millimeters. It is desirable that the majority of the pores present in the porous material do not pass through all of the porous material right through. This would result in weakening the electrode film.
Selon un autre mode préféré, ledit matériau poreux est choisi parmi les matériaux susceptibles de former un alliage avec un métal alcalin. Ainsi, le matériau poreux peut être choisi dans le groupe constitué par le silicium, l'étain, l'aluminium, l'argent, l'or, le platine et les mélanges d'au moins deux de ces matériaux mis sous forme poreuse.According to another preferred embodiment, said porous material is chosen from materials capable of forming an alloy with an alkali metal. Thus, the porous material can be chosen from the group consisting of silicon, tin, aluminum, silver, gold, platinum and mixtures of at least two of these materials put in porous form.
La préparation de l'alliage est réalisée par voie chimique et/ou électrochimique. Il a été constaté de façon surprenante que des résultats particulièrement intéressants sont obtenus lorsque le taux de porosité du matériau utilisé pour former l'électrode est tel que les cavités du matériau poreux peuvent absorber l'extension volumique générée lors de la formation de l'alliage avec le métal alcalin.The preparation of the alloy is carried out chemically and / or electrochemically. It has been surprisingly found that particularly interesting results are obtained when the porosity rate of the material used to form the electrode is such that the cavities of the porous material can absorb the volume extension generated during the formation of the alloy. with the alkali metal.
Selon un mode particulier de réalisation de l'invention, une anode est préparée à partir d'un silicium poreux.According to a particular embodiment of the invention, an anode is prepared from a porous silicon.
Une anode conforme à l'invention peut ainsi être obtenue par formation d'un alliage à partir d'au moins une source de silicium poreux et d'au moins un métal alcalin choisi dans le groupe constitué par Li, Na, Ca et les mélanges d'au moins deux de ces derniers.An anode according to the invention can thus be obtained by forming an alloy from at least one source of porous silicon and from at least one alkali metal chosen from the group consisting of Li, Na, Ca and mixtures at least two of these.
Avantageusement, une anode est préparée à partir d'un silicium poreux, dont la porosité, mesurée selon la méthode du porosimètre à mercure, varie de 5 à 95 % en volume, bornes comprises. Plus avantageusement encore, la porosité du silicium utilisé est d'environ 75% en volume.Advantageously, an anode is prepared from a porous silicon, the porosity of which, measured according to the mercury porosimeter method, varies from 5 to 95% by volume, limits included. Even more advantageously, the porosity of the silicon used is approximately 75% by volume.
Le silicium poreux utilisé comme matériau poreux est obtenu à partir d'une source de silicium choisi dans le groupe constitué par : les gaufres de silicium, les pastilles de silicium, les films de silicium et les mélanges d'au moins 2 de ces derniers.The porous silicon used as porous material is obtained from a source of silicon chosen from the group consisting of: silicon waffles, silicon wafers, silicon films and mixtures of at least 2 of these.
De préférence, le silicium poreux utilisé comme matériau poreux est obtenu à partir d'un silicium monocristal.Preferably, the porous silicon used as the porous material is obtained from a single crystal silicon.
Selon un mode avantageux de réalisation de l'invention, le silicium poreux est obtenu à partir à partir d'une source de silicium, par traitement électrochimique, dans un bain comprenant au moins un sel, ledit sel étant de préférence choisi dans le groupe constitué par NHxFy avec X étant 4 ou 5 et Y étant 1 ou 2, plus préférentiellement encore le sel choisi est NH4F.According to an advantageous embodiment of the invention, the porous silicon is obtained from a source of silicon, by electrochemical treatment, in a bath comprising at least one salt, said salt preferably being chosen from the group consisting by NHxFy with X being 4 or 5 and Y being 1 or 2, more preferably still the salt chosen is NH 4 F.
À titre d'exemple, le traitement de la source de silicium contient au moins un sel en solution, qui est de préférence un mélange de H2S04, NH4F et H20, et d'au moins un solvant non aqueux qui est de préférence un alcool ou une cétone, le ou les solvants non- aqueux est (sont) choisi(s) de préférence dans le groupe constitué par le méthanol, l'éthanol et l'acétone et les mélanges d'au moins deux de ces derniers. Un tel bain contient avantageusement, en volume de:For example, the treatment of the silicon source contains at least one salt in solution, which is preferably a mixture of H 2 S0 4 , NH 4 F and H 2 0, and at least one non-aqueous solvent. which is preferably an alcohol or a ketone, the non-aqueous solvent (s) is (are) preferably chosen from the group consisting of methanol, ethanol and acetone and mixtures of at least two of these. Such a bath advantageously contains, by volume:
- 5 à 20 % de méthanol; et- 5 to 20% methanol; and
- 75 à 20 % de H2S04.- 75 to 20% of H 2 S0 4 .
De préférence, l'alliage est à base de silicium poreux et il est sous la forme SixLiy, avec x représentant un nombre compris entre 1 et 5, et y représentant un nombre compris entre 5 et 21. Plus préférentiellement encore, dans l'alliage, x représente environ 4 et y représente environ 21.Preferably, the alloy is based on porous silicon and it is in the form Si x Li y , with x representing a number between 1 and 5, and y representing a number between 5 and 21. More preferably still, in the alloy, x represents approximately 4 and y represents approximately 21.
Selon un mode avantageux de réalisation de l'invention, l'alliage formé est de type SixLiy et il est obtenu électrochimiquement en contactant une source de silicium avec du lithium et/ou du lithium métallique sous forme de feuillards ou de gaufres, à une température comprise entre 40 et 100° Celsius, de préférence à une température d'environ 80° Celsius.According to an advantageous embodiment of the invention, the alloy formed is of the Si x Li y type and it is obtained electrochemically by contacting a source of silicon with lithium and / or metallic lithium in the form of strips or waffles, at a temperature between 40 and 100 ° Celsius, preferably at a temperature of about 80 ° Celsius.
La durée de la mise en contact de la source de silicium, avec du lithium et/ou du lithium métallique sous forme de feuillards ou de gaufres, est comprise entre 1 et 12 heures, de préférence ladite durée est d'environ 3 heures.The duration of the contacting of the silicon source, with lithium and / or metallic lithium in the form of strips or waffles, is between 1 and 12 hours, preferably said duration is approximately 3 hours.
Un deuxième objet de la présente invention est constitué par les électrodes obtenues par la mise en œuvre d'un procédé selon l'une quelconque des procédés décrit dans lé premier objet de l'invention.A second object of the present invention consists of the electrodes obtained by the implementation of a method according to any one of the methods described in the first object of the invention.
Une sous famille avantageuse d'anodes selon l'invention est constituée par les anodes contenant au moins 60 % massique et de préférence au moins 40 % d'un matériau poreux, de préférence de silicium poreux.An advantageous sub-family of anodes according to the invention consists of anodes containing at least 60% by mass and preferably at least 40% of a porous material, preferably porous silicon.
Une autre sous famille particulièrement intéressante est constituée par les anodes, recouvertes au moins partiellement de carbone.Another particularly interesting sub-family consists of the anodes, which are at least partially covered with carbon.
Les anodes et cathodes selon l'invention présentent l'avantage d'être substantiellement dépourvues de fissures. Un troisième objet de la présente invention est constitué par les systèmes électrochimiques tels que ceux qui comportent au moins une électrode qu'obtenue par l'un quelconque des procédés de préparation définis dans le premier objet de l'invention ou tel que défini dans le deuxième objet de l'invention.The anodes and cathodes according to the invention have the advantage of being substantially free of cracks. A third object of the present invention consists of electrochemical systems such as those comprising at least one electrode that obtained by any of the preparation methods defined in the first object of the invention or as defined in the second subject of the invention.
À titre d'exemple préférentiel de systèmes électrochimiques particulièrement préférentiel, on peut citer les batteries dans lesquelles l' electrolyte. est de type, liquide, gel, ou polymère.As a preferred example of particularly preferred electrochemical systems, mention may be made of the batteries in which the electrolyte. is of type, liquid, gel, or polymer.
De préférence, dans ces batterie, la cathode est de type LiCo02, LiFeP04, LiNi02, LiNio,5Mno,5θ2, LiNio,33Coo,33Mn0)3302, et la cathode de préférence est de type 1 à 5 Volts.Preferably, in these batteries, the cathode is of the LiCo0 2 , LiFeP0 4 , LiNi0 2 , LiNio, 5 Mno, 5θ 2 , LiNio, 33 Coo, 33 Mn 0) 33 0 2 type , and the cathode is preferably of the 1 to 5 Volts.
Des batteries de type rechargeable offrant des performances particulièrement significative sont ainsi obtenues, de préférence elles sont de type lithium ion.Rechargeable type batteries offering particularly significant performance are thus obtained, preferably they are of the lithium ion type.
Une sous famille de batteries de l'invention d'intérêt est constituée par celles sous forme de micro batteries, ayant de préférence des dimensions comprises entre 1 mm2 et 10cm2, et qui présentent au moins une des propriétés électrochimique suivantes :A subfamily of batteries of the invention of interest consists of those in the form of micro batteries, preferably having dimensions of between 1 mm 2 and 10 cm 2, and which exhibit at least one of the following electrochemical properties:
une capacité électrochimique supérieure à 1 μWhan electrochemical capacity greater than 1 μWh
: une cyclabilité supérieure à 500, de préférence supérieure à 1000 cycles;: a cyclability greater than 500, preferably greater than 1000 cycles;
. un taux d' autodécharge inférieur à 5 %, de préférence inférieur à 4 %, plus préférentiellement encore inférieur à 3 %; et. a self-discharge rate of less than 5%, preferably less than 4%, more preferably still less than 3%; and
. une durée de vie, mesurée selon le test de stockage réalisé dans les conditions ambiantes, qui est supérieure à 3 ans, de préférence supérieure à 5 ans.. a lifetime, measured according to the storage test carried out under ambient conditions, which is greater than 3 years, preferably greater than 5 years.
Un quatrième objet de la présente invention est constitué par l'utilisation des électrodes, et de préférence des anodes de l'invention, dans un système électrochimique.A fourth object of the present invention is constituted by the use of the electrodes, and preferably the anodes of the invention, in an electrochemical system.
De préférence, l'anode est utilisée comme électrode négative pour micro batteries au lithium. Un cinquième objet de la présente invention est constitué par les procédés de fabrication d'une électrode, à base de silicium poreux et recouverte au moins partiellement de carbone, obtenue par pyrolyse thermique d'une couche de polymère, déposée de préférence en couche mince sur un support de préférence isolant en silicium poreux tel du Si3N4. La pyrolyse du polymère est conduite avantageusement à une température comprise entre 600 et 1.100°C et, de préférence, pour une durée comprise entre 30 minutes et 3 heures.Preferably, the anode is used as a negative electrode for micro lithium batteries. A fifth object of the present invention consists of the methods of manufacturing an electrode, based on porous silicon and covered at least partially with carbon, obtained by thermal pyrolysis of a layer of polymer, preferably deposited in a thin layer on a support preferably insulating in porous silicon such as Si3N4. The pyrolysis of the polymer is advantageously carried out at a temperature between 600 and 1,100 ° C and, preferably, for a duration between 30 minutes and 3 hours.
Selon une autre variante de l'invention, lors de la mise en œuvre du procédé de fabrication d'une électrode à base de silicium poreux et recouvert au moins partiellement de carbone, on réalise la pyrolyse laser d'une couche de polymère déposée de préférence en couche mince sur un support (isolant) en silicium. Le faisceau utilisé fourni de préférence une intensité comprise entre 10 et 100 milliwatts et il est placé de préférence à une distance comprise entre 0,5 micromètres et 1 millimètre du support en silicium. La couche du photo-résiste se carbonise par pyrolyse laser en exposant la couche à ce dernier. Ce qui implique la conversion des fonctions C-H-0 en carbone. De préférence, l'exposition est réalisée pendant une durée comprise entre 1 seconde et une minute. Préférentiellement, le support en silicium est constitué par un monocristal de silicium et il a une épaisseur comprise entre 100 microns et 3 millimètres.According to another variant of the invention, during the implementation of the method for manufacturing an electrode based on porous silicon and covered at least partially with carbon, laser pyrolysis is carried out of a preferably deposited polymer layer as a thin layer on a silicon support (insulator). The beam used preferably provides an intensity of between 10 and 100 milliwatts and it is preferably placed at a distance of between 0.5 micrometers and 1 millimeter from the silicon support. The photoresist layer carbonizes by laser pyrolysis, exposing the layer to it. This implies the conversion of the C-H-0 functions into carbon. Preferably, the exposure is carried out for a period of between 1 second and one minute. Preferably, the silicon support consists of a single crystal of silicon and it has a thickness of between 100 microns and 3 millimeters.
Un sixième objet de la présente invention est constitué par les électrodes obtenues par mise en œuvre d'un des procédés définis dans le quatrième objet de l'invention.A sixth object of the present invention consists of the electrodes obtained by implementing one of the methods defined in the fourth object of the invention.
Un septième objet de la présente invention est constitué par les systèmes électrochimiques comportant au moins une électrode selon le cinquième objet de l'invention.A seventh object of the present invention consists of electrochemical systems comprising at least one electrode according to the fifth object of the invention.
Description de modes préférentiels de l'inventionDescription of preferred modes of the invention
La présente invention concerne l'utilisation d'un matériau poreux dans une micro batterie. Plus particulièrement, l'invention se rapporte à un générateur électrochimique incluant une électrode négative comprenant un métal poreux hôte, notamment le silicium. Le feuillard de métal hôte étant destiné à constituer ultérieurement une électrode négative et possédant la propriété d'absorber l'expansion latérale et de prévenir substantiellement le changement dans le plan du métal poreux lors de la formation d'alliage entre le métal hôte et le métal alcalin.The present invention relates to the use of a porous material in a micro battery. More particularly, the invention relates to an electrochemical generator including a negative electrode comprising a host porous metal, in particular silicon. The host metal strip being intended to subsequently constitute a negative electrode and having the property of absorbing lateral expansion and substantially preventing the change in the plane of the porous metal during the formation of alloy between the host metal and the alkali metal.
Notamment, après formation de l'alliage lithium matériau hôte, l'alliage se fissure lors de l'activité électrochimique. La possibilité d'avoir une expansion volumique joue un rôle prépondérant pour l'intégrité de l'électrode.In particular, after formation of the host material lithium alloy, the alloy cracks during electrochemical activity. The possibility of having a volume expansion plays a major role in the integrity of the electrode.
Le silicium poreux est ainsi avantageusement utilisé dans cette technologie comme matériau actif constitutif de l'anode pour la batterie li-ion. La capacité théorique du silicium poreux est de 1970 mAh grammes et de 2280 mAh/1.Porous silicon is thus advantageously used in this technology as the active material constituting the anode for the li-ion battery. The theoretical capacity of porous silicon is 1970 mAh grams and 2280 mAh / 1.
L'extension volumique associée à l'alliage de silicium et de lithium est de préférence comprise entre 30 et 40 %. Ainsi les cavités formées dans le silicium poreux servent à compenser l'expansion volumique de l'alliage à base de Li et de Si.The volume extension associated with the silicon and lithium alloy is preferably between 30 and 40%. Thus the cavities formed in the porous silicon serve to compensate for the volume expansion of the alloy based on Li and Si.
Le mécanisme de l'insertion de lithium chimique ou électrochimique dans le silicium poreux, selon un mode de réalisation de l'invention, est illustré dans la Figure 1-4.The mechanism of inserting chemical or electrochemical lithium into porous silicon, according to an embodiment of the invention, is illustrated in Figure 1-4.
L'espace vide généré par la porosité du silicium est occupé par l'extension volumique de l'alliage SixLiy, avec x variant de 1 à 5 et y variant de 4 à 21. De préférence, l'alliage est de formule Li21Si5.The empty space generated by the porosity of the silicon is occupied by the volume extension of the alloy Si x Li y , with x varying from 1 to 5 and y varying from 4 to 21. Preferably, the alloy has the formula Li 21 Si 5 .
Préparation du silicium poreuxPreparation of porous silicon
Dans le cadre des procédés de préparation de silicium poreux selon l'invention, un mélange de NH4F est avantageusement utilisé pour dissoudre Si et Si02 présents comme impuretés.In the context of the processes for preparing porous silicon according to the invention, a mixture of NH 4 F is advantageously used to dissolve Si and Si0 2 present as impurities.
Le silicium poreux est obtenu électrochimiquement dans un electrolyte à base de NH4F (50%) + H20 + Méthanol dans un ratio de (2 :2 :1), l'ajout du méthanol permet d'éviter la formation de l'hydrogène sur la surface. Le taux de porosité est calculé selon le taux d'intercalation du lithium qui est proportionnel à l'extension volumique de l'alliage SixLiy. La porosité est mesurée par la méthode de mercure décrite dans la référence : The Powder Porosity Characterisation La bat NYS Collège of Ceramics at Alfred University, 18 juin 2002, http://nyscc.alfred.edu/external/ppc/ppc.html.The porous silicon is obtained electrochemically in an electrolyte based on NH 4 F (50%) + H 2 0 + Methanol in a ratio of (2: 2: 1), the addition of methanol avoids the formation of l on the surface. The porosity rate is calculated according to the lithium intercalation rate which is proportional to the volume extension of the alloy If x Li y . The porosity is measured by the mercury method described in the reference: The Powder Porosity Characterization The bat NYS College of Ceramics at Alfred University, June 18, 2002, http://nyscc.alfred.edu/external/ppc/ppc.html.
Cette technique est décrite plus en détail dans le domaine des semi-conducteurs http://etd.caltech.edu/etd/available/etd-08062002-192958/unrestricted/Chapter3.pdf. dans le chapitre 3 de la thèse de Ph.D intitulée Effects OF SURFACE MODIFICATION ON CHARGECARPJER DYNAMICS AT SEMICONDUCTEUR INTERFACES par Agnes Juang, 2003, California Institute of Technologie Pasadena, California.This technique is described in more detail in the field of semiconductors http://etd.caltech.edu/etd/available/etd-08062002-192958/unrestricted/Chapter3.pdf. in chapter 3 of the Ph.D thesis entitled Effects OF SURFACE MODIFICATION ON CHARGECARPJER DYNAMICS AT SEMICONDUCTEUR INTERFACES by Agnes Juang, 2003, California Institute of Technology Pasadena, California.
Il a été par ailleurs trouvé de façon surprenante que des micro batteries, selon l'invention, utilisant des microélectrodes contenant du carbone et à base de silicium poreux peuvent être fabriquées par différentes techniques originales ci-après expliquées de façon détaillée.It has also been surprisingly found that micro batteries, according to the invention, using microelectrodes containing carbon and based on porous silicon can be manufactured by different original techniques hereinafter explained in detail.
Il s'agit de la pyrolyse, thermique ou par laser des hétéroatomes de type H ou O présents à la surface de la silice qui ont été déposés comme couches minces sur l'isolant aussi appelé "l'insulator".These are thermal or laser pyrolysis of H or O type heteroatoms present on the surface of the silica which have been deposited as thin layers on the insulator also called the "insulator".
Les deux techniques impliquent la conversion des fonctions C-H-0 en carbone, mais elles diffèrent dans la procédure par la formation de microstructures qui forment les microélectrodes dans la micro batterie. Dans les deux techniques, on part préférentiellement d'une qualité commerciale de silicium appelé silicium dense disponible sous forme de gaufres.Both techniques involve the conversion of C-H-0 functions to carbon, but they differ in the procedure by the formation of microstructures which form the microelectrodes in the micro battery. In both techniques, it is preferable to start from a commercial grade of silicon called dense silicon available in the form of waffles.
Selon une approche avantageuse, les techniques de préparation de semi-conducteurs impliquent le "patteming" du carbone par les méthodes de photolithographie impliquant un masque photo qui est employé pour "modeler" les structures d'électrodes qui peuvent être des surfaces interdigitalisées des électrodes.According to an advantageous approach, the semiconductor preparation techniques involve the "patteming" of carbon by the photolithography methods involving a photo mask which is used to "model" the electrode structures which can be interdigitalized surfaces of the electrodes.
Première technique de préparation d'une électrode à base de silicium poreuxFirst technique for preparing an electrode based on porous silicon
Un silicium conventionnel de transfert "gaufre" avec une couche d'isolation peut servir comme substrat pour les microélectrodes. Selon cette approche innovatrice, des électrodes de carbone sont formées à partir de photo-résistances régulières par traitement thermique (habituellement à températures de 600 à 1.100° Celsius dans une atmosphère inerte pendant une heure) qui les carbonise et qui rend la photo-résistance électriquement conductrice.A conventional "waffle" transfer silicon with an insulation layer can serve as a substrate for microelectrodes. According to this innovative approach, Carbon electrodes are formed from regular photo-resistors by heat treatment (usually at temperatures of 600 to 1,100 ° Celsius in an inert atmosphere for one hour) which carbonizes them and which makes the photo-resistance electrically conductive.
Les matériaux d'électrodes électrochimiquement actives peuvent être déposés de façon sélective sur les carbones par des méthodes électrochimiques, et pour certaines applications, le carbone lui-même peut servir comme électrode.Electrochemically active electrode materials can be selectively deposited on carbons by electrochemical methods, and for some applications, the carbon itself can serve as the electrode.
Le procédé qui est utilisé pour fabriquer les structures des microélectrodes met en oeuvre une succession d'étapes. Dans la première étape, une fine couche de Si3N4 (environ 100 nm) est déposée par déposition de vapeur chimique (CVD), qui sert d'isolateur pour séparer le silicium conducteur "wafer" de la structure carbonée. Des étapes subséquentes impliquant le couchage spin, le "patteming" et la pyrolyse de photo-résistance sont utilisés pour former la structure finale carbonée. À la fois la photo-résistance négative et celle positive sont utilisables pour former les micro-électrodes conductrices carbonées.The process which is used to fabricate the structures of the microelectrodes implements a succession of steps. In the first step, a thin layer of Si 3 N 4 (around 100 nm) is deposited by chemical vapor deposition (CVD), which serves as an insulator to separate the conductive silicon "wafer" from the carbon structure. Subsequent steps involving spin coating, "patteming" and photo-resistance pyrolysis are used to form the final carbon structure. Both negative and positive photoresist can be used to form the carbonaceous conductive micro-electrodes.
Ces techniques sont décrites dans les références : Abs 253, IMLB 12 Meeting, 2004 The Electrochemical Society, Journal of Power Sources, Volume: 89, Issue: 1, July, 2000 et Applied Physics Letters Vol 84(18) pp. 3456-3458. May 3, 2004.These techniques are described in the references: Abs 253, IMLB 12 Meeting, 2004 The Electrochemical Society, Journal of Power Sources, Volume: 89, Issue: 1, July, 2000 and Applied Physics Letters Vol 84 (18) pp. 3456-3458. May 3, 2004.
Deuxième technique de préparation d'une électrode à base de silicium poreuxSecond technique for preparing an electrode based on porous silicon
La seconde approche n'implique pas l'utilisation d'un masque photo. En effet, on utilise seulement un étroit faisceau laser avec "path", contrôlé pour se déplacer selon une trajectoire spécifique "path". Le contrôle du déplacement du faisceau laser sur la surface de la photo-résistance par contrôle informatique autorise la préparation d'une large variété de dispositifs de microélectrodes comportant des canaux. L'intensité de la puissance de la vapeur laser est contrôlée afin d'éviter la vaporisation de la photo-résistance, au lieu de sa conversion en carbone, et ceci minimise aussi la perte de carbone par ablation au laser. Dans une étape subséquente, les photo-résistances n'ayant pas réagi dans certains secteurs qui ne sont pas exposés à la vapeur laser sont dissoutes pour laisser seulement les microélectrodes carbonées sur la gaufre de silicium. La radiation du faisceau laser est capable de convertir le polymère photo-résistant en carbone. De même, des résultats comparables à ceux obtenus par la pyrolyse thermique, sont obtenus par mise en œuvre d'un spectre Raman.The second approach does not involve the use of a photo mask. Indeed, we only use a narrow laser beam with "path", controlled to move along a specific path "path". The control of the movement of the laser beam on the surface of the photoresistor by computer control allows the preparation of a wide variety of microelectrode devices comprising channels. The intensity of the power of the laser vapor is controlled in order to avoid the vaporization of the photo-resistance, instead of its conversion to carbon, and this also minimizes the loss of carbon by laser ablation. In a subsequent step, the unreacted photo resistors in certain areas which are not exposed to laser vapor are dissolved to leave only the carbonaceous microelectrodes on the silicon waffle. The radiation from the laser beam is capable of converting the photoresist polymer to carbon. Similarly, results comparable to those obtained by thermal pyrolysis, are obtained by implementing a Raman spectrum.
Le document How Semiconductors are made E. Reichmanis and O. Nalamasu, Bell Labs, Lucent Technologies, Intersil, 20,06,2003, Intersil Corporation Headquarters and Elantec Product Group, 675 Trade Zone Blvd, Milpitas, CA 95035 décrit des gaufres de silicium (et leur mode de préparation) utilisables dans le cadre de la présente invention.The document How Semiconductors are made E. Reichmanis and O. Nalamasu, Bell Labs, Lucent Technologies, Intersil, 20.06.2003, Intersil Corporation Headquarters and Elantec Product Group, 675 Trade Zone Blvd, Milpitas, CA 95035 describes silicon waffles (and their method of preparation) usable in the context of the present invention.
Le document de Martin Key, intitulé SU-8 Photosensitive Epoxy, CNM, Campus UAB, Bellaterra 08193, Barcelona, Spai (http://www.cnm.es/projects/microdets/index.html) illustre des méthodes permettant de déposer un polymère carboné sur des gaufres de silicium.Martin Key's document, SU-8 Photosensitive Epoxy, CNM, Campus UAB, Bellaterra 08193, Barcelona, Spai (http://www.cnm.es/projects/microdets/index.html) illustrates methods for filing a carbon-based polymer on silicon waffles.
Le document Direct Measurement of the Reaction Front in Chemically Amplified Photoresists, E. Reichmanis and O. Nalamasu, Bell Labs, Lucent Technologies, Sciences, 297, 349 (2002) décrit des méthodes couramment utilisées pour attaquer des zones sélectionnées des photo-résitances.The document Direct Measurement of the Reaction Front in Chemically Amplified Photoresists, E. Reichmanis and O. Nalamasu, Bell Labs, Lucent Technologies, Sciences, 297, 349 (2002) describes methods commonly used to attack selected areas of photo-resistances.
Le contenu de ces trois documents est incorporé par référence à la présente demande.The content of these three documents is incorporated by reference into the present request.
Exemples : microstructures carbone formées par pyrolyse au laser de photorésistance sont décrits ci-après.Examples: carbon microstructures formed by photoresistor laser pyrolysis are described below.
Une photorésistance (Oir 897-101, Olin Corp., Norwalk, CT) a été utilisée pour produire un film mince d'un précurseur organique sur un substrat Si. Un microscope Raman intégré système Labram fabriqué par le groupe ISA Horiba a été utilisé pour la pyrolyse au laser de la photorésistance, et aussi pour analyser la structure du produit carboné.A photoresistor (Oir 897-101, Olin Corp., Norwalk, CT) was used to produce a thin film of an organic precursor on an Si substrate. An integrated Raman microscope Labram system manufactured by the ISA Horiba group was used to laser pyrolysis of photoresistor, and also to analyze the structure of the carbon product.
La longueur d'onde d'excitation était soit fournie par HeNe (632 nm) interne, un laser 20 mW ou par un Ar-ion externe (514nm), 2 W Laser . La puissance du faisceau laser a été ajustée aux niveaux souhaités avec des filtres neutres de diverses densité optique variable. La taille du faisceau laser à la surface de l'échantillon peut être modulée de 1,6 jusqu'à quelques centaines de microns; et il est contrôlé par les caractéristiques des microscopes optiques et la distance entre l'échantillon et les lentilles objectives. Le diamètre du faisceau laser appliqué dans nos expériences était de 5 microns. Pour contrôler la position de l'échantillon par rapport au faisceau laser, un microscope XY à balayage motorisé, de 0,1 micron de résolution a été utilisé. Le temps d'exposition de la photorésistance au faisceau laser a été contrôlé soit par la vitesse de balayage XY, soit par un faisceau laser shutter digital (modèle 845 HP par Newport Corp.), qui a été utilisé dans les expériences statiques.The excitation wavelength was either supplied by internal HeNe (632 nm), a 20 mW laser or by an external Ar-ion (514nm), 2 W Laser. The power of the laser beam was adjusted to the desired levels with neutral filters of various variable optical density. The size of the laser beam on the surface of the sample can be varied from 1.6 to a few hundred microns; and it is controlled by the characteristics of the optical microscopes and the distance between the sample and the objective lenses. The diameter of the laser beam applied in our experiments was 5 microns. To control the position of the sample relative to the laser beam, a motorized scanning XY microscope, 0.1 micron resolution was used. The exposure time of the photoresistor to the laser beam was controlled either by the XY scanning speed or by a digital shutter laser beam (model 845 HP by Newport Corp.), which was used in the static experiments.
Le control du déplacement de l'échantillon de la photo résistance - Si par le programme informatique permet de concevoir une large variété de microélectrodes sous forme de rangées.Controlling the movement of the photo resistance sample - If by the computer program it is possible to design a wide variety of microelectrodes in the form of rows.
La densité de puissance du faisceau laser doit être contrôlée afin d'éviter la vaporisation de la photorésistance sans la convertir en carbone ou de minimiser la perte de carbone par ablation laser.The power density of the laser beam must be controlled in order to avoid vaporization of the photoresistor without converting it to carbon or to minimize the loss of carbon by laser ablation.
Quatre couches d'une photo résistance positive on été enduites sur une gaufre de Si et ensuite cuites à 150 degrés Celsius. Une image optique qui illustre le résultat obtenu par la pyrolyse laser pour la production de structure carbone à partir d'une photorésistance positive est montrée dans la Figure attachée 4-4. Un laser opérant à 632 nm, et avec une taille de faisceau de 5 micromètres et d'une puissance de 8 mW, a été utilisé pour produire les carbones modelés. Un programme informatique a été utilisé pour contrôler le mouvement de l'échantillon pour former les configurations carbone. La vitesse du mouvement de l'échantillon XY motorisé était de 8 mm par seconde. La largeur de l'empreinte dans la structure interdigitalisée est d'environ 20 micromètres. Il est légèrement plus large que le lien du carbone qui les connecte parce que chaque doigt a été exposé deux fois au faisceau laser. Le spectre Raman du carbone positionné sur un des doigts est montré sur la même Figure 4-4. Il est remarquablement similaire à celui obtenu par pyrolyse thermique standard de la même photorésistante à 1.000 Celsius. Ces résultats préliminaires démontrent que l'ont obtient facilement des micro électrodes de carbone présentant un spectre Raman comparable à ceux obtenus par traitement thermique.Four layers of a positive resistance photo were coated on an Si waffle and then baked at 150 degrees Celsius. An optical image which illustrates the result obtained by laser pyrolysis for the production of carbon structure from a positive photoresistor is shown in Figure 4-4. A laser operating at 632 nm, and with a beam size of 5 micrometers and a power of 8 mW, was used to produce the modeled carbons. A computer program was used to control the movement of the sample to form the carbon configurations. The speed of movement of the motorized XY sample was 8 mm per second. The width of the imprint in the interdigital structure is approximately 20 micrometers. It is slightly wider than the carbon bond that connects them because each finger has been exposed to the laser beam twice. The Raman spectrum of carbon positioned on one of the fingers is shown in the same Figure 4-4. It is remarkably similar to that obtained by standard thermal pyrolysis of the same photoresist at 1,000 Celsius. These results Preliminary studies demonstrate that it has easily obtained micro carbon electrodes having a Raman spectrum comparable to those obtained by heat treatment.
Une nouvelle technologie hautement performante et basée sur l'utilisation du laser est ainsi proposée pour la préparation de capacités d'une taille adaptée pour des dispositifs électroniques de petite taille.A new high-performance technology based on the use of the laser is thus proposed for the preparation of capacities of a size suitable for small electronic devices.
Cette nouvelle méthode de l'invention appelée - lithographie laser directe (DDL) - permet de produire des micro électrodes à partir de précurseurs organiques et inorganiques, adaptés pour les batteries Li-ion et la création, à partir d'un type quelconque de substrat, de micro batteries fonctionnelles complètement rechargeables.This new method of the invention called - direct laser lithography (DDL) - makes it possible to produce micro electrodes from organic and inorganic precursors, suitable for Li-ion batteries and creation, from any type of substrate. , fully rechargeable functional micro batteries.
La versatilité de la technologie DLL permet la production sur mesure de sources de micro-puissance et qui peuvent être distribuées et intégrées directement aux composants électroniques.The versatility of DLL technology allows the tailor-made production of micro-power sources which can be distributed and integrated directly into electronic components.
De plus la technologie DLL ne nécessite pas de photo masque pour réaliser la configuration souhaitée pour les microélectrodes.In addition, the DLL technology does not require a photo mask to achieve the desired configuration for the microelectrodes.
En conséquence, DDL peut produire un design de micro batterie plus rapidement que la photolithographie conventionnelle. Les micro batteries obtenues offrent une énergie spécifique et une puissance améliorées en raison de leur poids et de leurs volume réduits, lorsque le substrat électronique devient partie de des éléments de la batterie.As a result, DDL can produce a micro battery design faster than conventional photolithography. The micro batteries obtained offer improved specific energy and power due to their reduced weight and volume, when the electronic substrate becomes part of the elements of the battery.
La cathode peut être préparée à partir d'une cible de matériau de cathode choisie de préférence dans le groupe constitué par LiCo02, LiMn204, LiMn1/3Ni1/3Cθι/302, LiMnι/2Niι/202, LiMP04 (M=Fe, Co, Ni, Mn) et les mélanges d'au moins deux de ces derniers, de préférence la cible de matériau est pressée, le laser est appliqué sur la cible à des puissances pouvant varier de 20mW à 2W pour créer le matériau poreux constitutif de la cathode qui est ensuite décapé de la cible par laser et déposé sur la demi-pile Si poreux/carbone/électrolyte. Une seconde technique de préparation de la cathode par laser, se réalise à partir d'un composé sous forme pâteuse formée d'un mélange d'une poudre de cathode et d'une solution porteuse qui est de préférence du toluène, de l'heptane ou un mélange de ces derniers. La solution pâteuse est enduite sur une plaque support qui est de préférence en verre et placée à lOOμm du substrat (silicium ou autre). Le faisceau laser de rayonnement UV est appliqué à travers la plaque support et la cathode est projetée sur le substrat par pyrolyse.The cathode can be prepared from a target of cathode material preferably chosen from the group consisting of LiCo02, LiMn 2 0 4 , LiMn 1/3 Ni 1/3 Cθι / 3 0 2 , LiMnι / 2 Niι / 2 0 2 , LiMP0 4 (M = Fe, Co, Ni, Mn) and mixtures of at least two of these, preferably the material target is pressed, the laser is applied to the target at powers that can vary from 20mW to 2W to create the porous material constituting the cathode which is then etched from the target by laser and deposited on the half porous Si / carbon / electrolyte stack. A second technique for preparing the cathode by laser is carried out using a compound in pasty form formed from a mixture of cathode powder and a carrier solution which is preferably toluene, heptane or a mixture of these. The pasty solution is coated on a support plate which is preferably made of glass and placed at 100 μm from the substrate (silicon or other). The laser beam of UV radiation is applied through the support plate and the cathode is projected onto the substrate by pyrolysis.
Bien que la présente invention ait été décrite à l'aide de mises en œuvre spécifiques, il est entendu que plusieurs variations et modifications peuvent se greffer auxdites mises en œuvre, et la présente invention vise à couvrir de telles modifications, usages ou adaptations de la présente invention suivant, en général, les principes de l'invention et incluant toute variation de la présente description qui deviendra connue ou conventionnelle dans le champ d'activité dans lequel se retrouve la présente invention, et qui peut s'appliquer aux éléments essentiels mentionnés ci-haut, en accord avec la portée des revendications suivantes. Although the present invention has been described using specific implementations, it is understood that several variations and modifications may be grafted onto said implementations, and the present invention aims to cover such modifications, uses or adaptations of the present invention following, in general, the principles of the invention and including any variation of the present description which will become known or conventional in the field of activity in which the present invention is found, and which can be applied to the essential elements mentioned above, in accordance with the scope of the following claims.

Claims

Revendications claims
1. Procédé de préparation d'une électrode pour système électrochimique à partir d'un matériau poreux.1. Method for preparing an electrode for an electrochemical system from a porous material.
2. Procédé de préparation d'une électrode selon la revendication 1, dans lequel la porosité dudit matériau poreux, mesurée selon la méthode au mercure, varie de 1 à2. Method for preparing an electrode according to claim 1, in which the porosity of said porous material, measured according to the mercury method, varies from 1 to
99 %, bornes comprises-.99%, terminals included-.
3. Procédé de préparation d'une électrode selon la revendication 2, dans lequel la porosité dudit matériau varie de 20 à 80 %, bornes comprises.3. A method of preparing an electrode according to claim 2, wherein the porosity of said material varies from 20 to 80%, limits included.
4. Procédé de préparation d'une électrode selon l'une quelconque des revendications 1 à 3, dans lequel la taille moyenne des pores dans ledit matériau poreux varie de4. Method for preparing an electrode according to any one of claims 1 to 3, in which the average pore size in said porous material varies from
1 nanomètre à 1 micromètre, bornes comprises.1 nanometer to 1 micrometer, terminals included.
5. Procédé de préparation d'une électrode selon la revendication 4, dans lequel la taille des pores varie de 10 à 250 nanomètres, bornes comprises.5. Method for preparing an electrode according to claim 4, in which the pore size varies from 10 to 250 nanometers, limits included.
6. Procédé de préparation d'une électrode selon l'une quelconque des revendications 1 à 5, dans laquelle la dispersion des pores est sensiblement uniforme, de préférence la distribution des pores est telle que sa d50 se situe entre 100 et 150 nanomètres.6. A method of preparing an electrode according to any one of claims 1 to 5, wherein the dispersion of the pores is substantially uniform, preferably the distribution of the pores is such that its d50 is between 100 and 150 nanometers.
7. Procédé de préparation d'une électrode, , selon l'une quelconque des revendications 1 à 6, dans lequel les pores sont situés en surface du matériau poreux et s'étendent au travers dudit matériau poreux; de préférence les pores ont une profondeur comprise entre 1 micromètre et 3 millimètres, et ledit matériaux poreux une épaisseur comprise entre 2 micromètres et 3,5 millimètres.7. A method of preparing an electrode, according to any one of claims 1 to 6, wherein the pores are located on the surface of the porous material and extend through said porous material; preferably the pores have a depth of between 1 micrometer and 3 millimeters, and said porous material a thickness of between 2 micrometers and 3.5 millimeters.
8. Procédé de préparation d'une électrode selon la revendication 7, dans lequel les pores ne traversent pas le matériau poreux de part en part.8. A method of preparing an electrode according to claim 7, wherein the pores do not pass through the porous material right through.
9. Procédé de préparation d'une électrode selon l'une quelconque des revendications9. Method for preparing an electrode according to any one of claims
1 à 8, dans lequel ledit matériau poreux est susceptible de former un alliage avec un métal alcalin. 1 to 8, wherein said porous material is capable of forming an alloy with an alkali metal.
10. Procédé de préparation d'une électrode, selon l'une quelconque des revendications10. Method for preparing an electrode according to any one of claims
1 à 9, dans lequel le matériau poreux est choisi dans le groupe constitué par le silicium, Pétain, l'aluminium, l'argent, l'or, le platine et les mélanges d'au moins deux de ces matériaux mis sous forme poreuse.1 to 9, in which the porous material is chosen from the group consisting of silicon, tin, aluminum, silver, gold, platinum and mixtures of at least two of these materials put in porous form .
11. Procédé de préparation d'une électrode, selon la revendication 9 ou 10, dans lequel la préparation de l'alliage se fait par voie chimique et/ou électrochimique.11. A method of preparing an electrode according to claim 9 or 10, wherein the preparation of the alloy is done chemically and / or electrochemically.
12. Procédé de préparation d'une électrode selon la revendication 11, dans lequel le taux de porosité du matériau utilisé pour former l'électrode est tel que les cavités du matériau poreux peuvent absorber l'extension volumique générée lors de la formation de l'alliage avec le métal alcalin.12. A method of preparing an electrode according to claim 11, wherein the porosity rate of the material used to form the electrode is such that the cavities of the porous material can absorb the volume expansion generated during the formation of the alloy with alkali metal.
13. Procédé de préparation d'une électrode qui est une anode, selon l'une quelconque des revendications 1 à 12, dans lequel le matériau poreux est un silicium poreux.13. A method of preparing an electrode which is an anode, according to any one of claims 1 to 12, wherein the porous material is a porous silicon.
14. Procédé de préparation d'une anode selon la revendication 13, dans lequel ladite anode est obtenue par formation d'un alliage à partir d'au moins une source de silicium poreux et d'au moins un métal alcalin choisi dans le groupe constitué par14. A method of preparing an anode according to claim 13, wherein said anode is obtained by forming an alloy from at least one source of porous silicon and at least one alkali metal selected from the group consisting through
Li, Na, Ca et les mélanges d'au moins deux de ces derniers.Li, Na, Ca and mixtures of at least two of these.
15. Procédé de préparation d'une anode, selon la revendication 14, dans lequel l'anode est à base d'un silicium poreux, dont la porosité, mesurée selon la méthode du porosimètre à mercure, varie de 5 à 95 % en volume, bornes comprises.15. Process for the preparation of an anode, according to claim 14, in which the anode is based on a porous silicon, the porosity of which, measured according to the mercury porosimeter method, varies from 5 to 95% by volume. , terminals included.
16. Procédé de préparation d'une anode, selon la revendication 15, dans lequel la porosité est d'environ 75% en volume.16. Process for the preparation of an anode, according to claim 15, in which the porosity is approximately 75% by volume.
17. Procédé de préparation d'une anode, selon l'une quelconque des revendications 14 à 16, dans lequel le silicium poreux utilisé comme matériau poreux est obtenu à partir d'une source de silicium choisi dans le groupe constitué par : les gaufres de silicium, les pastilles de silicium, les films de silicium et les mélanges d'au moins17. Process for the preparation of an anode, according to any one of claims 14 to 16, in which the porous silicon used as porous material is obtained from a source of silicon chosen from the group consisting of: waffles of silicon, silicon wafers, silicon films and mixtures of at least
2 de ces derniers. 2 of these.
18. Procédé de préparation d'une anode selon l'une quelconque des revendications 14 à 17, dans lequel le silicium poreux utilisé comme matériau poreux est obtenu à partir d'un silicium monocristal.18. A method of preparing an anode according to any one of claims 14 to 17, wherein the porous silicon used as porous material is obtained from a single crystal silicon.
19. Procédé de préparation d'une anode, selon l'une quelconque des revendications 13 à 18, dans lequel le silicium poreux est obtenu à partir à partir d'une source de silicium, par traitement électrochimique, dans un bain comprenant au moins un sel, ledit sel étant de préférence choisi dans le groupe constitué par NHχFγ avec X étant 4 ou 5 et Y étant 1 ou 2, plus préférentiellement encore le sel choisi est NH4F.19. A method of preparing an anode according to any one of claims 13 to 18, in which the porous silicon is obtained from a source of silicon, by electrochemical treatment, in a bath comprising at least one salt, said salt preferably being chosen from the group consisting of NHχF γ with X being 4 or 5 and Y being 1 or 2, more preferably still the salt chosen is NH 4 F.
20. Procédé de préparation d'une anode selon la revendication 19, dans lequel le bain utilisé pour le traitement de la source de silicium contient au moins un sel en solution, qui est de préférence un mélange de H2S04, NH F et H20, et d'au moins un solvant non aqueux qui est de préférence un alcool ou une cétone, le ou les solvants non-aqueux étant choisi(s) de préférence dans le groupe constitué par le méthanol, l'éthanol, l'acétone et les mélanges d'au moins 2 de ces derniers.20. A method of preparing an anode according to claim 19, wherein the bath used for the treatment of the silicon source contains at least one salt in solution, which is preferably a mixture of H 2 S0 4 , NH F and H 2 0, and at least one non-aqueous solvent which is preferably an alcohol or a ketone, the non-aqueous solvent (s) being preferably chosen from the group consisting of methanol, ethanol, l acetone and mixtures of at least 2 of these.
21. Procédé de préparation d'une, anode selon la revendication 20, dans lequel le bain contient en volume de:21. Process for the preparation of an anode according to claim 20, in which the bath contains by volume of:
- 10 à 60 % deNH4F;- 10 to 60% of NH 4 F;
- 5 à 20 % de méthanol; et- 5 to 20% methanol; and
- 75 à 20 % de H2SO4. ' - 75 to 20% of H 2 SO 4 . '
22. Procédé de préparation d'une anode selon l'une quelconque des revendications 14 à 21, dans lequel l'alliage à base de silicium poreux est sous la forme SixLiy, avec x représentant un nombre compris entre 1 et 5, et y représentant un nombre compris entre 5 et 21.22. Process for the preparation of an anode according to any one of claims 14 to 21, in which the alloy based on porous silicon is in the form Si x Li y , with x representing a number between 1 and 5, and representing there a number between 5 and 21.
23. Procédé de préparation d'une anode selon la revendication 22, dans lequel x représente environ 4 et y représente environ 21. 23. The process for preparing an anode according to claim 22, in which x represents approximately 4 and y represents approximately 21.
24. Procédé de préparation d'une anode selon l'une quelconque des revendication 19 à 23, dans lequel l'alliage formé est de type SixLiy et il est obtenu électrochimiquement en contactant une source de silicium avec du lithium et/ou du lithium métallique sous forme de feuillards ou de gaufres, à une température comprise entre 40 et 100° Celsius, de préférence à une température d'environ 80°24. A method of preparing an anode according to any one of claims 19 to 23, in which the alloy formed is of the Si x Li y type and it is obtained electrochemically by contacting a source of silicon with lithium and / or metallic lithium in the form of strips or waffles, at a temperature between 40 and 100 ° Celsius, preferably at a temperature of about 80 °
Celsius.Celsius.
25. Procédé de préparation d'une anode selon la revendication 24, dans lequel la durée de la mise en contact de la source de silicium et du lithium métallique est comprise entre 1 et 12 heures, de préférence ladite durée est d'environ 3 heures.25. A method of preparing an anode according to claim 24, in which the duration of the contacting of the source of silicon and of metallic lithium is between 1 and 12 hours, preferably said duration is approximately 3 hours. .
26. Anode obtenue par la mise en œuvre d'un procédé selon l'une quelconque des revendications 1 à 25.26. Anode obtained by the implementation of a method according to any one of claims 1 to 25.
27. Anode caractérisée en ce quelle contient au moins 60 % massique et de préférence au moins 40 % d'un matériau poreux, de préférence de silicium poreux.27. Anode characterized in that it contains at least 60% by mass and preferably at least 40% of a porous material, preferably porous silicon.
28. Anode selon la revendication 27, recouverte au moins partiellement de carbone.28. Anode according to claim 27, covered at least partially with carbon.
29. Anode selon la revendication 27 ou 28, substantiellement dépourvue de fissures.29. Anode according to claim 27 or 28, substantially free from cracks.
30. Système électrochimique comportant au moins une anode telle que définie dans l'une quelconque des revendications 26 à 29, au moins une cathode et au moins un electrolyte.30. An electrochemical system comprising at least one anode as defined in any one of claims 26 to 29, at least one cathode and at least one electrolyte.
31. Système électrochimique sous forme de batterie selon la revendication 30, dans laquelle l' electrolyte est de type, liquide, gel, ou polymère.31. The electrochemical system in the form of a battery according to claim 30, in which the electrolyte is of the liquid, gel, or polymer type.
32. Système électrochimique selon la revendication 31 qui est une batterie dans laquelle la cathode est de type LiCo02, LiFeP04, LiNi02, LiNio,5Mno,502, LiNio,33Cθo,33Mno>3302, et la cathode de préférence est de type 1 à 5 Volts.32. The electrochemical system according to claim 31 which is a battery in which the cathode is of the LiCo0 2 , LiFeP0 4 , LiNi0 2 , LiNio, 5 Mno, 5 0 2 , LiNio, 33 Cθo, 33 Mno > 33 0 2 type , and the cathode is preferably 1 to 5 Volts.
33. Batterie selon la revendication 32 de type rechargeable, de préférence de type lithium ion. 33. Battery according to claim 32 of rechargeable type, preferably of lithium ion type.
34. Batterie selon la revendication 33, sous forme de micro batterie, ayant de préférence des dimensions comprises entre 1 mm2 et 10cm2, et qui présentent au moins une des propriétés électrochimiques suivantes :-34. Battery according to claim 33, in the form of micro-battery, preferably having dimensions of between 1 mm2 and 10cm2, and which have at least one of the following electrochemical properties: -
- des performances électrochimiques :- electrochemical performance:
. une capacité électrochimique supérieure à 1 μWh. an electrochemical capacity greater than 1 μWh
une cyclabilité supérieure à 500, de préférence supérieure à 1000 cycles;a cyclability greater than 500, preferably greater than 1000 cycles;
. un taux d' autodécharge inférieur à 5 %, de préférence inférieur à 4 %, plus préférentiellement encore inférieur à 3 %; et. a self-discharge rate of less than 5%, preferably less than 4%, more preferably still less than 3%; and
. une durée de vie supérieure, selon le test de stockage réalisé dans les conditions ambiantes, supérieur à 3 ans, de préférence supérieure à 5 ans.. a longer lifespan, according to the storage test carried out under ambient conditions, greater than 3 years, preferably greater than 5 years.
35. Utilisation d'une anode selon l'une quelconque des revendications 26 à 29, dans un système électrochimique.35. Use of an anode according to any one of claims 26 to 29, in an electrochemical system.
36. Utilisation selon la revendication 33 comme électrode négative pour micro batteries au lithium.36. Use according to claim 33 as a negative electrode for micro lithium batteries.
37. Procédé de fabrication d'une électrode à base de silicium poreux et recouverte au moins partiellement de carbone par pyrolyse thermique d'une couche de polymère déposée de préférence en couche mince sur un support de préférence isolant en silicium poreux tel du Si3N4, la pyrolyse du polymère étant . conduite de préférence à une température comprise entre 600 et 1.100°C et de préférence pour une durée comprise entre 30 minutes et 3 heures.37. Method for manufacturing an electrode based on porous silicon and covered at least partially with carbon by thermal pyrolysis of a polymer layer preferably deposited in a thin layer on a support preferably insulating in porous silicon such as Si3N4, the pyrolysis of the polymer being. preferably conducted at a temperature between 600 and 1,100 ° C and preferably for a period between 30 minutes and 3 hours.
38. Procédé de fabrication d'une électrode à base de silicium poreux et recouvert au moins partiellement de carbone, par pyrolyse laser d'une couche de polymère déposée de préférence en couche mince sur un support (isolant) en silicium, le faisceau laser ayant de préférence une intensité comprise entre 10 et 100 milliwatts et étant placé, de préférence, à une distance comprise entre 0,5 micromètres et 1 millimètre du support en silicium, de préférence pendant une durée comprise entre 1 seconde et une minute.38. Method for manufacturing an electrode based on porous silicon and covered at least partially with carbon, by laser pyrolysis of a polymer layer preferably deposited as a thin layer on a silicon support (insulator), the laser beam having preferably an intensity between 10 and 100 milliwatts and being placed, preferably, at a distance between 0.5 micrometers and 1 millimeter of the silicon support, preferably for a period of between 1 second and one minute.
39. Procédé selon la revendication 37 ou 38, dans lequel le support en silicium est constitué par un monocristal de silicium et il a une épaisseur comprise entre 100 microns et 3 millimètres.39. The method of claim 37 or 38, wherein the silicon support is constituted by a single crystal of silicon and it has a thickness between 100 microns and 3 millimeters.
40. Electrode obtenue par mise en œuvre d'un des procédés défini dans l'une quelconque des revendications 36 à 39.40. An electrode obtained by implementing one of the methods defined in any one of claims 36 to 39.
41. Système électrochimique comportant au moins une électrode selon la revendication 40.41. An electrochemical system comprising at least one electrode according to claim 40.
42. Procédé de préparation d'une électrode selon l'une quelconque des revendications42. Process for the preparation of an electrode according to any one of claims
1 à 13 qui est une cathode préparée à partir d'une cible de matériau de cathode, de préférence ladite cible est choisie dans le groupe constitué par LiCo02, LiMn204, LiMnl/3Nil/3Col/302 , LiMnl/2Nil/202 , LiMP04 (M=Fe, Co, Ni, Mn) et les mélanges d'au moins deux de ces derniers, de préférence la cible de matériau est pressée, le laser est appliqué sur la cible à des puissances pouvant varier de 20mW à 2W pour créer le matériau poreux constitutif de la cathode qui est ensuite décapé de la cible par laser et déposé sur une demi pile Si poreux carbone/électrolyte.1 to 13 which is a cathode prepared from a target of cathode material, preferably said target is chosen from the group consisting of LiCo02, LiMn204, LiMnl / 3Nil / 3Col / 302, LiMnl / 2Nil / 202, LiMP04 ( M = Fe, Co, Ni, Mn) and mixtures of at least two of these, preferably the material target is pressed, the laser is applied to the target at powers that can vary from 20mW to 2W to create the porous material constituting the cathode which is then stripped from the target by laser and deposited on a half porous Si battery carbon / electrolyte.
43. Procédé de préparation d'une électrode selon l'une quelconque des revendications 1 à 13 qui est une cathode préparée à partir d'un composé sous forme pâteuse formée d'un mélange d'une poudre de cathode avec une solution porteuse, de préférence du toluène, de l'heptane ou un mélange d'au moins 2 de ces derniers; la solution pâteuse est enduite sur une plaque support (de préférence en verre) placée à lOOμm du substrat, de préférence du silicium; le faisceau laser de rayonnement UV est appliqué à travers la plaque support et la cathode est projetée sur le substrat par pyrolyse. 43. A method of preparing an electrode according to any one of claims 1 to 13 which is a cathode prepared from a compound in pasty form formed from a mixture of a cathode powder with a carrier solution, preferably toluene, heptane or a mixture of at least 2 of these; the pasty solution is coated on a support plate (preferably made of glass) placed 100 μm from the substrate, preferably silicon; the laser beam of UV radiation is applied through the support plate and the cathode is projected onto the substrate by pyrolysis.
EP04737895A 2003-06-25 2004-06-25 Method for preparing an electrode from a porous material, resulting electrode and corresponding electrochemical system Withdrawn EP1649530A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12157204.4A EP2475032B1 (en) 2003-06-25 2004-06-25 Method for preparing an electrode using a porous material, electrode thus obtained and corresponding electrochemical system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA002432397A CA2432397A1 (en) 2003-06-25 2003-06-25 Procedure for preparing an electrode from porous silicon, the electrode so obtained, and an electrochemical system containing at least one such electrode
PCT/CA2004/000956 WO2004114437A2 (en) 2003-06-25 2004-06-25 Method for preparing an electrode from a porous material, resulting electrode and corresponding electrochemical system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP12157204.4A Division EP2475032B1 (en) 2003-06-25 2004-06-25 Method for preparing an electrode using a porous material, electrode thus obtained and corresponding electrochemical system

Publications (1)

Publication Number Publication Date
EP1649530A2 true EP1649530A2 (en) 2006-04-26

Family

ID=33520295

Family Applications (2)

Application Number Title Priority Date Filing Date
EP12157204.4A Expired - Lifetime EP2475032B1 (en) 2003-06-25 2004-06-25 Method for preparing an electrode using a porous material, electrode thus obtained and corresponding electrochemical system
EP04737895A Withdrawn EP1649530A2 (en) 2003-06-25 2004-06-25 Method for preparing an electrode from a porous material, resulting electrode and corresponding electrochemical system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP12157204.4A Expired - Lifetime EP2475032B1 (en) 2003-06-25 2004-06-25 Method for preparing an electrode using a porous material, electrode thus obtained and corresponding electrochemical system

Country Status (6)

Country Link
US (3) US8048561B2 (en)
EP (2) EP2475032B1 (en)
JP (2) JP5342746B2 (en)
CA (3) CA2432397A1 (en)
ES (1) ES2693619T3 (en)
WO (1) WO2004114437A2 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5116213B2 (en) * 2005-03-29 2013-01-09 三洋電機株式会社 Nonaqueous electrolyte secondary battery
GB0601318D0 (en) * 2006-01-23 2006-03-01 Imp Innovations Ltd Method of etching a silicon-based material
JP2007273182A (en) * 2006-03-30 2007-10-18 Sony Corp Current collector, negative electrode and battery
FR2910721B1 (en) * 2006-12-21 2009-03-27 Commissariat Energie Atomique CURRENT-ELECTRODE COLLECTOR ASSEMBLY WITH EXPANSION CAVITIES FOR LITHIUM ACCUMULATOR IN THE FORM OF THIN FILMS.
US8740873B2 (en) * 2007-03-15 2014-06-03 Hologic, Inc. Soft body catheter with low friction lumen
WO2010014966A1 (en) 2008-08-01 2010-02-04 Seeo, Inc High capacity anodes
US9882241B2 (en) 2008-08-01 2018-01-30 Seeo, Inc. High capacity cathode
WO2010054272A1 (en) 2008-11-07 2010-05-14 Seeo, Inc Method of forming an electrode assembly
US9017882B2 (en) 2008-11-07 2015-04-28 Seeo, Inc. Electrodes with solid polymer electrolytes and reduced porosity
JP2010170901A (en) * 2009-01-23 2010-08-05 Kobelco Kaken:Kk Negative-electrode active material, secondary battery and capacitor using the same
JP5515307B2 (en) * 2009-02-03 2014-06-11 ソニー株式会社 Thin-film solid lithium ion secondary battery
EP2237346B1 (en) * 2009-04-01 2017-08-09 The Swatch Group Research and Development Ltd. Electrically conductive nanocomposite material comprising sacrificial nanoparticles and open porous nanocomposites produced thereof
EP2228854B1 (en) * 2009-03-12 2014-03-05 Belenos Clean Power Holding AG Nitride and carbide anode materials
US9431146B2 (en) * 2009-06-23 2016-08-30 A123 Systems Llc Battery electrodes and methods of manufacture
JP5563091B2 (en) * 2009-10-30 2014-07-30 ウィリアム マーシュ ライス ユニバーシティ Structured silicon battery anode
US9142833B2 (en) 2010-06-07 2015-09-22 The Regents Of The University Of California Lithium ion batteries based on nanoporous silicon
US9966598B2 (en) 2014-09-30 2018-05-08 The Board Of Trustees Of The Leland Stanford Junior University High capacity prelithiation reagents and lithium-rich anode materials
CN104701205B (en) * 2015-02-13 2017-11-17 武汉理工大学 In-situ characterization performance test methods based on single nano-wire electrode material
KR102496474B1 (en) * 2015-06-03 2023-02-06 삼성전자주식회사 Secondary battery structure/system and methods of manufacturing and operating the same
DE102015212202A1 (en) * 2015-06-30 2017-01-05 Robert Bosch Gmbh Silicon monolith graphite anode for a lithium cell
KR102591512B1 (en) 2016-09-30 2023-10-23 삼성전자주식회사 Negative active material, lithium secondary battery including the material, and method for manufacturing the material
US11233288B2 (en) 2018-07-11 2022-01-25 International Business Machines Corporation Silicon substrate containing integrated porous silicon electrodes for energy storage devices
US20200388825A1 (en) * 2019-06-10 2020-12-10 GM Global Technology Operations LLC Pre-cycled silicon electrode
US20210135003A1 (en) * 2019-11-04 2021-05-06 Xnrgi, Inc. Single-chip containing porous-wafer battery and device and method of making the same
US20230216030A1 (en) * 2020-05-22 2023-07-06 Fastcap Systems Corporation Si-containing composite anode for energy storage devices
CN111883823B (en) * 2020-06-10 2021-10-26 华南理工大学 Composite polymer solid electrolyte material and preparation method and application thereof
CN113839005A (en) * 2020-06-24 2021-12-24 中国科学院上海硅酸盐研究所 Gel composite positive electrode for solid-state battery and preparation method thereof
CN113948682A (en) * 2020-07-16 2022-01-18 中国石油化工股份有限公司 Silicon-iron-carbon composite negative electrode material, preparation method thereof and lithium ion battery adopting silicon-iron-carbon composite negative electrode material
CN113314357A (en) * 2021-05-24 2021-08-27 北京理工大学 Method for depositing ultra-high frequency response super capacitor by double-pulse femtosecond laser

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2829094C2 (en) * 1978-07-03 1980-07-17 Battelle-Institut E.V., 6000 Frankfurt Production of a porous aluminum framework for the negative electrode of a galvanic lithium-aluminum-metal sulfide element
US4330601A (en) * 1979-10-01 1982-05-18 Duracell International Inc. Rechargeable nonaqueous silver alloy anode cell
US4489143A (en) 1984-01-20 1984-12-18 The United States Of America As Represented By The United States Department Of Energy Lithium aluminum/iron sulfide battery having lithium aluminum and silicon as negative electrode
CA1222543A (en) 1984-04-11 1987-06-02 Hydro-Quebec Lithium alloy dense anodes for all solid batteries
US4590840A (en) 1984-11-09 1986-05-27 Federal Cartridge Corporation Flash hole closure for primer battery cups
EP0563625A3 (en) 1992-04-03 1994-05-25 Ibm Immersion scanning system for fabricating porous silicon films and devices
CA2099526C (en) 1993-07-02 2005-06-21 Hydro-Quebec Lubricant additives used in thin film rolling of lithium strips
CA2099524C (en) 1993-07-02 1999-05-18 Patrick Bouchard Thin film lithium rolling method with controlled separation
US5575035A (en) * 1996-01-24 1996-11-19 Northrop Grumman Corporation Environmentally sound and safe apparatus for removing coatings
US5684067A (en) * 1996-01-24 1997-11-04 Morton International, Inc. Low gloss polyester coating powder compositions
CA2231665A1 (en) * 1997-03-25 1998-09-25 Dow Corning Corporation Method for forming an electrode material for a lithium ion battery
JP2948205B1 (en) 1998-05-25 1999-09-13 花王株式会社 Method for producing negative electrode for secondary battery
JP2000011994A (en) * 1998-06-19 2000-01-14 Kao Corp Positive electrode for nonaqueous secondary battery
SE514286C2 (en) * 1998-07-23 2001-02-05 Mib Marketing Ab Display protection and method of manufacturing the same
JP3562398B2 (en) * 1998-09-08 2004-09-08 松下電器産業株式会社 Method for producing negative electrode material for non-aqueous electrolyte secondary battery and secondary battery
JP2000090922A (en) * 1998-09-09 2000-03-31 Sumitomo Metal Ind Ltd Lithium secondary battery, its negative electrode material, and manufacture of the material
KR100609862B1 (en) * 1998-12-03 2006-08-09 카오 코퍼레이션 Lithium secondary cell and method for manufacturing the same
JP3510175B2 (en) 1999-05-25 2004-03-22 花王株式会社 Method for producing negative electrode for secondary battery
JP3243239B2 (en) * 1999-11-11 2002-01-07 花王株式会社 Method for producing positive electrode for non-aqueous secondary battery
JP2002056843A (en) * 2000-08-09 2002-02-22 Sumitomo Metal Ind Ltd Negative electrode material for lithium secondary battery and method of manufacturing the same
JP2002175837A (en) * 2000-12-06 2002-06-21 Nisshinbo Ind Inc Polymer gel electrolyte and secondary battery, and electric double-layer capacitor
JP2002319408A (en) * 2001-04-23 2002-10-31 Sanyo Electric Co Ltd Lithium secondary battery electrode and lithium secondary battery
JP2002319407A (en) * 2001-04-23 2002-10-31 Sanyo Electric Co Ltd Lithium secondary battery electrode and lithium secondary battery
US6811916B2 (en) 2001-05-15 2004-11-02 Neah Power Systems, Inc. Fuel cell electrode pair assemblies and related methods
JP2002367602A (en) * 2001-06-06 2002-12-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary cell
JP2002100345A (en) * 2001-08-03 2002-04-05 Kao Corp Manufacturing method of positive electrode for nonaqueous secondary battery
US6841221B2 (en) * 2002-02-20 2005-01-11 Congoleum Corporation Heat activated coating texture
JP3985143B2 (en) * 2002-03-11 2007-10-03 株式会社ジーエス・ユアサコーポレーション Electrode material and lithium battery using the same
CN100452493C (en) * 2003-01-06 2009-01-14 三星Sdi株式会社 Nagative active material for recharge lithium battery, its manufacturing method and recharge lithium battery
JP3827642B2 (en) 2003-01-06 2006-09-27 三星エスディアイ株式会社 Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP4463693B2 (en) * 2003-01-14 2010-05-19 独立行政法人科学技術振興機構 Photodetectable solid-state secondary battery
JP3989389B2 (en) 2003-03-14 2007-10-10 独立行政法人科学技術振興機構 Semiconductor device incorporating a solid-state thin-film secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US8828103B2 (en) 2014-09-09
JP5514248B2 (en) 2014-06-04
CA2432397A1 (en) 2004-12-25
JP5342746B2 (en) 2013-11-13
EP2475032A3 (en) 2013-11-06
JP2012199241A (en) 2012-10-18
WO2004114437A2 (en) 2004-12-29
CA2528847C (en) 2014-07-29
CA2528847A1 (en) 2004-12-29
CA2848580C (en) 2017-07-04
WO2004114437A3 (en) 2006-02-09
US8048561B2 (en) 2011-11-01
EP2475032B1 (en) 2018-08-01
US9768441B2 (en) 2017-09-19
US20140374265A1 (en) 2014-12-25
JP2007505444A (en) 2007-03-08
ES2693619T3 (en) 2018-12-13
CA2848580A1 (en) 2004-12-29
US20070154805A1 (en) 2007-07-05
US20120017429A1 (en) 2012-01-26
EP2475032A2 (en) 2012-07-11

Similar Documents

Publication Publication Date Title
EP2475032B1 (en) Method for preparing an electrode using a porous material, electrode thus obtained and corresponding electrochemical system
EP2537198B1 (en) Method for preparing a solid-state battery by sintering under pulsating current
EP1964193B1 (en) Material based on carbon and silicon nanotubes that can be used in negative electrodes for lithium batteries
EP2774196B1 (en) Method for manufacturing all-solid-state thin-film batteries
EP3365937B1 (en) Method for producing a sodium-ion battery
FR2880198A1 (en) Device for the storage of energy using a nanostructured electrode, for the fabrication of micro- batteries with improved life and stability
EP3365933B1 (en) Method of manufacturing an accumulator of the lithium-ion type
CA2657492A1 (en) Multilayer material based on active lithium, preparation method and applications in electrochemical generators
WO2009112714A2 (en) Process for fabricating a silicon-based electrode, silicon-based electrode and lithium battery comprising such an electrode
CA2191019C (en) Rechargeable lithium anode for electrolyte polymer battery
EP3108524B1 (en) Positive electrode for lithium-sulphur electrochemical accumulator having a specific structure
US9972827B2 (en) Method for producing 3D-structured thin films
EP3701580B1 (en) Current collector and current collector-electrode assembly for an accumulator operating according to the principle of ion insertion and deinsertion
WO2012136926A1 (en) Lithium-ion battery precursor including a sacrificial lithium electrode and a negative textile conversion electrode
TW201238125A (en) Template electrode structures for depositing active materials
EP3629400A1 (en) Method for preparing lithium transition metal oxides
FR3054727A1 (en) ELECTROCHEMICAL DEVICE, SUCH AS A MICROBATTERY OR ELECTROCHROME DEVICE, AND METHOD FOR PRODUCING THE SAME
FR3056339A1 (en) METHOD FOR PRODUCING AN ELECTROCHEMICAL DEVICE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051230

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100303

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20211215