EP1647040B1 - Device and method for controlling electric switching devices - Google Patents

Device and method for controlling electric switching devices Download PDF

Info

Publication number
EP1647040B1
EP1647040B1 EP04730526A EP04730526A EP1647040B1 EP 1647040 B1 EP1647040 B1 EP 1647040B1 EP 04730526 A EP04730526 A EP 04730526A EP 04730526 A EP04730526 A EP 04730526A EP 1647040 B1 EP1647040 B1 EP 1647040B1
Authority
EP
European Patent Office
Prior art keywords
contact
armature
acceleration
control device
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04730526A
Other languages
German (de)
French (fr)
Other versions
EP1647040A1 (en
Inventor
Bernd Trautmann
Mikko Koivisto
Norbert Mittlmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1647040A1 publication Critical patent/EP1647040A1/en
Application granted granted Critical
Publication of EP1647040B1 publication Critical patent/EP1647040B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/22Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for supplying energising current for relay coil
    • H01H47/32Energising current supplied by semiconductor device
    • H01H47/325Energising current supplied by semiconductor device by switching regulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H47/00Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current
    • H01H47/02Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay
    • H01H47/04Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current
    • H01H2047/046Circuit arrangements not adapted to a particular application of the relay and designed to obtain desired operating characteristics or to provide energising current for modifying the operation of the relay for holding armature in attracted position, e.g. when initial energising circuit is interrupted; for maintaining armature in attracted position, e.g. with reduced energising current with measuring of the magnetic field, e.g. of the magnetic flux, for the control of coil current

Definitions

  • the present invention relates to a drive device for driving a magnetic actuator or an electrical switching device, in particular of a contactor or relay, which / has an armature, with a receiving device for receiving or detecting a movement amount with respect to the armature and / or an associated contact and a control device for controlling or regulating the acceleration of the armature or of the contact. Furthermore, the present invention relates to a corresponding method for driving a magnetic actuator or an electrical switching device.
  • the magnetic tensile force When switching on contactors, the magnetic tensile force must overcome the opening spring forces. It should be noted that when closing the main contacts of a contactor, the spring forces increase in a defined distance before the closed position to about five times the value. Nevertheless, it must be ensured in this area too that the contacts close at a minimum speed, but the closing speed is also not too high. It is advantageous for the life of a contactor, if the impact velocity of the main contacts is limited to reduce Einschaltabbrands. As a result, mechanical bounce is reduced when the contacts meet and the associated occurrence of arcs, which increases the electrical life. Furthermore, it is advantageous if the magnet system closes gently, which leads to an increase in the mechanical life.
  • Such preferred closing movements can be achieved essentially by a control for controlling the magnet system.
  • a control for controlling the magnet system for example, in the publications EP 0 865 660 and DE 195 35 211 a regulation of the magnetic flux made. In this case, either a constant value or a position-dependent value of the magnetic flux is desired. The nominal value of the magnetic flux must in any case be so high that a traction excess can always be ensured.
  • very high impact velocities can be prevented by the flux control, even in favorable cases, relatively high impact velocities of approximately 0.8 m / s are still achieved, as the simulation according to FIG FIG. 1 shows. In the top diagram of FIG.
  • 1 is the voltage on the coil with a solid line, the mains voltage with a dashed line and the current through the coil with a dotted line.
  • the voltage at the coil is switched on and off according to the control cycles. Initially, the voltage on the coil is turned on and remains on until a predetermined magnetic flux (solid line in the middle diagram) is reached.
  • the current (dotted line in the top diagram) rises rapidly in this time range according to the usual turn-on behavior of an inductor. By adjusting the voltage, the current then remains approximately constant and then gradually decreases with decreasing opening between the contacts to very small values.
  • the middle diagram of FIG. 1 shows, in addition to the flux multiplied by the number of turns N (solid line), which is controlled to a constant value, the spring force (dashed line) and the magnetic force (dotted line).
  • N solid line
  • the spring force is higher than the magnetic force, so that the contact carrier does not move with the contacts yet.
  • the magnetic force exceeds the spring force, whereupon the contacts move relative to each other. Only after this time is the flux regulated to a constant value so that the contacts can move towards each other.
  • the spring force - as mentioned in the beginning - jumps several times. With the reduction of the opening gap when closing the magnetic force (dotted line) increases sharply.
  • the voltage is not switched off again until the speed of the contacts reaches 0.5 m / s (see solid line in the lowest diagram of FIG. 2 ). While the voltage on the coil is switched on, the current through the coil increases (dotted line in the top diagram). After switching off the voltage drops the current gradually decreases again. According to the current, the magnetic flux (solid line in the middle diagram) and the magnetic force (dotted line) increase to an absolute or local maximum until the power-down time. For the speed (solid line in the bottom diagram of FIG. 2 ), this means that it continues to rise even after the voltage has been switched off, since the current and thus the magnetic force decreases only very slowly.
  • the speed reaches a height of 1.0 m / s when the contacts strike and then drops to about 0.6 m / s due to the increased spring force (see dashed line in the middle diagram) when the components of the magnet system meet.
  • the DE 195 44 207 also mentions an acceleration control.
  • the object of the present invention is to propose a control device or a corresponding method, with which a gentle closing of the contacts, for example, a contactor is possible.
  • a drive device for driving a magnetic actuator or an electrical switching device having the features according to claim 1.
  • the invention provides a method for driving a magnetic actuator or an electrical switching device having the features according to claim 14.
  • the impact velocity can be limited to, for example, 0.4 m / s to 0.5 m / s. A knowledge of the spring force curve is not necessary at these speeds.
  • the control in the control device is performed on the basis of a setpoint curve, which represents the relationship between speed and position. In this case, it can be calculated in advance whether the setpoint curve is exceeded or fallen short of in a certain position and a corresponding decision is used as the basis for the control of the coil.
  • the distance traveled or the position is recorded or recorded as a movement variable.
  • the speed and / or the acceleration of the armature can be detected directly.
  • the setpoint curve preferably comprises a region which encloses the contact contact and expediently also the magnetic contact.
  • the movement of the contacts can be controlled even after the contact touch.
  • the recording device may comprise a displacement sensor, from the signal of which analogue or digital differentiation speed and / or acceleration for the control is derived.
  • the displacement sensor can be realized by a coil whose current is measured and whose magnetic flux is determined from the integral of the induced voltage, so that from the position of the contacts mathematically can be determined.
  • a special measuring coil can be used, which is attached to the magnetic system of the magnetic actuator or the electrical switching device, ie on the drive coil. This measuring coil is then independent of the current-carrying drive coil, so that the flow can be measured accurately.
  • the drive device may further include a processor and a semiconductor switch, wherein the semiconductor switch for switching on and off of a drive coil can be used and the processor for driving the semiconductor switch is connected thereto.
  • the drive device may have a freewheeling circuit in which a current is reduced when switching off a drive coil by a reverse voltage.
  • the power can be reduced faster, so that the scheme is correspondingly less sluggish.
  • the removal of two contacts or two magnetic components for controlling the acceleration can be considered in the control device. This can be achieved in the vicinity of the closed position, a different control behavior than in the open position.
  • control devices according to the invention in all their variants can optionally be integrated directly into electrical switching devices, in particular contactors and relays.
  • FIG. 3 shows a schematic diagram.
  • a contactor coil Ls is supplied with mains voltage by a regulator RG.
  • the regulation takes place by means of a setpoint curve, in which the speed v is plotted over the position s.
  • the position s as manipulated variable is determined with the aid of a measuring coil L M.
  • the voltage U i induced in the measuring coil L M and the current I flowing through the coil L M are detected with the aid of an evaluation circuit. From the induced voltage can be determined by integration of the magnetic flux. Based on a defined relationship between the flux and the current I flowing through the coil L M , the position s can be determined. It is forwarded as a manipulated variable to the controller RG.
  • the force on the armature in the contactor coil Ls or its acceleration is regulated to a defined value.
  • the setpoint curve "speed over position" used for control is reproduced.
  • the speed should be in about 0.5 m / s and maintained until closing the magnet system.
  • the main contacts already come into contact with a predefined piece before the impact of the armature on the yoke of the magnet system.
  • Starting point when closing is the rest position (off position) with the speed zero of the armature or movable contact.
  • it is attempted to set the acceleration such that the speed at 3.8 mm air gap reaches 0.5 m / s, if this acceleration is maintained constant.
  • setpoint curve shown may also have a different course.
  • further corner points may be defined to better account for the mechanics when closing the electrical switching device wear.
  • a displacement, velocity or acceleration sensor is not used directly to detect the corresponding quantities. Rather, the position is derived from the current and flow signal of the measuring coil L M.
  • FIG. 6 Simulation results of the acceleration control circuit according to the invention are shown in the diagrams of FIG. 6 shown.
  • the sizes shown correspond to those of 1 and FIG. 2 .
  • FIG. 6 the switch-on movement of a contactor over time is shown.
  • the switch-on movement runs along the preset setpoint curve of FIG. 4 , In this case, it is regulated to a constant acceleration.
  • the acceleration is adjusted in such a way that in turn the corner point (compare arrows in FIG FIG. 4 ) is achieved.
  • Such a deviation from the setpoint curve is particularly important when using the rectified AC voltage for the control of the drive coil, since the current drops lead to actual values below the setpoint curve here.
  • the voltage at the drive coil is first turned on, as in the example of FIG. 1 the case is.
  • the current (dotted line) increases accordingly rapidly.
  • the regulation starts by switching the voltage on and off. It should be noted that to the drive coil and a negative voltage, ie a counter-voltage is applied, so that the current or flow can be lowered if necessary faster.
  • a tracked acceleration control is performed. This means that in a table or curve accordingly FIG. 4 one or more target value points (v soll s soll) are predetermined.
  • the described acceleration control can be extended to the effect that a further degree of freedom is introduced, which has an effect especially at the beginning of the switch-on process.
  • j is a point on the setpoint curve of Fig. 4
  • a very simple acceleration control can be used. This consists only in the specification of a table or function of the acceleration as a function of the path b soll (s).
  • the current acceleration b akt and the current one Path s akt are measured or evaluated.
  • For regulation the voltage at the coil is switched on, if b akt ⁇ b should (s akt ) is. In the event that b akt > b should (s akt ), the voltage is switched off.
  • the position determination can be made from the measurement of the current and the flow.
  • the flow measurement which takes place indirectly via a voltage measurement, can take place with the aid of a separate measuring winding, in which an independent measuring coil L M according to FIG FIG. 3 an induced voltage U i is measured.
  • the flux is then calculated by means of numerical integration via the induced voltage or determined by means of an analog circuit.
  • the voltage measurement for determining the flux is determined directly at the exciter winding or drive coil.
  • a mathematical correction of the winding resistance takes place from two integration intervals during the current increase without movement.
  • an integral over the current II0 and an integral over the voltage IU01 are determined.
  • a corresponding integral II02 is also calculated via the current and an integral IU02 via the voltage.
  • FIG. 7 shows a circuit diagram according to which a contactor coil Ls can be controlled. Via a rectifier GL is a capacitor C and a control circuit RG (see FIG. 3 ) supplied with DC voltage. Via a bridge circuit consisting of two transistors T1 and T2 and two diodes D1 and D2, which is also acted upon by the DC voltage, the contactor coil Ls is supplied.
  • the contactor coil When the contactor coil is switched on, the current flows from the rectifier GL via the transistor T1, the contactor coil Ls, the transistor T2 diagonally opposite the transistor T1 and back into the rectifier.
  • the current flows through the diode D2, the contactor coil Ls, the diode D2 diagonally opposite diode D1 and the rectifier GL parallel capacitor C.
  • the capacitor C is already loaded to the amplitude of the mains voltage Uc and is available as Counter voltage source available. If the capacitance of the capacitor C is very large, then the speed of energization of the contactor coil Ls is approximately identical to the speed of de-excitation.
  • This voltage increase across the capacitor increases the rate of de-energization over the rate of excitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Relay Circuits (AREA)
  • Control Of Linear Motors (AREA)

Abstract

The aim of the invention is to optimise the displacement of the armature of an electromagnetic switching device, in particular a contactor or relay, during the closing operation. To achieve this, the acceleration of the armature is controlled in such a way that the contacts or magnetic components of the switching device meet at an appropriately defined speed. The advantage of the invention is that the de-excitation of the solenoid is accelerated by a negative field voltage, reducing the time constant of the control process.

Description

Die vorliegende Erfindung betrifft eine Ansteuervorrichtung zum Ansteuern eines magnetischen Aktuators oder eines elektrischen Schaltgeräts, insbesondere von einem Schütz oder Relais, der/das einen Anker aufweist, mit einer Aufnahmeeinrichtung zur Aufnahme oder Erfassung einer Bewegungsgröße bezüglich des Ankers und/oder eines damit verbundenen Kontakts und einer Regelungseinrichtung zum Steuern oder Regeln der Beschleunigung des Ankers beziehungsweise des Kontakts. Ferner betrifft die vorliegende Erfindung ein entsprechendes Verfahren zum Ansteuern eines magnetischen Aktuators oder eines elektrischen Schaltgeräts.The present invention relates to a drive device for driving a magnetic actuator or an electrical switching device, in particular of a contactor or relay, which / has an armature, with a receiving device for receiving or detecting a movement amount with respect to the armature and / or an associated contact and a control device for controlling or regulating the acceleration of the armature or of the contact. Furthermore, the present invention relates to a corresponding method for driving a magnetic actuator or an electrical switching device.

Beim Einschalten von Schützen muss die magnetische Zugkraft die öffnend wirkenden Federkräfte überwinden. Dabei ist zu berücksichtigen, dass beim Schließen der Hauptkontakte von einem Schütz die Federkräfte in einem definierten Abstand vor der Schließposition auf etwa den fünffachen Wert ansteigen. Dennoch ist auch in diesem Bereich zu gewährleisten, dass die Kontakte mit einer Mindestgeschwindigkeit schließen, die Schließgeschwindigkeit aber auch nicht zu hoch ist. Vorteilhaft für die Lebensdauer eines Schützes ist es, wenn zur Verminderung des Einschaltabbrands die Auftreffgeschwindigkeit der Hauptkontakte begrenzt wird. Dadurch wird mechanisches Prellen beim Aufeinandertreffen der Kontakte und ein damit verbundenes Auftreten von Lichtbögen reduziert, was die elektrische Lebensdauer erhöht. Ferner ist es vorteilhaft, wenn das Magnetsystem sanft schließt, was zu einer Erhöhung der mechanischen Lebensdauer führt.When switching on contactors, the magnetic tensile force must overcome the opening spring forces. It should be noted that when closing the main contacts of a contactor, the spring forces increase in a defined distance before the closed position to about five times the value. Nevertheless, it must be ensured in this area too that the contacts close at a minimum speed, but the closing speed is also not too high. It is advantageous for the life of a contactor, if the impact velocity of the main contacts is limited to reduce Einschaltabbrands. As a result, mechanical bounce is reduced when the contacts meet and the associated occurrence of arcs, which increases the electrical life. Furthermore, it is advantageous if the magnet system closes gently, which leads to an increase in the mechanical life.

Derart bevorzugte Schließbewegungen können im Wesentlichen durch eine Regelung zur Ansteuerung des Magnetsystems erreicht werden. So wird beispielsweise in den Druckschriften EP 0 865 660 und DE 195 35 211 eine Regelung des Magnetflusses vorgenommen. Dabei wird entweder ein Konstantwert oder ein positionsabhängiger Wert des Magnetflusses angestrebt. Der Sollwert des Magnetflusses muss jedenfalls so hoch sein, dass immer ein Zugkraftüberschuss sichergestellt werden kann. Durch die Flussregelung können zwar sehr hohe Auftreffgeschwindigkeiten verhindert werden, aber selbst in günstigen Fällen werden immer noch verhältnismäßig hohe Auftreffgeschwindigkeiten von rund 0,8 m/s erreicht, wie die Simulation gemäß FIG 1 zeigt. In dem obersten Diagramm von FIG 1 ist die Spannung an der Spule mit durchgezogener Linie, die Netzspannung mit gestrichelter Linie und der Strom durch die Spule mit gepunkteter Linie dargestellt. Die Spannung an der Spule wird entsprechend den Regelungszyklen an- und abgeschaltet. Zu Beginn wird die Spannung an der Spule angeschaltet und bleibt solange an, bis ein vorgegebener magnetischer Fluss (durchgezogene Linie im mittleren Diagramm) erreicht wird. Der Strom (gepunktete Linie in dem obersten Diagramm) steigt in diesem Zeitbereich gemäß dem üblichen Einschaltverhalten einer Induktivität rasch an. Durch das Abregeln der Spannung bleibt der Strom daraufhin in etwa konstant und fällt dann mit kleiner werdender Öffnung zwischen den Kontakten allmählich auf sehr kleine Werte ab.Such preferred closing movements can be achieved essentially by a control for controlling the magnet system. For example, in the publications EP 0 865 660 and DE 195 35 211 a regulation of the magnetic flux made. In this case, either a constant value or a position-dependent value of the magnetic flux is desired. The nominal value of the magnetic flux must in any case be so high that a traction excess can always be ensured. Although very high impact velocities can be prevented by the flux control, even in favorable cases, relatively high impact velocities of approximately 0.8 m / s are still achieved, as the simulation according to FIG FIG. 1 shows. In the top diagram of FIG. 1 is the voltage on the coil with a solid line, the mains voltage with a dashed line and the current through the coil with a dotted line. The voltage at the coil is switched on and off according to the control cycles. Initially, the voltage on the coil is turned on and remains on until a predetermined magnetic flux (solid line in the middle diagram) is reached. The current (dotted line in the top diagram) rises rapidly in this time range according to the usual turn-on behavior of an inductor. By adjusting the voltage, the current then remains approximately constant and then gradually decreases with decreasing opening between the contacts to very small values.

Das mittlere Diagramm von FIG 1 zeigt neben dem mit der Windungszahl N multiplizierten Fluss (durchgezogene Linie), der auf einen konstanten Wert geregelt wird, die Federkraft (gestrichelte Linie) und die Magnetkraft (gepunktete Linie). Zu Beginn des Schließvorgangs ist die Federkraft höher als die Magnetkraft, so dass sich der Kontaktträger mit den Kontakten noch nicht bewegt. Nach einer gewissen Zeit übersteigt die Magnetkraft die Federkraft, woraufhin sich die Kontakte relativ zueinander bewegen. Erst nach diesem Zeitpunkt wird der Fluss auf einen konstanten Wert geregelt, so dass sich die Kontakte aufeinander zu bewegen können. Kurz vor dem Schlie-βen erhöht sich die Federkraft - wie eingangs erwähnt - sprunghaft um ein Mehrfaches. Mit der Reduzierung des Öffnungsspalts beim Schließen steigt die Magnetkraft (gepunktete Linie) stark an.The middle diagram of FIG. 1 shows, in addition to the flux multiplied by the number of turns N (solid line), which is controlled to a constant value, the spring force (dashed line) and the magnetic force (dotted line). At the beginning of the closing process, the spring force is higher than the magnetic force, so that the contact carrier does not move with the contacts yet. After a certain time, the magnetic force exceeds the spring force, whereupon the contacts move relative to each other. Only after this time is the flux regulated to a constant value so that the contacts can move towards each other. Shortly before closing, the spring force - as mentioned in the beginning - jumps several times. With the reduction of the opening gap when closing the magnetic force (dotted line) increases sharply.

In dem untersten Diagramm ist der Weg (gestrichelte Linie) und die Geschwindigkeit (durchgezogene Linie) ebenfalls über der Zeit aufgetragen. Die Geschwindigkeit der Kontakte zueinander nimmt beim Schließen stetig zu und erreicht beim Aufeinandertreffen der Kontakte, wo auch die Federkraft sprunghaft zunimmt, einen Höhepunkt. Wegen der erhöhten Federkraft wird die Geschwindigkeit zunächst vermindert. Aufgrund des konstanten Flusses nimmt sie bis zur Schließposition jedoch wieder geringfügig zu. Auch das Schließen erfolgt mit der verhältnismäßig hohen Geschwindigkeit von etwa 0,8 m/s wie bereits erwähnt.In the bottom diagram, the path (dashed line) and the velocity (solid line) are also plotted over time. The speed of the contacts increases when closing steadily and reached when the contacts meet, where the spring force increases suddenly, a climax. Because of the increased spring force, the speed is initially reduced. Due to the constant flow, however, it slightly increases again up to the closed position. The closing also takes place at the comparatively high speed of about 0.8 m / s, as already mentioned.

In dem weiteren Dokument DE 195 44 207 ist ein spezielles Verfahren zur Regelung der Geschwindigkeit beim Schließen der Kontakte eines Schützes beschrieben. Dieses Verfahren besitzt dieselben Nachteile wie auch einfachere Geschwindigkeitsregler. Bei Überschreitung der Sollgeschwindigkeit schaltet der Regler aus und bei Unterschreitung der Sollgeschwindigkeit wieder ein. In dem speziellen Beispiel schaltet der Regler während der gesamten Schließbewegung nur einmal aus und einmal ein. Die elektromagnetische Zeitkonstante und die Massenträgheit der Mechanik bewirken sehr große Abweichungen vom Sollwert der Geschwindigkeit. Eine Simulation dieser Geschwindigkeitsregelung ist in FIG 2 dargestellt. In den einzelnen Diagrammen sind die gleichen Größen wie in FIG 1 in ihrem zeitlichen Verlauf dargestellt. Zu Beginn des Schließvorgangs wird die Spannung an der Spule angeschaltet (vergleiche durchgezogene Linie im obersten Diagramm von FIG 2). Die Spannung wird erst wieder abgeschaltet, wenn die Geschwindigkeit der Kontakte zueinander den Wert 0,5 m/s erreicht (vergleiche durchgezogene Linie im untersten Diagramm von FIG 2). Während die Spannung an der Spule angeschaltet ist steigt der Strom durch die Spule (gepunktete Linie im obersten Diagramm). Nach dem Abschalten der Spannung sinkt der Strom allmählich wieder ab. Entsprechend dem Strom steigt der magnetische Fluss (durchgezogene Linie im mittleren Diagramm) und die Magnetkraft (gepunktete Linie) zu einem absoluten bzw. lokalen Maximum bis zum Abschaltzeitpunkt der Spannung an. Für die Geschwindigkeit (durchgezogene Linie im untersten Diagramm von FIG 2) bedeutet dies, dass sie auch nach dem Abschaltzeitpunkt der Spannung weiter ansteigt, da der Strom und somit die Magnetkraft nur sehr langsam zurückgeht. Die Geschwindigkeit erreicht beim Auftreffen der Kontakte etwa eine Höhe von 1,0 m/s und sinkt dann aufgrund der erhöhten Federkraft (vergleiche gestrichelte Linie im mittleren Diagramm) auf etwa 0,6 m/s ab, wenn die Komponenten des Magnetsystems aufeinandertreffen. Der Weg der Kontakte zueinander, d. h. die Öffnung der Kontakte, nimmt beim Schließen ähnlich wie bei der Regelung gemäß FIG 1 stetig ab.In the further document DE 195 44 207 A special method for controlling the speed when closing the contacts of a contactor is described. This method has the same disadvantages as simpler speed controllers. If the set speed is exceeded, the controller switches off and on again when the set speed is undershot. In the specific example, during the entire closing movement, the controller switches off once only and once on. The electromagnetic time constant and the inertia of the mechanism cause very large deviations from the setpoint of the speed. A simulation of this cruise control is in FIG. 2 shown. In the individual diagrams are the same sizes as in FIG. 1 shown in their time course. At the beginning of the closing process, the voltage on the coil is switched on (compare solid line in the top diagram of FIG. 2 ). The voltage is not switched off again until the speed of the contacts reaches 0.5 m / s (see solid line in the lowest diagram of FIG. 2 ). While the voltage on the coil is switched on, the current through the coil increases (dotted line in the top diagram). After switching off the voltage drops the current gradually decreases again. According to the current, the magnetic flux (solid line in the middle diagram) and the magnetic force (dotted line) increase to an absolute or local maximum until the power-down time. For the speed (solid line in the bottom diagram of FIG. 2 ), this means that it continues to rise even after the voltage has been switched off, since the current and thus the magnetic force decreases only very slowly. The speed reaches a height of 1.0 m / s when the contacts strike and then drops to about 0.6 m / s due to the increased spring force (see dashed line in the middle diagram) when the components of the magnet system meet. The path of the contacts to each other, ie the opening of the contacts, takes on closing similar to the regulation according to FIG. 1 steadily off.

Die DE 195 44 207 erwähnt auch eine Beschleunigungsregelung.The DE 195 44 207 also mentions an acceleration control.

Die eingangs erwähnten Anforderungen an die Schließbewegung werden bei beiden dokumentierten Regelungen nicht hinreichend erfüllt. Somit besteht die Aufgabe der vorliegenden Erfindung darin, eine Ansteuervorrichtung bzw. ein entsprechendes Verfahren vorzuschlagen, mit denen ein sanftes Schließen der Kontakte beispielsweise eines Schützes möglich ist.The requirements mentioned above for the closing movement are not adequately met in both documented regulations. Thus, the object of the present invention is to propose a control device or a corresponding method, with which a gentle closing of the contacts, for example, a contactor is possible.

Erfindungsgemäß wird diese Aufgabe gelöst durch eine Ansteuervorrichtung zum Ansteuern eines magnetischen Aktuators oder eines elektrischen Schaltgeräts mit den Merkmalen gemäß Patentanspruch 1.According to the invention this object is achieved by a drive device for driving a magnetic actuator or an electrical switching device having the features according to claim 1.

Ferner ist erfindungsgemäß vorgesehen ein Verfahren zum Ansteuern eines magnetischen Aktuators oder eines elektrischen Schaltgeräts mit den Merkmalen gemäß Patentanspruch 14.Furthermore, the invention provides a method for driving a magnetic actuator or an electrical switching device having the features according to claim 14.

Mit der Beschleunigungsregelung ist es möglich, dass die Auftreffgeschwindigkeit auf beispielsweise 0,4 m/s bis 0,5 m/s beschränkt werden kann. Eine Kenntnis der Federkraftkurve ist bei diesen Geschwindigkeiten nicht nötig.With the acceleration control, it is possible that the impact velocity can be limited to, for example, 0.4 m / s to 0.5 m / s. A knowledge of the spring force curve is not necessary at these speeds.

Die Regelung in der Regelungseinrichtung wird anhand einer Sollkurve, die den Zusammenhang von Geschwindigkeit und Position darstellt, durchgeführt. Dabei kann vorausberechnet werden, ob die Sollkurve in einer bestimmten Position über- oder unterschritten wird und eine entsprechende Entscheidung als Grundlage für die Ansteuerung der Spule verwendet werden.The control in the control device is performed on the basis of a setpoint curve, which represents the relationship between speed and position. In this case, it can be calculated in advance whether the setpoint curve is exceeded or fallen short of in a certain position and a corresponding decision is used as the basis for the control of the coil.

Vorzugsweise wird als Bewegungsgröße der zurückgelegte Weg bzw. die Position erfasst oder aufgenommen. Ebenso kann aber auch die Geschwindigkeit und/oder die Beschleunigung des Ankers direkt erfasst werden.Preferably, the distance traveled or the position is recorded or recorded as a movement variable. Likewise, however, the speed and / or the acceleration of the armature can be detected directly.

Vorzugsweise umfasst die Sollkurve einen Bereich, der die Kontaktberührung und zweckmäßigerweise auch die Magnetberührung einschließt. Damit kann die Bewegung der Kontakte auch nach der Kontaktberührung weiter geregelt werden.The setpoint curve preferably comprises a region which encloses the contact contact and expediently also the magnetic contact. Thus, the movement of the contacts can be controlled even after the contact touch.

Die Aufnahmeeinrichtung kann einen Wegsensor umfassen, aus dessen Signal durch analoge oder digitale Differenziation Geschwindigkeit und/oder Beschleunigung für die Regelung abgeleitet wird. Dabei kann der Wegsensor durch eine Spule realisiert werden, deren Strom gemessen und deren magnetischer Fluss aus dem Integral der induzierten Spannung bestimmt wird, so dass daraus die Position der Kontakte rechnerisch ermittelt werden kann. Hierzu kann eine spezielle Messspule eingesetzt werden, die an dem Magnetsystem des magnetischen Aktuators oder des elektrischen Schaltgeräts, d. h. an dessen Antriebsspule, angebracht wird. Diese Messspule ist dann unabhängig von der stromdurchflossenen Antriebsspule, so dass sich der Fluss entsprechend genau messen lässt.The recording device may comprise a displacement sensor, from the signal of which analogue or digital differentiation speed and / or acceleration for the control is derived. In this case, the displacement sensor can be realized by a coil whose current is measured and whose magnetic flux is determined from the integral of the induced voltage, so that from the position of the contacts mathematically can be determined. For this purpose, a special measuring coil can be used, which is attached to the magnetic system of the magnetic actuator or the electrical switching device, ie on the drive coil. This measuring coil is then independent of the current-carrying drive coil, so that the flow can be measured accurately.

Die Ansteuervorrichtung kann ferner einen Prozessor und einen Halbleiterschalter aufweisen, wobei der Halbleiterschalter zum An- und Abschalten einer Antriebsspule eingesetzt werden kann und der Prozessor zur Ansteuerung des Halbleiterschalters mit diesem verbunden ist.The drive device may further include a processor and a semiconductor switch, wherein the semiconductor switch for switching on and off of a drive coil can be used and the processor for driving the semiconductor switch is connected thereto.

Darüber hinaus kann die erfindungsgemäße Ansteuervorrichtung einen Freilaufkreis aufweisen, in dem ein Strom beim Abschalten einer Antriebsspule durch eine Gegenspannung abgebaut wird. Damit kann der Strom rascher reduziert werden, so dass die Regelung entsprechend weniger träge ist.In addition, the drive device according to the invention may have a freewheeling circuit in which a current is reduced when switching off a drive coil by a reverse voltage. Thus, the power can be reduced faster, so that the scheme is correspondingly less sluggish.

Vorteilhafterweise ist in der Regelungseinrichtung die Entfernung zweier Kontakte oder zweier Magnetkomponenten für die Regelung der Beschleunigung berücksichtigbar. Damit kann in der Nähe der Schließposition ein anderes Regelungsverhalten erreicht werden als in der Offen-Position.Advantageously, the removal of two contacts or two magnetic components for controlling the acceleration can be considered in the control device. This can be achieved in the vicinity of the closed position, a different control behavior than in the open position.

Die erfindungsgemäßen Steuervorrichtungen in ihren sämtlichen Varianten können gegebenenfalls direkt in elektrische Schaltgeräte, insbesondere Schütze und Relais, integriert werden.The control devices according to the invention in all their variants can optionally be integrated directly into electrical switching devices, in particular contactors and relays.

Die vorliegende Erfindung wird nun anhand der beigefügten Zeichnungen näher erläutert, in denen zeigen:

FIG 1
Simulationsdiagramme zu einer Regelung gemäß dem Stand der Technik;
FIG 2
Simulationsdiagramme zu einer alternativen Regelung gemäß dem Stand der Technik;
FIG 3
ein Blockschaltdiagramm einer erfindungsgemäß angesteuerten Schützspule;
FIG 4
eine Sollwertkurve für die Regelung;
FIG 5
eine Funktionenschar zur Ermittlung des Wegs aus dem Strom- und Flusssignal;
FIG 6
Simulationsdiagramme für die Beschleunigungsregelung gemäß der vorliegenden Erfindung und
FIG 7
ein Schaltungsdiagramm zur Schnellentregung von Schützen.
The present invention will now be explained in more detail with reference to the accompanying drawings, in which:
FIG. 1
Simulation diagrams for a control according to the prior art;
FIG. 2
Simulation diagrams for an alternative control according to the prior art;
FIG. 3
a block diagram of an inventive controlled contactor coil;
FIG. 4
a setpoint curve for the control;
FIG. 5
a set of functions for determining the path from the current and flow signal;
FIG. 6
Simulation diagrams for the acceleration control according to the present invention and
FIG. 7
a circuit diagram for fast de-energizing contactors.

Die nachfolgend aufgeführten Ausführungsbeispiele stellen bevorzugte Ausführungsformen der vorliegenden Erfindung dar.The embodiments listed below represent preferred embodiments of the present invention.

Nachdem eine reine Geschwindigkeitsregelung zu träge ist, wird bei dem erfindungsgemäßen Verfahren die Beschleunigung als Regelgröße verwendet. FIG 3 zeigt hierzu ein Prinzipschaltbild. Eine Schützspule Ls wird von einem Regler RG mit Netzspannung versorgt. Die Regelung erfolgt mittels einer Sollwertkurve, in der die Geschwindigkeit v über der Position s aufgetragen ist.After a pure speed control is too slow, the acceleration is used as a control variable in the inventive method. FIG. 3 shows a schematic diagram. A contactor coil Ls is supplied with mains voltage by a regulator RG. The regulation takes place by means of a setpoint curve, in which the speed v is plotted over the position s.

Die Position s als Stellgröße wird mit Hilfe einer Messspule LM ermittelt. Hierzu wird mit Hilfe einer Auswerteschaltung die in der Messspule LM induzierte Spannung Ui und der durch die Spule LM fließende Strom I erfasst. Aus der induzierten Spannung lässt sich durch Integration der magnetische Fluss bestimmen. Anhand einer definierten Beziehung zwischen dem Fluss und dem durch die Spule LM fließenden Strom I kann die Position s ermittelt werden. Sie wird als Stellgröße an den Regler RG weitergeleitet. Gemäß dem nachfolgend näher beschriebenen Regelungsprinzip wird die Kraft auf den Anker in der Schützspule Ls bzw. dessen Beschleunigung auf einen definierten Wert geregelt.The position s as manipulated variable is determined with the aid of a measuring coil L M. For this purpose, the voltage U i induced in the measuring coil L M and the current I flowing through the coil L M are detected with the aid of an evaluation circuit. From the induced voltage can be determined by integration of the magnetic flux. Based on a defined relationship between the flux and the current I flowing through the coil L M , the position s can be determined. It is forwarded as a manipulated variable to the controller RG. According to the control principle described in more detail below, the force on the armature in the contactor coil Ls or its acceleration is regulated to a defined value.

In FIG 4 ist die zur Regelung herangezogene Sollwertkurve "Geschwindigkeit über Position" wiedergegeben. Bei einem Luftspalt von 3,8 mm, in jedem Fall vor dem Schließen der Hauptkontakte, soll die Geschwindigkeit in etwa 0,5 m/s betragen und bis zum Schließen des Magnetsystems beibehalten werden. Hierzu ist zu bemerken, dass die Hauptkontakte ein vordefiniertes Stück vor dem Auftreffen des Ankers auf das Joch des Magnetsystems bereits in Kontakt treten. Startpunkt beim Schließen ist die Ruhelage (Aus-Position) mit der Geschwindigkeit Null des Ankers bzw. beweglichen Kontakts. In jeder Position bzw. Größe des Luftspalts wird gemäß einer ersten Ausführungsform der vorliegenden Erfindung versucht, die Beschleunigung derart einzustellen, dass die Geschwindigkeit bei 3,8 mm Luftspalt den Wert 0,5 m/s erreicht, wenn diese Beschleunigung konstant beibehalten wird. Dies bedeutet, dass bei der Berechnung eines zu verwendenden Beschleunigungswerts in jedem Messzeitschritt festgestellt wird, ob mit der aktuellen Geschwindigkeit und der aktuellen Beschleunigung der Eckpunkt 0,5 m/s bei 3,8 mm der Geschwindigkeitskurve über- oder unterschritten wird, wenn die aktuelle Beschleunigung beibehalten wird. Dementsprechend wird die Antriebsspule des Magnetsystems an- oder abgeschaltet.In FIG. 4 the setpoint curve "speed over position" used for control is reproduced. At an air gap of 3.8 mm, in any case before closing the Main contacts, the speed should be in about 0.5 m / s and maintained until closing the magnet system. It should be noted that the main contacts already come into contact with a predefined piece before the impact of the armature on the yoke of the magnet system. Starting point when closing is the rest position (off position) with the speed zero of the armature or movable contact. In each position or size of the air gap, according to a first embodiment of the present invention, it is attempted to set the acceleration such that the speed at 3.8 mm air gap reaches 0.5 m / s, if this acceleration is maintained constant. This means that when calculating an acceleration value to be used in each measuring time step, it is determined whether the current speed and the current acceleration exceed or fall below the corner point 0.5 m / s at 3.8 mm of the speed curve, if the current speed Acceleration is maintained. Accordingly, the drive coil of the magnet system is switched on or off.

Die in FIG 4 dargestellte Sollwertkurve kann auch einen anderen Verlauf aufweisen. So kann beispielsweise zwischen der Schließposition (0 mm) und der Position 3,8 mm, bei der die Geschwindigkeit auf 0,5 m/s geregelt wird, gegebenenfalls weitere Eckpunkte definiert werden, um der Mechanik beim Schließen des elektrischen Schaltgeräts gegebenenfalls besser Rechnung zu tragen.In the FIG. 4 setpoint curve shown may also have a different course. Thus, for example between the closed position (0 mm) and the position 3.8 mm, in which the speed is regulated to 0.5 m / s, further corner points may be defined to better account for the mechanics when closing the electrical switching device wear.

In dem gewählten Ausführungsbeispiel wird nicht direkt ein Weg-, Geschwindigkeits- oder Beschleunigungssensor zur Erfassung der entsprechenden Größen verwendet. Vielmehr wird die Position aus dem Strom- und Flusssignal der Messspule LM hergeleitet.In the selected embodiment, a displacement, velocity or acceleration sensor is not used directly to detect the corresponding quantities. Rather, the position is derived from the current and flow signal of the measuring coil L M.

FIG 5 zeigt in einer Kurvenschar den diesbezüglichen rechnerischen Zusammenhang Ψ = f(I, x). Aus der Kurvenschar kann eindeutig bei bekanntem Strom und bekanntem Fluss auf eine Öffnungsweite der Kontakte geschlossen werden. Gemäß einem einfachen Lösungsansatz kann der Weg s aus den Kurven anhand eines Polynoms dritten oder fünften Grades ermittelt werden. Der anhand dieser Kurvenschar ermittelte Wert des Wegs s wird gemäß FIG 3 von der Auswerteeinheit AW an den Regler RG übermittelt. FIG. 5 shows in a set of curves the relevant computational relationship Ψ = f (I, x). From the family of curves can clearly with known current and known flow to a Opening width of the contacts are closed. According to a simple approach, the path s can be determined from the curves on the basis of a third or fifth degree polynomial. The value of the path s determined on the basis of this family of curves is determined according to FIG. 3 transmitted by the evaluation unit AW to the controller RG.

Simulationsergebnisse der erfindungsgemäßen Schaltung mit Beschleunigungsregelung sind in den Diagrammen von FIG 6 dargestellt. Die dargestellten Größen entsprechen denen von FIG 1 und FIG 2. Auch in FIG 6 ist die Einschaltbewegung eines Schützes über der Zeit dargestellt. Im Idealfall verläuft die Einschaltbewegung entlang der vorgegebenen Sollwertkurve von FIG 4. In diesem Fall wird auf eine konstante Beschleunigung geregelt. Falls bei dem Einschaltvorgang jedoch Punkte neben der Sollwertkurve als Istwerte festgestellt werden, so wird die Beschleunigung derart nachgeführt, dass wiederum der Eckpunkt (vergleiche Pfeile in FIG 4) erreicht wird. Eine solche Abweichung von der Sollwertkurve ist insbesondere beim Einsatz gleichgerichteter Wechselspannung für die Ansteuerung der Antriebsspule von Bedeutung, da hier die Stromeinbrüche zu Istwerten unterhalb der Sollwertkurve führen.Simulation results of the acceleration control circuit according to the invention are shown in the diagrams of FIG. 6 shown. The sizes shown correspond to those of 1 and FIG. 2 , Also in FIG. 6 the switch-on movement of a contactor over time is shown. Ideally, the switch-on movement runs along the preset setpoint curve of FIG. 4 , In this case, it is regulated to a constant acceleration. However, if points are detected as actual values next to the reference value curve during the switch-on process, the acceleration is adjusted in such a way that in turn the corner point (compare arrows in FIG FIG. 4 ) is achieved. Such a deviation from the setpoint curve is particularly important when using the rectified AC voltage for the control of the drive coil, since the current drops lead to actual values below the setpoint curve here.

Wie dem obersten Diagramm von FIG 6 zu entnehmen ist, wird die Spannung an der Antriebsspule zunächst angeschaltet, wie dies auch in dem Beispiel von FIG 1 der Fall ist. Der Strom (gepunktete Linie) steigt entsprechend rasch an. Sobald der Strom einen gewissen Wert erreicht hat, setzt die Regelung durch An- und Abschalten der Spannung ein. Dabei ist zu beachten, dass an die Antriebsspule auch eine negative Spannung, d. h. eine Gegenspannung, angelegt wird, damit der Strom bzw. Fluss gegebenenfalls rascher abgesenkt werden kann.Like the top diagram of FIG. 6 can be seen, the voltage at the drive coil is first turned on, as in the example of FIG. 1 the case is. The current (dotted line) increases accordingly rapidly. As soon as the current has reached a certain value, the regulation starts by switching the voltage on and off. It should be noted that to the drive coil and a negative voltage, ie a counter-voltage is applied, so that the current or flow can be lowered if necessary faster.

Im mittleren Diagramm von FIG 6 ist zu erkennen, dass während der Regelung die Magnetkraft (gepunktete Linie) konstant über der Federkraft (gestrichelte Linie) gehalten wird. Dies bedeutet, dass die Kraft auf den Anker und damit seine Beschleunigung während des Einschaltvorgangs gleich bleibt. Beim Erreichen der Geschwindigkeit von 0,5 m/s (vergleiche durchgezogene Linie im untersten Diagramm von FIG 6) wird der Strom und somit auch die Magnetkraft etwas nach unten geregelt, so dass die Magnetkraft der entgegenwirkenden Federkraft betragsmäßig entspricht und die Geschwindigkeit somit beibehalten wird.In the middle diagram of FIG. 6 It can be seen that during the control, the magnetic force (dotted line) is kept constant above the spring force (dashed line). This means, that the force on the armature and thus its acceleration remains the same during the switch-on process. When reaching the speed of 0.5 m / s (compare solid line in the bottom diagram of FIG. 6 ), the current and thus also the magnetic force is regulated somewhat downwards, so that the magnetic force of the counteracting spring force corresponds in terms of amount and thus the speed is maintained.

Beim anschließenden Auftreffen der Kontakte aufeinander, wenn sich die Federkraft sprunghaft erhöht, muss zur Beibehaltung der Geschwindigkeit die Magnetkraft (gepunktete Linie im mittleren Diagramm) hochgeregelt werden. Dies wird durch ein Anschalten der Spannung an der Spule (durchgezogene Linie im obersten Diagramm) bzw. Anstieg des Stroms durch die Spule (gepunktete Linie im obersten Diagramm) erreicht. Der kurze Geschwindigkeitseinbruch beim Auftreffen der Kontakte aufeinander kann somit kompensiert werden (vergleiche durchgezogene Linie im untersten Diagramm). Der von den Kontakten beim Einschaltvorgang zurückgelegte Weg (vergleiche gestrichelte Linie im untersten Diagramm von FIG 6) über der Zeit entspricht im Wesentlichen dem von FIG 1.In the subsequent impact of the contacts on each other, when the spring force increases abruptly, the magnetic force (dotted line in the middle diagram) must be up-regulated to maintain the speed. This is achieved by switching on the voltage at the coil (solid line in the top diagram) or increasing the current through the coil (dotted line in the top diagram). The short drop in speed when the contacts hit each other can thus be compensated (compare solid line in the bottom diagram). The distance traveled by the contacts at power-up (see dashed line in the bottom diagram of FIG. 6 ) over time is essentially the same as that of FIG. 1 ,

In dem hier dargestellten Beispiel wird eine nachgeführte Beschleunigungsregelung durchgeführt. Dies bedeutet, dass in einer Tabelle bzw. Kurve entsprechend FIG 4 ein oder mehrere Sollwertpunkte (vsoll ssoll) vorgegeben werden. Die aktuellen Werte für Beschleunigung, Geschwindigkeit und Weg bakt, vakt und sakt werden gemessen bzw. ausgewertet. Daraus wird gemäß der Formel t rest = s akt - s soll / v soll + v akt / 2

Figure imgb0001
eine Restlaufzeit trest berechnet, die vom aktuellen Zustand bis zum Erreichen des Eckpunkts (3,8 mm, 0,5 m/s) von FIG 4 verbleibt. Aus dieser Restlaufzeit wird gemäß der Formel v schalt = v akt + b akt t rest
Figure imgb0002
ein Schaltgeschwindigkeitswert vschalt vorhergesagt, mit dem sich die Kontakte zum Schaltzeitpunkt aufeinander zu bewegen würden, wenn die Beschleunigung beibehalten wird. Als Regelungskriterium gilt nun, dass die Spannung an der Spule eingeschaltet wird, wenn vschalt < vsoll ist. Andernfalls, wenn vschalt > vsoll ist, wird die Spannung an der Spule ausgeschaltet.In the example shown here, a tracked acceleration control is performed. This means that in a table or curve accordingly FIG. 4 one or more target value points (v soll s soll) are predetermined. The current values for acceleration, velocity and path b akt , v akt and s akt are measured or evaluated. This becomes according to the formula t rest = s act - s should / v should + v act / 2
Figure imgb0001
calculates a residual time t rest , which ranges from the current state to reaching the vertex (3.8 mm, 0.5 m / s) of FIG. 4 remains. From this residual maturity is calculated according to the formula v switching = v act + b act t rest
Figure imgb0002
a switching speed value v switching predicted, with which the contacts would move towards each other at the switching time, if the acceleration is maintained. As a control criterion now is that the power is turned on at the coil when switching v <v should be valid. Otherwise, if v switching> v should, the voltage across the coil is turned off.

Die geschilderte Beschleunigungsregelung kann dahingehend erweitert werden, dass ein weiterer Freiheitsgrad eingeführt wird, der sich insbesondere zu Beginn des Einschaltvorgangs auswirkt. Zur Berechnung der Geschwindigkeit vschalt zum Schaltzeitpunkt wird gemäß der Formel V schalt = v akt + k b akt t rest

Figure imgb0003
ein Entfernungsfaktor k berücksichtigt. Dieser lässt sich wie folgt berechnen: k = s akt - s j - 1 / s j - s j - 1
Figure imgb0004
The described acceleration control can be extended to the effect that a further degree of freedom is introduced, which has an effect especially at the beginning of the switch-on process. To calculate the speed v switching at the switching time is of the formula V switching = v act + k b act t rest
Figure imgb0003
a distance factor k is taken into account. This can be calculated as follows: k = s act - s j - 1 / s j - s j - 1
Figure imgb0004

Dabei bedeutet j einen Punkt auf der Sollkurve von Fig. 4. Der Punkt j = 1 entspricht in diesem Beispiel der Offenposition bei vakt = 0, der Punkt j = 2 entspricht der Position (3,8 mm, 0,5 m/s) und der Punkt j = 3 entspricht der Geschlossenposition bei s = 0 mm.Where j is a point on the setpoint curve of Fig. 4 , The point j = 1 in this example corresponds to the open position at v akt = 0, the point j = 2 corresponds to the position (3.8 mm, 0.5 m / s) and the point j = 3 corresponds to the closed position at s = 0 mm.

Zu Beginn des Einschaltvorgangs ist k = 0, während am Ende des Einschaltvorgangs k = 1 ist. Dies bedeutet, dass die aktuelle Beschleunigung bakt zu Beginn des Einschaltvorgangs auf die Regelung praktisch keinen Einfluss hat. Vielmehr ist die Regelung zu Beginn des Einschaltvorgangs lediglich vom aktuellen Geschwindigkeitswert vakt abhängig, womit sich in dieser Phase eine Geschwindigkeitsregelung ergibt. Am Ende des Einschaltvorgangs wird die Geschwindigkeitsregelung von der Beschleunigungsregelung abgelöst.At the beginning of the switch-on process k = 0, while at the end of the switch-on process k = 1. This means that the current acceleration b akt at the beginning of the switch-on on the control has virtually no influence. Rather, the control is only dependent on the current speed value v akt at the beginning of the switch-on, resulting in a speed control in this phase. At the end of the switch-on process, the speed control is replaced by the acceleration control.

Als Variante zu den oben beschriebenen Beschleunigungsregelungen kann auch eine sehr einfache Beschleunigungsregelung eingesetzt werden. Diese besteht lediglich in der Vorgabe einer Tabelle bzw. Funktion der Beschleunigung in Abhängigkeit des Weges bsoll(s). Die aktuelle Beschleunigung bakt und der aktuelle Weg sakt werden gemessen oder ausgewertet. Zur Regelung wird die Spannung an der Spule eingeschaltet, wenn bakt < bsoll (sakt) ist. Für den Fall, dass bakt > bsoll (sakt) ist, wird die Spannung ausgeschaltet.As a variant of the acceleration control described above, a very simple acceleration control can be used. This consists only in the specification of a table or function of the acceleration as a function of the path b soll (s). The current acceleration b akt and the current one Path s akt are measured or evaluated. For regulation the voltage at the coil is switched on, if b akt <b should (s akt ) is. In the event that b akt > b should (s akt ), the voltage is switched off.

Wie bereits erwähnt und im Zusammenhang mit FIG 5 dargestellt, kann die Positionsbestimmung aus der Messung des Stroms und des Flusses erfolgen. Gemäß einer ersten Ausführungsform kann die Flussmessung, die indirekt über eine Spannungsmessung erfolgt, mit Hilfe einer getrennten Messwicklung erfolgen, bei der an einer unabhängigen Messspule LM gemäß FIG 3 eine induzierte Spannung Ui gemessen wird. Der Fluss wird dann mittels numerischer Intregration über die induzierte Spannung Uiberechnet oder mit Hilfe einer Analogschaltung ermittelt.As already mentioned and related to FIG. 5 shown, the position determination can be made from the measurement of the current and the flow. According to a first embodiment, the flow measurement, which takes place indirectly via a voltage measurement, can take place with the aid of a separate measuring winding, in which an independent measuring coil L M according to FIG FIG. 3 an induced voltage U i is measured. The flux is then calculated by means of numerical integration via the induced voltage or determined by means of an analog circuit.

Entsprechend einer zweiten Ausführungsform wird die Spannungsmessung zur Ermittlung des Flusses direkt an der Erregerwicklung bzw. Antriebsspule ermittelt. Zur exakten Bestimmung der Wicklungsspannung Uw erfolgt eine rechnerische Korrektur des Wicklungswiderstands aus zwei Integrationsintervallen während des Stromanstiegs ohne Bewegung. Hierzu werden beispielsweise ein Intervall 1 von I = 0 bis I = 0,5 A und ein Intervall 2 von I = 0 bis I = 1,0 A festgelegt. Für das Intervall 1 werden ein Integral über den Strom II0 und ein Integral über die Spannung IU01 ermittelt. Für das Intervall 2 werden ebenfalls ein entsprechendes Integral II02 über den Strom und ein Integral IU02 über die Spannung berechnet. Aus der Formel R = IU 02 - 2 IU 01 / II 02 - 2 II 01

Figure imgb0005
wird der ohmsche Widerstand der Spule berechnet. In Kenntnis des Stroms i kann entsprechend der Formel Ui = Uw - R i
Figure imgb0006
die induzierte Spannung Ui aus der Wicklungsspannung Uw berechnet werden.According to a second embodiment, the voltage measurement for determining the flux is determined directly at the exciter winding or drive coil. For the exact determination of the winding voltage Uw, a mathematical correction of the winding resistance takes place from two integration intervals during the current increase without movement. For this purpose, for example, an interval 1 of I = 0 to I = 0.5 A and an interval 2 of I = 0 to I = 1.0 A are set. For the interval 1, an integral over the current II0 and an integral over the voltage IU01 are determined. For interval 2, a corresponding integral II02 is also calculated via the current and an integral IU02 via the voltage. From the formula R = IU 02 - 2 IU 01 / II 02 - 2 II 01
Figure imgb0005
the ohmic resistance of the coil is calculated. In knowledge of the current i can according to the formula Ui = uw - R i
Figure imgb0006
the induced voltage U i can be calculated from the winding voltage Uw.

Damit der magnetische Fluss beim Abregeln der oben geschilderten Beschleunigungsregelung schneller abgebaut werden kann, muss in einem Freilaufkreis eine Gegenspannung erzeugt werden. In dem obersten Simulationsdiagramm von FIG 6 ist diese negative Gegenspannung wie bereits erwähnt angedeutet. FIG 7 zeigt hierzu ein Schaltungsdiagramm gemäß dem eine Schützspule Ls angesteuert werden kann. Über einen Gleichrichter GL wird ein Kondensator C und eine Regelungsschaltung RG (vergleiche FIG 3) mit Gleichspannung versorgt. Über eine Brückenschaltung bestehend aus zwei Transistoren T1 und T2 sowie zwei Dioden D1 und D2, die ebenfalls mit der Gleichspannung beaufschlagt wird, wird die Schützspule Ls versorgt. Beim Einschalten der Schützspule fließt der Strom von dem Gleichrichter GL über den Transistor T1, die Schützspule Ls, dem dem Transistor T1 diagonal gegenüberliegenden Transistor T2 und zurück in den Gleichrichter. Beim Ausschalten der Schützspule Ls fließt der Strom hingegen über die Diode D2, die Schützspule Ls, die der Diode D2 diagonal gegenüberliegende Diode D1 und den zum Gleichrichter GL parallelen Kondensator C. Der Kondensator C ist bereits auf die Amplitude der Netzspannung Uc geladen und steht als Gegenspannungsquelle zur Verfügung. Ist die Kapazität des Kondensators C sehr groß, so ist die Geschwindigkeit der Erregung der Schützspule Ls in etwa identisch mit der Geschwindigkeit der Entregung. Wird jedoch die Kapazität des Kondensators C klein gewählt, erhöht sich die Gegenspannung durch den Abbau des magnetischen Flusses in der Schützspule Ls auf den Wert U'c. Somit ergibt sich im Kondensator die folgende Energieänderung: Δ E C = 1 2 C c 2 - U c 2

Figure imgb0007
Thus, the magnetic flux can be reduced faster when Abregeln the acceleration control described above, a reverse voltage must be generated in a freewheeling circuit. In the top simulation diagram of FIG. 6 this negative reverse voltage is indicated as already mentioned. FIG. 7 shows a circuit diagram according to which a contactor coil Ls can be controlled. Via a rectifier GL is a capacitor C and a control circuit RG (see FIG. 3 ) supplied with DC voltage. Via a bridge circuit consisting of two transistors T1 and T2 and two diodes D1 and D2, which is also acted upon by the DC voltage, the contactor coil Ls is supplied. When the contactor coil is switched on, the current flows from the rectifier GL via the transistor T1, the contactor coil Ls, the transistor T2 diagonally opposite the transistor T1 and back into the rectifier. When turning off the contactor coil Ls, however, the current flows through the diode D2, the contactor coil Ls, the diode D2 diagonally opposite diode D1 and the rectifier GL parallel capacitor C. The capacitor C is already loaded to the amplitude of the mains voltage Uc and is available as Counter voltage source available. If the capacitance of the capacitor C is very large, then the speed of energization of the contactor coil Ls is approximately identical to the speed of de-excitation. However, if the capacitance of the capacitor C is set to be small, the reverse voltage increases to the value U'c by the reduction of the magnetic flux in the contactor coil Ls. This results in the following energy change in the capacitor: Δ e C = 1 2 C U ' c 2 - U c 2
Figure imgb0007

Durch diesen Spannungsanstieg am Kondensator ist die Geschwindigkeit der Entregung größer als die Geschwindigkeit der Erregung.This voltage increase across the capacitor increases the rate of de-energization over the rate of excitation.

Der Kondensator sollte so dimensioniert werden, dass er die maximale auftretende magnetische Energie ELmax von der Schützspule Ls aufnehmen kann (ΔEc=ELmax ).The capacitor should be dimensioned so that it can absorb the maximum occurring magnetic energy E Lmax from the contactor coil Ls (ΔE c = E Lmax ).

Claims (24)

  1. Control device for controlling a magnetic actuator or an electrical switching device, in particular of a contactor or relay, which has an armature, comprising
    - a recording entity (LM) for recording or measuring a displacement variable (e.g. s) relating to the armature and/or a contact or main contact associated therewith, and
    - a regulating entity (RG) which controls or regulates the displacement of the armature and/or of the said contact or of the said main contact on the basis of a setpoint curve which represents a relationship between displacement parameters (e.g. s and v),
    characterised in that
    - in accordance with the setpoint curve a predetermined constant velocity (v) of the armature starting from a predetermined point before the armature reaches a yoke is set until the armature reaches the yoke, wherein the predetermined point lies before the said contact meets an associated other contact, but in any case before the said main contact closes.
  2. Control device according to claim 1, wherein the regulation in the regulating entity (RG) can be performed on the basis of a setpoint curve which represents the relationship between acceleration (b) and position (s).
  3. Control device according to claim 2, wherein the relationship between acceleration (b) and position (s) is predefined in the form of a table and/or acceleration function (bref(s)).
  4. Control device according to one of claims 1 to 3, wherein the setpoint curve includes the range in which the contacts meet.
  5. Control device according to one of the preceding claims, wherein the setpoint curve includes the magnet contact range.
  6. Control device according to one of the preceding claims, wherein the recording entity includes a path sensor from whose signal velocity (v) and/or acceleration (b) can be derived by means of analogue or digital differentiation.
  7. Control device according to claim 6, wherein the path sensor has a coil (LS) whose current (I) is measured and whose magnetic flux (ψ) is determined from the integral of the induced voltage (U) such that the position (s) of the armature and/or of the contact or main contact can be ascertained therefrom.
  8. Control device according to one of claims 1 to 5, wherein the recording entity includes a speed sensor from whose signal position (s) and acceleration (b) of the armature and/or of the contact or main contact can be derived by analogue or digital differentiation and/or integration.
  9. Control device according to one of the preceding claims which has a measuring coil (LM) for determining the magnetic flux (ψ) which can be mounted on a drive coil of the magnetic actuator or of the electrical switching device and is independent of said drive coil.
  10. Control device according to one of the preceding claims which has a processor and a semiconductor switch, wherein the semiconductor switch can be used for energising and deenergising a drive coil (LS) and the processor is connected to the semiconductor switch for the purpose of controlling the same.
  11. Control device according to one of the preceding claims which has a freewheeling circuit in which a current (I) can be dissipated by means of a back electromotive force when a drive coil is deenergised.
  12. Control device according to one of the preceding claims, wherein the distance between two contacts or two magnet components is taken into account in the regulating entity (RG) for the purpose of regulating the acceleration (b).
  13. Electrical switching device, in particular contactor or relay, having a control device according to one of the preceding claims.
  14. Method for controlling a magnetic actuator or an electrical switching device, in particular of a contactor or relay which has an armature, by
    - recording or measuring a displacement variable (e.g. s) relating to the armature and/or a contact or main contact associated therewith, and
    - controlling or regulating the displacement of the armature and/or of the said contact or of the said main contact on the basis of a setpoint curve which represents a relationship between displacement parameters (e.g. s and v),
    characterised in that
    - the regulation is performed on the basis of a setpoint curve in accordance with which a predetermined constant velocity (v) of the armature and/or of the said contact or of the said main contact starting from a predetermined point before the armature reaches a yoke is set until the armature reaches the yoke, wherein a point which lies before the said contact meets an associated other contact, but in any case before the said main contact closes, is used as the predetermined point.
  15. Method according to claim 14, wherein the regulation is performed on the basis of a setpoint curve which represents the relationship between acceleration and position.
  16. Method according to claim 15, wherein the regulation is performed on the basis of a relationship between acceleration (b) and position (s) which is predefined in the form of a table and/or acceleration function (bref(s)).
  17. Method according to one of claims 14 to 16, wherein the setpoint curve includes the range in which the contacts meet.
  18. Method according to one of claims 14 to 17, wherein the setpoint curve includes the magnet contact range.
  19. Method according to one of claims 14 to 18, wherein the displacement variable (e.g. s) is recorded by a path sensor from whose signal velocity (v) and/or acceleration (b) are/is derived by analogue or digital differentiation.
  20. Method according to claim 19, wherein the path sensor includes a drive coil (LS) whose current (I) is measured and whose magnetic flux (ψ) is determined from the integral of the induced voltage (U) from which the position (s) of the armature and/or of the contact or main contact is subsequently determined.
  21. Method according to one of claims 14 to 18, wherein the displacement variable (e.g. s) is determined with the aid of a speed sensor.
  22. Method according to claim 19 or 20, wherein the magnetic flux is measured by means of a measuring coil (LM) which is mounted onto the drive coil of the magnetic actuator or of the electrical switching device and is independent of said drive coil.
  23. Method according to one of claims 14 to 22, wherein the current (I) is dissipated by means of a back electromotive force in a freewheeling circuit when a drive coil (LS) of the magnetic actuator or electrical switching device is deenergised.
  24. Method according to one of claims 14 to 23, wherein the distance between two contacts or two magnet components of the magnetic actuator or electrical switching device is taken into account for the purpose of regulating the acceleration (b).
EP04730526A 2003-07-17 2004-04-30 Device and method for controlling electric switching devices Expired - Fee Related EP1647040B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2003132595 DE10332595B4 (en) 2003-07-17 2003-07-17 Device and method for driving electrical switching devices
PCT/EP2004/004606 WO2005017933A1 (en) 2003-07-17 2004-04-30 Device and method for controlling electric switching devices

Publications (2)

Publication Number Publication Date
EP1647040A1 EP1647040A1 (en) 2006-04-19
EP1647040B1 true EP1647040B1 (en) 2011-11-30

Family

ID=34088667

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04730526A Expired - Fee Related EP1647040B1 (en) 2003-07-17 2004-04-30 Device and method for controlling electric switching devices

Country Status (4)

Country Link
EP (1) EP1647040B1 (en)
CN (1) CN100461323C (en)
DE (1) DE10332595B4 (en)
WO (1) WO2005017933A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005045095A1 (en) * 2005-09-21 2007-04-05 Siemens Ag A method for determining the burnup of contacts of an electromagnetic switching device and electromagnetic switching device with a device operating according to this method
DE102006045353A1 (en) * 2006-09-26 2008-04-03 Lucas Automotive Gmbh Control unit and method for controlling an electromagnetic valve arrangement
WO2009135519A1 (en) * 2008-05-09 2009-11-12 Siemens Aktiengesellschaft Method and device for controlling a magnetic actuator
FR2934413B1 (en) * 2008-07-24 2015-01-02 Schneider Electric Ind Sas ELECTROMAGNETIC ACTUATOR COMPRISING SELF-ADAPTIVE OPERATING CONTROL MEANS AND METHOD USING SUCH ACTUATOR
DE102008046374B3 (en) * 2008-09-09 2009-12-31 Siemens Aktiengesellschaft Electromagnetic switchgear e.g. relay, has contact system standing in effective connection with magnetic system, and sensor arranged at side of yoke lying opposite to movable armature, where sensor detects impact torque of armature
DE102010041214A1 (en) * 2010-09-22 2012-03-22 Siemens Aktiengesellschaft Switching device and method for controlling a switching device
DE102012000766A1 (en) * 2012-01-18 2013-07-18 Voith Patent Gmbh A control arrangement for controlling the position of an armature of a magnetic actuator and detection arrangement for detecting the position of an armature of a magnetic actuator
CN103346042B (en) * 2013-07-18 2015-06-24 浙江中凯科技股份有限公司 Electromagnetic system energy-saving device with compensation functions
DE102014224321A1 (en) * 2014-11-27 2016-06-02 Robert Bosch Gmbh Method for determining the armature stroke of a magnetic actuator
CN104935069A (en) * 2015-07-03 2015-09-23 常熟开关制造有限公司(原常熟开关厂) Dual power supply changeover switch, control method thereof and dual power supply device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1564039A1 (en) * 1966-10-19 1969-12-11 Grundig Emv Circuit arrangement for the accelerated de-excitation of a direct current magnet, for example the magnet coil of a magnet valve
US4450427A (en) * 1981-12-21 1984-05-22 General Electric Company Contactor with flux sensor
DE3402759A1 (en) * 1984-01-27 1985-08-01 Robert Bosch Gmbh, 7000 Stuttgart CURRENT CONTROLLER FOR ELECTROMAGNETIC ACTUATORS
DE19535211C2 (en) * 1995-09-22 2001-04-26 Univ Dresden Tech Method for controlling armature movement for a switching device
DE19544207C2 (en) * 1995-11-28 2001-03-01 Univ Dresden Tech Process for model-based measurement and control of movements on electromagnetic actuators
WO1997021237A2 (en) * 1995-12-05 1997-06-12 Siemens Aktiengesellschaft Switchgear control apparatus
DE19832196A1 (en) * 1998-07-17 2000-01-20 Bayerische Motoren Werke Ag Controlling armature motion in electromagnetically operated valve of internal combustion engine
DE10034830C2 (en) * 2000-07-18 2003-02-27 Isermann Rolf Method of reconstructing the armature movement of an electromagnetic actuator

Also Published As

Publication number Publication date
CN1830048A (en) 2006-09-06
CN100461323C (en) 2009-02-11
EP1647040A1 (en) 2006-04-19
DE10332595B4 (en) 2008-02-14
DE10332595A1 (en) 2005-02-24
WO2005017933A1 (en) 2005-02-24

Similar Documents

Publication Publication Date Title
EP1927121B1 (en) Method for determining contact erosion of an electromagnetic switching device, and electromagnetic switching device comprising a mechanism operating according to said method
DE60102131T2 (en) Method for controlling an electromagnetic valve drive in a camless engine
EP0438640B1 (en) Method for the sensing of motion and position of a part of an inductive electric consumer movable between a rest and an end position by means of a magnetic action
DE19632910C1 (en) Contactless driving of motor vehicle power-driven window to lower stop position
EP1014395B1 (en) Method and apparatus for reducing the noise of electromagnetically operated devices
EP1647040B1 (en) Device and method for controlling electric switching devices
EP0067185B1 (en) Electronic device for the energization of an electromagnetic element
DE102007045779A1 (en) Method for controlling a solenoid valve and associated device
DE4315637C2 (en) Method for recognizing the position and the direction of movement of a movably mounted part
DE102014208014A1 (en) Electric switch with electromagnetic actuator
DE102009019015A1 (en) Method and device for detecting a pinching situation
DE102007063479A1 (en) Method for producing signal, involves displaying armature of electromagnets, which attain end position and current is measured continuously which is flowing by electromagnets
EP1234316B1 (en) Electromagnetic switchgear comprising a controlled drive, a corresponding method and a circuit
EP0225444A1 (en) Process for the control of an electromagnet
EP3053171B1 (en) Electromagnetic actuator
WO2014019973A1 (en) Apparatus for controlling the electromagnetic drive of a switching device, particularly a contactor
DE19535211C2 (en) Method for controlling armature movement for a switching device
EP1015800B1 (en) Method and device for determining a valve closure point
EP1253991A1 (en) Resistance spot welding control device and method
EP0865660B1 (en) Switchgear control apparatus
DE102008046374B3 (en) Electromagnetic switchgear e.g. relay, has contact system standing in effective connection with magnetic system, and sensor arranged at side of yoke lying opposite to movable armature, where sensor detects impact torque of armature
EP2936532B1 (en) Apparatus and method for operating an electromagnetic drive for a switching device
EP2747287A1 (en) Circuit arrangement for braking a moving mass by switching off an electromechanical switching device with an inductive load
DE4031427A1 (en) Operating EM regulator at reduced energy level - reducing retention power once switched on and monitoring to boost power if change in switched state is detected
EP0951727A1 (en) Reduced tensioning time for electronically controlled switch contactors

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOIVISTO, MIKKO

Inventor name: MITTLMEIER, NORBERT

Inventor name: TRAUTMANN, BERND

17Q First examination report despatched

Effective date: 20070312

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004013112

Country of ref document: DE

Effective date: 20120301

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004013112

Country of ref document: DE

Effective date: 20120831

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160620

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160429

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004013112

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171103

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170502