EP1644952B1 - Verfahren und vorrichtung zur strombegrenzung mit einem selbstbetätigten strombegrenzer - Google Patents
Verfahren und vorrichtung zur strombegrenzung mit einem selbstbetätigten strombegrenzer Download PDFInfo
- Publication number
- EP1644952B1 EP1644952B1 EP04738058A EP04738058A EP1644952B1 EP 1644952 B1 EP1644952 B1 EP 1644952B1 EP 04738058 A EP04738058 A EP 04738058A EP 04738058 A EP04738058 A EP 04738058A EP 1644952 B1 EP1644952 B1 EP 1644952B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- current
- moving electrode
- path
- magnetic field
- liquid metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 17
- 229910001338 liquidmetal Inorganic materials 0.000 claims abstract description 94
- 230000000670 limiting effect Effects 0.000 claims abstract description 59
- 239000004020 conductor Substances 0.000 claims abstract description 19
- 230000001419 dependent effect Effects 0.000 claims abstract description 8
- 238000002955 isolation Methods 0.000 claims description 17
- 230000003993 interaction Effects 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 6
- 230000005484 gravity Effects 0.000 claims description 3
- 230000007704 transition Effects 0.000 claims description 3
- 229910001234 light alloy Inorganic materials 0.000 claims 1
- 239000012212 insulator Substances 0.000 abstract description 12
- 230000008901 benefit Effects 0.000 abstract description 4
- 230000035484 reaction time Effects 0.000 abstract description 4
- 239000011159 matrix material Substances 0.000 abstract description 3
- 230000002441 reversible effect Effects 0.000 abstract description 3
- 238000012423 maintenance Methods 0.000 abstract 1
- 238000009413 insulation Methods 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000007787 solid Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 4
- 230000000750 progressive effect Effects 0.000 description 3
- 230000001960 triggered effect Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H29/00—Switches having at least one liquid contact
- H01H29/02—Details
- H01H29/04—Contacts; Containers for liquid contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H77/00—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting
- H01H77/02—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism
- H01H77/10—Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H29/00—Switches having at least one liquid contact
- H01H29/006—Self interrupters, e.g. with periodic or other repetitive opening and closing of contacts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H53/00—Relays using the dynamo-electric effect, i.e. relays in which contacts are opened or closed due to relative movement of current-carrying conductor and magnetic field caused by force of interaction between them
- H01H53/08—Relays using the dynamo-electric effect, i.e. relays in which contacts are opened or closed due to relative movement of current-carrying conductor and magnetic field caused by force of interaction between them wherein a mercury contact constitutes the current-carrying conductor
Definitions
- the invention relates to the field of primary technology for electrical switchgear, in particular the limitation of fault currents in high, medium or low voltage switchgear. It is based on a method and a device for current limiting and of a switchgear with such a device according to the preamble of the independent claims.
- DE 40 12 385 A1 discloses a current-controlled shutdown device whose operating principle is based on the pinch effect with liquid metal. Between two solid metal electrodes, a single, narrow, filled with liquid metal channel is arranged. In the event of overcurrent, the liquid conductor is contracted due to the electromagnetic force due to the pinch effect, so that the current itself strangulates and separates the liquid conductor. The displaced liquid metal is collected in a reservoir and flows back after the overcurrent event. The contact separation takes place without an arc.
- the device is only suitable for relatively small currents, low voltages and slow turn-off times and does not provide a permanent turn-off state.
- a high current electrical switch with liquid metal discloses a high current electrical switch with liquid metal.
- a liquid metal mixture is used for wetting solid metal electrodes and for reducing the contact resistance.
- the liquid metal by mechanical displacement, z. B. by moving contacts or pneumatically driven plunger, driven against gravity in the contact gap.
- the liquid metal can be additionally stabilized in the contact gap and held.
- External magnetic fields and magnetic leakage fluxes, eg. B. by the power supplies can cause flow instabilities in the liquid metal and are shielded and optionally approved when switching off to assist in extinguishing the arc in the liquid metal.
- the disadvantage is that a gradual current limitation is not possible and cause arcs between the solid electrodes oxidation in the liquid metal.
- the design of the high-current switch includes seals for liquid metal, inert gas or vacuum and is correspondingly expensive.
- a self-recovering current limiting device with liquid metal Between two fixed metal electrodes, a pressure-resistant insulating housing is arranged, is arranged in the liquid metal in the compressor rooms and in intermediate connecting the compressor compartments connecting channels, so that a current path is given for nominal currents between the fixed electrodes.
- the connection channels are strongly heated during short-circuit currents and secrete a gas.
- the liquid metal evaporates into the compressor chambers, so that a current-limiting arc is ignited in the now liquid-metal-depleted connection channels. After the overcurrent has subsided, the liquid metal can condense again and the current path is ready for operation again.
- the connecting channels are widened conically upwards, so that the liquid level of the liquid metal varies and the rated current carrying capacity can be changed over a wide range.
- a meandering current path is formed by an offset arrangement of the connecting channels, so that a series of current-limiting arcs is ignited in the event of overflow-induced evaporation of the liquid metal.
- Such pinch effect current limiters require a very stable in terms of pressure and temperature construction, which is structurally complex. Due to the current limitation by means of an arc, large wear occurs inside the current limiter and burnt-off residues can contaminate the liquid metal. As a result of the recondensation of the liquid metal, a conductive state returns immediately after a short circuit, with the result that no switch-off state is present.
- GB 1 206 786 discloses a liquid metal based electrical high current switch.
- the liquid metal forms in a first position a first current path for the operating current and is guided during current switching along a resistive element and brought into a second position in which it is in series with the resistive element and reduces the current to a small fraction.
- the high-current switch is designed to generate high-intensity current pulses in the mega- ampere and sub-millisecond range for plasma generation.
- a movable electrode is realized in the form of a slide which can be moved on rails, which can be electromagnetically deflected by short-circuit currents. In the deflected state, the carriage contacts a rail area which has a current-limiting electrical resistance for the current path.
- a liquid metal column which is easily movable in a channel can also serve as a movable electrode.
- the current limiter in turn, has no turn-off state, but is arranged in series with a power switch to initially limit the current and then turn it off completely.
- the object of the present invention is to specify a method, a device and an electrical switchgear with such a device for improved and simplified current limitation and power cutoff. This object is achieved according to the invention by the features of the independent claims.
- the invention resides in a current limiting method comprising a current limiting device comprising fixed electrodes and at least one movable electrode, wherein in a first operating state between the stationary electrodes an operating current is passed on a first current path through the current limiting device and the first current path is at least partially passed through the located in a first position movable electrode, wherein in a second operating state, the at least one movable electrode is automatically moved by an electromagnetic interaction with the overcurrent to be limited along a direction of movement in at least a second position, the movable electrode at a Transition is guided from the first position to the second position along a resistive element and in the at least one second position in series with the resistive element and thereby a current limiting second current path is formed by the current limiting device having a predetermined electrical resistance, further wherein in a third operating state, the movable electrode is in series with an insulator and thereby an insulation gap for power shutdown is formed by the device.
- the overcurrent itself triggers the current limit.
- B. the Lorenz force on a current-carrying conductor in a magnetic field in question, but also a capacitive, inductive, electrostatic or otherwise electromagnetic influence of the overcurrent on the movable conductor portion or the movable electrode are conceivable. Since no insulator, but an electrical resistance is contacted by the movable electrode in current limiting case, no arc is ignited. Therefore, the current limiting method can be used even at very high voltage levels. In addition, hardly occurs wear due to erosion or corrosion of the movable electrode. The current limitation is reversible and is therefore easy to maintain and inexpensive.
- the third operating state is triggered by a shutdown command, by which an external magnetic field is switched between an operation of the device as a current limiter and as a power switch.
- the movable electrode in the third operating state, is moved along an opposite direction of movement into at least a third position and is in the at least one third position in series with the insulator.
- the movable electrode is automatically guided by the electromagnetic interaction with the overcurrent to be limited along the resistance element to an extremal second position, wherein the extremal second position is in a region where the resistance element merges into an insulator, so that the or a further isolation path for power cut is formed.
- the resistance element is selected to provide a smooth turn-off characteristic with a non-linearly increasing electrical resistance for the second current path along the direction of movement of the movable electrode; and / or the resistive element is ohmic and the electrical resistance increases continuously with the second position. In this way, a gentle current limiting characteristic for a progressive current limitation is realized.
- the embodiment according to claim 6 has the advantage that the magnetic field acts directly on the current-carrying movable electrode and sets them in motion by the Lorenz force.
- the Lorenz force is proportional to the product of magnetic field strength and current.
- the magnetic field can be generated externally, in particular constant or switchable, or internally, in particular by the current to be limited.
- Claim 7 specifies sizing criteria for optimal design of the dynamics of the current limiting operation.
- Claim 8 and 9 indicate advantageous embodiments with a liquid metal and / or a sliding contact solid-state conductor as a movable electrode.
- a series connection of liquid metal columns alternately with a dielectric and high voltages and high currents can be handled efficiently and safely.
- the invention relates to a device for current limiting, in particular for carrying out the method comprising fixed electrodes and at least one movable electrode, wherein in a first operating state between the fixed electrodes, a first current path for an operating current through the current limiting device is present and the first Current path at least partially through the located in a first position movable electrode, wherein electromagnetic drive means for self-energized in overcurrent moving the movable electrode along a direction of movement in at least a second position are present, electrical resistance means are provided with a predetermined electrical resistance and in a second operating state, the movable electrode is at least partially in series with the resistance means and forms together with these a second current path on which the operating current can be limited to a current to be limited in a third operating state, the movable electrode is in series with an insulator and thereby an isolation path for power shutdown by the device is present.
- the current limiter 1 comprises solid metal electrodes 2a, 2b and intermediate electrodes 2c for a power supply 20 and a container 4 for the liquid metal 3.
- the container 4 has a bottom 6 and cover 6 of insulator material, between which an electrical resistance means 5 with at least one channel 3a for the liquid metal 3 is arranged.
- a protective gas for example, an insulating liquid (with not shown here alternate volume) or vacuum may be arranged.
- the liquid metal 3 or, in general, a movable electrode 3, 3 ' is set in motion by an automatic, electromagnetic interaction with the overcurrent I 2 to be limited.
- this remains in the liquid state of matter and is selectively moved by the forced movement between the different positions x 1 , x 12 or x 2 .
- the pinch effect is not used.
- Very fast current limiting reaction times of up to less than 1 ms can be achieved.
- an insulation path (not shown) is present.
- the second operating state is activated by the overcurrent I 2 automatically by the current-carrying movable electrode 3, 3 'by an electromagnetic force F mag is moved perpendicular to the current I 2 through the movable electrode 3, 3' and perpendicular to a magnetic field B ext , B int and which has a force component parallel to the direction of movement x, 1, wherein the magnetic field B ext, B int as an external magnetic field B ext and / or as an internal, from a power supply 2a, 2b; 20 generated to the current limiting device 1 magnetic field B int is selected.
- Lorenzkraft can also be another automatic electromagnetic interaction with the overcurrent I 2 , z.
- a capacitive, inductive, electrostatic or other interaction are used to limit the current. This automatically means that the movement of the movable electrode is triggered and controlled without active current measurement and without active control technology.
- a first operating state (FIG. 1 a) an operating or rated current I 1 flows on a first or rated current path 30 from the input electrode 2 a via liquid metal 3 and optionally intermediate electrodes 2 c to the output electrode 2 b.
- the liquid metal 3 is in the first position x 1 , at least partially wets the stationary electrodes 2 a, 2 b, 2 c and electrically bridges the channels 3 a.
- a second operating state FIG.
- the liquid metal 3 is moved along the direction of movement x, given by a height extent of the channels 3 a, into a second position x 2 , lies there in series with the electrical resistance means 5 and forms with it a second current path or current limiting path 31 for a current I 2 to be limited.
- the rated current path 30 and the current-limiting second current path 31 are arranged parallel to one another and both perpendicular to the height extent of the channels 3a on a variable, by the second position x 12 , x 2 of the liquid metal 3 predeterminable height.
- the resistance means 5 comprises a dielectric matrix 5, the wall-like webs 5a for dielectric separation of a plurality of channels 3a has for the liquid metal 3, wherein the webs 5a comprise a dielectric material in the direction of movement x increasing, and preferably non-linearly increasing resistance R x.
- the webs 5a thus represent individual resistors 5a of the resistive element 5 with an increasing along the channel height and preferably non-linearly increasing electrical resistance R x .
- the webs 5a intermediate electrodes 2c to the electrically conductive connection of the channels 3a exhibit.
- the channels 3a are preferably arranged substantially parallel to each other.
- the current-limiting second current path 31 is formed by an alternating series connection of filled with liquid metal 3 channel regions 3a and the webs 5a, which act as progressive with their length and preferably non-linearly progressive individual resistors 5a of the resistive element 5.
- the movable electrode 3, 3 ' comprises a solid-state conductor 3' with at least one sliding contact 2d and in the first operating state with the stationary electrodes 2a, 2b, in the second operating state at least on one side with the resistance element 5 and third operating state is electrically connected at least on one side with the insulator 8.
- the solid-state conductor 3 ' is essentially made of light metal and / or in lightweight construction, for example made of metal-coated cork, and / or the sliding contact 2d is wetted with liquid metal to reduce friction.
- FIG. 2 shows an embodiment in which the solid-state conductor 3 'is rotatably connected at one end to the input electrode 2a and at the other end with the sliding contact slidably along a circular arc-shaped resistance element 5 is movable.
- Fig. 3 shows an embodiment in which the solid-state conductor 3, 3 'sliding contacts 2d has at both ends and between wall-like resistors 5a of the resistance means 5 as a balance beam over its entire length by the electromagnetic interaction against a restoring force F r , in particular against gravity , can be raised.
- the path positions l 1 , l 12 , l 2 of the sliding contact 2 d correspond to the aforementioned second positions x 1 , x 12 , x 2 of the liquid metal column 3.
- the extreme second position l 12 may be in the area where the resistance means 5 in an insulator 8 passes, so that an insulation gap 32 for power cut is present.
- the resistance element 5 has an electrical resistance R x , R 1 for the second current path 31 which non-linearly increases along the direction of movement x, l of the movable electrode 3, 3 '.
- the resistance element 5 should have an ohmic component and is preferably purely ohmic with an electrical resistance R x , R 1 , which increases continuously with the second position x 12 , x 2 , l 12 , l 2 .
- It can also be connected in series with two current limiter 1 with anti-phase effective triggering of the electrode movement in order to achieve a current limit and possibly power cut in each half-wave current.
- Fig. 4 shows a variant of the current limiter 1, in which a collecting container 3b for receiving the liquid metal 3 and to provide an insulation gap 32 for power cut is present.
- a liquid metal feed 3c for filling the liquid metal 3 in the channels 3a and switching the device 1 back on.
- the insulating webs 8a consist essentially of insulating material, are preferably arranged in the region of the collecting container 3c and, together with the channels emptied by the trapped liquid metal 3, form the insulating path 32
- the liquid metal 3 between the rated current path 30, the current limiting path 31 and the insulation gap 32 for power cut movable so that an integrated current-limiting switch 1 is realized on liquid metal base.
- the first current path 30 for operating current I 1 , the second current path 31 for current limiting and the isolation path 32 are arranged substantially perpendicular to the direction of movement x and / or substantially parallel to each other. This results in a particularly simple configuration for an integrated current limiter - circuit breaker 1, which works exclusively with liquid metal 3.
- Fig. 5 shows for the current-limiting switch 1, a dimensioning of the electrical resistance R x , R 1 as a function of the second position x 12 , l 12 of the movable electrode 3, 3 '.
- the resistor R x , R 1 is selected to be non-linearly increasing up to an extreme second position X 2 , l 2 to a maximum value R x (x 2 ), R 1 (l 2 ). Also intended for a given voltage level of the maximum value of R x (x 2), R 1 (l 2) of the electrical resistance R x, R 1 in accordance with one to limiting current I 2 to a finite value, or for switching off the operating current I 1 to a dielectric insulation value are measured.
- the electrical resistance R x , R 1 as a function R x (x 12 ), R 1 (l 12 ) of the second position x 12 , l 12 and a path-time characteristic x 12 (t), l 12 (t) of the movable Electrode 3, 3 'along the direction of movement x, l should be chosen so that in every second position x 12 , x 2 , l 12 , l 2 of the movable electrode 3, 3', the product of electrical resistance R x , R 1 and Current I 2 is smaller than an arc ignition voltage U b between the movable electrode 3, 3 'and the fixed electrodes 2a, 2b and optionally intermediate electrodes 2c and / or that a sufficient slope of the current limit for controlling network-related short-circuit currents i (t) is achieved.
- the magnetic field means 2a, 2b, 20; 11 means 11 for generating an external controllable and in particular reversible magnetic field B ext include.
- a current-limiting parameter R x of the current limiting parameters and the breakdown behavior of the contacts 2 a, 2 b that are to be disconnected are necessary.
- R x Starting from the first position x 1 , ie when detaching the liquid metal 3 from the fixed electrodes 2a, 2b, 2c, R x initially increases disproportionately with the second position x 12 , then increases linearly in a phase in which the in the network inductance L stored energy must be absorbed and then goes in a region where the current i is already limited and larger R x tolerable, again in a steeper, ie disproportionate increase R x (x 12 ) over.
- the total resistance of the current limiter 1 is determined in the first operating state at nominal current I 1 by the liquid metal sections 3 and can therefore be set to predetermined values by providing a suitable liquid metal cross section.
- the maximum resistance R x (x 12 ) of the current limiter 1 can be dimensioned by selecting the resistance material 5 and by its geometric shape in accordance with a desired voltage level and maximum allowable overcurrent I 2 .
- a resistance R x which increases nonlinearly with the distance x can be realized by materials having different specific resistances.
- a non-linearly increasing total resistance R x can also be realized by a suitable geometric guidance of the current path in a resistance element with homogeneous resistivity.
- the non-linear graduation of the resistance R x can also be achieved by a combination of both measures, namely by a suitable geometrical current conduction in a resistance element with variable resistivity.
- the threshold current I th from which the current limiting device 1 is activated, occurs when the electromagnetic drive force F mag exceeds the restoring force F r .
- Fig. 1b shows the position of the liquid metal 3 in the current limiting case. Due to the current limiting effect, the electromagnetic force F mag on the liquid metal 3 decreases and the liquid metal 3 flows under the action of the gravitational force F g back to the starting position between the electrodes 2a, 2b, 2c.
- the reconnection time t d can be adapted to the requirements of different applications by a suitable design of the current limiter 1.
- the channel height h and the capillary forces F cap influencing variables such as channel cross-sectional area A, channel geometry and surface condition of the channels, as well as the type of liquid metal 3 are to be selected accordingly.
- the dissipated energy E loss heats the current limiter 1.
- A cross-sectional area of the liquid metal parts (as before)
- 1 total length of the current limiter 1 or the resistance element 5
- p ' average mass density of the current limiter 1
- c' average heat capacity of the current limiter 1.
- the loss energy E loss is in the present Case of resistive current limiting much smaller than current limiting by electric arc.
- a significant advantage of the distributed or matrix-like resistance element 5 is also that the power loss E loss occurs largely homogeneously distributed over the volume of the current limiter 1 and accordingly the entire thermal mass or heat capacity for absorbing the loss energy E loss can be exploited.
- Fig. 6 shows a combined liquid metal current limiter 1 and liquid metal circuit breaker 1 with electromagnetic drive means 2a, 2b, 20; 11; B int, B ext 3 for the liquid metal, the magnetic field B int can internally by the increased or efferent current conductor 20 and / or preferably selectable by an external magnetic field with respect to their direction of magnetic field source B ext generated.
- the current i is guided on the current limiting path 31 and limited as discussed above.
- the liquid metal 3 in a third operating state, can be moved along the opposite direction of movement -x to at least one third position x 13 , x 3 , wherein the liquid metal 3 is in series with an insulator 8 in the at least one third position x 13 , x 3 and thereby an isolation path 32 for power shutdown is formed by the device 1.
- the insulation section 8 may be formed by a plurality of insulation webs 8a, which are in the case of disconnection in alternating series connection with the downwardly displaced liquid metal columns 3.
- Fig. 3 shows in dashed lines the analogous case for negative deflections 1 and positions l 13 , l 3 of a movably suspended solid conductor 3 '.
- the third operating state is triggered by a switch-off command, by means of which an external magnetic field B ext between an operation of the device 1 as a current limiter and as a power switch is switched over.
- liquid metal 3 are suitable for. As mercury, gallium, cesium, GaInSn.
- the at least one isolation path 32 for power cutoff is arranged above the second current path 31 and / or below the first current path 30.
- a compact arrangement of the liquid metal 3 and its drive mechanism 12 is realized relative to the currents to be switched, in particular to the rated current path 30, current limiting path 31 and current cutoff path 32.
- inventions relate u.a. the use as current limiter, current-limiting switch and / or circuit breaker 1 in power supply networks, as a self-recovering fuse or as a motor starter.
- the invention also includes an electrical switchgear, in particular a high or medium voltage switchgear, characterized by a device 1 as described above.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Emergency Protection Circuit Devices (AREA)
- Arc-Extinguishing Devices That Are Switches (AREA)
- Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
- Tone Control, Compression And Expansion, Limiting Amplitude (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL04738058T PL1644952T3 (pl) | 2003-07-10 | 2004-07-01 | Sposób i urządzenie do ograniczania prądu z samonastawnym ogranicznikiem prądu |
EP04738058A EP1644952B1 (de) | 2003-07-10 | 2004-07-01 | Verfahren und vorrichtung zur strombegrenzung mit einem selbstbetätigten strombegrenzer |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03405519 | 2003-07-10 | ||
PCT/CH2004/000417 WO2005006373A1 (de) | 2003-07-10 | 2004-07-01 | Verfahren und vorrichtung zur strombegrenzung mit einem selbstbetätigten strombegrenzer |
EP04738058A EP1644952B1 (de) | 2003-07-10 | 2004-07-01 | Verfahren und vorrichtung zur strombegrenzung mit einem selbstbetätigten strombegrenzer |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1644952A1 EP1644952A1 (de) | 2006-04-12 |
EP1644952B1 true EP1644952B1 (de) | 2007-09-19 |
Family
ID=34043024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04738058A Expired - Lifetime EP1644952B1 (de) | 2003-07-10 | 2004-07-01 | Verfahren und vorrichtung zur strombegrenzung mit einem selbstbetätigten strombegrenzer |
Country Status (8)
Country | Link |
---|---|
US (1) | US20070041138A1 (zh) |
EP (1) | EP1644952B1 (zh) |
KR (1) | KR20060036448A (zh) |
CN (1) | CN100446152C (zh) |
AT (1) | ATE373871T1 (zh) |
DE (1) | DE502004005030D1 (zh) |
PL (1) | PL1644952T3 (zh) |
WO (1) | WO2005006373A1 (zh) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080037931A1 (en) * | 2006-07-31 | 2008-02-14 | Steen Paul H | Liquid switches and switching devices and systems and methods thereof |
WO2009055763A2 (en) * | 2007-10-26 | 2009-04-30 | Kowalik Daniel P | Micro-fluidic bubble fuse |
ES2530575T3 (es) * | 2010-08-03 | 2015-03-03 | Alstom Technology Ltd | Un núcleo |
CN102324720A (zh) * | 2011-09-28 | 2012-01-18 | 上海大学 | 一种故障电流限制器 |
CN104851732A (zh) * | 2015-04-17 | 2015-08-19 | 沈涛 | 可用于电力或电子系统的机械式直流断路器、电力机械 |
CN104851734A (zh) * | 2015-04-17 | 2015-08-19 | 舒建兴 | 可用于电力或电子系统的机械式直流断路器、电力机械 |
CN106533131B (zh) * | 2016-11-18 | 2023-07-14 | 云南电网有限责任公司电力科学研究院 | 一种带脉冲激励装置的直流换流阀 |
CN107507746B (zh) * | 2017-06-30 | 2018-12-04 | 西安交通大学 | 一种液态金属限流装置及方法 |
CN114743844B (zh) * | 2022-03-30 | 2023-05-12 | 西南交通大学 | 一种基于电磁场调控的复合耗能装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1503721A (fr) * | 1966-10-11 | 1967-12-01 | Centre Nat Rech Scient | Perfectionnements aux interrupteurs électriques pour courants intenses |
US4210903A (en) * | 1976-02-02 | 1980-07-01 | Semiconductor Circuits, Inc. | Method for producing analog-to-digital conversions |
US4598332A (en) * | 1984-07-20 | 1986-07-01 | Westinghouse Electric Corp. | Current limiting apparatus utilizing multiple resistive parallel rails |
US4599671A (en) * | 1984-07-20 | 1986-07-08 | Westinghouse Electric Corp. | Current limiting devices utilizing resistive parallel rails |
CN2469548Y (zh) * | 2001-03-16 | 2002-01-02 | 郭守恒 | 快速变阻限流保护装置 |
DE502004005029D1 (de) * | 2003-07-10 | 2007-10-31 | Abb Research Ltd | Verfahren und vorrichtung zur strombegrenzung mit einem flüssigmetall-strombegrenzer |
KR20060036445A (ko) * | 2003-07-10 | 2006-04-28 | 에이비비 리써치 리미티드 | 유체-작동식 액체 금속 전류 스위치를 이용한 전력 차단방법 및 디바이스 |
-
2004
- 2004-07-01 DE DE502004005030T patent/DE502004005030D1/de not_active Expired - Fee Related
- 2004-07-01 WO PCT/CH2004/000417 patent/WO2005006373A1/de active IP Right Grant
- 2004-07-01 US US10/564,037 patent/US20070041138A1/en not_active Abandoned
- 2004-07-01 EP EP04738058A patent/EP1644952B1/de not_active Expired - Lifetime
- 2004-07-01 PL PL04738058T patent/PL1644952T3/pl unknown
- 2004-07-01 CN CNB2004800196897A patent/CN100446152C/zh not_active Expired - Fee Related
- 2004-07-01 KR KR1020067000626A patent/KR20060036448A/ko not_active Application Discontinuation
- 2004-07-01 AT AT04738058T patent/ATE373871T1/de not_active IP Right Cessation
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
PL1644952T3 (pl) | 2008-02-29 |
DE502004005030D1 (de) | 2007-10-31 |
KR20060036448A (ko) | 2006-04-28 |
WO2005006373A1 (de) | 2005-01-20 |
ATE373871T1 (de) | 2007-10-15 |
US20070041138A1 (en) | 2007-02-22 |
CN100446152C (zh) | 2008-12-24 |
EP1644952A1 (de) | 2006-04-12 |
CN1820340A (zh) | 2006-08-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1644951B1 (de) | Verfahren und vorrichtung zur strombegrenzung mit einem flüssigmetall-strombegrenzer | |
EP0657062B1 (de) | Veränderbarer hochstromwiderstand und anwendung als schutzelement | |
EP1911059A1 (de) | KURZSCHLIEßEINRICHTUNG FÜR DEN EINSATZ IN NIEDER- UND MITTELSPANNUNGSANLAGEN ZUM SACH- UND PERSONENSCHUTZ | |
EP0800191A2 (de) | Leistungsschalter | |
EP0450104B1 (de) | Schnellschalter | |
EP1644952B1 (de) | Verfahren und vorrichtung zur strombegrenzung mit einem selbstbetätigten strombegrenzer | |
DE69931744T2 (de) | Vakuumschaltgerät | |
DE2600683C2 (de) | Strombegrenzungsanordnung mit einem Vakuumschalter | |
DE102017214805A1 (de) | Strombegrenzung mit einem Vakuumschalter | |
EP0750788B1 (de) | Schalter zur strombegrenzung | |
DE69106986T2 (de) | Hochspannungsschalter mit Selbstbeblasung. | |
CH668664A5 (de) | Gasisolierter lasttrenner. | |
EP1173873B1 (de) | Selbsterholende strombegrenzungseinrichtung mit flüssigmetall | |
WO2005006368A1 (de) | Verfahren und vorrichtung zur stromschaltung mit einem fluidbetriebenen flüssigmetall-stromschalter | |
DE3513908C2 (de) | Freiluftschaltgerät für Hochspannungsschaltanlagen | |
EP1496533A1 (de) | Flüssigmetall-Stromschalter mit Piezo-Fluidantrieb | |
EP3959734B1 (de) | Elektrischer schalter | |
EP3953957B1 (de) | Verfahren zur unterbrechungsfreien anpassung von parametern eines stromkreises | |
EP1544879B1 (de) | Schneller Leistungsschalter für Hoch-oder Mittelspannung | |
DE102006034168B4 (de) | Gekapselter Überpannungsabeiter für den Einsatz als Netzfunkenstrecke im Niederspannungsbereich mit getrennten, elektrisch in Reihe geschalteten Funktionseinheiten | |
WO2021001017A1 (de) | Schaltgerät | |
EP3050069B1 (de) | Schalteinrichtung sowie ausschaltverfahren zum betrieb einer schalteinrichtung | |
DE3017980A1 (de) | Elektrischer schalter mit selbsterzeugtem loeschgasstrom | |
DE102013225112B4 (de) | Elektrisches Schaltgerät | |
DE102005060096B4 (de) | Gekapselter Überspannungsableiter für den Einsatz als Netzfunkenstrecke im Niederspannungsbereich mit getrennten, elektrisch in Reihe geschalteten Funktionseinheiten |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20051222 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 502004005030 Country of ref document: DE Date of ref document: 20071031 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ABB SCHWEIZ AG INTELLECTUAL PROPERTY (CH-LC/IP) |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071220 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071230 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
ET | Fr: translation filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080219 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 Ref country code: GB Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071219 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 |
|
26N | No opposition filed |
Effective date: 20080620 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20080627 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20080715 Year of fee payment: 5 Ref country code: DE Payment date: 20080722 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20080715 Year of fee payment: 5 Ref country code: FR Payment date: 20080715 Year of fee payment: 5 Ref country code: IT Payment date: 20080723 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071219 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090701 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100202 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080731 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080701 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080320 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070919 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090701 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: LAPE |