EP1644952B1 - Verfahren und vorrichtung zur strombegrenzung mit einem selbstbetätigten strombegrenzer - Google Patents

Verfahren und vorrichtung zur strombegrenzung mit einem selbstbetätigten strombegrenzer Download PDF

Info

Publication number
EP1644952B1
EP1644952B1 EP04738058A EP04738058A EP1644952B1 EP 1644952 B1 EP1644952 B1 EP 1644952B1 EP 04738058 A EP04738058 A EP 04738058A EP 04738058 A EP04738058 A EP 04738058A EP 1644952 B1 EP1644952 B1 EP 1644952B1
Authority
EP
European Patent Office
Prior art keywords
current
moving electrode
path
magnetic field
liquid metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04738058A
Other languages
English (en)
French (fr)
Other versions
EP1644952A1 (de
Inventor
Kaveh Niayesh
Friedrich Koenig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Priority to PL04738058T priority Critical patent/PL1644952T3/pl
Priority to EP04738058A priority patent/EP1644952B1/de
Publication of EP1644952A1 publication Critical patent/EP1644952A1/de
Application granted granted Critical
Publication of EP1644952B1 publication Critical patent/EP1644952B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H29/00Switches having at least one liquid contact
    • H01H29/02Details
    • H01H29/04Contacts; Containers for liquid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H77/00Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting
    • H01H77/02Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism
    • H01H77/10Protective overload circuit-breaking switches operated by excess current and requiring separate action for resetting in which the excess current itself provides the energy for opening the contacts, and having a separate reset mechanism with electrodynamic opening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H29/00Switches having at least one liquid contact
    • H01H29/006Self interrupters, e.g. with periodic or other repetitive opening and closing of contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H53/00Relays using the dynamo-electric effect, i.e. relays in which contacts are opened or closed due to relative movement of current-carrying conductor and magnetic field caused by force of interaction between them
    • H01H53/08Relays using the dynamo-electric effect, i.e. relays in which contacts are opened or closed due to relative movement of current-carrying conductor and magnetic field caused by force of interaction between them wherein a mercury contact constitutes the current-carrying conductor

Definitions

  • the invention relates to the field of primary technology for electrical switchgear, in particular the limitation of fault currents in high, medium or low voltage switchgear. It is based on a method and a device for current limiting and of a switchgear with such a device according to the preamble of the independent claims.
  • DE 40 12 385 A1 discloses a current-controlled shutdown device whose operating principle is based on the pinch effect with liquid metal. Between two solid metal electrodes, a single, narrow, filled with liquid metal channel is arranged. In the event of overcurrent, the liquid conductor is contracted due to the electromagnetic force due to the pinch effect, so that the current itself strangulates and separates the liquid conductor. The displaced liquid metal is collected in a reservoir and flows back after the overcurrent event. The contact separation takes place without an arc.
  • the device is only suitable for relatively small currents, low voltages and slow turn-off times and does not provide a permanent turn-off state.
  • a high current electrical switch with liquid metal discloses a high current electrical switch with liquid metal.
  • a liquid metal mixture is used for wetting solid metal electrodes and for reducing the contact resistance.
  • the liquid metal by mechanical displacement, z. B. by moving contacts or pneumatically driven plunger, driven against gravity in the contact gap.
  • the liquid metal can be additionally stabilized in the contact gap and held.
  • External magnetic fields and magnetic leakage fluxes, eg. B. by the power supplies can cause flow instabilities in the liquid metal and are shielded and optionally approved when switching off to assist in extinguishing the arc in the liquid metal.
  • the disadvantage is that a gradual current limitation is not possible and cause arcs between the solid electrodes oxidation in the liquid metal.
  • the design of the high-current switch includes seals for liquid metal, inert gas or vacuum and is correspondingly expensive.
  • a self-recovering current limiting device with liquid metal Between two fixed metal electrodes, a pressure-resistant insulating housing is arranged, is arranged in the liquid metal in the compressor rooms and in intermediate connecting the compressor compartments connecting channels, so that a current path is given for nominal currents between the fixed electrodes.
  • the connection channels are strongly heated during short-circuit currents and secrete a gas.
  • the liquid metal evaporates into the compressor chambers, so that a current-limiting arc is ignited in the now liquid-metal-depleted connection channels. After the overcurrent has subsided, the liquid metal can condense again and the current path is ready for operation again.
  • the connecting channels are widened conically upwards, so that the liquid level of the liquid metal varies and the rated current carrying capacity can be changed over a wide range.
  • a meandering current path is formed by an offset arrangement of the connecting channels, so that a series of current-limiting arcs is ignited in the event of overflow-induced evaporation of the liquid metal.
  • Such pinch effect current limiters require a very stable in terms of pressure and temperature construction, which is structurally complex. Due to the current limitation by means of an arc, large wear occurs inside the current limiter and burnt-off residues can contaminate the liquid metal. As a result of the recondensation of the liquid metal, a conductive state returns immediately after a short circuit, with the result that no switch-off state is present.
  • GB 1 206 786 discloses a liquid metal based electrical high current switch.
  • the liquid metal forms in a first position a first current path for the operating current and is guided during current switching along a resistive element and brought into a second position in which it is in series with the resistive element and reduces the current to a small fraction.
  • the high-current switch is designed to generate high-intensity current pulses in the mega- ampere and sub-millisecond range for plasma generation.
  • a movable electrode is realized in the form of a slide which can be moved on rails, which can be electromagnetically deflected by short-circuit currents. In the deflected state, the carriage contacts a rail area which has a current-limiting electrical resistance for the current path.
  • a liquid metal column which is easily movable in a channel can also serve as a movable electrode.
  • the current limiter in turn, has no turn-off state, but is arranged in series with a power switch to initially limit the current and then turn it off completely.
  • the object of the present invention is to specify a method, a device and an electrical switchgear with such a device for improved and simplified current limitation and power cutoff. This object is achieved according to the invention by the features of the independent claims.
  • the invention resides in a current limiting method comprising a current limiting device comprising fixed electrodes and at least one movable electrode, wherein in a first operating state between the stationary electrodes an operating current is passed on a first current path through the current limiting device and the first current path is at least partially passed through the located in a first position movable electrode, wherein in a second operating state, the at least one movable electrode is automatically moved by an electromagnetic interaction with the overcurrent to be limited along a direction of movement in at least a second position, the movable electrode at a Transition is guided from the first position to the second position along a resistive element and in the at least one second position in series with the resistive element and thereby a current limiting second current path is formed by the current limiting device having a predetermined electrical resistance, further wherein in a third operating state, the movable electrode is in series with an insulator and thereby an insulation gap for power shutdown is formed by the device.
  • the overcurrent itself triggers the current limit.
  • B. the Lorenz force on a current-carrying conductor in a magnetic field in question, but also a capacitive, inductive, electrostatic or otherwise electromagnetic influence of the overcurrent on the movable conductor portion or the movable electrode are conceivable. Since no insulator, but an electrical resistance is contacted by the movable electrode in current limiting case, no arc is ignited. Therefore, the current limiting method can be used even at very high voltage levels. In addition, hardly occurs wear due to erosion or corrosion of the movable electrode. The current limitation is reversible and is therefore easy to maintain and inexpensive.
  • the third operating state is triggered by a shutdown command, by which an external magnetic field is switched between an operation of the device as a current limiter and as a power switch.
  • the movable electrode in the third operating state, is moved along an opposite direction of movement into at least a third position and is in the at least one third position in series with the insulator.
  • the movable electrode is automatically guided by the electromagnetic interaction with the overcurrent to be limited along the resistance element to an extremal second position, wherein the extremal second position is in a region where the resistance element merges into an insulator, so that the or a further isolation path for power cut is formed.
  • the resistance element is selected to provide a smooth turn-off characteristic with a non-linearly increasing electrical resistance for the second current path along the direction of movement of the movable electrode; and / or the resistive element is ohmic and the electrical resistance increases continuously with the second position. In this way, a gentle current limiting characteristic for a progressive current limitation is realized.
  • the embodiment according to claim 6 has the advantage that the magnetic field acts directly on the current-carrying movable electrode and sets them in motion by the Lorenz force.
  • the Lorenz force is proportional to the product of magnetic field strength and current.
  • the magnetic field can be generated externally, in particular constant or switchable, or internally, in particular by the current to be limited.
  • Claim 7 specifies sizing criteria for optimal design of the dynamics of the current limiting operation.
  • Claim 8 and 9 indicate advantageous embodiments with a liquid metal and / or a sliding contact solid-state conductor as a movable electrode.
  • a series connection of liquid metal columns alternately with a dielectric and high voltages and high currents can be handled efficiently and safely.
  • the invention relates to a device for current limiting, in particular for carrying out the method comprising fixed electrodes and at least one movable electrode, wherein in a first operating state between the fixed electrodes, a first current path for an operating current through the current limiting device is present and the first Current path at least partially through the located in a first position movable electrode, wherein electromagnetic drive means for self-energized in overcurrent moving the movable electrode along a direction of movement in at least a second position are present, electrical resistance means are provided with a predetermined electrical resistance and in a second operating state, the movable electrode is at least partially in series with the resistance means and forms together with these a second current path on which the operating current can be limited to a current to be limited in a third operating state, the movable electrode is in series with an insulator and thereby an isolation path for power shutdown by the device is present.
  • the current limiter 1 comprises solid metal electrodes 2a, 2b and intermediate electrodes 2c for a power supply 20 and a container 4 for the liquid metal 3.
  • the container 4 has a bottom 6 and cover 6 of insulator material, between which an electrical resistance means 5 with at least one channel 3a for the liquid metal 3 is arranged.
  • a protective gas for example, an insulating liquid (with not shown here alternate volume) or vacuum may be arranged.
  • the liquid metal 3 or, in general, a movable electrode 3, 3 ' is set in motion by an automatic, electromagnetic interaction with the overcurrent I 2 to be limited.
  • this remains in the liquid state of matter and is selectively moved by the forced movement between the different positions x 1 , x 12 or x 2 .
  • the pinch effect is not used.
  • Very fast current limiting reaction times of up to less than 1 ms can be achieved.
  • an insulation path (not shown) is present.
  • the second operating state is activated by the overcurrent I 2 automatically by the current-carrying movable electrode 3, 3 'by an electromagnetic force F mag is moved perpendicular to the current I 2 through the movable electrode 3, 3' and perpendicular to a magnetic field B ext , B int and which has a force component parallel to the direction of movement x, 1, wherein the magnetic field B ext, B int as an external magnetic field B ext and / or as an internal, from a power supply 2a, 2b; 20 generated to the current limiting device 1 magnetic field B int is selected.
  • Lorenzkraft can also be another automatic electromagnetic interaction with the overcurrent I 2 , z.
  • a capacitive, inductive, electrostatic or other interaction are used to limit the current. This automatically means that the movement of the movable electrode is triggered and controlled without active current measurement and without active control technology.
  • a first operating state (FIG. 1 a) an operating or rated current I 1 flows on a first or rated current path 30 from the input electrode 2 a via liquid metal 3 and optionally intermediate electrodes 2 c to the output electrode 2 b.
  • the liquid metal 3 is in the first position x 1 , at least partially wets the stationary electrodes 2 a, 2 b, 2 c and electrically bridges the channels 3 a.
  • a second operating state FIG.
  • the liquid metal 3 is moved along the direction of movement x, given by a height extent of the channels 3 a, into a second position x 2 , lies there in series with the electrical resistance means 5 and forms with it a second current path or current limiting path 31 for a current I 2 to be limited.
  • the rated current path 30 and the current-limiting second current path 31 are arranged parallel to one another and both perpendicular to the height extent of the channels 3a on a variable, by the second position x 12 , x 2 of the liquid metal 3 predeterminable height.
  • the resistance means 5 comprises a dielectric matrix 5, the wall-like webs 5a for dielectric separation of a plurality of channels 3a has for the liquid metal 3, wherein the webs 5a comprise a dielectric material in the direction of movement x increasing, and preferably non-linearly increasing resistance R x.
  • the webs 5a thus represent individual resistors 5a of the resistive element 5 with an increasing along the channel height and preferably non-linearly increasing electrical resistance R x .
  • the webs 5a intermediate electrodes 2c to the electrically conductive connection of the channels 3a exhibit.
  • the channels 3a are preferably arranged substantially parallel to each other.
  • the current-limiting second current path 31 is formed by an alternating series connection of filled with liquid metal 3 channel regions 3a and the webs 5a, which act as progressive with their length and preferably non-linearly progressive individual resistors 5a of the resistive element 5.
  • the movable electrode 3, 3 ' comprises a solid-state conductor 3' with at least one sliding contact 2d and in the first operating state with the stationary electrodes 2a, 2b, in the second operating state at least on one side with the resistance element 5 and third operating state is electrically connected at least on one side with the insulator 8.
  • the solid-state conductor 3 ' is essentially made of light metal and / or in lightweight construction, for example made of metal-coated cork, and / or the sliding contact 2d is wetted with liquid metal to reduce friction.
  • FIG. 2 shows an embodiment in which the solid-state conductor 3 'is rotatably connected at one end to the input electrode 2a and at the other end with the sliding contact slidably along a circular arc-shaped resistance element 5 is movable.
  • Fig. 3 shows an embodiment in which the solid-state conductor 3, 3 'sliding contacts 2d has at both ends and between wall-like resistors 5a of the resistance means 5 as a balance beam over its entire length by the electromagnetic interaction against a restoring force F r , in particular against gravity , can be raised.
  • the path positions l 1 , l 12 , l 2 of the sliding contact 2 d correspond to the aforementioned second positions x 1 , x 12 , x 2 of the liquid metal column 3.
  • the extreme second position l 12 may be in the area where the resistance means 5 in an insulator 8 passes, so that an insulation gap 32 for power cut is present.
  • the resistance element 5 has an electrical resistance R x , R 1 for the second current path 31 which non-linearly increases along the direction of movement x, l of the movable electrode 3, 3 '.
  • the resistance element 5 should have an ohmic component and is preferably purely ohmic with an electrical resistance R x , R 1 , which increases continuously with the second position x 12 , x 2 , l 12 , l 2 .
  • It can also be connected in series with two current limiter 1 with anti-phase effective triggering of the electrode movement in order to achieve a current limit and possibly power cut in each half-wave current.
  • Fig. 4 shows a variant of the current limiter 1, in which a collecting container 3b for receiving the liquid metal 3 and to provide an insulation gap 32 for power cut is present.
  • a liquid metal feed 3c for filling the liquid metal 3 in the channels 3a and switching the device 1 back on.
  • the insulating webs 8a consist essentially of insulating material, are preferably arranged in the region of the collecting container 3c and, together with the channels emptied by the trapped liquid metal 3, form the insulating path 32
  • the liquid metal 3 between the rated current path 30, the current limiting path 31 and the insulation gap 32 for power cut movable so that an integrated current-limiting switch 1 is realized on liquid metal base.
  • the first current path 30 for operating current I 1 , the second current path 31 for current limiting and the isolation path 32 are arranged substantially perpendicular to the direction of movement x and / or substantially parallel to each other. This results in a particularly simple configuration for an integrated current limiter - circuit breaker 1, which works exclusively with liquid metal 3.
  • Fig. 5 shows for the current-limiting switch 1, a dimensioning of the electrical resistance R x , R 1 as a function of the second position x 12 , l 12 of the movable electrode 3, 3 '.
  • the resistor R x , R 1 is selected to be non-linearly increasing up to an extreme second position X 2 , l 2 to a maximum value R x (x 2 ), R 1 (l 2 ). Also intended for a given voltage level of the maximum value of R x (x 2), R 1 (l 2) of the electrical resistance R x, R 1 in accordance with one to limiting current I 2 to a finite value, or for switching off the operating current I 1 to a dielectric insulation value are measured.
  • the electrical resistance R x , R 1 as a function R x (x 12 ), R 1 (l 12 ) of the second position x 12 , l 12 and a path-time characteristic x 12 (t), l 12 (t) of the movable Electrode 3, 3 'along the direction of movement x, l should be chosen so that in every second position x 12 , x 2 , l 12 , l 2 of the movable electrode 3, 3', the product of electrical resistance R x , R 1 and Current I 2 is smaller than an arc ignition voltage U b between the movable electrode 3, 3 'and the fixed electrodes 2a, 2b and optionally intermediate electrodes 2c and / or that a sufficient slope of the current limit for controlling network-related short-circuit currents i (t) is achieved.
  • the magnetic field means 2a, 2b, 20; 11 means 11 for generating an external controllable and in particular reversible magnetic field B ext include.
  • a current-limiting parameter R x of the current limiting parameters and the breakdown behavior of the contacts 2 a, 2 b that are to be disconnected are necessary.
  • R x Starting from the first position x 1 , ie when detaching the liquid metal 3 from the fixed electrodes 2a, 2b, 2c, R x initially increases disproportionately with the second position x 12 , then increases linearly in a phase in which the in the network inductance L stored energy must be absorbed and then goes in a region where the current i is already limited and larger R x tolerable, again in a steeper, ie disproportionate increase R x (x 12 ) over.
  • the total resistance of the current limiter 1 is determined in the first operating state at nominal current I 1 by the liquid metal sections 3 and can therefore be set to predetermined values by providing a suitable liquid metal cross section.
  • the maximum resistance R x (x 12 ) of the current limiter 1 can be dimensioned by selecting the resistance material 5 and by its geometric shape in accordance with a desired voltage level and maximum allowable overcurrent I 2 .
  • a resistance R x which increases nonlinearly with the distance x can be realized by materials having different specific resistances.
  • a non-linearly increasing total resistance R x can also be realized by a suitable geometric guidance of the current path in a resistance element with homogeneous resistivity.
  • the non-linear graduation of the resistance R x can also be achieved by a combination of both measures, namely by a suitable geometrical current conduction in a resistance element with variable resistivity.
  • the threshold current I th from which the current limiting device 1 is activated, occurs when the electromagnetic drive force F mag exceeds the restoring force F r .
  • Fig. 1b shows the position of the liquid metal 3 in the current limiting case. Due to the current limiting effect, the electromagnetic force F mag on the liquid metal 3 decreases and the liquid metal 3 flows under the action of the gravitational force F g back to the starting position between the electrodes 2a, 2b, 2c.
  • the reconnection time t d can be adapted to the requirements of different applications by a suitable design of the current limiter 1.
  • the channel height h and the capillary forces F cap influencing variables such as channel cross-sectional area A, channel geometry and surface condition of the channels, as well as the type of liquid metal 3 are to be selected accordingly.
  • the dissipated energy E loss heats the current limiter 1.
  • A cross-sectional area of the liquid metal parts (as before)
  • 1 total length of the current limiter 1 or the resistance element 5
  • p ' average mass density of the current limiter 1
  • c' average heat capacity of the current limiter 1.
  • the loss energy E loss is in the present Case of resistive current limiting much smaller than current limiting by electric arc.
  • a significant advantage of the distributed or matrix-like resistance element 5 is also that the power loss E loss occurs largely homogeneously distributed over the volume of the current limiter 1 and accordingly the entire thermal mass or heat capacity for absorbing the loss energy E loss can be exploited.
  • Fig. 6 shows a combined liquid metal current limiter 1 and liquid metal circuit breaker 1 with electromagnetic drive means 2a, 2b, 20; 11; B int, B ext 3 for the liquid metal, the magnetic field B int can internally by the increased or efferent current conductor 20 and / or preferably selectable by an external magnetic field with respect to their direction of magnetic field source B ext generated.
  • the current i is guided on the current limiting path 31 and limited as discussed above.
  • the liquid metal 3 in a third operating state, can be moved along the opposite direction of movement -x to at least one third position x 13 , x 3 , wherein the liquid metal 3 is in series with an insulator 8 in the at least one third position x 13 , x 3 and thereby an isolation path 32 for power shutdown is formed by the device 1.
  • the insulation section 8 may be formed by a plurality of insulation webs 8a, which are in the case of disconnection in alternating series connection with the downwardly displaced liquid metal columns 3.
  • Fig. 3 shows in dashed lines the analogous case for negative deflections 1 and positions l 13 , l 3 of a movably suspended solid conductor 3 '.
  • the third operating state is triggered by a switch-off command, by means of which an external magnetic field B ext between an operation of the device 1 as a current limiter and as a power switch is switched over.
  • liquid metal 3 are suitable for. As mercury, gallium, cesium, GaInSn.
  • the at least one isolation path 32 for power cutoff is arranged above the second current path 31 and / or below the first current path 30.
  • a compact arrangement of the liquid metal 3 and its drive mechanism 12 is realized relative to the currents to be switched, in particular to the rated current path 30, current limiting path 31 and current cutoff path 32.
  • inventions relate u.a. the use as current limiter, current-limiting switch and / or circuit breaker 1 in power supply networks, as a self-recovering fuse or as a motor starter.
  • the invention also includes an electrical switchgear, in particular a high or medium voltage switchgear, characterized by a device 1 as described above.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Tone Control, Compression And Expansion, Limiting Amplitude (AREA)

Description

    TECHNISCHES GEBIET
  • Die Erfindung bezieht sich auf das Gebiet der Primärtechnik für elektrische Schaltanlagen, insbesondere der Begrenzung von Fehlerströmen in Hoch-, Mittel- oder Niederspannungsschaltanlagen. Sie geht aus von einem Verfahren und einer Vorrichtung zur Strombegrenzung sowie von einer Schaltanlage mit einer solchen Vorrichtung gemäss Oberbegriff der unabhängigen Patentansprüche.
  • STAND DER TECHNIK
  • In der DE 40 12 385 A1 wird eine stromgesteuerte Abschaltvorrichtung offenbart, deren Funktionsprinzip auf dem Pinch-Effekt mit Flüssigmetall beruht. Zwischen zwei Festmetallelektroden ist ein einzelner, schmaler, mit Flüssigmetall gefüllter Kanal angeordnet. Bei Überstrom wird der flüssige Leiter infolge der elektromagnetischen Kraft durch Pinch-Effekt zusammengezogen, so dass der Strom selbst den flüssigen Leiter abschnürt und trennt. Das verdrängte Flüssigmetall wird in einem Vorratsbehälter gesammelt und fliesst nach dem Überstromereignis wieder zurück. Die Kontakttrennung erfolgt ohne Lichtbogen. Jedoch ist die Einrichtung nur für relativ kleine Ströme, geringe Spannungen und langsame Abschaltzeiten geeignet und bietet keinen dauerhaften Ausschaltzustand.
  • In der DE 26 52 506 wird ein elektrischer Hochstromschalter mit Flüssigmetall offenbart. Einerseits wird eine Flüssigmetallmischung zur Benetzung von Festmetallelektroden und zur Herabsetzung des Kontaktwiderstands verwendet. Dabei wird das Flüssigmetall durch mechanische Verdrängung, z. B. durch bewegliche Kontakte oder pneumatisch angetriebene Tauchkolben, entgegen der Schwerkraft in den Kontaktspalt getrieben. Durch Pinch-Effekt, gemäss dem ein stromführender Leiter durch den ihn durchfliessenden Strom eine radiale Striktion erfährt, kann das Flüssigmetall zusätzlich im Kontaktspalt stabilisiert und festgehalten werden. Äussere Magnetfelder und magnetische Streuflüsse, z. B. durch die Stromzuführungen, können im Flüssigmetall Strömungsinstabilitäten verursachen und werden abgeschirmt und gegebenenfalls beim Ausschalten zugelassen, um das Löschen des Lichtbogens im Flüssigmetall zu unterstützen. Nachteilig ist, dass eine graduelle Strombegrenzung nicht möglich ist und Lichtbogen zwischen den Festelektroden Oxidation im Flüssigmetall verursachen. Die Konstruktion des Hochstromschalters umfasst Dichtungen für Flüssigmetall, inertes Gas oder Vakuum und ist entsprechend aufwendig.
  • In der DE 199 03 939 A1 wird eine selbsterholende Strombegrenzungseinrichtung mit Flüssigmetall offenbart. Zwischen zwei Festmetallelektroden ist ein druckfestes Isoliergehäuse angeordnet, in dem Flüssigmetall in Verdichterräumen und in dazwischenliegenden, die Verdichterräume verbindenden Verbindungskanälen angeordnet ist, so dass ein Strompfad für Nominalströme zwischen den Festelektroden gegeben ist. In den Verbindungskanälen ist der Strompfad gegenüber den Verdichterräumen eingeengt. Die Verbindungskanäle werden bei Kurzschlussströmen stark erhitzt und scheiden ein Gas aus. Durch lawinenartige Gasblasenbildung in den Verbindungskanälen verdampft das Flüssigmetall in die Verdichterräume, so dass in den nun flüssigmetallentleerten Verbindungskanälen ein strombegrenzender Lichtbogen gezündet wird. Nach Abklingen des Überstroms kann das Flüssigmetall wieder kondensieren und der Strompfad ist wieder betriebsbereit.
  • In der WO 00/77811 ist eine Fortbildung der selbsterholenden Strombegrenzungseinrichtung offenbart. Die Verbindungskanäle sind nach oben konisch verbreitert, so dass die Füllstandshöhe des Flüssigmetalls variiert und die Nennstromtragfähigkeit über einen grossen Bereich verändert werden kann. Ausserdem wird durch eine versetzte Anordnung der Verbindungskanäle ein mäanderförmiger Strompfad gebildet, so dass bei überstrombedingem Verdampfen des Flüssigmetalls eine Serie strombegrenzender Lichtbögen gezündet wird. Derartige Pinch-Effekt Strombegrenzer benötigen einen hinsichtlich Druck und Temperatur sehr stabilen Aufbau, was konstruktiv aufwendig ist. Durch die Strombegrenzung per Lichtbogen tritt grosser Verschleiss im Innern des Strombegrenzers auf und Abbrandrückstände können das Flüssigmetall kontaminieren. Durch die Rekondensation des Flüssigmetalls stellt sich unmittelbar nach einem Kurzschluss wieder ein leitfähiger Zustand ein, so dass kein Ausschaltzustand vorhanden ist.
  • In der GB 1 206 786 wird ein elektrischer Hochstromschalter auf Flüssigmetallbasis offenbart. Das Flüssigmetall bildet in einer ersten Position einen ersten Strompfad für den Betriebsstrom und wird beim Stromschalten entlang eines Widerstandselements geführt und in eine zweite Position gebracht, in welcher es in Serie mit dem Widerstandselement liegt und den Strom auf einen kleinen Bruchteil reduziert. Der Hochstromschalter ist zur Erzeugung hochintensiver Strompulse im Mega-Ampere und sub-Millisekunden Bereich zur Plasmagenerierung konzipiert.
  • In dem U. S. Pat. No. 4,599,671 wird eine Vorrichtung zur selbsttätigen Strombegrenzung gemäss Oberbegriff der unabhängigen Ansprüche offenbart. Eine bewegliche Elektrode ist in Form eines auf Schienen fahrbaren Schlittens realisiert, der durch Kurzschlussströme elektromagnetisch auslenkbar ist. Im ausgelenkten Zustand kontaktiert der Schlitten einen Schienenbereich, der einen strombegrenzenden elektrischen Widerstand für den Strompfad aufweist. Statt fahrbarer Schlitten kann auch eine in einem Kanal leicht bewegliche Flüssigmetallsäule als bewegliche Elektrode dienen. Der Strombegrenzer besitzt wiederum keinen Ausschaltzustand, sondern ist in Serie zu einem Leistungsschalter angeordnet, um den Strom zunächst zu begrenzen und dann vollständig abzuschalten.
  • DARSTELLUNG DER ERFINDUNG
  • Aufgabe der vorliegenden Erfindung ist es, ein Verfahren, eine Vorrichtung und eine elektrische Schaltanlage mit einer solchen Vorrichtung zur verbesserten und vereinfachten Strombegrenzung und Stromabschaltung anzugeben. Diese Aufgabe wird erfindungsgemäss durch die Merkmale der unabhängigen Ansprüche gelöst.
  • In einem ersten Aspekt besteht die Erfindung in einem Verfahren zur Strombegrenzung mit einer Strombegrenzungsvorrichtung, die feststehende Elektroden und mindestens eine bewegliche Elektrode umfasst, wobei in einem ersten Betriebszustand zwischen den feststehenden Elektroden ein Betriebsstrom auf einem ersten Strompfad durch die Strombegrenzungsvorrichtung geführt wird und der erste Strompfad zumindest teilweise durch die in einer ersten Position befindliche bewegliche Elektrode geführt wird, wobei in einem zweiten Betriebszustand die mindestens eine bewegliche Elektrode selbsttätig durch eine elektromagnetische Wechselwirkung mit dem zu begrenzenden Überstrom entlang einer Bewegungsrichtung in mindestens eine zweite Position bewegt wird, die bewegliche Elektrode bei einem Übergang von der ersten Position zur zweiten Position entlang eines Widerstandselements geführt wird und in der mindestens einen zweiten Position in Serie mit dem Widerstandselement liegt und dadurch ein strombegrenzender zweiter Strompfad durch die Strombegrenzungsvorrichtung gebildet wird, der einen vorgebbaren elektrischen Widerstand aufweist, wobei ferner in einem dritten Betriebszustand die bewegliche Elektrode in Serie mit einem Isolator liegt und dadurch eine Isolationsstrecke zur Leistungsabschaltung durch die Vorrichtung gebildet wird. Erfindungsgemäss wird also eine besonders einfache Konfiguration für einen selbsttätigen strombegrenzenden Schalter oder Strombegrenzer mit integriertem Schalter angegeben. Der Überstrom selber löst die Strombegrenzung aus. Als zugrundeliegende elektromagnetische Wechselwirkung kommt z. B. die Lorenzkraft auf einen stromführenden Leiter in einem Magnetfeld in Frage, aber auch eine kapazitive, induktive, elektrostatische oder anderweitig elektromagnetische Einwirkung des Überstroms auf den beweglichen Leiterabschnitt oder die bewegliche Elektrode sind denkbar. Da von der beweglichen Elektrode im Strombegrenzungsfall kein Isolator, sondern ein elektrischer Widerstand kontaktiert wird, wird kein Lichtbogen gezündet. Daher kann das Strombegrenzungsverfahren auch bei sehr hohen Spannungsniveaus eingesetzt werden. Zudem tritt kaum Verschleiss durch Abbrand oder durch Korrosion der beweglichen Elektrode auf. Die Strombegrenzung erfolgt reversibel und ist daher wartungsfreundlich und kostengünstig.
  • In einem ersten Ausführungsbeispiel wird der dritte Betriebszustand durch einen Abschaltbefehl ausgelöst, durch den ein externes Magnetfeld zwischen einem Betrieb der Vorrichtung als Strombegrenzer und als Leistungsschalter umgeschaltet wird.
  • In einem weiteren Ausführungsbeispiel wird in dem dritten Betriebszustand die bewegliche Elektrode entlang einer entgegengesetzten Bewegungsrichtung in mindestens eine dritte Position bewegt und liegt in der mindestens einen dritten Position in Serie mit dem Isolator.
  • In einem anderen Ausführungsbeispiel wird die bewegliche Elektrode selbsttätig durch die elektromagnetische Wechselwirkung mit dem zu begrenzenden Überstrom entlang des Widerstandselements zu einer extremalen zweiten Position geführt, wobei die extremale zweite Position in einem Bereich liegt, wo das Widerstandselement in einen Isolator übergeht, so dass die oder eine weitere Isolationsstrecke zur Stromabschaltung gebildet wird.
  • In einem anderen Ausführungsbeispiel wird das Widerstandselement zur Erzielung einer sanften Abschaltcharakteristik mit einem entlang der Bewegungsrichtung der beweglichen Elektrode nichtlinear ansteigenden elektrischen Widerstand für den zweiten Strompfad gewählt; und/oder das Widerstandselement ist ohmsch und der elektrische Widerstand steigt kontinuierlich mit der zweiten Position an. Auf diese Weise wird eine sanfte Strombegrenzungscharakteristik für eine progressive Strombegrenzung realisiert.
  • Das Ausführungsbeispiel gemäss Anspruch 6 hat den Vorteil, dass das Magnetfeld unmittelbar auf die stromdurchflossene bewegliche Elektrode einwirkt und diese durch die Lorenzkraft in Bewegung setzt. Die Lorenzkraft ist proportional zum Produkt aus Magnetfeldstärke und Strom. Das Magnetfeld kann extern, insbesondere konstant oder schaltbar, oder intern, insbesondere durch den zu begrenzenden Strom, erzeugt sein. Durch Ausbalancieren der Lorenzkraft und einer geeigneten Rückstellkraft kann die resultierende Bewegung an den zu begrenzenden Überstrom und an die für den benötigten elektrischen Widerstand erforderliche Elektrodenauslenkung angepasst werden.
  • Anspruch 7 gibt Dimensionierungskriterien zur optimalen Auslegung der Dynamik des Strombegrenzungsvorgangs an.
  • Anspruch 8 und 9 geben vorteilhafte Ausführungsbeispiele mit einem Flüssigmetall und/oder einem Schleifkontakt-Festkörperleiter als bewegliche Elektrode an. Insbesondere können durch eine Serieschaltung von Flüssigmetallsäulen abwechselnd mit einem Dielektrikum auch hohe Spannungen und hohe Ströme effizient und sicher gehandhabt werden.
  • In einem weiteren Aspekt betrifft die Erfindung eine Vorrichtung zur Strombegrenzung, insbesondere zur Ausführung des Verfahrens, umfassend feststehende Elektroden und mindestens eine bewegliche Elektrode, wobei in einem ersten Betriebszustand zwischen den feststehende Elektroden ein erster Strompfad für einen Betriebsstrom durch die Strombegrenzungsvorrichtung vorhanden ist und der erste Strompfad zumindest teilweise durch die in einer ersten Position befindliche bewegliche Elektrode führt, wobei elektromagnetische Antriebsmittel zum bei Überstrom selbstbetätigten Bewegen der beweglichen Elektrode entlang einer Bewegungsrichtung in mindestens eine zweite Position vorhanden sind, elektrische Widerstandsmittel mit einem vorgebbaren elektrischen Widerstand vorhanden sind und in einem zweiten Betriebzustand die bewegliche Elektrode zumindest teilweise in Serie zu den Widerstandsmitteln liegt und zusammen mit diesen einen zweiten Strompfad bildet, auf dem der Betriebsstrom auf einen zu begrenzenden Strom begrenzbar ist, wobei in einem dritten Betriebszustand die bewegliche Elektrode in Serie mit einem Isolator liegt und dadurch eine Isolationsstrecke zur Leistungsabschaltung durch die Vorrichtung vorhanden ist.
  • Weitere Ausführungen, Vorteile und Anwendungen der Erfindung ergeben sich aus abhängigen Ansprüchen sowie aus der nun folgenden Beschreibung und den Figuren.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • Fig. 1a, 1b
    zeigen eine erfindungsgemäss selbstbetätigte Strombegrenzungseinrichtung mit Flüssigmetall bei Nennstrombetrieb und im Strombegrenzungsfall;
    Fig. 2, 3
    zeigen zwei erfindungsgemäss selbstbetätigte Strombegrenzungseinrichtungen mit mechanischem Schleifkontakt im Nennstrombetrieb (strichpunktiert) und im Strombegrenzungsfall;
    Fig. 4.
    zeigt einen strombegrenzenden Schalter mit Einfangmechanismus für Flüssigmetall bei Nennstrombetrieb;
    Fig. 5
    zeigt eine Kurvendarstellung der Variation des Widerstands des Strombegrenzers als Funktion der Position der Flüssigmetallsäule; und
    Fig. 6
    zeigt einen kombinierten Flüssigmetall-Strombegrenzer und Flüssigmetall-Leistungsschalter mit externem Magnetfeldantrieb für das Flüssigmetall.
  • In den Figuren sind gleiche Teile mit gleichen Bezugszeichen versehen.
  • WEGE ZUR AUSFÜHRUNG DER ERFINDUNG
  • Fig. 1a, 1b zeigen ein Ausführungsbeispiel eines Flüssigmetall-Strombegrenzers 1. Der Strombegrenzer 1 umfasst Festmetall-Elektroden 2a, 2b und Zwischenelektroden 2c für eine Stromzuführung 20 und einen Behälter 4 für das Flüssigmetall 3. Der Behälter 4 hat einen Boden 6 und Deckel 6 aus Isolatormaterial, zwischen denen ein elektrisches Widerstandsmittel 5 mit mindestens einem Kanal 3a für das Flüssigmetall 3 angeordnet ist. Über der Flüssigmetallsäule 3 kann beispielsweise ein Schutzgas, eine Isolierflüssigkeit (mit hier nicht dargestelltem Ausweichvolumen) oder Vakuum angeordnet sein.
  • Erfindungsgemäss wird das Flüssigmetall 3 oder allgemein eine bewegliche Elektrode 3, 3' durch eine selbsttätige, elektromagnetische Wechselwirkung mit dem zu begrenzenden Überstrom I2 in Bewegung versetzt. Im Falle des Flüssigmetalls 3 verbleibt dieses im flüssigen Aggregatzustand und wird durch die erzwungene Bewegung gezielt zwischen den unterschiedlichen Positionen x1, x12 oder x2 bewegt. Der Pinch-Effekt wird dabei nicht genutzt. Sehr schnelle Strombegrenzungs-Reaktionszeiten von bis zu unter 1 ms sind erzielbar. Zudem ist zusätzlich zum Nennstrompfad 30 und zum Strombegrenzungspfad 31 eine Isolationsstrecke (nicht dargestellt) vorhanden.
  • Bevorzugt wird der zweite Betriebszustand durch den Überstrom I2 selbsttätig aktiviert, indem die stromdurchflossene bewegliche Elektrode 3, 3' durch eine elektromagnetische Kraft Fmag bewegt wird, die senkrecht zum Strom I2 durch die bewegliche Elektrode 3, 3' und senkrecht zu einem Magnetfeld Bext, Bint steht und die eine Kraftkomponente parallel zur Bewegungsrichtung x, 1 aufweist, wobei das Magnetfeld Bext, Bint als ein externes Magnetfeld Bext und/oder als ein internes, von einer Stromzuführung 2a, 2b; 20 zur Strombegrenzungsvorrichtung 1 erzeugtes Magnetfeld Bint gewählt wird. Alternativ zur Lorenzkraft kann auch eine andere selbsttätige elektromagnetische Wechsel-wirkung mit dem Überstrom I2, z. B. eine kapazitive, induktive, elektrostatische oder anderweitige Wechselwirkung, zur Strombegrenzung verwendet werden. Dabei bedeutet selbsttätig, dass ohne aktive Strommessung und ohne aktive Regelungstechnik die Bewegung der beweglichen Elektrode ausgelöst und kontrolliert wird.
  • In einem ersten Betriebszustand (Fig. 1a) fliesst ein Betriebs- oder Nennstrom I1 auf einem ersten oder Nennstrompfad 30 von der Eingangselektrode 2a via Flüssigmetall 3 und gegebenenfalls Zwischenelektroden 2c zur Abgangselektrode 2b. Dabei befindet sich das Flüssigmetall 3 in der ersten Position x1, benetzt zumindest teilweise die feststehenden Elektroden 2a, 2b, 2c und überbrückt elektrisch leitend die Kanäle 3a. In einem zweiten Betriebszustand (Fig. 1b) wird das Flüssigmetall 3 entlang der Bewegungsrichtung x, gegeben durch eine Höhenerstreckung der Kanäle 3a, in eine zweite Position x2 bewegt, liegt dort in Serie zu dem elektrischen Widerstandsmittel 5 und bildet mit diesem einen zweiten Strompfad oder Strombegrenzungspfad 31 für einen zu begrenzenden Strom I2. Für eine besonders kompakte Anordnung sind der Nennstrompfad 30 und der strombegrenzende zweite Strompfad 31 zueinander parallel und beide senkrecht zu der Höhenerstreckung der Kanäle 3a auf einer variablen, durch die zweite Position x12, x2 des Flüssigmetalls 3 vorgebbaren Höhe angeordnet.
  • Bevorzugt umfasst das Widerstandsmittel 5 eine dielektrische Matrix 5, die wandartige Stege 5a zur dielektrischen Trennung einer Mehrzahl von Kanälen 3a für das Flüssigmetall 3 aufweist, wobei die Stege 5a ein dielektrisches Material mit in der Bewegungsrichtung x zunehmendem und vorzugsweise nichtlinear zunehmenden Widerstand Rx aufweisen. Die Stege 5a stellen somit Einzelwiderstände 5a des Widerstandselements 5 dar mit einem entlang der Kanalhöhe zunehmenden und vorzugsweise nichtlinear zunehmenden elektrischen Widerstand Rx. Auf Höhe der ersten Position x1 des Flüssigmetalls 3 sollen die Stege 5a Zwischenelektroden 2c zur elektrisch leitenden Verbindung der Kanäle 3a aufweisen. Die Kanäle 3a sind vorzugsweise zueinander im wesentlichen parallel angeordnet. Somit wird der strombegrenzende zweite Strompfad 31 gebildet durch eine alternierende Serieschaltung von mit Flüssigmetall 3 gefüllten Kanalbereichen 3a und den Stegen 5a, die als mit ihrer Länge progressive und vorzugsweise nichtlinear progressive Einzelwiderstände 5a des Widerstandselements 5 wirken.
  • Fig. 2 und 3 zeigen Ausführungsbeispiele, bei denen die bewegliche Elektrode 3, 3' einen Festkörperleiter 3' mit mindestens einem Schleifkontakt 2d umfasst und im ersten Betriebszustand mit den feststehenden Elektroden 2a, 2b, im zweiten Betriebszustand mindestens einseitig mit dem Widerstandselement 5 und im dritten Betriebszustand mindestens einseitig mit dem Isolator 8 elektrisch verbunden wird. Mit Vorteil ist der Festkörperleiter 3' im wesentlichen aus Leichtmetall und/oder in Leichtbauweise, beispielsweise aus metallbeschichtetem Kork, gefertigt und/oder ist der Schleifkontakt 2d zur Reibungsverminderung mit Flüssigmetall benetzt. Fig. 2 zeigt ein Ausführungsbeispiel, bei dem der Festkörperleiter 3' an einem Ende drehbar mit der Eingangselektrode 2a verbunden ist und am anderen Ende mit dem Schleifkontakt gleitfähig entlang eines kreisbogenförmigen Widerstandselements 5 bewegbar ist. Fig. 3 zeigt ein Ausführungsbeispiel, bei dem der Festkörperleiter 3, 3' an beiden Ende Schleifkontakte 2d aufweist und zwischen wandartigen Widerständen 5a des Widerstandsmittels 5 wie ein Schwebebalken auf seiner ganzen Länge durch die elektromagnetische Wechselwirkung gegen eine Rückstellkraft Fr, insbesondere gegen die Schwerkraft, angehoben werden kann. Die Wegpositionen l1, l12, l2 des Schleifkontakts 2d entsprechen den zuvor genannten zweiten Positionen x1, x12, x2 der Flüssigmetallsäule 3. Die extremale zweite Position l12 kann in dem Bereich liegen, wo das Widerstandsmittel 5 in einen Isolator 8 übergeht, so dass eine Isolationsstrecke 32 zur Stromabschaltung vorhanden ist.
  • Bei einem Übergang von der ersten Position x1, l1 zur zweiten Position x12, x2, l12, l2, insbesondere zu einer extremalen zweiten Position x2, l2, wird das Flüssigmetall 3 oder der Festkörperleiter 3' mit Schleifkontakt 2d entlang des Widerstandselements 5 geführt. Zur Erzielung einer sanften Strombegrenzungs- oder Abschaltcharakteristik weist das Widerstandselement 5 einen entlang der Bewegungsrichtung x, l der beweglichen Elektrode 3, 3' nichtlinear ansteigenden elektrischen Widerstand Rx, R1 für den zweiten Strompfad 31 auf. Das Widerstandselement 5 soll einen ohmschen Anteil aufweisen und ist bevorzugt rein ohmsch mit einem elektrischen Widerstand Rx, R1, der kontinuierlich mit der zweiten Position x12, x2, l12, l2 ansteigt. Für eine lichtbogenfreie Kommutation des Stroms i(t) von den feststehenden Elektroden 2a, 2b, 2c zum Widerstandselement 5 soll eine typische, vom Kontaktmaterial abhängige, minimale Lichtbogenzündspannung von 10 V - 20 V nicht überschritten werden.
  • Es können auch zwei Strombegrenzer 1 mit gegenphasig wirksamer Auslösung der Elektrodenbewegung hintereinander geschaltet sein, um in jeder Stromhalbwelle eine Strombegrenzung und gegebenenfalls Stromabschaltung zu erreichen.
  • Fig. 4 zeigt eine Variante des Strombegrenzers 1, bei welcher ein Einfangbehälter 3b zur Aufnahme des Flüssigmetalls 3 und zur Schaffung einer Isolationsstrecke 32 zur Stromabschaltung vorhanden ist. Zudem kann, wie dargestellt, eine Zuführung 3c für Flüssigmetall 3 zum Auffüllen des Flüssigmetalls 3 in den Kanälen 3a und zum Wiederanschalten der Vorrichtung 1 vorhanden sein. Zudem ist zusätzlich zum Nennstrompfad 30 und zum Strombegrenzungspfad 31 eine Isolationsstrecke 32 vorhanden, auf welcher die Stege 5a zur Strombegrenzung in Stege 8a zur Stromisolation übergehen. Die Isolationsstege 8a bestehen im wesentlichen aus Isolationsmaterial, sind vorzugsweise im Bereich des Einfangbehälters 3c angeordnet und bilden zusammen mit den durch das eingefangene Flüssigmetall 3 entleerten Kanälen die Isolationsstrecke 32. Hierbei ist also das Flüssigmetall 3 zwischen dem Nennstrompfad 30, dem Strombegrenzungspfad 31 und der Isolationsstrecke 32 zur Stromabschaltung bewegbar, so dass ein integrierter strombegrenzender Schalter 1 auf Flüssigmetallbasis realisiert ist. Vorteilhaft sind der erste Strompfad 30 für Betriebsstrom I1, der zweite Strompfad 31 zur Strombegrenzung und die Isolationsstrecke 32 im wesentlichen senkrecht zur Bewegungsrichtung x und/oder im wesentlichen parallel zueinander angeordnet. Dies ergibt eine besonders einfache Konfiguration für einen integrierten Strombegrenzer - Leistungsschalter 1, der ausschliesslich mit Flüssigmetall 3 arbeitet.
  • Fig. 5 zeigt für den strombegrenzenden Schalter 1 eine Dimensionierung des elektrischen Widerstands Rx, R1 als Funktion der zweiten Position x12, l12 der beweglichen Elektrode 3, 3'. Mit Vorteil wird der Widerstand Rx, R1 bis zu einer extremalen zweiten Position X2, l2 auf einen Maximalwert Rx(x2), R1(l2) nichtlinear ansteigend gewählt. Auch soll für ein gegebenes Spannungsniveau der Maximalwert Rx(x2), R1(l2) des elektrischen Widerstands Rx, R1 nach Massgabe eines zu begrenzenden Stroms I2 auf einen endlichen Wert oder zur Abschaltung des Betriebsstroms I1 auf einen dielektrischen Isolationswert bemessen werden.
  • Der elektrische Widerstand Rx, R1 als Funktion Rx(x12), R1(l12) der zweiten Position x12, l12 sowie eine Weg-Zeit Charakteristik x12(t), l12(t) der beweglichen Elektrode 3, 3' entlang der Bewegungsrichtung x, l sollen so gewählt werden, dass in jeder zweiten Position x12, x2, l12, l2 der beweglichen Elektrode 3, 3' das Produkt aus elektrischem Widerstand Rx, R1 und Strom I2 kleiner als eine Lichtbogenzündspannung Ub zwischen der beweglichen Elektrode 3, 3' und den feststehenden Elektroden 2a, 2b und gegebenenfalls Zwischenelektroden 2c ist und/oder dass eine hinreichende Steilheit der Strombegrenzung zur Beherrschung netzbedingter Kurzschlussströme i(t) erzielt wird.
  • In allen zuvor genannten Ausführungsbeispielen umfassen die elektromagnetischen Antriebsmittel 2a, 2b, 20; 11; Bint, Bext Magnetfeldmittel 2a, 2b, 20; 11 zur Erzeugung des Magnetfeldes Bext, Bint, welches auf die von dem Strom I1, I2 durchflossene bewegliche Elektrode 3, 3' eine Lorenzkraft Fmag mit einer Kraftkomponente parallel zur Bewegungsrichtung x, 1 ausübt, so dass die bewegliche Elektrode 3, 3' zwischen dem ersten Strompfad 30 für Betriebsstrom I1, dem zweiten Strompfad 31 zur Strombegrenzung und der Isolationsstrecke 32 zur Stromabschaltung bewegbar ist. Die Magnetfeldmittel 2a, 2b, 20; 11 können die Stromzuführung 2a, 2b; 20 zur Strombegrenzungsvorrichtung 1 umfassen, um ein internes, vom zu begrenzenden Überstrom I2 abhängiges Magnetfeld Bint zu erzeugen. Zudem können die Magnetfeldmittel 2a, 2b, 20; 11 Mittel 11 zur Erzeugung eines externen regelbaren und insbesondere umschaltbaren Magnetfeldes Bext umfassen.
  • Im Zusammenhang mit Fig. 5 wird beispielhaft die Dimensionierung eines Flüssigmetall-Strombegrenzers 1 diskutiert. Zur Beherrschung von Kurzschlüssen ist ein von Stromnetz-Parametern und dem Durchbruchsverhalten der zu trennenden Kontakte 2a, 2b abhängiger Widerstand Rx der Strombegrenzung notwendig. Je grösser die Steilheit des Kurzschlussstroms i(t) ist, um so niedriger muss Rx gewählt werden. Im ungünstigsten Fall sind die maximale Kurzschlussstrom-Amplitude und die maximale Kurzschlussstrom-Induktivität anzunehmen. Dann gilt: R x t i t < U b t
    Figure imgb0001
    R x t i t + L di / dt = U N t
    Figure imgb0002

    wobei t=Zeitvariable, L=Netzinduktivität im Kurzschlussfall, UN=Betriebs- oder Netzspannung, d/dt gleich erste und d2/dt2 gleich zweite Zeitableitung. In Gleichung (G2) wurde angenommen, dass der Widerstand im Netz RNetz << L ist und die Netzspannung UN bei Kurzschluss aufrechterhalten wird. Ferner gilt die Bewegungsgleichung (G3) für das Flüssigmetall 3 mit der Masse m, der Position oder Auslenkung x12(t), dem Reibungskoeffizienten α und der antreibenden Kraft F m d 2 x 12 / dt 2 + α d x 12 / dt t = F - F r ,
    Figure imgb0003

    wobei Fr=Rückstellkraft, insbesondere Fr=Fg+Fcap mit Fg=m•g gleich Gravitationskraft, wobei m=Masse des Flüssigmetalls 3 und g=Erdbeschleunigung, und Fcap gleich Kapillarkraft.
  • In Fig. 5 wurde beispielhaft eine elektromagnetische Lorenzkraft F=Fmag angenommen, die durch Selbstwechselwirkung des zu begrenzenden Stroms i(t) auf das Flüssigmetall 3 ausgeübt wird. Dann gilt zusätzlich F = k i 2 t
    Figure imgb0004
    mit k=geometrieabhängige Proportionalitätskonstante. Bei externem Magnetfeld B gilt F = k'•i(t) mit k'=weitere Proportionalitätskonstante. Im Detail hängen k und k' von der Geometrie des Strombegrenzers 1, insbesondere der Struktur und Anordnung des Widerstandselements 5 sowie der Strompfade 30, 31 und der Isolationsstrecke 32, ab und von der Anordnung der Magnetfeldmittel 2a, 2b, 20.
  • In Fig. 5 wurden beispielhaft angenommen: eine kurzschlussbedingte Stromsteilheit di/dt=15 kA/ms, UN=1 kV, I1=1 kA, maximaler Kurzschlussstrom I2=50 kA sowie plausible Parameterwerte für k, m und α. Dann ergeben sich durch Lösen der Gleichungen (G2)-(G4) unter der Randbedingung (G1) der Widerstand Rx(t) und die Weg-Zeitcharakteristik X12(t) des Flüssigmetalls 3 und schliesslich durch Elimination der Zeitabhängigkeit der Widerstand Rx(x12) als Funktion der zweiten Position x12, wie in Fig. 5 logarithmisch dargestellt. Ausgehend von der ersten Position x1, d. h. bei Ablösung des Flüssigmetalls 3 von den Festelektroden 2a, 2b , 2c, nimmt Rx zunächst überproportional mit der zweiten Position x12 zu, steigt dann linear in einer Phase, in welcher die in der Netzinduktivität L gespeicherte Energie absorbiert werden muss und geht dann in einem Bereich, in dem der Strom i bereits begrenzt ist und grössere Rx tolerabel werden, wieder in einen steileren, d. h. überproportionalen Anstieg Rx(x12) über.
  • Der Gesamtwiderstand des Strombegrenzers 1 wird im ersten Betriebszustand bei Nominalstrom I1 durch die Flüssigmetallstrecken 3 determiniert und kann demzufolge durch Bereitstellung eines geeigneten Flüssigmetallquerschnitts auf vorgebbare Werte festgelegt werden. Der maximale Widerstand Rx(x12) des Strombegrenzers 1 kann durch Wahl des Widerstandsmaterials 5 und durch seine geometrische Gestalt nach Massgabe eines gewünschten Spannungsniveaus und maximal zulässigen Überstroms I2 dimensioniert werden.
  • Insbesondere kann ein mit der Wegstrecke x nichtlinear ansteigender Widerstand Rx durch Materialien mit unterschiedlichen spezifischen Widerständen realisiert werden. Ein nichtlinear ansteigender Gesamtwiderstand Rx kann auch durch eine geeignete geometrische Führung des Strompfades in einem Widerstandselement mit homogenem spezifischen Widerstand realisiert sein. Die nichtlineare Graduierung des Widerstands Rx kann auch durch Kombination beider Massnahmen, nämlich durch eine geeignete geometrische Stromführung in einem Widerstandselement mit variablem spezifischen Widerstand, erreicht werden.
  • Der Schwellwertstrom Ith, ab dem die Strombegrenzungsvorrichtung 1 aktiviert wird, tritt auf, wenn die elektromagnetische Antriebskraft Fmag die Rückstellkraft Fr überschreitet. In den Ausführungsbeispielen gemäss Fig. 1a, 1b, 4 und 6 ist die Rückstellkraft Fr=Fg+Fcap. Daraus kann Ith abgeschätzt werden zu I th = F g + F cap / k 1 / 2
    Figure imgb0005
  • Im vereinfachten Fall, in dem die Kapillarkräfte Fcap vernachlässigbar sind und das Magnetfeld durch eine Spulengeometrie erzeugt wird, gilt I th = A g d ρ / μ N 1 / 2 ,
    Figure imgb0006

    wobei A=Querschnittsfläche der Flüssigmetall-Kanäle 3a, ρ=Massendichte des Flüssigmetalls 3, d=Länge der magnetfelderzeugenden Spule in der Stromzuführung 2a, 2b, 20, µ=magnetische Permeabilität in der Spule bzw. im Flüssigmetall und N=Anzahl Windungen der Spule. Die Reaktionszeit tu bis zur vollen Strombegrenzung, d. h. bis zum Erreichen der Endposition gemäss Fig. 1b (oder auch Fig. 2 oder Fig. 3), kann durch geeignete Dimensionierung der Magnetfeldmittel 2a, 2b, 20, 11 und der Rückstellkräfte Fg, Fcap auf vorgebbare Werte dimensioniert werden.
  • Fig. 1b zeigt die Position des Flüssigmetalls 3 im Strombegrenzungsfall. Aufgrund der wirksam werdenden Strombegrenzung nimmt die elektromagnetische Kraft Fmag auf das Flüssigmetall 3 ab und das Flüssigmetall 3 fliesst unter der Wirkung der Gravitationskraft Fg wieder zurück in die Ausgangsposition zwischen die Elektroden 2a, 2b, 2c. Die Wiedereinschaltzeit td kann unter der Annahme, dass die Kapillarkraft Fcap und die elektromagnetische Kraft Fmag bei begrenztem Strom i vernachlässigbar sind, abgeschätzt werden zu t d = 2 h / g 1 / 2 ,
    Figure imgb0007

    wobei h=x2-x1=Höhe der Flüssigmetall-Kanäle 3a.
  • Die Wiedereinschaltzeit td kann durch eine geeignete Auslegung des Strombegrenzers 1 an die Erfordernisse verschiedener Anwendungsfälle angepasst werden. Insbesondere sind die Kanalhöhe h und die Kapillarkräfte Fcap beeinflussende Grössen wie Kanal-Querschnittsfläche A, Kanalgeometrie und Oberflächenbeschaffenheit der Kanäle, sowie die Art des Flüssigmetalls 3 entsprechend zu wählen.
  • Bei der thermischen Auslegung des Strombegrenzers 1 ist zu beachten, dass wegen der kurzen Reaktionszeiten und auch Wiederanschaltzeiten das Widerstandselement 5 nicht wirksam gekühlt werden kann. Die dissipierte Energie Eloss erhitzt den Strombegrenzer 1. Der Temperaturanstieg ΔT beträgt näherungsweise ΔT = E loss / A l ρʹ ,
    Figure imgb0008

    wobei A=Querschnittsfläche der Flüssigmetallteile (wie zuvor), 1=Gesamtlänge des Strombegrenzers 1 oder des Widerstandselements 5, p'=mittlere Massendichte des Strombegrenzers 1 und c'=mittlere Wärmekapazität des Strombegrenzers 1. Die Verlustenergie Eloss ist im vorliegenden Fall der resistiven Strombegrenzung viel kleiner als bei Strombegrenzung durch Lichtbogen. Ein wesentlicher Vorteil des verteilten oder matrixartigen Widerstandselements 5 besteht auch darin, dass die Verlustleistung Eloss weitgehend homogen verteilt über das Volumen des Strombegrenzers 1 auftritt und dementsprechend die gesamte thermische Masse oder Wärmekapazität zur Absorption der Verlustenergie Eloss ausgeschöpft werden kann.
  • Fig. 6 zeigt einen kombinierten Flüssigmetall-Strombegrenzer 1 und Flüssigmetall-Leistungsschalter 1 mit elektromagnetischen Antriebsmitteln 2a, 2b, 20; 11; Bint, Bext für das Flüssigmetall 3. Das Magnetfeld Bint kann intern durch den zu- oder abführenden Stromleiter 20 und/oder bevorzugt durch eine externe, bezüglich ihrer Magnetfeldrichtung umschaltbare Magnetfeldquelle Bext erzeugt werden. Bei einer Verschiebung des Flüssigmetalls 3 in positive Bewegungsrichtung +x wird der Strom i auf dem Strombegrenzungspfad 31 geführt und wie oben diskutiert begrenzt. Alternativ kann das Flüssigmetall 3 in einem dritten Betriebszustand entlang der entgegengesetzten Bewegungsrichtung -x in mindestens eine dritte Position x13, x3 bewegt werden, wobei das Flüssigmetall 3 in der mindestens einen dritten Position x13, x3 in Serie mit einem Isolator 8 liegt und dadurch eine Isolationsstrecke 32 zur Leistungsabschaltung durch die Vorrichtung 1 gebildet wird. Wie dargestellt kann die Isolationsstrecke 8 durch eine Mehrzahl von Isolationsstegen 8a gebildet sein, die im Abschaltfall in alternierender Serieschaltung mit den nach unten verschobenen Flüssigmetallsäulen 3 stehen. Fig. 3 zeigt gestrichelt den analogen Fall für negative Auslenkungen 1 und Positionen l13, l3 eines beweglich aufgehängten Festkörperleiters 3'. Insbesondere wird der dritte Betriebszustand durch einen Abschaltbefehl ausgelöst, durch den ein externes Magnetfeld Bext zwischen einem Betrieb der Vorrichtung 1 als Strombegrenzer und als Leistungsschalter umgeschaltet wird. Als Flüssigmetall 3 geeignet sind z. B. Quecksilber, Gallium, Cäsium, GaInSn.
  • Mit Vorteil ist die mindestens eine Isolationsstrecke 32 zur Stromabschaltung oberhalb des zweiten Strompfads 31 und/oder unterhalb des ersten Strompfads 30 angeordnet. Dadurch wird eine kompakte Anordnung des Flüssigmetalls 3 und seines Antriebmechanismus 12 relativ zu den zu schaltenden Strömen, insbesondere zum Nennstrompfad 30, Strombegrenzungspfad 31 und Stromabschaltungspfad 32, realisiert. Auch kann der Strombegrenzer 1 in Fig. 6 auch als strombegrenzender Schalter 1, wie zuvor beschrieben, ausgelegt sein.
  • Anwendungen der Vorrichtung 1 betreffen u.a. den Einsatz als Strombegrenzer, strombegrenzender Schalter und/oder Leistungsschalter 1 in Stromversorgungsnetzen, als selbsterholende Sicherung oder als Motorstarter. Die Erfindung umfasst auch eine elektrische Schaltanlage, insbesondere eine Hoch- oder Mittelspannungsschaltanlage, gekennzeichnet durch eine Vorrichtung 1 wie oben beschrieben.
  • BEZUGSZEICHENLISTE
  • 1
    Flüssigmetall-Strombegrenzer
    2a, 2b
    Festmetall-Elektroden, Metallplatten, feststehende Elektroden
    2c
    Zwischenelektroden
    2d
    mechanischer Schleifkontakt mit wegabhängigem Widerstand
    20
    Stromzuführung, Stromleiter
    3
    Flüssigmetall
    3a
    Kanäle für Flüssigmetall
    3b
    Einfangbehälter für Flüssigmetall
    3c
    Zuführung für Flüssigmetall
    30
    Strompfad für Betriebsstrom, erster Strompfad
    31
    Strompfad für Strombegrenzung, zweiter Strompfad
    32
    Stromunterbrechungspfad, Isolationsstrecke
    4
    Flüssigmetall-Behälter
    5
    Widerstandselement für Strombegrenzung, Widerstandsmatrix für Flüssigmetall
    5a
    Einzelwiderstände
    6
    Behälterdeckel, Gehäusewand, Isolator
    8
    Isolator für Stromunterbrechung
    8a
    Einzelisolatoren
    9
    flexible Membran
    10
    Ventil für Flüssigmetallzuführung
    11
    Magnetfeldsteuerung
    124
    Gegendruckbehälter, gefangenes Gasvolumen
    α
    Reibungskoeffizient
    Bext, Bint
    externes, internes Magnetfeld
    Fmag
    magnetische Kraft
    Fr
    Rückstellkraft
    i
    Strom
    I1
    Betriebsstrom
    I2
    begrenzter Überstrom
    k
    Proportionalitätskonstante
    1, l1, l2, l12, l3, l13
    Schleifkontaktpositionen
    L
    Netzinduktivität
    P1, P2, P3
    Gasdruck
    Rx, R1
    Widerstand des Strombegrenzers
    t
    Zeitvariable
    Ub
    Lichtbogenzündspannung
    UN
    Netzspannung, Betriebsspannung
    V1, V2, V3
    Gasvolumen
    x, x1, x2, x12, x3, x13
    Positionen der Flüssigmetallsäule

Claims (16)

  1. Verfahren zur Strombegrenzung mit einer Strombegrenzungsvorrichtung (1), die feststehende Elektroden (2a, 2b) und mindestens eine bewegliche Elektrode (3, 3') umfasst, wobei in einem ersten Betriebszustand zwischen den feststehenden Elektroden (2a, 2b) ein Betriebsstrom (I1) auf einem ersten Strompfad (30) durch die Strombegrenzungsvorrichtung (1) geführt wird und der erste Strompfad (30) zumindest teilweise durch die in einer ersten Position (x1, l1) befindliche bewegliche Elektrode (3, 3') geführt wird, wobei in einem zweiten Betriebszustand die mindestens eine bewegliche Elektrode (3, 3') selbsttätig durch eine elektromagnetische Wechselwirkung mit einem zu begrenzenden Überstrom (I2) entlang einer Bewegungsrichtung (x, 1) in mindestens eine zweite Position (x12, x2, l12, l2) bewegt wird, die bewegliche Elektrode (3, 3') bei einem Übergang von der ersten Position (x1, l1) zur zweiten Position (x12, x2, l12, l2) entlang eines Widerstandselements (5) geführt wird und in der mindestens einen zweiten Position (x12, x2, l12, l2) in Serie mit dem Widerstandselement (5) liegt und dadurch ein strombegrenzender zweiter Strompfad (31) durch die Strombegrenzungsvorrichtung (1) gebildet wird, der einen vorgebbaren elektrischen Widerstand (Rx, R1) aufweist, dadurch gekennzeichnet, dass in einem dritten Betriebszustand die bewegliche Elektrode (3, 3') in Serie mit einem Isolator (8) liegt und dadurch eine Isolationsstrecke (32) zur Leistungsabschaltung durch die Vorrichtung (1) gebildet wird.
  2. Das Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der dritte Betriebszustand durch einen Abschaltbefehl ausgelöst wird, durch den ein externes Magnetfeld (Bext) zwischen einem Betrieb der Vorrichtung (1) als Strombegrenzer und als Leistungsschalter umgeschaltet wird.
  3. Das Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass in dem dritten Betriebszustand
    a) die bewegliche Elektrode (3, 3') entlang einer entgegengesetzten Bewegungsrichtung (-x, -1) in mindestens eine dritte Position (x13, x3, l13, l3) bewegt wird und
    b) die bewegliche Elektrode (3, 3') in der mindestens einen dritten Position (x13, x3, l13, l3) in Serie mit dem Isolator (8) liegt.
  4. Das Verfahren nach einem der vorangehenden Ansprüche,
    dadurch gekennzeichnet, dass
    a) die bewegliche Elektrode (3, 3') selbsttätig durch die elektromagnetische Wechselwirkung mit dem zu begrenzenden Überstrom (I2) entlang des Widerstandselements (5) zu einer extremalen zweiten Position (x2, l2) geführt wird und
    b) die extremale zweite Position (x2, l2) in einem Bereich liegt, wo das Widerstandselement (5) in den Isolator (8) übergeht, so dass die Isolationsstrecke (32) zur Stromabschaltung gebildet wird.
  5. Das Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
    a) das Widerstandselement (5) zur Erzielung einer sanften Abschaltcharakteristik mit einem entlang der Bewegungsrichtung (x, 1) der beweglichen Elektrode (3, 3') nichtlinear ansteigenden elektrischen Widerstand (Rx, R1) für den zweiten Strompfad (31) gewählt wird und/oder
    b) das Widerstandselement (5) ohmsch ist und der elektrische Widerstand (Rx, R1) kontinuierlich mit der zweiten Position (x12, x2, l12, l2) ansteigt.
  6. Das Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
    a) der zweite Betriebszustand durch den Überstrom (I2) selbsttätig aktiviert wird, indem die stromdurchflossene bewegliche Elektrode (3, 3') durch eine elektromagnetische Kraft (Fmag) bewegt wird, die senkrecht zum Strom (I2) durch die bewegliche Elektrode (3, 3') und senkrecht zu einem Magnetfeld (Bext, Bint) steht und die eine Kraftkomponente parallel zur Bewegungsrichtung (x, 1) aufweist, wobei
    b) das Magnetfeld (Bext, Bint) als ein externes Magnetfeld (Bext) und/oder als ein internes, von einer Stromzuführung (2a, 2b; 20) zur Strombegrenzungsvorrichtung (1) erzeugtes Magnetfeld (Bint) gewählt wird.
  7. Das Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der elektrische Widerstand (Rx, R1) als Funktion (Rx(x12), R1(l12)) der zweiten Position (x12, l12) sowie eine Weg-Zeit- Charakteristik (x12(t), l12(t)) der beweglichen Elektrode (3, 3') entlang der Bewegungsrichtung (x, 1) so gewählt werden, dass
    a) in jeder zweiten Position (x12, x2, l12, l2) der beweglichen Elektrode (3, 3') das Produkt aus elektrischem Widerstand (Rx, R1) und Strom (I2) kleiner als eine Lichtbogenzündspannung (Ub) zwischen der beweglichen Elektrode (3, 3') und den feststehenden Elektroden (2a, 2b) und gegebenenfalls Zwischenelektroden (2c) ist und/oder
    b) eine hinreichende Steilheit der Strombegrenzung zur Beherrschung netzbedingter Kurzschlussströme (i(t)) erzielt wird.
  8. Das Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
    a) die bewegliche Elektrode (3, 3') ein Flüssigmetall (3) umfasst, das in mindestens einem Kanal (3a) der Strombegrenzungsvorrichtung (1) angeordnet wird und entlang einer Höhenerstreckung des Kanals (3a) zwischen dem ersten Strompfad (30) für den Betriebsstrom (I1), dem zweiten Strompfad (31) zur Strombegrenzung und der Isolationsstrecke (32) zur Stromabschaltung bewegt werden kann und
    b) insbesondere dass mehrere Kanäle (3a) durch wandartige Stege (5a, 8a) voneinander getrennt sind, die im Bereich des ersten Strompfads (30) Zwischenelektroden (2c) zum Durchleiten des Betriebsstroms (I1) aufweisen, im Bereich des zweiten Strompfads (31) Einzelwiderstände (5a) des Widerstandselements (5) aufweisen und im Bereich der Isolationsstrecke (32) in Stege (8a) zur Stromisolation übergehen.
  9. Das Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass
    a) die bewegliche Elektrode (3, 3') einen Festkörperleiter (3') mit mindestens einem Schleifkontakt (2d) umfasst und im ersten Betriebszustand mit den feststehenden Elektroden (2a, 2b), im zweiten Betriebszustand mindestens einseitig mit dem Widerstandselement (5) und im dritten Betriebszustand mindestens einseitig mit dem Isolator (8) elektrisch verbunden wird und
    b) insbesondere dass der Festkörperleiter (3') im wesentlichen aus Leichtmetall und/oder in Leichtbauweise gefertigt ist und/oder der Schleifkontakt (2d) zur Reibungsverminderung mit Flüssigmetall benetzt wird.
  10. Vorrichtung zur Strombegrenzung (1), insbesondere zur Ausführung des Verfahrens nach einem der vorangehenden Ansprüche, umfassend feststehende Elektroden (2a, 2b) und mindestens eine bewegliche Elektrode (3, 3'), wobei in einem ersten Betriebszustand zwischen den feststehenden Elektroden (2a, 2b) ein erster Strompfad (30) für einen Betriebsstrom (I1) durch die Strombegrenzungsvorrichtung (1) vorhanden ist und der erste Strompfad (30) zumindest teilweise durch die in einer ersten Position (x1, l1) befindliche bewegliche Elektrode (3, 3') führt, wobei elektromagnetische Antriebsmittel (2a, 2b, 20; 11; Bint, Bext) zum bei Überstrom (I2) selbstbetätigten Bewegen der beweglichen Elektrode (3, 3') entlang einer Bewegungsrichtung (x, 1) in mindestens eine zweite Position (x12, x2, l12, l2) vorhanden sind, elektrische Widerstandsmittel (5) mit einem vorgebbaren elektrischen Widerstand (Rx) vorhanden sind und in einem zweiten Betriebzustand die bewegliche Elektrode (3, 3') zumindest teilweise in Serie zu den Widerstandsmitteln (5) liegt und zusammen mit diesen einen zweiten Strompfad (31) bildet, auf dem der Betriebsstrom (I1) auf einen zu begrenzenden Strom (I2) begrenzbar ist, dadurch gekennzeichnet, dass in einem dritten Betriebszustand die bewegliche Elektrode (3, 3') in Serie mit einem Isolator (8) liegt und dadurch eine Isolationsstrecke (32) zur Leistungsabschaltung durch die Vorrichtung (1) vorhanden ist.
  11. Die Vorrichtung (1) nach Anspruch 10, dadurch gekennzeichnet, dass die elektromagnetischen Antriebsmittel (2a, 2b, 20; 11; Bint, Bext) Magnetfeldmittel (2a, 2b, 20; 11) zur Erzeugung eines Magnetfeldes (Bext, Bint) umfassen, welches auf die von dem Strom (I1, I2) durchflossene bewegliche Elektrode (3, 3') eine Lorenzkraft (Fmag) mit einer Kraftkomponente parallel zur Bewegungsrichtung (x, 1) ausübt, so dass die bewegliche Elektrode (3, 3') zwischen dem ersten Strompfad (30) für Betriebsstrom (I1), dem zweiten Strompfad (31) zur Strombegrenzung und der Isolationsstrecke (32) zur Stromabschaltung bewegbar ist.
  12. Die Vorrichtung (1) nach einem der Ansprüche 10-11, dadurch gekennzeichnet, dass
    a) die Magnetfeldmittel (2a, 2b, 20; 11) eine Stromzuführung (2a, 2b; 20) zur Strombegrenzungsvorrichtung (1) umfassen, um ein internes, vom zu begrenzenden Überstrom (I2) abhängiges Magnetfeld (Bint) zu erzeugen und/oder
    b) die Magnetfeldmittel (2a, 2b, 20; 11) Mittel (11) zur Erzeugung eines externen regelbaren Magnetfeldes (Bext) umfassen.
  13. Die Vorrichtung (1) nach einem der Ansprüche 10-12, dadurch gekennzeichnet, dass
    a) das Magnetfeld (Bext, Bint) nach Massgabe eines zu begrenzenden Überstroms (I2) und einer hierfür erforderlichen Weg-Zeit Charakteristik (x(t), 1(t)) der beweglichen Elektrode (3, 3') im zweiten Strompfad (31) ausgelegt ist und/oder
    b) die Widerstandsmittel (5) zur lichtbogenfreien Strombegrenzung einen entlang der Bewegungsrichtung (x, 1) bis zu einer extremalen zweiten Position (x2, l2) nichtlinear zunehmenden elektrischen Widerstand (Rx, R1) für den zweiten Strompfad (31) aufweisen.
  14. Die Vorrichtung (1) nach einem der Ansprüche 10-13, dadurch gekennzeichnet, dass
    a) die bewegliche Elektrode (3, 3') ein Flüssigmetall (3) umfasst, das durch die Magnetfeldmittel. (2a, 2b, 20; 11) im flüssigen Aggregatzustand bewegt wird und/oder
    b) die bewegliche Elektrode (3, 3') einen Festkörperleiter (3') mit mindestens einem Schleifkontakt (2d) umfasst, wobei der Festkörperleiter (3') durch die Magnetfeldmittel (2a, 2b, 20; 11) gegen eine Rückstellkraft (Fr), insbesondere gegen die Schwerkraft, einseitig oder beidseitig angehoben wird.
  15. Die Vorrichtung (1) nach einem der Ansprüche 10-14, dadurch gekennzeichnet, dass
    a) der erste Strompfad (30 für Betriebsstrom (I1), der zweite Strompfad (31) zur Strombegrenzung und die Isolationsstrecke (32) zur Stromabschaltung im wesentlichen senkrecht zur Bewegungsrichtung (x, 1) und/oder im wesentlichen parallel zueinander angeordnet sind und/oder
    b) die mindestens eine Isolationsstrecke (32) zur Stromabschaltung oberhalb des zweiten Strompfads (31) und/oder unterhalb des ersten Strompfads (30) angeordnet ist.
  16. Elektrische Schaltanlage, insbesondere Hoch- oder Mittelspannungsschaltanlage, gekennzeichnet durch eine Vorrichtung (1) nach einem der Ansprüche 10-15.
EP04738058A 2003-07-10 2004-07-01 Verfahren und vorrichtung zur strombegrenzung mit einem selbstbetätigten strombegrenzer Expired - Lifetime EP1644952B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PL04738058T PL1644952T3 (pl) 2003-07-10 2004-07-01 Sposób i urządzenie do ograniczania prądu z samonastawnym ogranicznikiem prądu
EP04738058A EP1644952B1 (de) 2003-07-10 2004-07-01 Verfahren und vorrichtung zur strombegrenzung mit einem selbstbetätigten strombegrenzer

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03405519 2003-07-10
PCT/CH2004/000417 WO2005006373A1 (de) 2003-07-10 2004-07-01 Verfahren und vorrichtung zur strombegrenzung mit einem selbstbetätigten strombegrenzer
EP04738058A EP1644952B1 (de) 2003-07-10 2004-07-01 Verfahren und vorrichtung zur strombegrenzung mit einem selbstbetätigten strombegrenzer

Publications (2)

Publication Number Publication Date
EP1644952A1 EP1644952A1 (de) 2006-04-12
EP1644952B1 true EP1644952B1 (de) 2007-09-19

Family

ID=34043024

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04738058A Expired - Lifetime EP1644952B1 (de) 2003-07-10 2004-07-01 Verfahren und vorrichtung zur strombegrenzung mit einem selbstbetätigten strombegrenzer

Country Status (8)

Country Link
US (1) US20070041138A1 (de)
EP (1) EP1644952B1 (de)
KR (1) KR20060036448A (de)
CN (1) CN100446152C (de)
AT (1) ATE373871T1 (de)
DE (1) DE502004005030D1 (de)
PL (1) PL1644952T3 (de)
WO (1) WO2005006373A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080037931A1 (en) * 2006-07-31 2008-02-14 Steen Paul H Liquid switches and switching devices and systems and methods thereof
WO2009055763A2 (en) * 2007-10-26 2009-04-30 Kowalik Daniel P Micro-fluidic bubble fuse
ES2530575T3 (es) * 2010-08-03 2015-03-03 Alstom Technology Ltd Un núcleo
CN102324720A (zh) * 2011-09-28 2012-01-18 上海大学 一种故障电流限制器
CN104851732A (zh) * 2015-04-17 2015-08-19 沈涛 可用于电力或电子系统的机械式直流断路器、电力机械
CN104851734A (zh) * 2015-04-17 2015-08-19 舒建兴 可用于电力或电子系统的机械式直流断路器、电力机械
CN106533131B (zh) * 2016-11-18 2023-07-14 云南电网有限责任公司电力科学研究院 一种带脉冲激励装置的直流换流阀
CN107507746B (zh) * 2017-06-30 2018-12-04 西安交通大学 一种液态金属限流装置及方法
CN114743844B (zh) * 2022-03-30 2023-05-12 西南交通大学 一种基于电磁场调控的复合耗能装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1503721A (fr) * 1966-10-11 1967-12-01 Centre Nat Rech Scient Perfectionnements aux interrupteurs électriques pour courants intenses
US4210903A (en) * 1976-02-02 1980-07-01 Semiconductor Circuits, Inc. Method for producing analog-to-digital conversions
US4598332A (en) * 1984-07-20 1986-07-01 Westinghouse Electric Corp. Current limiting apparatus utilizing multiple resistive parallel rails
US4599671A (en) * 1984-07-20 1986-07-08 Westinghouse Electric Corp. Current limiting devices utilizing resistive parallel rails
CN2469548Y (zh) * 2001-03-16 2002-01-02 郭守恒 快速变阻限流保护装置
DE502004005029D1 (de) * 2003-07-10 2007-10-31 Abb Research Ltd Verfahren und vorrichtung zur strombegrenzung mit einem flüssigmetall-strombegrenzer
KR20060036445A (ko) * 2003-07-10 2006-04-28 에이비비 리써치 리미티드 유체-작동식 액체 금속 전류 스위치를 이용한 전력 차단방법 및 디바이스

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
PL1644952T3 (pl) 2008-02-29
DE502004005030D1 (de) 2007-10-31
KR20060036448A (ko) 2006-04-28
WO2005006373A1 (de) 2005-01-20
ATE373871T1 (de) 2007-10-15
US20070041138A1 (en) 2007-02-22
CN100446152C (zh) 2008-12-24
EP1644952A1 (de) 2006-04-12
CN1820340A (zh) 2006-08-16

Similar Documents

Publication Publication Date Title
EP1644951B1 (de) Verfahren und vorrichtung zur strombegrenzung mit einem flüssigmetall-strombegrenzer
EP0657062B1 (de) Veränderbarer hochstromwiderstand und anwendung als schutzelement
EP1911059A1 (de) KURZSCHLIEßEINRICHTUNG FÜR DEN EINSATZ IN NIEDER- UND MITTELSPANNUNGSANLAGEN ZUM SACH- UND PERSONENSCHUTZ
EP0800191A2 (de) Leistungsschalter
EP0450104B1 (de) Schnellschalter
EP1644952B1 (de) Verfahren und vorrichtung zur strombegrenzung mit einem selbstbetätigten strombegrenzer
DE69931744T2 (de) Vakuumschaltgerät
DE2600683C2 (de) Strombegrenzungsanordnung mit einem Vakuumschalter
DE102017214805A1 (de) Strombegrenzung mit einem Vakuumschalter
EP0750788B1 (de) Schalter zur strombegrenzung
DE69106986T2 (de) Hochspannungsschalter mit Selbstbeblasung.
CH668664A5 (de) Gasisolierter lasttrenner.
EP1173873B1 (de) Selbsterholende strombegrenzungseinrichtung mit flüssigmetall
WO2005006368A1 (de) Verfahren und vorrichtung zur stromschaltung mit einem fluidbetriebenen flüssigmetall-stromschalter
DE3513908C2 (de) Freiluftschaltgerät für Hochspannungsschaltanlagen
EP1496533A1 (de) Flüssigmetall-Stromschalter mit Piezo-Fluidantrieb
EP3959734B1 (de) Elektrischer schalter
EP3953957B1 (de) Verfahren zur unterbrechungsfreien anpassung von parametern eines stromkreises
EP1544879B1 (de) Schneller Leistungsschalter für Hoch-oder Mittelspannung
DE102006034168B4 (de) Gekapselter Überpannungsabeiter für den Einsatz als Netzfunkenstrecke im Niederspannungsbereich mit getrennten, elektrisch in Reihe geschalteten Funktionseinheiten
WO2021001017A1 (de) Schaltgerät
EP3050069B1 (de) Schalteinrichtung sowie ausschaltverfahren zum betrieb einer schalteinrichtung
DE3017980A1 (de) Elektrischer schalter mit selbsterzeugtem loeschgasstrom
DE102013225112B4 (de) Elektrisches Schaltgerät
DE102005060096B4 (de) Gekapselter Überspannungsableiter für den Einsatz als Netzfunkenstrecke im Niederspannungsbereich mit getrennten, elektrisch in Reihe geschalteten Funktionseinheiten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004005030

Country of ref document: DE

Date of ref document: 20071031

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ABB SCHWEIZ AG INTELLECTUAL PROPERTY (CH-LC/IP)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071220

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071230

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080219

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

26N No opposition filed

Effective date: 20080620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20080627

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080715

Year of fee payment: 5

Ref country code: DE

Payment date: 20080722

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080715

Year of fee payment: 5

Ref country code: FR

Payment date: 20080715

Year of fee payment: 5

Ref country code: IT

Payment date: 20080723

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071219

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080701

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090701

REG Reference to a national code

Ref country code: PL

Ref legal event code: LAPE