EP1645348B1 - Procédé et apparaeil pour la fabrication d'un moule pour le procédé de coulée de précision à la cire perdue - Google Patents

Procédé et apparaeil pour la fabrication d'un moule pour le procédé de coulée de précision à la cire perdue Download PDF

Info

Publication number
EP1645348B1
EP1645348B1 EP05020677A EP05020677A EP1645348B1 EP 1645348 B1 EP1645348 B1 EP 1645348B1 EP 05020677 A EP05020677 A EP 05020677A EP 05020677 A EP05020677 A EP 05020677A EP 1645348 B1 EP1645348 B1 EP 1645348B1
Authority
EP
European Patent Office
Prior art keywords
drying
layer
pattern
approximately
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05020677A
Other languages
German (de)
English (en)
Other versions
EP1645348A1 (fr
Inventor
Michael Kügelgen
Wolfram Weihnacht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MK Technology GmbH
Original Assignee
MK Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MK Technology GmbH filed Critical MK Technology GmbH
Publication of EP1645348A1 publication Critical patent/EP1645348A1/fr
Application granted granted Critical
Publication of EP1645348B1 publication Critical patent/EP1645348B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C13/00Moulding machines for making moulds or cores of particular shapes
    • B22C13/08Moulding machines for making moulds or cores of particular shapes for shell moulds or shell cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/02Sand moulds or like moulds for shaped castings
    • B22C9/04Use of lost patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/12Treating moulds or cores, e.g. drying, hardening

Definitions

  • the invention relates to the field of manufacturing molds.
  • the invention relates to the manufacture of shell molds by applying one or more layers to a previously made model.
  • ceramic shell molds are often used. These shell shapes are created by applying one or more layers to a model of the later casting.
  • the individual layers applied to the model contain a slip as well as a sand-based, usually granular, material applied to the slip.
  • a sand-based, usually granular, material applied to the slip In the first applied to the model layer can be dispensed with the addition of the granular material.
  • the model can be removed.
  • the successive application of the individual layers gradually creates a shell surrounding the model.
  • the model is removed from the shell and the shell is then fired.
  • the removal of the model from the shell can be done in different ways. For example, if it is a wax model, it will be removed by smelting. On the other hand, if the model is made of a thermoplastic, the plastic must be burned out of the shell.
  • the drying of the individual layers applied to the model conventionally takes place at room temperature, care being taken that the water contained in a newly applied layer is removed rapidly but not spontaneously. Usually, the drying is done at about 21 to 23 ° C and at a relative humidity of more than about 40%. To shorten the drying process It is recommended to expose the respective layer to be dried to an air flow. The air flow supports the removal of the evaporating moisture.
  • a disadvantage of the conventional drying methods is the comparatively long drying time of usually three to more than ten hours per shift. The reason for this is also the low diffusion gradient within the last applied layer. Even with a greatly extended drying time, the residual moisture in the applied layers can not be reduced arbitrarily. Especially in the deeper zones of the last applied layer, the remaining moisture tends to diffuse back into the adjacent, supposedly dried layer than to evaporate.
  • the drying time of a single layer is often too long. This leads, in particular in the case of multilayered shells, to the fact that it is almost impossible to produce a cast-ready shell mold in a single day. This may be acceptable in industrial applications where shell molds are produced continuously, but a variety of other applications, such as the production of prototypes, may make it desirable to reduce the manufacturing life of a single shell mold.
  • the EP 0 009 669 A1 and Patent Abstracts of Japan, Vol. 015, No. 018, February 25, 1991 & JP 02-303 650 A describe a layer-by-layer drying of a shell mold constructed from slurry layers by means of microwave energy.
  • the EP 0 009 669 A1 In addition, during exposure to microwave energy or after, to cool the shell and model so as not to melt the model.
  • the FR 1410 652 describes the layered structure of a porous cast body skeleton made of synthetic resin by layer-wise drying with infrared lamps.
  • the cast body skeleton has only a stability sufficient to handle the casting skeleton in the following process steps.
  • the model is released from the casting skeleton by water. Subsequently, the pores in the casting skeleton are closed with methyl silicate. Thereafter, the mold is exposed to water vapor and fired in an oven at 800 ° C for 4 hours.
  • the US 2,652,609 discloses a method of manufacturing molds in which a wax model is wetted with an aqueous solution of refractory material and a binder.
  • the model is placed in a vacuum chamber, with the vacuum chamber, including the model, being infused with the aqueous solution and the binder.
  • the mold is then dried for 12 to 30 hours.
  • the model wax is removed from the mold with the help of infrared lamps. Subsequently, the mold is heated in an oven to a temperature between 870 ° C and 1000 ° C, at which the remainders of the wax are removed and the casting material is dried.
  • the invention has for its object to provide a method and a system for faster production of a shell mold.
  • a method of manufacturing a shell mold comprising the steps of providing a model, forming a shell surrounding the model by applying at least one aqueous layer to the model and laminating at least one drying process and the removal of the model from the shell, wherein the drying process is supported by infrared light irradiation and can be performed above a temperature of 25 ° C.
  • the layer applied to the model may be a layer containing a refractory slip.
  • the layer may further include a refractory granular material.
  • at least the first layer applied directly to the model does not contain any granular material.
  • the slurry may contain a refractory, liquid binder such as an aqueous silica sol. Further, the slurry may comprise a refractory flour.
  • each individual layer is subjected to a drying process according to the invention.
  • individual layers are either not (or at least not completely) dried or dried at a temperature of 25 ° C or below and / or without infrared light irradiation.
  • the drying process of a single layer may proceed at a substantially constant temperature or at a variable temperature.
  • the drying process may be carried out at a temperature above 28 ° C or above 30 ° C and conveniently in a temperature range up to approximately 45 ° C. Preferred is a temperature range of about 36 ° C to about 42 ° C.
  • the (maximum) drying temperature can change from layer to layer.
  • the maximum drying temperature can increase substantially from layer to layer. Due to the cooling associated with the evaporation of the moisture, it is possible to choose the maximum drying temperature (ambient temperature) during the drying process above a temperature at which the model could lose its dimensional stability.
  • the maximum drying temperature may be at least about 5 ° C (preferably at least about 8 ° C or 10 ° C) above the temperature at which a reduction in the stability of the model could begin.
  • a relative rotation between the coated model and at least one infrared light source can take place. This relative rotation occurs, for example, at a speed between 0.5 and 8 U / min, preferably between 1.5 and 4 U / min.
  • the drying process can be assisted by a flow of a gaseous medium such as air.
  • the flow rate of the gaseous medium is, for example, about 0.5 to about 8 m / s, and preferably between about 1 and about 5 m / s.
  • the drying process can be further assisted by the ambient humidity being less than 35% or less than 30%. According to a preferred variant of the invention, the room humidity is less than about 20% or less than about 10%.
  • the inventive method allows a shortening of the drying time.
  • the drying process for a single layer may be less than one hour, preferably about 25 to 45 minutes.
  • the drying time for at least some of the layers applied after the first layer can be varied.
  • the drying time of the second and / or the third layer and / or the fourth layer can be selected to be longer than the drying time of the other layers and in particular the subsequent layers.
  • the drying time can be adjusted depending on a desired degree of drying.
  • several layers are applied to the model and the individual drying process is carried out in each case until a complete drying of the last applied layer has been achieved. Complete drying can be assumed, for example, if the residual moisture of a layer is less than about 60% and preferably between about 55 and about 40%.
  • individual, several or all layers are only partially dried.
  • the model used to make the shell may be made of different materials (e.g., wax or a thermoplastic such as ABS).
  • the melted out of the dried shell may be at a temperature greater than about 140 °, preferably about 150 °.
  • the inventive method is suitable for a variety of different applications.
  • the method is particularly suitable for prototype production by means of investment casting (ie for the production of individual or fewer castings) due to the short drying time.
  • the method is also suitable for industrial batch processes (e.g., using a conveyor constructed as a chain conveyor).
  • the invention also includes a system for producing a shell mold.
  • the system includes a desiltering device for applying a slurry layer to a model, and a drying device for drying the slurry layer applied to the model, the drying device comprising a drying chamber and at least one infrared light source disposed in the drying chamber, wherein the drying chamber is at a temperature greater than 25 ° C is adjustable.
  • a suitable regulating or control device can be present which ensures that the desired drying temperature or the desired drying temperature profile and the further drying temperature (for example program-controlled) are maintained.
  • the heat energy required to achieve the drying temperature can be supplied by the infrared light source.
  • the infrared light source as Heating device for the drying gas (eg air) act.
  • the energy consumption of the infrared light source can be controlled in a suitable manner.
  • the cooling device can be designed such that it allows the supply of a cooling gas into the drying chamber. It would also be conceivable to provide an additional heating device separately from the infrared light source.
  • the system may include means for rotating the coated model with respect to the at least one infrared light source. Such a relative rotation between the coated model and the infrared light source ensures a more uniform surface heating and therefore improves the coating quality.
  • a sanding device may be present for dressing the slip layer applied to the model. The sanding device is adapted to apply granular material (not necessarily sand) to the slurry layer in a manner known per se.
  • a transport device that moves the model between the desaturation device and the drying device (in the case of multi-layered construction back and forth) may be provided.
  • the transport device can further ensure transport of the model to and from the sanding device.
  • the transport direction is selected such that the desaturation device in front of the sanding device and the sanding device in front of the drying device.
  • FIGS. 1 to 5 an inventive system 10 for producing shell molds explained. Following this, the method according to the invention will be explained by means of various examples and compared with a comparative example.
  • FIGS. 1 and 2 show schematically the system 10 according to the invention for the automated production of shell molds.
  • the system 10 allows the execution of the relevant process steps trickling, sanding and drying.
  • a sanding device 12 a precipitating device 14 and a drying device 16 are provided.
  • the system 10 comprises a transport device 18 for a model 20.
  • the model 20 is still uncoated or already provided with one or more layers.
  • the model 20 is shown in FIG. 1 simultaneously in four different process states, namely within the sanding device 20, within the desiltering device 14, within the drying device 16, and in a transport state.
  • the model 20 will only be in one of these four states shown in FIG.
  • the system 10 is designed for rapid prototyping and not for industrial batch processes.
  • the system 10 could be configured by multiple provision of the individual devices 12, 14 and 16 and corresponding redesign of the transport device 18 (eg as a chain conveyor) for batch processes.
  • the sanding device 12 is designed as a sand drum, in which sand or another granular material is scattered on the rotating model 20 provided with a slip layer.
  • the exemplary embodiment is a slurry barrel which is filled with a suitable slip.
  • the model 20 can be immersed in the slurry barrel 14 by means of the transport device 18 and rotated therein.
  • a model 20 received by the transport device 18 can optionally be supplied to the slurry drum 14, the sand drum 12 or the drying device 16.
  • the transport device 18 itself comprises a take-up head 22 for the model 20 which is movable along an x-axis and y-axis.
  • the take-up head 22 is rotatable about two mutually perpendicular axes, as indicated by the arrows 24, 26 in FIG.
  • the model 20 is first immersed in the slurry drum 14 and the sprayed model 20 is then either dried directly in the drying device 16 (in particular if it is the first slip layer) or first sanded in the sand drum 12 and only then then transferred to the drying device 16.
  • the drying device 16 is shown in FIGS. 3 to 5 shown in different views.
  • the drying device 16 comprises a drying chamber 30.
  • a plurality of arranged in a plurality of opposing rows of fans 32 and a plurality of infrared light sources 34 are arranged.
  • the fans 32 cause an air circulation and lead to an air flow assisting the drying process.
  • Fig. 4 it can be clearly seen that the fans accelerate the air tangentially with respect to an imaginary, cylindrical body 36.
  • the heat energy generated by the infrared light sources 34 leads to a heating of the air circulating in the drying chamber 30.
  • the infrared light sources 34 therefore function as heaters. For uniform surface heating of the coated model 20 by the infrared light sources 34, the model 20 is continuously rotated within the drying chamber 30.
  • the drying device 16 further includes an air conditioner 38 for intake air cooling.
  • the air conditioner 38 emits warm exhaust air and leads an air dryer 40 cooling air.
  • This situation is illustrated by two arrows.
  • the one on one Absorption drying principle based air dryer 40 introduces dry supply air into the drying chamber 30 and gives off moist exhaust air to the environment. This situation is also indicated by two arrows.
  • a main circuit 46 is formed within the drying chamber 30, which is essentially due to the constant air circulation caused by the fans 32.
  • a secondary circuit 48 which includes the air dryer 40.
  • a mixing chamber 50 there is a thorough mixing of the main circuit 46 and the secondary circuit 48.
  • This mixing ensures a reduction in moisture of the air in the main circuit 46, since moist air from the main circuit 46 enters the secondary circuit 48 and from there into the air dryer 40. Further, the mixing causes a cooling of the air in the main circuit 46, since the air dryer 40 from the air conditioner 38 continuously cooled air is supplied, which feeds the air dryer 40 in the secondary circuit 48.
  • the air conditioner 38 is controlled such that the desired drying temperature is set in the drying chamber 30.
  • the air conditioner 38 therefore counteracts the return to the infrared light sources 34 heating the drying air.
  • a separate heater may be provided (eg, the air conditioner 38 could also be configured to supply warm air to the air dryer 40).
  • the air conditioner 38 different from the Fign. 3 to 5 (additionally or exclusively) communicate with the mixing chamber 50.
  • the air conditioner 38 (and to some extent the air dryer 40) thus allows adjustment of a desired drying temperature.
  • the air conditioner 38 and the air dryer 40 may be coupled to a suitable control or regulating device (not shown), which program-controlled influence on the prevailing in the drying chamber 30 drying parameters.
  • the infrared sources 34 serving additional surfaces of the model 20 in addition to the air heating and the surface heating.
  • the infrared light sources 34 may be arranged in (two or more) opposite rows with respect to the model 20 so as to emit the infrared radiation substantially perpendicular to the model 20.
  • the wax model used had a cubic shape in which a blind hole with a diameter of 20 mm and a depth of 20 mm was formed. Inside this blind hole, the surface temperature and humidity surface values listed in the tables below were measured during the drying process.
  • a first model grape was provided with a total of six layers (or - in a dried state - coatings), wherein the first layer was not sanded. Each individual layer was completely dried in a separate drying process. The individual drying operations were carried out at a flow rate of about 1.5 m / s under constant irradiation with infrared light. The maximum drying temperature has gradually increased from layer to layer. A drying process was considered complete when the measured residual moisture on the surface was less than about 55%. During the drying process, the sample was rotated at a rate of about 2.5 rpm with respect to the infrared light sources. The humidity in the drying chamber was gradually reduced. Care was taken that the humidity was always less than about 20% whenever possible and the temperature was always above about 30 ° C.
  • the total process time as well as the individual drying parameters and surface conditions per layer during one of the initial experiments (with still comparatively high humidity in the drying chamber) can be found in the following table.
  • the drying parameters and surface conditions were measured two to five times per drying process.
  • the total processing time of all six layers was 3 hours and 35 minutes in total.
  • the pure drying time was about 3 hours and 15 minutes.
  • the first layer (without sand) was dried for 10 minutes, the second layer having reached a surface residual moisture of approximately less than 55% after approximately 20 minutes.
  • the corresponding drying time for the third layer was about 30 minutes, about 58 minutes for the fourth layer, about 45 minutes for the fifth layer, and about 30 minutes for the sixth layer.
  • the thickness structure of the first ceramic mold sample is shown in the following table: Status dimension Dick growth wax model 35.0 mm 0 mm Cover without sand 35.5 mm 0.25 mm 2nd coating 37.0 mm 0.75 mm 3rd coating 39.0 mm 1.0 mm 4th coating 40.5 mm 0.75 mm 5. coating 42.0 mm 0.75 mm 6. coating 44.0 mm 1.0 mm
  • the slip / sanding composition used had an average layer buildup of 0.8 mm per coating.
  • the table below shows the drying parameters and surface conditions for another seven-coating ceramic sample.
  • the prevailing in the drying chamber flow rate was about 1.5 to 2.0 m / s.
  • a ceramic mold sample prepared in parallel under conventional drying conditions was completely destroyed by cracks under the selected melting conditions.
  • the comparative sample was prepared in the same manner as the above ceramic molds by repeated precipitation, sanding and drying. However, drying was carried out under conventional drying conditions (no drying chamber was used) and without red-light irradiation but with accelerated ambient air (1.5 m / s).
  • the strength of the samples according to the invention is also clearly superior to the strength of conventional samples.
  • test strips according to the invention were subjected (partly simultaneously with model screws) to a drying process in the drying chamber at a temperature of about 40 ° C., an air humidity of about 5 to 10% and a drying time of about 30 minutes. During the drying process the strips were irradiated with infrared light.
  • the conventional test strips on the other hand, were dried at room temperature and at a relative humidity of about 50%. Each layer was dried until the surface moisture was less than 60% (typically many hours to one day). Subsequently, all test strips were subjected to a bending test. Here the strength tester 7/18 of the company Feinmechanik Ralf Kögel was used.
  • Fig. 6 shows the experimental protocol of the test strips dried in accordance with the invention
  • Fig. 7 shows the test protocol for conventional test strips (two green bodies and two fired samples were tested and the test strips were baked for one hour at 950 ° C).
  • a comparison of the respective characteristics clearly shows that the load capacity of the samples according to the invention, at least in the fired state, exceeds the load capacity of the conventionally dried samples by almost 50%.
  • the green compacts dried according to the invention also show a significantly higher load-bearing capacity than the green compacts dried in a conventional manner.
  • the advantages of the invention are probably due to the fact that at higher drying temperatures, the ion exchange is intensified on the surface of the binder colloids, which allows a strong irreversible binding of these colloids with each other. Furthermore, the intensive, surface-related drying by the infrared light irradiation leads to a stronger diffusion gradient within the applied slurry layer and thus to an accelerated drying. The effect of evaporative cooling can increase the drying temperature, even beyond the temperature at which the model used would lose its stability. This also allows accelerated drying.
  • each coating layer undergoes complete drying to produce an irreversible colloid bond.
  • the desired final strength of the entire shell is reached immediately after the end of drying of the last layer. In other words, it is no longer absolutely necessary to wait until the last layer has dried to allow the model to be melted / burned out and the ceramic mold to be fired.
  • this finding does not preclude, in certain cases, a final, longer final drying.
  • the first layer with sanding (usually the second layer applied to the model) dries relatively quickly (about 20 minutes), but the first or the second subsequent layer has an above-average length (to to 60 min) needed to dry completely.
  • the subsequent layers have drying times of typically 30 to 35 minutes.
  • the residual moisture in the dipped layer often increases to over 80% at the beginning of drying, then stays at 65 to about 70% for about 2 to 10 minutes (typically about 5 minutes), almost spontaneously below 50, before the end of drying to be detected % bend.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drying Of Solid Materials (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Claims (28)

  1. Procédé pour la fabrication d'un moule en forme de cuvette destiné plus particulièrement à la coulée de précision, comprenant
    - la mise à disposition d'un modèle
    - la réalisation d'un moule en forme de cuvette entourant le modèle en appliquant sur le modèle au moins une couche aqueuse et en faisant subir au modèle, après chaque couche, au moins une passe de séchage, et
    - l'enlèvement du modèle dudit moule, séparément du séchage de ladite couche,
    caractérisé en ce que
    la passe de séchage est effectuée avec l'aide d'un rayonnement de lumière infrarouge.
  2. Procédé selon la revendication 1, caractérisé en ce que la passe de séchage est effectuée au-dessus d'une température de 25°C.
  3. Procédé selon la revendication 2, caractérisé en ce que la passe de séchage est effectuée dans une plage de température comprise entre environ 30°C et environ 45°C, préférentiellement entre environ 36°C et environ 42°C.
  4. Procédé selon la revendication 1, 2 ou 3, caractérisé en ce que plusieurs couches sont appliquées sur le modèle et en ce que la température maximale de séchage augmente sensiblement couche après couche.
  5. Procédé selon l'une des revendications précédentes, caractérisé en ce que la température maximale de séchage appliquée pendant la passe de séchage est supérieure d'au moins environ 5°C, préférentiellement d'au moins environ 8°C, à une température à laquelle la stabilité du modèle commence à diminuer.
  6. Procédé selon l'une des revendications précédentes, caractérisé en ce que, pendant la passe de séchage, le modèle enduit et au moins une source de lumière infrarouge sont animés l'un par rapport à l'autre d'un mouvement de rotation.
  7. Procédé selon la revendication 6, caractérisé en ce que la rotation relative s'effectue à une vitesse variant entre 0,5 et 8 tours/min., préférentiellement entre 1,5 et 4 tours/min.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que la passe de séchage est aidée par un courant de milieu gazeux.
  9. Procédé selon la revendication 8, caractérisé en ce que la vitesse de courant du milieu gazeux varie entre environ 0,5 et environ 8 m/s, préférentiellement entre 1 et 5 m/s.
  10. Procédé selon l'une des revendications précédentes, caractérisé en ce que la passe de séchage s'effectue à une humidité ambiante inférieure à 35%, préférentiellement inférieure à 20%.
  11. Procédé selon l'une des revendications précédentes, caractérisé en ce que la passe de séchage est effectuée pendant une durée de moins de 1 heure, préférentiellement pendant environ 25 à 45 minutes.
  12. Procédé selon l'une des revendications précédentes, caractérisé en ce que trois couches ou plus sont appliquées sur le modèle et que la durée de séchage varie pour au moins quelques-unes des couches appliquées après la première couche.
  13. Procédé selon la revendication 12, caractérisé en ce que la durée de séchage de la deuxième et/ou de la troisième et/ou de la quatrième couche est choisie plus longue que la durée de séchage des autres couches.
  14. Procédé selon l'une des revendications précédentes, caractérisé en ce que plusieurs couches sont appliquées sur le modèle et la passe de séchage de chaque couche dure jusqu'au séchage complet de la dernière couche appliquée.
  15. Procédé selon la revendication 14, caractérisé en ce que le séchage est considéré comme complet lorsque l'humidité restante d'une couche est inférieure à environ 60%, préférentiellement comprise entre environ 55 et environ 40%.
  16. Procédé selon l'une des revendications précédentes, caractérisé en ce que le modèle se compose de cire qui, sous l'effet d'une température supérieure à environ 140°C, est retirée par fusion dudit moule séché.
  17. Procédé selon l'une des revendications précédentes, caractérisé en ce que la passe de séchage est effectuée dans une chambre de séchage (30).
  18. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'énergie thermique nécessaire à l'obtention de la température de séchage est fournie par au moins une source de lumière infrarouge (34).
  19. Procédé selon l'une des revendications précédentes, caractérisé en ce que le procédé est utilisé pour la fabrication de prototypes.
  20. Système (10) pour la fabrication d'un moule en forme de cuvette destiné plus particulièrement à la coulée de précision, comprenant
    - un dispositif d'application d'une couche de barbotine (14) sur le modèle (20),
    - un dispositif de séchage (16) avec une chambre de séchage (30) pour le séchage de la couche de barbotine appliquée sur le modèle (20) et
    - des moyens pour retirer le modèle (20) dudit moule,
    le système (10) étant conçu de manière que le dispositif d'application de barbotine (14) applique au moins une couche de barbotine sur le modèle (20) et que le dispositif de séchage (16) sèche ledit moule après chaque application d'une couche barbotine par ledit dispositif (14),
    caractérisé en ce que
    au moins une source de lumière infrarouge (34) est disposée dans la chambre de séchage (30).
  21. Système selon la revendication 20, caractérisé en ce que la température de la chambre de séchage (30) est réglable à plus de 25°C.
  22. Système (10) selon la revendication 20 ou 21, caractérisé en ce que la source de lumière infrarouge (34) fait office de dispositif de chauffage d'un gaz de séchage.
  23. Système selon l'une des revendications 20 à 22, caractérisé en ce qu'il existe un dispositif de refroidissement (38, 40) pour l'amenée d'un gaz de séchage refroidi dans la chambre de séchage (30).
  24. Système selon l'une des revendications 20 à 23, caractérisé en ce qu'il est prévu, en plus de la source de lumière infrarouge (34), un dispositif de chauffage pour la chambre de séchage (30).
  25. Système selon l'une des revendications 20 à 24, caractérisé en ce qu'il existe un dispositif (22) permettant la rotation du modèle (20) enduit par rapport à la source de lumière infrarouge (34).
  26. Système selon la revendication 20 ou 25, caractérisé en ce qu'il existe un dispositif de sablage (12) pour le sablage de la couche de barbotine appliquée sur le modèle (20).
  27. Système selon l'une des revendications 20 à 26, comprenant en outre un dispositif de transport (18) pour le transport du modèle au moins entre le dispositif d'application de barbotine (14) et le dispositif de séchage (16).
  28. Utilisation d'un moule en forme de cuvette réalisé conformément à l'un des procédés 1 à 19 ou au moyen d'un des systèmes 20 à 27 pour le coulage d'une pièce moulée.
EP05020677A 2004-10-05 2005-10-05 Procédé et apparaeil pour la fabrication d'un moule pour le procédé de coulée de précision à la cire perdue Active EP1645348B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004048451A DE102004048451A1 (de) 2004-10-05 2004-10-05 Verfahren und System zum Herstellen einer Schalenform insbesondere für das Feingießen

Publications (2)

Publication Number Publication Date
EP1645348A1 EP1645348A1 (fr) 2006-04-12
EP1645348B1 true EP1645348B1 (fr) 2007-11-28

Family

ID=35219404

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05020677A Active EP1645348B1 (fr) 2004-10-05 2005-10-05 Procédé et apparaeil pour la fabrication d'un moule pour le procédé de coulée de précision à la cire perdue

Country Status (3)

Country Link
US (1) US20060086480A1 (fr)
EP (1) EP1645348B1 (fr)
DE (2) DE102004048451A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010034765A2 (fr) * 2008-09-25 2010-04-01 Manfred Renkel Procédé pour produire un moule servant à couler des métaux en fusion
DE102008057836A1 (de) 2008-11-19 2010-05-20 Actech Gmbh Trockenschrank für keramische Feingussformen

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008042376A1 (de) * 2008-09-25 2010-04-08 G4T Gmbh Verfahren zur Herstellung einer Gussform zum Vergießen hochreaktiver Schmelzen
FR2976200B1 (fr) * 2011-06-10 2013-06-28 Snecma Procede et dispositif de fabrication de moules carapaces de fonderie
EP2550928B1 (fr) * 2011-07-25 2017-03-01 Ivoclar Vivadent AG Four dentaire avec un capteur de séchage
CN105364026B (zh) * 2015-11-25 2017-08-15 泰州鑫宇精工股份有限公司 间歇旋转式多工位制壳操作台机械手
RU178734U1 (ru) * 2017-09-22 2018-04-18 Акционерное общество "Новомет-Пермь" Установка для инфракрасной сушки покрытий на изделиях
CN108584387B (zh) * 2018-03-16 2023-07-21 泰州鑫宇精工股份有限公司 传动链悬吊模壳止旋装置
RU2731997C1 (ru) * 2019-05-28 2020-09-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рыбинский государственный авиационный технический университет имени П.А. Соловьева" Устройство для сушки оболочковых форм по выплавляемым моделям
RU196179U1 (ru) * 2019-08-19 2020-02-19 Общество с ограниченной ответственностью "ГРАТОН-СК" (ООО "ГРАТОН-СК") Печь для сушки нанесенного покрытия на стекло

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2733489A (en) * 1956-02-07 dahmer
US2652609A (en) * 1950-01-17 1953-09-22 Westinghouse Electric Corp Method of making molds
US2728122A (en) * 1951-06-08 1955-12-27 Cooper Alloy Corp Method and apparatus for shell moulding
US2932864A (en) * 1958-06-17 1960-04-19 Mellen Method of making and drying shell-type refractory molds
FR1410652A (fr) * 1963-11-21 1965-09-10 Sulzer Ag Procédé de fabrication de moules à l'aide de modèles perdus pour moulage de précision
US3583468A (en) * 1969-06-27 1971-06-08 Nalco Chemical Co Precision metal casting molds
FR2076405A5 (fr) * 1970-01-14 1971-10-15 Materiel Telephonique
US4114285A (en) * 1976-08-09 1978-09-19 United Technologies Corporation Method and apparatus for drying investment casting molds
US4180918A (en) * 1978-10-06 1980-01-01 Caterpillar Tractor Co. Microwave drying of ceramic shell molds
JPS6056576B2 (ja) * 1982-02-09 1985-12-11 トヨタ自動車株式会社 インベストメント鋳造用の鋳型製造方法
JPH02303650A (ja) * 1989-05-19 1990-12-17 Komatsu Ltd セラミックシェル鋳型の迅速造型法
JPH0386354A (ja) * 1989-08-30 1991-04-11 Chuzo Gijutsu Fukiyuu Kyokai ロストワックス鋳造用セラミックシェル鋳型の乾燥方法
US5689613A (en) * 1994-12-29 1997-11-18 Driquik, Inc. Platinum plated quartz tubes and method of making the same
US5793019A (en) * 1996-10-23 1998-08-11 Driquik, Inc. Electric infra-red and forced air oven
RU2127649C1 (ru) * 1997-09-24 1999-03-20 Афанасьев Владимир Михайлович Способ изготовления многослойных неразъемных литейных форм и устройство для его осуществления
GB2350810B (en) * 2000-03-17 2001-04-25 Daniel James Duffey Improvements in and relating to investment casting
US6749006B1 (en) * 2000-10-16 2004-06-15 Howmet Research Corporation Method of making investment casting molds

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010034765A2 (fr) * 2008-09-25 2010-04-01 Manfred Renkel Procédé pour produire un moule servant à couler des métaux en fusion
DE102008042375A1 (de) 2008-09-25 2010-04-15 Manfred Renkel Verfahren zur Herstellung einer Gussform zum Vergießen von Metallschmelzen
WO2010034765A3 (fr) * 2008-09-25 2010-07-29 Manfred Renkel Procédé pour produire un moule servant à couler des métaux en fusion
DE102008057836A1 (de) 2008-11-19 2010-05-20 Actech Gmbh Trockenschrank für keramische Feingussformen
WO2010057453A2 (fr) * 2008-11-19 2010-05-27 Actech Gmbh Armoire séchoir pour moules de précision en céramique
WO2010057453A3 (fr) * 2008-11-19 2010-07-29 Actech Gmbh Armoire séchoir pour moules de précision en céramique
DE102008057836B4 (de) * 2008-11-19 2014-09-11 Actech Gmbh Trockenschrank für keramische Feingussformen

Also Published As

Publication number Publication date
EP1645348A1 (fr) 2006-04-12
DE102004048451A1 (de) 2006-04-06
US20060086480A1 (en) 2006-04-27
DE502005002092D1 (de) 2008-01-10

Similar Documents

Publication Publication Date Title
EP1645348B1 (fr) Procédé et apparaeil pour la fabrication d'un moule pour le procédé de coulée de précision à la cire perdue
EP3083870B1 (fr) Procédé de fabrication de particules abrasives multicouches
DE10252073B4 (de) Herstellverfahren und Trocknungsvorrichtung für eine keramische Wabenform
EP3079871B1 (fr) Procédé d'infiltration dans des pièces en 3d
WO2012164078A2 (fr) Procédé pour produire un corps moulé et dispositif correspondant
DE1758845B2 (de) Verfahren zur herstellung von praezisionsgiessformen fuer reaktionsfaehige metalle
DE102012219534A1 (de) Vorrichtung zum schichtweisen Herstellen eines Formkörpers
WO2020245301A1 (fr) Procédé pour la fabrication d'au moins un composant en impression 3d et imprimante 3d
DE69631533T2 (de) Verfahren zur herstellung keramischer filtermaterialien
EP3307922B1 (fr) Procédé de revêtement de la surface d'un canal de refroidissement fermé d'un piston pour un moteur à combustion interne
DE68908162T2 (de) Verfahren zur Herstellung von keramischen Produkten, insbesondere von keramischen Federn.
WO2018215113A1 (fr) Procédé de retraitement destiné à l'augmentation de la résistance à chaud d'une pièce moulée réalisée avec un matériau pulvérulent et un liant, un ensemble d'impression 3d et une pièce moulée
EP0314142B1 (fr) Procédé de fabrication d'un corps façonné poreux
WO2007063014A2 (fr) Procede de production d'outils de coulee en ceramique
DE112013004945T5 (de) Feingussform und Verfahren zu ihrer Herstellung
DE102009010207B4 (de) Verfahren zur Herstellung einer keramischen Wabenstruktur und für das Verfahren verwendetes Überzugsmaterial
EP3173392B1 (fr) Procédé de fabrication d'éléments en céramique
EP3173227A1 (fr) Composants en céramique de forme libre
AT522488A1 (de) Fasergussverfahren zur Herstellung eines Formteils
DE102008057836B4 (de) Trockenschrank für keramische Feingussformen
DE10355298B4 (de) Vorprodukt für und Verfahren zur Herstellung von Grünkörpern für gesinterte Leichtbauteile
DE102015200634A1 (de) Sandwichbauweise und Vorgehensweise bei einer AM-Anlage
DE102020101783A1 (de) Verfahren zum Herstellen eines dreidimensionalen Formteils
EP1832337A1 (fr) Procédé destiné à l'enrobage de poudres
DE1564212A1 (de) Verfahren zum Herstellen von magnetischen Speicherkernen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060502

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005002092

Country of ref document: DE

Date of ref document: 20080110

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080311

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080228

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080328

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080428

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

26N No opposition filed

Effective date: 20080829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080229

BERE Be: lapsed

Owner name: MK TECHNOLOGY G.M.B.H.

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20091103

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081005

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101026

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101102

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111005

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231026

Year of fee payment: 19