EP1644913A1 - Display device and control circuit for a light modulator - Google Patents

Display device and control circuit for a light modulator

Info

Publication number
EP1644913A1
EP1644913A1 EP04767476A EP04767476A EP1644913A1 EP 1644913 A1 EP1644913 A1 EP 1644913A1 EP 04767476 A EP04767476 A EP 04767476A EP 04767476 A EP04767476 A EP 04767476A EP 1644913 A1 EP1644913 A1 EP 1644913A1
Authority
EP
European Patent Office
Prior art keywords
modulator
operational amplifier
threshold voltage
display device
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04767476A
Other languages
German (de)
French (fr)
Other versions
EP1644913B1 (en
Inventor
Philippe Le Roy
Christophe Prat
Christophe Fery
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THOMSON LICENSING
Original Assignee
Thomson Licensing SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Licensing SAS filed Critical Thomson Licensing SAS
Publication of EP1644913A1 publication Critical patent/EP1644913A1/en
Application granted granted Critical
Publication of EP1644913B1 publication Critical patent/EP1644913B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3258Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the voltage across the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • G09G3/3291Details of drivers for data electrodes in which the data driver supplies a variable data voltage for setting the current through, or the voltage across, the light-emitting elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0404Matrix technologies
    • G09G2300/0417Special arrangements specific to the use of low carrier mobility technology
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0465Improved aperture ratio, e.g. by size reduction of the pixel circuit, e.g. for improving the pixel density or the maximum displayable luminance or brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0833Several active elements per pixel in active matrix panels forming a linear amplifier or follower
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0852Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor being a dynamic memory with more than one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0876Supplementary capacities in pixels having special driving circuits and electrodes instead of being connected to common electrode or ground; Use of additional capacitively coupled compensation electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/088Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements using a non-linear two-terminal element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/029Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2011Display of intermediate tones by amplitude modulation

Definitions

  • the present invention relates to an active matrix image display device.
  • Flat image display screens are increasingly used in all kinds of applications such as in vehicle display devices, digital cameras or mobile phones.
  • Displays are known in which light emitters are formed from organic electroluminescent cells such as OLED (Organic Light Emitting Diodes) displays.
  • OLED Organic Light Emitting Diodes
  • passive matrix OLED type displays are already widely marketed. However, they consume a lot of electrical energy and have a reduced lifespan.
  • Active matrix OLED displays have integrated electronics, and have many advantages such as reduced power consumption, high resolution, compatibility with video rates and a longer lifespan than passive matrix OLED displays.
  • active matrix display devices comprise a display panel formed in particular by a network of light emitters.
  • FIG. 1 represents a light emitter E, hereinafter designated emitter, and the addressing circuit associated therewith. More specifically, it is a voltage addressing circuit.
  • an addressing circuit of this type comprises control means and means for supplying the transmitter. It is controlled by a network of row and column electrodes. These electrodes make it possible to select and then address a specific emitter E from all of the emitters of the display panel.
  • the transmitter addressing means include a control switch 11, a storage capacity C and a current modulator M.
  • the modulator M converts a data control voltage of a pixel or a sub-pixel into an electric current passing through it.
  • the modulator M is a transistor component of the MOSFET n or p type. Such components include three terminals: a drain and a source between which the modulated current flows, and a gate to which the control voltage is applied.
  • the modulator is of type n as in FIG. 1, the modulated electric current flows between the drain and the source, when it is of type p, the modulated electric current flows between the source and the drain.
  • the modulator M is connected in series with the transmitter. The two terminals of this series are connected to supply means, the anode terminal to a supply electrode Vdd and the cathode terminal generally to an electrode connected to ground.
  • FIG. 1 of OLED displays with conventional structure it is the anode of the emitters which forms the interface with the active matrix: the drain (case type n) or the source (case type p) of the modulators is then connected to the supply electrode Vdd, and the cathode of the emitters is connected to the ground electrode.
  • the emitter cathode which forms the interface with the active matrix the source (type n case) or the drain (p type case) of the modulators is then connected to the ground electrode, and the emitter anode is connected to the supply electrode Vdd.
  • a video data voltage Vdata is applied to the gate of the modulator M.
  • this modulator generates a current of drain which conventionally varies according to a quadratic function of the potential difference applied between the grid and the source of the modulator.
  • the light emitters of the panel being arranged in rows and columns, all of the control switches 11 of the emitters of the same line are controlled by a so-called line electrode and all of the data signal inputs video of the control switches 11 of the transmitters of the same column are supplied by a so-called column electrode.
  • a control voltage is applied to the line electrode Vselect connected to the grid of the control switch 11 of this emitter to select it.
  • the addressing means of a light emitter comprise a storage capacity C connected between the grid of the modulator and the supply voltage Vdd applied to this transmitter via the modulator.
  • This storage capacity C stores the voltage applied to the grid of the modulator so that the light energy of the transmitter is kept approximately constant for the duration of the frame of the image, even when the control switch of this transmitter n 'is no longer closed and the corresponding line is no longer selected.
  • the control switch 11 as well as the modulator M are thin film transistors, also called TFT (Thin Film Transistor) transistors.
  • LTPS low-temperature polycrystalline silicon
  • the drain current Id represents the variations of the drain current Id as a function of the applied voltage Vgs between the gate and the source of different thin film transistors in crystalline poly-Silicon.
  • the triggering threshold voltage Vth of these transistors is variable from one transistor to another and, presents a dispersion of values due to the faults caused by the variations induced by the crystallization process of the transistors.
  • the voltage Vgs between the source and the gate of the modulator must be greater than the triggering threshold voltage of the modulator Vth, constituted by one of the abovementioned transistors.
  • the drain current passing through such thin film transistors varies as a function of the triggering threshold voltage of these transistors.
  • a thin film transistor when a thin film transistor operates in saturation mode, it functions as a current generator.
  • the drain current varies from one transistor to another depending on the triggering threshold voltage of each transistor.
  • the modulators M of crystalline poly-silicon composing the same display panel and supplied with the same supply voltage Vdd will generate currents of different intensity, even when these are controlled by data voltages Vdata identical.
  • an emitter E generally emits a light intensity directly proportional to the current flowing through it, so that the heterogeneity of the trigger thresholds of the crystalline poly-silicon transistors leads to a non-uniformity of brightness of a screen constituted by a matrix of such tran- sistors. This results in differences between the luminance levels and obvious visual discomfort for the user. In order to limit this discomfort, various circuits for compensating for the variation in the triggering threshold voltage have been proposed.
  • a first method consists in reducing the degradation of the luminance levels by modifying the structures of the pixels.
  • this method consumes energy and requires a rapid addressing circuit.
  • Another method described in the document, "Sony, A 13-inch AMOLED display - SID Digest, 2001”, consists in current programming of pixel structures. This addressing mode compensates for both the variations in mobility of the charge carriers and therefore of the threshold.
  • current programming must take into account very low current levels for low luminance, which leads to considerably increasing the programming time necessary to establish the adequate current supplied to the OLED light emitter.
  • each addressing circuit produced according to this method, requires the installation of four TFT thin film transistors per transmitter.
  • the triggering threshold voltage of the first additional transistor automatically compensates for the triggering voltage of the modulator so that the drain current, supplying the transmitter, is independent of the triggering voltage.
  • the second thin-film transistor also makes it possible to reset the voltage stored in the load capacity.
  • the addressing circuit according to this method also requires the creation of an addressing circuit with 4 transistors. This greater complexity reduces both the reliability and the yield of the screens, leading to a significant increase in manufacturing costs. Another method described in document EP1381019, in particular in paragraphs 42 and 43 with reference to FIGS.
  • the voltage control method described here uses an operational amplifier 54 to compensate for the trigger threshold variations of all the modulators 32 relating to the same column of pixels; the output of this amplifier is connected, via the switch SW2a and the electrode Xi, to the gate G of the modulator 32; the non-inverting input (+) of this amplifier is connected, via the resistor 52, the switch SW1a and the electrode Wi, to the drain electrode D of this modulator 32.
  • the present invention relates to an active matrix image display device comprising: - several light emitters forming a network of emitters distributed in rows and columns, - means for controlling the emission network light emitters comprising: - for each network light emitter, a current modulator capable of controlling said emitter, and comprising a source electrode, a drain electrode, a gate electrode and a trigger threshold voltage ; the triggering threshold voltage varying from one modulator to another, - column addressing means capable of addressing the emitters of each column of emitters by applying a data voltage to the electrode of grid of their modulators, for controlling them, - line selection means capable of selecting the transmitters of each line of transmitters by applying a selection voltage, - means of compensating the trigger threshold voltage of each modulator, characterized in that: - the compensation means comprise at least one operational amplifier, the feedback of this operational amplifier being able to compensate the triggering threshold voltage of at least one modulator whatever the value of that here, and - said amplifier having an inverting input (-), a non-
  • the display device comprises one or more of the following characteristics: the control means comprise, for said modulator associated with a transmitter, at least one first control switch connected between the output the operational amplifier and the gate electrode of said modulator; the first switch comprising a gate electrode capable of receiving the line selection voltage of this transmitter; and the control means comprise, for said modulator associated with a transmitter, a second control switch connected between the inverting terminal of the operational amplifier and the source electrode of the modulator; the second switch comprising a gate electrode connected to the gate electrode of said first switch to receive, in synchronism, the selection voltage; and the line selection means are capable of supplying a gate electrode with at least one of said first switches to select at least one transmitter for this line; and the compensation means comprise an operational amplifier able to compensate the trigger threshold voltage of all the modulators controlling the transmitters of a column; and - the modulators, the first and the second control switches are components made from poly-crystalline silicon in thin layers or from amorphous silicon in thin layers; and - the modulators are n-
  • each addressing circuit of a light emitter only comprises three thin film transistors.
  • This image display device is therefore simpler to manufacture and occupies a smaller useful surface area of the pixel which leads to obtaining a larger aperture ratio of said pixel.
  • its manufacture is more economical because it requires less silicon. Indeed, considering the number of transmitters forming a display panel, the economy of one transistor per transmitter represents a substantial saving by increasing the manufacturing yield.
  • Another object of this invention is to provide a control circuit for a current modulator which can, for example, be used in an active matrix image display device.
  • the invention provides a control circuit for a current modulator having an indefinite trigger threshold voltage, the circuit comprising means for compensating the trigger threshold voltage, characterized in that the means for compensating of the trigger threshold voltage comprise at least one operational amplifier connected between a gate electrode and a source electrode of said modulator, and the feedback of which compensates for the trigger threshold voltage of the modulator so that the intensity of the current drain through the modulator is independent of the trigger threshold voltage of the modulator.
  • the output of this operational amplifier is connected to the gate electrode of the modulator and its inverting input (-) is connected to the source electrode of this same modulator.
  • FIG. 1 is a block diagram of an addressing circuit d 'a light emitter known from the prior art
  • FIG. 2 is a graph representing curves of the current-voltage characteristic of different thin film transistors manufactured by the technique, known as such, of crystallization of low-temperature poly-crystalline silicon (LTPS)
  • - Figure 3 is a block diagram of a first embodiment of the present invention in which the current modulator of the addressing circuit is of type n
  • - Figure 4 is a block diagram of a second embodiment of the present invention in which the current modulator of the addressing circuit is of type p
  • - Figure 5 is a block diagram of part of a network of transmitters according to the first embodiment of the invention.
  • FIG. 3 represents an element of an image display device according to a first embodiment of the present invention.
  • This element comprises a light emitter E as well as the addressing circuit 10 which is associated with it.
  • this addressing circuit 10 comprises a current modulator M, a first control switch 11, a storage capacity C, a line selection electrode Vselect, a column addressing electrode Vdata and a supply electrode in voltage Vdd.
  • the modulator is of the n type and the emitter is an OLED type diode with a so-called conventional structure.
  • the same circuit is also applicable to OLED displays with an inverted structure, provided that p-type modulators are used and the modulator-emitter series is inverted, that is, the anode of the emitters is connected to the electrode of Vdd supply and the drain of the modulators to the ground electrode.
  • Another circuit will be presented later with reference to FIG. 4 suitable for the use of a p-type modulator with a conventional OLED structure, also applicable to an n-type modulator with an inverted OLED structure.
  • a power source Vdd is connected to the drain of the modulator M.
  • a setpoint current also called drain current, is established between the drain and the source and feeds the anode of the light emitter E.
  • the intensity of this drain current is a function, among other things, of the triggering threshold voltage Vth of the modulating transistor.
  • the light emitter E emits an amount of light proportional to this current. The same data voltage therefore does not generate the same amount of light from one emitter to another.
  • the addressing circuit according to the present invention comprises an operational amplifier 11, which compensates for the triggering threshold voltage Vth of the current modulators M. En practical, the column addressing electrode is here connected to the non-inverting input (+) of the operational amplifier 11.
  • the source of the modulator M is connected to the inverting terminal (-) of the operational amplifier, and the output terminal of the operational amplifier 11 is connected to the gate of the modulator M to unlock it by application of the control voltage.
  • a selection switch 11 is connected in series between the gate of the modulator M and the output terminal of the operational amplifier 11 and a switch 12 is connected in series between the source of the modulator and the inverting terminal (-) of the operational amplifier, and the controls of these switches 11, 12 are connected to the same line selection electrode Vselect.
  • the feedback thus obtained from the operational amplifier advantageously compensates for the trigger threshold voltage Vth of the modulator M, and this whatever the value thereof.
  • the voltage of the anode of the transmitter E is equal to the data voltage of column Vdata and, the drain current emitted by the modulator and passing through the transmitter is independent of the trigger threshold voltage Vth of the modulator M.
  • the voltage between the gate and the source which is generated by the operational amplifier compensates for the threshold voltage of the modulator M, whatever its value.
  • a current generator controlled by the data voltage Vdata on the basis of an equivalent diode charge, which is not fixed.
  • the application of a feedback of the trigger threshold voltage is synchronous with the application of the data control voltage Vdata and the selection control voltage Vse- lect.
  • this addressing circuit also comprises a first control switch 11 the opening and closing of which are controlled by the line control electrode.
  • This first switch 11 is connected between the output of the operational amplifier 11 and the gate of the current modulator M so as to control the unlocking of the latter.
  • a scanning control voltage Vselect is applied to the gate of the first switch 11, the latter closes and the output voltage of the operational amplifier is applied to the gate of the modulator.
  • the addressing circuit can also include an additional switch 12 connected between the source of the modulator M and the inverting terminal (-) of the operational amplifier 11 to allow the latter to operate in feedback.
  • this second switch can also be controlled by the scanning voltage Vselect applied to the line selection electrode.
  • the gate of the second switch 12 is connected to the gate of the first switch 11 and the second switch receives the scanning control voltage Vselect in synchronism with the first switch 11.
  • This second switch 12 secures the addressing of 'an emitter. It prevents the possible occurrence of leakage current in another addressing circuit located on the same column as the selected transmitter.
  • the two switches 11, 12 and the modulator M are manufactured using TFT technology. These thin film transistors can be made of amorphous silicon or polycrystalline silicon.
  • the addressing structure with three TFT components and an operational amplifier is compatible with these two technologies for manufacturing TFT components.
  • the addressing circuit comprises a storage capacity C arranged between the grid of the modulator M and its source.
  • the addressing circuit can also include a compensation capacitor Ce mounted in parallel, via the first and second control switches 11 and 12, with the charging capacitance C, to stabilize the circuit.
  • the modulator M After scanning the pixels, the modulator M operates in the saturation region and delivers a drain current proportional to the voltage stored in the storage capacity C. Due to the voltage compensation produced by the operational amplifier, the drain current is independent of the trigger threshold voltage Vth of the modulator M. Thus, the pixel-to-pixel threshold voltage variations of the same column do not influence the current flowing through l emitter of these pixels.
  • Figure 4 shows a second embodiment of the present invention.
  • the modulator is this time of type p and the transmitter is an OLED type diode with a so-called conventional structure.
  • the same circuit is also applicable to OLED displays with an inverted structure, provided that n-type modulators are used and the modulator-emitter series is inverted, that is, the anode of the emitters is connected to the electrode of Vdd power supply and the source of the modulators to the ground electrode via a passive component.
  • the operational amplifier 21 is used in feedback. Its output is connected as previously to the grid of the modulator M via an inter- control breaker 11, and its inverting input (-) is connected as previously to the source of the modulator M via a control switch 12.
  • the data control voltage Vdata is injected into the input non-inverting (+) amplifier.
  • the supply voltage Vdd of the transmitter is here connected to the source of the modulator M via a passive component R.
  • the drain of the here the modulator is connected to the anode of the light emitter E.
  • a drain current here flows through the modulator, from its source to its drain.
  • This passive component can, for example, include an electrode, a resistor, a diode or an electrical circuit. In the exemplary embodiment of FIG. 4, this passive component advantageously consists of a resistor R with thin layers.
  • a data voltage Vdata is applied to the gate of the modulator M and therefore to the terminal common to the resistor R and to the source of the modulator, and a drain current flows through the modulator M and the emitter E
  • the drain current is directly controllable by the data voltage Vdata.
  • the drain current is therefore constant.
  • the drain current Id is constant (cf. equation 1), the difference between the threshold trigger voltage Vth and the voltage between the gate and the source is therefore constant.
  • the threshold trigger voltage Vth and the voltage between the gate and the source are constantly adjusted to each other.
  • FIG. 5 schematically represents part of a network of transmitters of an active matrix display panel in which the modulators of the addressing circuits are n-type components.
  • the network of transmitters and their addressing circuit are arranged in rows and columns.
  • the application of a scanning voltage Vselect n on the electrode of line n controls all of the first 11 and second 12 switches for controlling the pixels of this line.
  • Video data voltages, Vdata i, Vdata j corresponding to the images to be displayed supply the operational amplifiers of the columns via the column electrodes.
  • the network of transmitters comprises only one operational amplifier per column.
  • This operational amplifier Aj n is able to compensate for the different triggering threshold voltages of each of the modulators M ⁇ n , Mj m of this column.
  • the operational amplifiers A in , A jn of the different columns of the display panel will simultaneously compensate the triggering threshold voltages of all the modulators of this line.
  • the output of the operational amplifier of a column is connected to the gate of each of the modulators of this column, via the first control switches 11.
  • the inverting input (-) of the operational amplifier of this column is connected to the source of each of the modulators in this column, via the second control switches 12.
  • a selection voltage Vselect n is applied to the line electrode of line n of this emitter Ej n and, to obtain the desired remission, a data voltage Vdata i is then applied to the electrode from column i to the column of this transmitter E ⁇ n .
  • the first 11 and second 12 control switches being closed, as explained above, the data control voltage Vdata i is applied to the source of the modulator M in .
  • the trigger threshold voltage of this modulator is compensated by the output of the column amplifier A in , and the modulator Mj n emits a drain current in the transmitter E in .
  • the panel or network of transmitters has only one operational amplifier per column for compensating for threshold variations, and since each pixel of this panel only comprises three transistors, an economical panel is obtained offering very homogeneous levels of luminance and very good visual comfort.

Abstract

The invention relates to an active matrix display device comprising a light emitter network. Each light emitter (Ein, Eim) is controlled by a current modulator (Mim) having a special threshold trigger voltage (Vth). Said device also comprise compensation means (Ain, Ajn, 11, 21) for the threshold trigger voltage (Vth) of the current modulators (Mim) which is provided with at least one operational amplifier (Ain, 11, 21) connected between a greed electrode and the modulator source electrode. The negative feedback of said operational amplifier compensates the threshold trigger voltage (Vth) of at least one modulator (Mim) independently of the value thereof. A control circuit for a light modulator to be integrated into the inventive display device is also disclosed.

Description

DISPOSITIF D ' AFFICHAGE ET CIRCUIT DE COMMANDE D ' UN MODULATEUR DE LUMIEREDISPLAY DEVICE AND CONTROL CIRCUIT FOR A LIGHT MODULATOR
La présente invention concerne un dispositif d'affichage d'images à matrice active. Les écrans de visualisation d'images plats sont de plus en plus utilisés dans toutes sortes d'applications telles que dans des dispositifs d'affichage de véhicule automobile, d'appareils photos numériques ou dans des téléphones portables. II est connu des afficheurs dans lesquels les émetteurs de lumière sont formés à partir de cellules organiques électroluminescentes tels que les afficheurs OLED (Organic Light Emitting Diodes). En particulier, les afficheurs de type OLED à matrice passive sont déjà largement commercialisés. Cependant, ils consomment beaucoup d'énergie électrique et ont une durée de vie réduite. Les afficheurs OLED à matrice active comportent une électronique intégrée, et présentent de nombreux avantages tels qu'une consommation réduite, une haute résolution, une compatibilité avec les cadences vidéo et une durée de vie plus longue que les afficheurs OLED à matrice passive. Classiquement, les dispositifs d'affichage à matrice active comprennent un panneau de visualisation formé notamment par un réseau d'émetteurs de lumière. Chaque émetteur de lumière est lié à un pixel ou à un sous-pixel d'une image à visualiser et est adressé par un réseau d'électrodes de colonne et d'électrodes de ligne via un circuit d'adressage. La figure 1 représente un émetteur de lumière E, désigné ci-après émetteur, et le circuit d'adressage qui lui est associé. Plus précisément, il s'agit d'un circuit d'adressage en tension. Typiquement, un circuit d'adressage de ce type comporte des moyens de commande et des moyens d'alimentation de l'émetteur. Il est com- mandé par un réseau d'électrodes de ligne et de colonne. Ces électrodes permettent de sélectionner puis d'adresser un émetteur spécifique E parmi l'ensemble des émetteurs du panneau de visualisation. Les moyens d'adressage de l'émetteur comportent un interrupteur de commande 11 , une capacité de stockage C et un modulateur de courant M. Le modulateur M convertit une tension de commande de données d'un pixel ou d'un sous-pixel en un courant électrique le traversant. Généralement, le modulateur M est un composant transistor de type MOSFET n ou p. De tels composants comprennent trois bornes : un drain et une source entre lesquels circule le courant modulé, et une grille à laquelle on applique la tension de commande. Lorsque le modulateur est de type n comme sur la figure 1 , le courant électrique modulé circule entre le drain et la source, lorsqu'il est de type p, le courant électrique modulé circule entre la source et le drain. Le modulateur M est branché en série avec l'émetteur. Les deux bornes de cette série sont reliés à des moyens d'alimentation, la borne anodique à une électrode d'alimentation Vdd et la borne cathodique généralement à une électrode reliée à la masse. Dans le cas de la figure 1 d'afficheurs OLED à structure classique, c'est l'anode des émetteurs qui forme l'interface avec la matrice active : le drain (cas type n) ou la source (cas type p) des modulateurs est alors connectée à l'électrode d'alimentation Vdd, et la cathode des émetteurs est connectée à l'électrode de masse. Dans le cas non représenté d'afficheurs OLED à structure dite inversée, c'est la cathode des émetteurs qui forme l'interface avec la matrice active : la source (cas type n) ou le drain (cas type p) des modulateurs est alors connectée à l'électrode de masse, et l'anode des émetteurs est connectée à l'électrode d'alimentation Vdd. Quand le modulateur M est sélectionné par l'interrupteur de commande 11 , une tension de donnée vidéo Vdata est appliquée à la grille du modu- lateur M. En considérant que le modulateur M fonctionne dans la région de saturation, ce modulateur génère un courant de drain qui varie classiquement selon une fonction quadratique de la différence de potentiel appliquée entre la grille et la source du modulateur. De préférence, les émetteurs de lumière du panneau étant disposés en lignes et en colonnes, l'ensemble des interrupteurs de commande 11 des émetteurs d'une même ligne sont commandés par une électrode dite de ligne et l'ensemble des entrées de signaux de données vidéo des interrupteurs de commande 11 des émetteurs d'une même colonne sont alimentées par une électrode dite de colonne. Lorsque l'on souhaite adresser un émetteur de lumière, on applique une tension de commande sur l'électrode de ligne Vselect reliée à la grille de l'interrupteur de commande 11 de cet émetteur pour le sélectionner. L'interrupteurThe present invention relates to an active matrix image display device. Flat image display screens are increasingly used in all kinds of applications such as in vehicle display devices, digital cameras or mobile phones. Displays are known in which light emitters are formed from organic electroluminescent cells such as OLED (Organic Light Emitting Diodes) displays. In particular, passive matrix OLED type displays are already widely marketed. However, they consume a lot of electrical energy and have a reduced lifespan. Active matrix OLED displays have integrated electronics, and have many advantages such as reduced power consumption, high resolution, compatibility with video rates and a longer lifespan than passive matrix OLED displays. Conventionally, active matrix display devices comprise a display panel formed in particular by a network of light emitters. Each light emitter is linked to a pixel or a sub-pixel of an image to be displayed and is addressed by a network of column electrodes and row electrodes via an addressing circuit. FIG. 1 represents a light emitter E, hereinafter designated emitter, and the addressing circuit associated therewith. More specifically, it is a voltage addressing circuit. Typically, an addressing circuit of this type comprises control means and means for supplying the transmitter. It is controlled by a network of row and column electrodes. These electrodes make it possible to select and then address a specific emitter E from all of the emitters of the display panel. The transmitter addressing means include a control switch 11, a storage capacity C and a current modulator M. The modulator M converts a data control voltage of a pixel or a sub-pixel into an electric current passing through it. Generally, the modulator M is a transistor component of the MOSFET n or p type. Such components include three terminals: a drain and a source between which the modulated current flows, and a gate to which the control voltage is applied. When the modulator is of type n as in FIG. 1, the modulated electric current flows between the drain and the source, when it is of type p, the modulated electric current flows between the source and the drain. The modulator M is connected in series with the transmitter. The two terminals of this series are connected to supply means, the anode terminal to a supply electrode Vdd and the cathode terminal generally to an electrode connected to ground. In the case of FIG. 1 of OLED displays with conventional structure, it is the anode of the emitters which forms the interface with the active matrix: the drain (case type n) or the source (case type p) of the modulators is then connected to the supply electrode Vdd, and the cathode of the emitters is connected to the ground electrode. In the not shown case of OLED displays with a so-called inverted structure, it is the emitter cathode which forms the interface with the active matrix: the source (type n case) or the drain (p type case) of the modulators is then connected to the ground electrode, and the emitter anode is connected to the supply electrode Vdd. When the modulator M is selected by the control switch 11, a video data voltage Vdata is applied to the gate of the modulator M. Considering that the modulator M operates in the saturation region, this modulator generates a current of drain which conventionally varies according to a quadratic function of the potential difference applied between the grid and the source of the modulator. Preferably, the light emitters of the panel being arranged in rows and columns, all of the control switches 11 of the emitters of the same line are controlled by a so-called line electrode and all of the data signal inputs video of the control switches 11 of the transmitters of the same column are supplied by a so-called column electrode. When it is desired to address a light emitter, a control voltage is applied to the line electrode Vselect connected to the grid of the control switch 11 of this emitter to select it. The switch
11 devient passant et la tension de donnée Vdata présente sur l'électrode de co- lonne est alors appliquée sur la grille du modulateur M. Les moyens d'adressage d'un émetteur de lumière comportent une capacité de stockage C branchée entre la grille du modulateur et la tension d'alimentation Vdd appliquée à cet émetteur via le modulateur. Cette capacité de stockage C stocke la tension appliquée à la grille du modulateur pour que l'énergie lumineuse de l'émetteur soit maintenue approximativement constante pendant la durée de la trame de l'image, même lorsque l'interrupteur de commande de cet émetteur n'est plus fermé et que la ligne correspondante n'est plus sélectionnée. Dans un dispositif à matrice active d'un afficheur OLED, l'interrupteur de commande 11 ainsi que le modulateur M sont des transistors à couches minces, aussi appelés transistors TFT (Thin Film Transistor). La fabrication de ces composants déposés en couche minces sur un substrat de verre est le plus souvent basée sur la technologie du silicium polycris- tallin basse température (LTPS). Cette technique utilise un laser dont le but est de transformer le silicium amorphe en silicium poly-cristallin. Durant l'impulsion laser, le silicium amorphe qui est rapidement chauffé finit par fondre et c'est pendant la phase de refroidissement que le processus de cristallisation du silicium amorphe en silicium poly-cristallin se produit. Cependant, ce processus de cristallisation introduit des variations spatiales locales de la tension de seuil de déclenchement des transistors à couches minces en poly-Silicium cristallin. Ces variations sont dues au fait que les joints et les dimensions des grains du poly-silicium ne sont pas suffisamment maîtrisables pendant la phase de cristallisation. La figure 2 représente les variations du courant de drain Id en fonction de la tension appliquée Vgs entre la grille et la source de différents transistors à couches minces en poly-Silicium cristallin. On peut constater sur cette figure que la tension de seuil de déclenchement Vth de ces transistors est variable d'un transistor à l'autre et, présente une dispersion de valeurs en raison des défauts provoqués par les variations induites par le processus de cristallisation des transistors. Pour autoriser le passage du courant de drain, la tension Vgs entre la source et la grille du modulateur doit être supérieure à la tension de seuil de dé- clenchement du modulateur Vth, constitué par un des transistors précités. En corollaire, le courant de drain traversant de tels transistors à couches minces varie en fonction de la tension de seuil de déclenchement de ces transistors. En effet, lorsqu'un transistor à couches minces fonctionne en régime de saturation, il fonctionne comme un générateur de courant. Le courant de drain imposé qu'il délivre à l'émetteur varie selon la fonction suivante : le =K .(Vgs-Vth)2 Ou K= kW/2L dans laquelle : - Vgs correspond à la tension appliquée entre le la source et la grille de ce transistor, cette tension est aussi appelée tension de consigne, - Vth correspond à la tension de seuil de déclenchement de ce transistor, - W et L correspondent respectivement à la largeur et à la longueur du canal du transistor, - k est une constante qui dépend du type de technologie employée lors de la fabrication du transistor. Ainsi, comme le confirment les courbes de la figure 2, en régime de saturation, le courant de drain varie d'un transistor à l'autre en fonction de la tension de seuil de déclenchement de chaque transistor. En conséquence, les modulateurs M en poly-Silicium cristallin composant un même panneau d'affichage et alimentés par la même tension de d'alimentation Vdd vont générer des courants d'intensité différente, même lorsque ces derniers sont commandés par des tensions de données Vdata identiques. Or, un émetteur E émet généralement une intensité lumineuse directement proportionnelle au courant qui le traverse, de sorte que l'hétérogénéité des seuils de déclenchement des transistors en poly-silicium cristallin entraîne une non uniformité de brillance d'un écran constitué par une matrice de tels tran- sistors. Il en résulte des différences entre les niveaux de luminance et un inconfort visuel manifeste pour l'utilisateur. Afin de limiter cet inconfort, divers circuits de compensation de la variation de la tension de seuil de déclenchement, ont été proposés. Ainsi, une première méthode, appelée méthode de commande numérique, consiste à réduire la dégradation des niveaux de luminance par modification des structures des pixels. Cependant, cette méthode est consommatrice d'énergie et nécessite un circuit d'adressage rapide. Une autre méthode décrite dans le document, « Sony, A 13-inch AMOLED display - SID Digest, 2001 », consiste en une programmation en courant des structures de pixel. Ce mode d'adressage compense à la fois les variations de mobilité des porteurs de charge et donc de seuil. Néanmoins, la programmation en courant doit prendre en compte de très bas niveaux de courant pour faible luminance, ce qui conduit à augmenter considérablement le temps de programmation nécessaire à l'établissement du courant adéquat fourni à l'émetteur de lumière OLED. De plus, chaque circuit d'adressage, réalisé selon cette méthode, nécessite l'implantation de quatre transistors à couches minces TFT par émetteur. Cette méthode est peu économique et réduit considérablement la surface utile d'émission de lumière des pixels. Une autre méthode décrite dans le document « Séoul National Uni- versity, AM-LCD 02, OLED-2, p. 13 » réalise une compensation en tension par un circuit d'adressage en tension qui comporte deux transistors à couches minces TFT supplémentaires. Ces transistors sont branchés entre l'interrupteur de commande 11 et le modulateur de courant M. Cette autre méthode est basée sur le principe selon lequel la tension de seuil du premier transistor supplémentaire et du modulateur M sont identiques car, lors de leur fabrication, ces composants sont parallèles à la direction de balayage du rayon laser utilisé pour chauffer la couche mince à recristalliser et sont ainsi soumis sensiblement aux mêmes conditions de recristallisation. Dans un tel circuit d'adressage, la tension de seuil de déclenchement du premier transistor supplémentaire compense automatiquement la tension de déclenchement du modulateur de sorte que le courant de drain, alimentant l'émetteur, est indépendant de la tension de déclenchement. Il faut noter que le second transistor à couches minces permet également de réinitialiser la tension stockée dans la capacité de charge. Cependant, le circuit d'adressage selon cette méthode nécessite également la réalisation d'un circuit d'adressage à 4 transistors. Cette plus grande complexité réduit à la fois la fiabilité et le rendement des écrans conduisant à une sensible augmentation des coûts de fabrication. Une autre méthode décrite dans le document EP1381019, notamment aux paragraphes 42 et 43 en référence aux figures 7 et 11 de ce document ; la méthode de pilotage en tension décrite ici utilise un amplificateur opérationnel 54 pour compenser les variations de seuil de déclenchement de tous les modulateurs 32 concernant la même colonne de pixels ; la sortie de cet amplificateur est connectée, via l'interrupteur SW2a et l'électrode Xi, à la grille G du modulateur 32 ; l'entrée non-inverseuse (+) de cet amplificateur est reliée, via la résistance 52, l'interrupteur SW1a et l'électrode Wi, à l'électrode de drain D de ce modulateur 32. On a constaté que l'amplificateur opérationnel connecté de cette fa- çon fonctionnait en réalité, non pas vraiment comme décrit dans ce document, mais comme un comparateur à hystérésis, encore appelé communément « bascule de Schmitt », ce qui conduit à piloter les émetteurs de l'afficheur en mode digital « tout ou rien », c'est à dire en bi-stable ; les niveaux de gris ne peuvent alors être obtenus que par une modulation en largeur d'impulsions (« PWM »), ce qui pose d'autres problèmes de qualité d'affichage, comme les faux contours. Par ailleurs, un tel montage nécessite de nombreux interrupteurs avec leurs moyens de pilotage afférents, ce qui est coûteux. Dans le document US2002/047817 qui décrit un circuit de commande de modulateur de courant T2 qui comporte également un amplificateur opéra- tionnel, qui est utilisé ici en comparateur entre une rampe de tension VrjRV e une tension de donnée VQAT' de manière à programmer la durée d'ouverture du modulateur T2, comme indiqué notamment au paragraphe 14 de ce document, notamment à la dernière phrase ; on retrouve donc les inconvénients précédemment cités d'une modulation « PWM » ; à noter également que l'amplificateur opérationnel ne présente aucune contre-réaction dans un tel montage. Un but de la présente invention est la mise en œuvre d'un dispositif d'affichage d'images à matrice active dans lequel les tensions de seuil de déclenchement des transistors en poly-Silicium cristallin sont automatiquement compensées et, qui ne présente pas les inconvénients des méthodes de l'art antérieur. A cet effet, la présente invention a pour objet un dispositif d'affichage d'images à matrice active comprenant : - plusieurs émetteurs de lumière formant un réseau d'émetteurs répartis en lignes et en colonnes, - des moyens de commande de l'émission des émetteurs de lumière du réseau comprenant : - pour chaque émetteur de lumière du réseau, un modulateur de courant apte à commander ledit émetteur, et comportant une électrode de source, une électrode de drain, une électrode de grille et une tension de seuil de déclenchement; la tension de seuil de déclenchement variant d'un modulateur à l'autre, - des moyens d'adressage de colonne aptes à adresser les émet- teurs de chaque colonne d'émetteurs par application d'une tension de donnée à l'électrode de grille de leurs modulateurs, pour les commander, - des moyens de sélection de ligne aptes à sélectionner les émetteurs de chaque ligne d'émetteurs par application d'une tension de sélection, - des moyens de compensation de la tension de seuil de déclenchement de chaque modulateur, caractérisé en ce que : - les moyens de compensation comprennent au moins un amplificateur opérationnel, la contre-réaction de cet amplificateur opérationnel étant apte à compenser la tension de seuil de déclenchement d'au moins un modulateur quelle que soit la valeur de celle-ci, et - ledit amplificateur ayant une entrée inverseuse (-), une entrée non inverseuse (+) et une borne de sortie, et - l'entrée non inverseuse (+) de l'amplificateur opérationnel étant connectée à un moyen d'adressage de la colonne commandant ledit modulateur, et - l'entrée inverseuse (-) de l'amplificateur opérationnel étant connectée à l'électrode de source dudit modulateur, et - la sortie de l'amplificateur opérationnel étant connectée à l'électrode de grille dudit modulateur. Suivant des modes particuliers de réalisation, le dispositif d'affichage comporte l'une ou plusieurs des caractéristiques suivantes : - les moyens de commande comportent, pour ledit modulateur associé à un émetteur, au moins un premier interrupteur de commande connecté en- tre la sortie de l'amplificateur opérationnel et l'électrode de grille dudit modulateur ; le premier interrupteur comportant une électrode de grille apte à recevoir la tension de sélection de la ligne de cet émetteur; et - les moyens de commande comportent, pour ledit modulateur associé à un émetteur, un second interrupteur de commande connecté entre la borne inverseuse de l'amplificateur opérationnel et l'électrode de source du modulateur ; le second interrupteur comportant une électrode de grille connectée à l'électrode de grille dudit premier interrupteur pour recevoir, en synchronisme, la tension de sélection ; et - les moyens de sélection de ligne sont aptes à alimenter une élec- trode de grille d'au moins un desdits premiers interrupteurs pour sélectionner au moins un émetteur de cette ligne ; et - les moyens de compensation comprennent un amplificateur opérationnel apte à compenser la tension de seuil de déclenchement de l'ensemble des modulateurs commandant les émetteurs d'une colonne ; et - les modulateurs, les premier et les second interrupteurs de commande sont des composants fabriqués en Silicium poly-cristallin en couches minces ou en Silicium amorphe en couche mince ; et - les modulateurs sont des transistors de type n et en ce que leur drain est alimenté par un moyen d'alimentation ; et - les modulateurs sont des transistors de type p et en ce que les moyens de commande comportent, en outre, un composant passif disposé entre la source et une électrode d'alimentation du modulateur ; et - chaque émetteur est une diode électroluminescente organique ; et - le composant passif comprend une résistance à couches minces ; et - les moyens de commande comportent en outre au moins une capacité de charge connectée entre l'électrode de grille et l'électrode de source dudit modulateur pour maintenir la brillance d'un pixel ou d'un sous-pixel pendant une durée de trame d'image ; et - les moyens de commande comportent une capacité de compensation branchée entre la sortie et l'entrée inverseuse de l'amplificateur opérationnel pour stabiliser en tension la matrice active ; et - l'intensité de drain d'un modulateur est fonction de la différence entre la tension d'alimentation du modulateur et la différence de potentiel entre la grille et la source du modulateur ; et - les moyens de compensation comprennent plusieurs amplificateurs opérationnels, chaque amplificateur opérationnel étant apte à compenser la tension de seuil de déclenchement d'un modulateur commandant un émetteur. Le dispositif selon la présente invention permet avantageusement de compenser les variations de brillance dues aux variations spatiales locales des composants en Silicium poly-cristallin. Il améliore considérablement en conséquence l'uniformité des l'images. De plus, avantageusement, chaque circuit d'adressage d'un émetteur de lumière ne comporte que trois transistors à couches minces. Ce dispositif de visualisation d'images est par conséquent, plus simple à fabriquer et occupe une moins grande surface utile du pixel qui conduit à l'obtention d'un rapport d'ouverture plus grand dudit pixel. De plus, sa fabrication est plus économique car elle nécessite moins de Silicium. En effet, en considérant le nombre d'émetteurs formant un panneau de visualisation, l'économie d'un transistor par émetteur représente une économie substantielle en augmentant le rendement de fabrication. Un autre but de cette invention est de proposer un circuit de commande d'un modulateur de courant qui peut, par exemple, être utilisé dans un dispositif d'affichage d'images à matrice active. A cet effet, l'invention fournit un circuit de commande d'un modulateur de courant présentant une tension de seuil de déclenchement indéfinie, le circuit comportant des moyens de compensation de la tension de seuil de déclenchement, caractérisé en ce que les moyens de compensation de la tension de seuil de déclenchement comprennent au moins un amplificateur opérationnel connecté entre une électrode de grille et une électrode de source dudit modulateur, et dont la contre-réaction compense la tension de seuil de déclenchement du modulateur de sorte que l'intensité du courant de drain traversant le modulateur est indépendante de la tension de seuil de déclenchement du modulateur. De préférence, la sortie de cet amplificateur opérationnel est connectée à l'électrode de grille du modulateur et son entrée inverseuse (-) est connectée à l'électrode de source de ce même modulateur. L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif et, en référence aux figures annexées sur lesquelles : - La figure 1 est un schéma synoptique d'un circuit d'adressage d'un émetteur de lumière connu de l'art antérieur ; - La figure 2 est un graphe représentant des courbes de la caractéris- tique courant-tension de différents transistors à couches minces fabriqués par la technique, connu en tant que telle, de cristallisation de Silicium poly-cristallin à basse température (LTPS) ; - La figure 3 est un schéma synoptique d'un premier mode de réalisation de la présente invention dans lequel le modulateur de courant du circuit d'adressage est de type n ; - La figure 4 est un schéma synoptique d'un deuxième mode de réalisation de la présente invention dans lequel le modulateur de courant du circuit d'adressage est de type p ; - La figure 5 est un schéma synoptique d'une partie d'un réseau d'émetteurs selon le premier mode de réalisation de l'invention. La figure 3 représente un élément d'un dispositif d'affichage d'images selon un premier mode de réalisation de la présente invention. Cet élément comprend un émetteur de lumière E ainsi que le circuit d'adressage 10 qui lui est associé. Classiquement, ce circuit d'adressage 10 comporte un modulateur de courant M, un premier 11 interrupteur de commande, une capacité de stockage C, une électrode de sélection de ligne Vselect, une électrode d'adressage de colonne Vdata et une électrode d'alimentation en tension Vdd. Dans l'exemple représenté, le modulateur est de type n et l'émetteur est une diode de type OLED à structure dite classique. Le même circuit est également applicable aux afficheurs OLED à structure inversée à condition d'utiliser des modulateurs de type p et d'inverser la série modulateur-émetteur, c'est à dire de relier l'anode des émetteurs à l'électrode d'alimentation Vdd et le drain des modulateurs à l'électrode de masse. On présentera ultérieurement en référence à la figure 4 un autre circuit adapté à l'utilisation d'un modulateur de type p avec une structure OLED classique, également applicable à un modulateur de type n avec une structure OLED inversée. Une source d'alimentation Vdd est reliée au drain du modulateur M. Et lorsqu'une tension de donnée Vdata est appliquée à la grille de ce modulateur M, un courant de consigne, aussi appelé courant de drain, s'établit entre le drain et la source et alimente l'anode de l'émetteur de lumière E. L'intensité de ce courant de drain est fonction, entre autres, de la ten- sion de seuil de déclenchement Vth du transistor modulateur. L'émetteur de lumière E émet une quantité de lumière proportionnelle à ce courant. La même tension de donnée ne génère donc pas la même quantité de lumière d'un émetteur à l'autre. Pour compenser les variations de luminance induites par les varia- tions spatiales locales des tensions de seuils, le circuit d'adressage selon la présente invention comprend un amplificateur opérationnel 11 , qui compense la tension de seuil de déclenchement Vth des modulateurs de courant M. En pratique, l'électrode d'adressage de colonne est ici reliée à l'entrée non inverseuse (+) de l'amplificateur opérationnel 11. La source du modulateur M est reliée à la borne inverseuse (-) de l'amplificateur opérationnel, et la borne de sortie de l'amplificateur opérationnel 11 est reliée à la grille du modulateur M pour le débloquer par application de la tension de commande. Préférentiellement, un interrupteur 11 de sélection est branché en série entre la grille du modulateur M et la borne de sortie de l'amplificateur opéra- tionnel 11 et un interrupteur 12 est branché en série entre la source du modulateur et la borne inverseuse (-) de l'amplificateur opérationnel, et les commandes de ces interrupteurs 11 , 12 sont reliées à la même électrode de sélection de ligne Vselect. Dans cette structure, la contre-réaction ainsi obtenue de l'amplificateur opérationnel compense avantageusement la tension de seuil de déclenchement Vth du modulateur M, et cela quelle que soit la valeur de celle-ci. Ainsi, en raison de la contre-réaction de l'amplificateur opérationnel, la tension de l'anode de l'émetteur E est égale à la tension de donnée de colonne Vdata et, le courant de drain émis par le modulateur et traversant l'émetteur est indépendant de la tension de seuil de déclenchement Vth du modulateur M. La tension entre la grille et la source qui est générée par l'amplificateur opérationnel compense la tension de seuil du modulateur M, quelle que soit sa valeur. On a donc ici un générateur de courant commandé par la tension de donnée Vdata, sur la base d'une charge équivalente de diode, qui n'est pas fixe. De plus, avantageusement, l'application d'une contre-réaction de la tension de seuil de déclenchement est synchrone avec l'application de la tension de commande de donnée Vdata et de la tension de commande de sélection Vse- lect. Avantageusement, ce circuit d'adressage comprend également un premier 11 interrupteur de commande dont l'ouverture et la fermeture sont commandées par l'électrode de commande de ligne. Ce premier interrupteur 11 est branché entre la sortie de l'amplificateur opérationnel 11 et la grille du modulateur M de courant de manière à commander le déblocage de celui-ci. Lorsqu'une tension de commande de balayage Vselect est appliquée à la grille du premier interrupteur 11 , celui-ci se ferme et la tension de sortie de l'amplificateur opérationnel est appliquée à la grille du modulateur. Le circuit d'adressage peut également comprendre un interrupteur 12 supplémentaire branché entre la source du modulateur M et la borne inverseuse (-) de l'amplificateur opérationnel 11 pour permettre le fonctionnement en contre- réaction de ce dernier. Avantageusement, ce second interrupteur peut être également commandé par la tension de balayage Vselect appliquée à l'électrode de sélection de ligne. Dans ce cas, la grille du second interrupteur 12 est reliée à la grille du pre- mier interrupteur 11 et le second interrupteur reçoit la tension de commande de balayage Vselect en synchronisme avec le premier interrupteur 11. Ce second interrupteur 12 sécurise l'adressage d'un émetteur. Il évite l'apparition éventuelle de courant de fuite dans un autre circuit d'adressage situé sur la même colonne que l'émetteur sélectionné. De préférence, les deux interrupteurs 11 , 12 et le modulateur M sont fabriqués à partir de la technologie TFT. Ces transistors couches minces peuvent être fabriqués en silicium amorphe ou en silicium poly-cristallin. La structure d'adressage à trois composants TFT et un amplificateur opérationnel est compatible avec ces deux technologies de fabrication des composants TFT. Afin de maintenir la brillance pendant une durée de trame d'image, le circuit d'adressage comporte une capacité de stockage C disposée entre la grille du modulateur M et sa source. Cette capacité permet de maintenir sensiblement la tension constante sur l'électrode de grille du modulateur M pendant un inter- valle de temps correspondant à la durée de trame. Le circuit d'adressage peut également comporter une capacité de compensation Ce montée en parallèle, par l'intermédiaire des premier et second interrupteurs de commande 11 et 12, avec la capacité de charge C, pour stabiliser le circuit. Lors du balayage des pixels, les deux interrupteurs de commande 11 ,11 becomes conducting and the data voltage Vdata present on the column electrode is then applied to the grid of the modulator M. The addressing means of a light emitter comprise a storage capacity C connected between the grid of the modulator and the supply voltage Vdd applied to this transmitter via the modulator. This storage capacity C stores the voltage applied to the grid of the modulator so that the light energy of the transmitter is kept approximately constant for the duration of the frame of the image, even when the control switch of this transmitter n 'is no longer closed and the corresponding line is no longer selected. In an active matrix device of an OLED display, the control switch 11 as well as the modulator M are thin film transistors, also called TFT (Thin Film Transistor) transistors. The production of these components deposited in a thin layer on a glass substrate is most often based on low-temperature polycrystalline silicon (LTPS) technology. This technique uses a laser whose purpose is to transform amorphous silicon into polycrystalline silicon. During the laser pulse, the amorphous silicon which is rapidly heated eventually melts and it is during the cooling phase that the process of crystallization of the amorphous silicon into polycrystalline silicon occurs. However, this crystallization process introduces local spatial variations in the triggering threshold voltage of thin film crystalline poly-silicon transistors. These variations are due to the fact that the boundaries and the dimensions of the grains of poly-silicon are not sufficiently controllable during the crystallization phase. FIG. 2 represents the variations of the drain current Id as a function of the applied voltage Vgs between the gate and the source of different thin film transistors in crystalline poly-Silicon. It can be seen in this figure that the triggering threshold voltage Vth of these transistors is variable from one transistor to another and, presents a dispersion of values due to the faults caused by the variations induced by the crystallization process of the transistors. To authorize the passage of the drain current, the voltage Vgs between the source and the gate of the modulator must be greater than the triggering threshold voltage of the modulator Vth, constituted by one of the abovementioned transistors. As a corollary, the drain current passing through such thin film transistors varies as a function of the triggering threshold voltage of these transistors. Indeed, when a thin film transistor operates in saturation mode, it functions as a current generator. The imposed drain current which it delivers to the transmitter varies according to the following function: le = K. (Vgs-Vth) 2 Or K = kW / 2L in which: - Vgs corresponds to the voltage applied between the source and the gate of this transistor, this voltage is also called the reference voltage, - Vth corresponds to the triggering threshold voltage of this transistor, - W and L correspond respectively to the width and to the length of the transistor channel, - k is a constant which depends on the type of technology used during the manufacture of the transistor. Thus, as confirmed by the curves in FIG. 2, in saturation conditions, the drain current varies from one transistor to another depending on the triggering threshold voltage of each transistor. Consequently, the modulators M of crystalline poly-silicon composing the same display panel and supplied with the same supply voltage Vdd will generate currents of different intensity, even when these are controlled by data voltages Vdata identical. However, an emitter E generally emits a light intensity directly proportional to the current flowing through it, so that the heterogeneity of the trigger thresholds of the crystalline poly-silicon transistors leads to a non-uniformity of brightness of a screen constituted by a matrix of such tran- sistors. This results in differences between the luminance levels and obvious visual discomfort for the user. In order to limit this discomfort, various circuits for compensating for the variation in the triggering threshold voltage have been proposed. Thus, a first method, called the numerical control method, consists in reducing the degradation of the luminance levels by modifying the structures of the pixels. However, this method consumes energy and requires a rapid addressing circuit. Another method described in the document, "Sony, A 13-inch AMOLED display - SID Digest, 2001", consists in current programming of pixel structures. This addressing mode compensates for both the variations in mobility of the charge carriers and therefore of the threshold. However, current programming must take into account very low current levels for low luminance, which leads to considerably increasing the programming time necessary to establish the adequate current supplied to the OLED light emitter. In addition, each addressing circuit, produced according to this method, requires the installation of four TFT thin film transistors per transmitter. This method is not very economical and considerably reduces the useful light-emitting surface of the pixels. Another method described in the document “Seoul National University, AM-LCD 02, OLED-2, p. 13 ”realizes a voltage compensation by a voltage addressing circuit which includes two additional TFT thin film transistors. These transistors are connected between the control switch 11 and the current modulator M. This other method is based on the principle according to which the threshold voltage of the first additional transistor and of the modulator M are identical because, during their manufacture, these components are parallel to the scanning direction of the laser beam used to heat the thin layer to be recrystallized and are thus subjected to substantially the same recrystallization conditions. In such an addressing circuit, the triggering threshold voltage of the first additional transistor automatically compensates for the triggering voltage of the modulator so that the drain current, supplying the transmitter, is independent of the triggering voltage. It should be noted that the second thin-film transistor also makes it possible to reset the voltage stored in the load capacity. However, the addressing circuit according to this method also requires the creation of an addressing circuit with 4 transistors. This greater complexity reduces both the reliability and the yield of the screens, leading to a significant increase in manufacturing costs. Another method described in document EP1381019, in particular in paragraphs 42 and 43 with reference to FIGS. 7 and 11 of this document; the voltage control method described here uses an operational amplifier 54 to compensate for the trigger threshold variations of all the modulators 32 relating to the same column of pixels; the output of this amplifier is connected, via the switch SW2a and the electrode Xi, to the gate G of the modulator 32; the non-inverting input (+) of this amplifier is connected, via the resistor 52, the switch SW1a and the electrode Wi, to the drain electrode D of this modulator 32. It has been found that the operational amplifier connected in this way worked in reality, not really as described in this document, but as a hysteresis comparator, also commonly called "Schmitt rocker", which leads to control the transmitters of the display in digital mode " all or nothing ”, ie in bi-stable; the gray levels can then only be obtained by pulse width modulation (“PWM”), which poses other problems of display quality, such as false contours. Furthermore, such an assembly requires numerous switches with their associated control means, which is expensive. In the document US2002 / 047817 which describes a current modulator control circuit T2 which also includes an operational amplifier, which is used here as a comparator between a voltage ramp Vrj RV and a data voltage VQAT 'so as to program the duration of opening of the T2 modulator, as indicated in particular in paragraph 14 of this document, in particular in the last sentence; we therefore find the drawbacks mentioned above of a "PWM"modulation; also note that the operational amplifier has no feedback in such an arrangement. An object of the present invention is the implementation of an active matrix image display device in which the trigger threshold voltages of the crystalline poly-silicon transistors are automatically compensated and, which does not have the disadvantages of the methods of the prior art. To this end, the present invention relates to an active matrix image display device comprising: - several light emitters forming a network of emitters distributed in rows and columns, - means for controlling the emission network light emitters comprising: - for each network light emitter, a current modulator capable of controlling said emitter, and comprising a source electrode, a drain electrode, a gate electrode and a trigger threshold voltage ; the triggering threshold voltage varying from one modulator to another, - column addressing means capable of addressing the emitters of each column of emitters by applying a data voltage to the electrode of grid of their modulators, for controlling them, - line selection means capable of selecting the transmitters of each line of transmitters by applying a selection voltage, - means of compensating the trigger threshold voltage of each modulator, characterized in that: - the compensation means comprise at least one operational amplifier, the feedback of this operational amplifier being able to compensate the triggering threshold voltage of at least one modulator whatever the value of that here, and - said amplifier having an inverting input (-), a non-inverting input (+) and an output terminal, and - the non-inverting input (+) of the operational amplifier was nt connected to an addressing means of the column controlling said modulator, and - the inverting input (-) of the operational amplifier being connected to the source electrode of said modulator, and - the output of the operational amplifier being connected to the gate electrode of said modulator. According to particular embodiments, the display device comprises one or more of the following characteristics: the control means comprise, for said modulator associated with a transmitter, at least one first control switch connected between the output the operational amplifier and the gate electrode of said modulator; the first switch comprising a gate electrode capable of receiving the line selection voltage of this transmitter; and the control means comprise, for said modulator associated with a transmitter, a second control switch connected between the inverting terminal of the operational amplifier and the source electrode of the modulator; the second switch comprising a gate electrode connected to the gate electrode of said first switch to receive, in synchronism, the selection voltage; and the line selection means are capable of supplying a gate electrode with at least one of said first switches to select at least one transmitter for this line; and the compensation means comprise an operational amplifier able to compensate the trigger threshold voltage of all the modulators controlling the transmitters of a column; and - the modulators, the first and the second control switches are components made from poly-crystalline silicon in thin layers or from amorphous silicon in thin layers; and - the modulators are n-type transistors and in that their drain is supplied by a supply means; and - the modulators are p-type transistors and in that the control means further comprise a passive component disposed between the source and a supply electrode of the modulator; and each emitter is an organic light-emitting diode; and - the passive component comprises a thin film resistor; and - the control means furthermore comprise at least one charge capacity connected between the gate electrode and the source electrode of said modulator to maintain the brightness of a pixel or of a sub-pixel during a frame duration image; and the control means comprise a compensation capacity connected between the output and the inverting input of the operational amplifier to stabilize the active matrix in voltage; and - the drain intensity of a modulator is a function of the difference between the supply voltage of the modulator and the potential difference between the gate and the source of the modulator; and the compensation means comprise several operational amplifiers, each operational amplifier being able to compensate for the triggering threshold voltage of a modulator controlling a transmitter. The device according to the present invention advantageously makes it possible to compensate for the variations in brightness due to the local spatial variations of the components in poly-crystalline silicon. It therefore considerably improves the uniformity of the images. In addition, advantageously, each addressing circuit of a light emitter only comprises three thin film transistors. This image display device is therefore simpler to manufacture and occupies a smaller useful surface area of the pixel which leads to obtaining a larger aperture ratio of said pixel. In addition, its manufacture is more economical because it requires less silicon. Indeed, considering the number of transmitters forming a display panel, the economy of one transistor per transmitter represents a substantial saving by increasing the manufacturing yield. Another object of this invention is to provide a control circuit for a current modulator which can, for example, be used in an active matrix image display device. To this end, the invention provides a control circuit for a current modulator having an indefinite trigger threshold voltage, the circuit comprising means for compensating the trigger threshold voltage, characterized in that the means for compensating of the trigger threshold voltage comprise at least one operational amplifier connected between a gate electrode and a source electrode of said modulator, and the feedback of which compensates for the trigger threshold voltage of the modulator so that the intensity of the current drain through the modulator is independent of the trigger threshold voltage of the modulator. Preferably, the output of this operational amplifier is connected to the gate electrode of the modulator and its inverting input (-) is connected to the source electrode of this same modulator. The invention will be better understood on reading the description which follows, given by way of nonlimiting example and, with reference to the appended figures in which: - Figure 1 is a block diagram of an addressing circuit d 'a light emitter known from the prior art; FIG. 2 is a graph representing curves of the current-voltage characteristic of different thin film transistors manufactured by the technique, known as such, of crystallization of low-temperature poly-crystalline silicon (LTPS); - Figure 3 is a block diagram of a first embodiment of the present invention in which the current modulator of the addressing circuit is of type n; - Figure 4 is a block diagram of a second embodiment of the present invention in which the current modulator of the addressing circuit is of type p; - Figure 5 is a block diagram of part of a network of transmitters according to the first embodiment of the invention. FIG. 3 represents an element of an image display device according to a first embodiment of the present invention. This element comprises a light emitter E as well as the addressing circuit 10 which is associated with it. Conventionally, this addressing circuit 10 comprises a current modulator M, a first control switch 11, a storage capacity C, a line selection electrode Vselect, a column addressing electrode Vdata and a supply electrode in voltage Vdd. In the example shown, the modulator is of the n type and the emitter is an OLED type diode with a so-called conventional structure. The same circuit is also applicable to OLED displays with an inverted structure, provided that p-type modulators are used and the modulator-emitter series is inverted, that is, the anode of the emitters is connected to the electrode of Vdd supply and the drain of the modulators to the ground electrode. Another circuit will be presented later with reference to FIG. 4 suitable for the use of a p-type modulator with a conventional OLED structure, also applicable to an n-type modulator with an inverted OLED structure. A power source Vdd is connected to the drain of the modulator M. And when a data voltage Vdata is applied to the gate of this modulator M, a setpoint current, also called drain current, is established between the drain and the source and feeds the anode of the light emitter E. The intensity of this drain current is a function, among other things, of the triggering threshold voltage Vth of the modulating transistor. The light emitter E emits an amount of light proportional to this current. The same data voltage therefore does not generate the same amount of light from one emitter to another. To compensate for the variations in luminance induced by the local spatial variations in the threshold voltages, the addressing circuit according to the present invention comprises an operational amplifier 11, which compensates for the triggering threshold voltage Vth of the current modulators M. En practical, the column addressing electrode is here connected to the non-inverting input (+) of the operational amplifier 11. The source of the modulator M is connected to the inverting terminal (-) of the operational amplifier, and the output terminal of the operational amplifier 11 is connected to the gate of the modulator M to unlock it by application of the control voltage. Preferably, a selection switch 11 is connected in series between the gate of the modulator M and the output terminal of the operational amplifier 11 and a switch 12 is connected in series between the source of the modulator and the inverting terminal (-) of the operational amplifier, and the controls of these switches 11, 12 are connected to the same line selection electrode Vselect. In this structure, the feedback thus obtained from the operational amplifier advantageously compensates for the trigger threshold voltage Vth of the modulator M, and this whatever the value thereof. Thus, due to the feedback of the operational amplifier, the voltage of the anode of the transmitter E is equal to the data voltage of column Vdata and, the drain current emitted by the modulator and passing through the transmitter is independent of the trigger threshold voltage Vth of the modulator M. The voltage between the gate and the source which is generated by the operational amplifier compensates for the threshold voltage of the modulator M, whatever its value. We therefore have here a current generator controlled by the data voltage Vdata, on the basis of an equivalent diode charge, which is not fixed. In addition, advantageously, the application of a feedback of the trigger threshold voltage is synchronous with the application of the data control voltage Vdata and the selection control voltage Vse- lect. Advantageously, this addressing circuit also comprises a first control switch 11 the opening and closing of which are controlled by the line control electrode. This first switch 11 is connected between the output of the operational amplifier 11 and the gate of the current modulator M so as to control the unlocking of the latter. When a scanning control voltage Vselect is applied to the gate of the first switch 11, the latter closes and the output voltage of the operational amplifier is applied to the gate of the modulator. The addressing circuit can also include an additional switch 12 connected between the source of the modulator M and the inverting terminal (-) of the operational amplifier 11 to allow the latter to operate in feedback. Advantageously, this second switch can also be controlled by the scanning voltage Vselect applied to the line selection electrode. In this case, the gate of the second switch 12 is connected to the gate of the first switch 11 and the second switch receives the scanning control voltage Vselect in synchronism with the first switch 11. This second switch 12 secures the addressing of 'an emitter. It prevents the possible occurrence of leakage current in another addressing circuit located on the same column as the selected transmitter. Preferably, the two switches 11, 12 and the modulator M are manufactured using TFT technology. These thin film transistors can be made of amorphous silicon or polycrystalline silicon. The addressing structure with three TFT components and an operational amplifier is compatible with these two technologies for manufacturing TFT components. In order to maintain the brightness for a duration of image frame, the addressing circuit comprises a storage capacity C arranged between the grid of the modulator M and its source. This capacity makes it possible to substantially maintain the constant voltage on the gate electrode of the modulator M during a time interval corresponding to the frame duration. The addressing circuit can also include a compensation capacitor Ce mounted in parallel, via the first and second control switches 11 and 12, with the charging capacitance C, to stabilize the circuit. During the scanning of the pixels, the two control switches 11,
12 de l'émetteur sélectionné deviennent passant et, grâce à la contre-réaction de l'amplificateur opérationnel, c'est la tension de donnée Vdata appliquée à la borne non inverseuse (+) de l'amplificateur opérationnel qui est effectivement appliquée à l'anode de l'émetteur de lumière E. Après le balayage des pixels, le modulateur M fonctionne dans la région de saturation et délivre un courant de drain proportionnel à la tension stockée dans la capacité de stockage C. En raison de la compensation de tension réalisée par l'amplificateur opérationnel, le courant de drain est indépendant de la tension de seuil de déclenchement Vth du modulateur M. Ainsi, les variations de tension de seuil de pixel à pixel d'une même colonne n'influencent pas le courant traversant l'émetteur de lumière de ces pixels.12 of the selected transmitter become conducting and, thanks to the feedback of the operational amplifier, it is the data voltage Vdata applied to the non-inverting terminal (+) of the operational amplifier which is effectively applied to the anode of the light emitter E. After scanning the pixels, the modulator M operates in the saturation region and delivers a drain current proportional to the voltage stored in the storage capacity C. Due to the voltage compensation produced by the operational amplifier, the drain current is independent of the trigger threshold voltage Vth of the modulator M. Thus, the pixel-to-pixel threshold voltage variations of the same column do not influence the current flowing through l emitter of these pixels.
La figure 4 représente un second mode de réalisation de la présente invention. Dans l'exemple représenté, le modulateur est cette fois de type p et l'émetteur est une diode de type OLED à structure dite classique. Le même circuit est également applicable aux afficheurs OLED à structure inversée à condition d'utiliser des modulateurs de type n et d'inverser la série modulateur- émetteur, c'est à dire de relier l'anode des émetteurs à l'électrode d'alimentation Vdd et la source des modulateurs à l'électrode de masse via un composant passif. Comme le premier mode de réalisation représenté à la figure 3, l'amplificateur opérationnel 21 est employé en contre-réaction. Sa sortie est reliée comme précédemment à la grille du modulateur M par l'intermédiaire d'un inter- rupteur de commande 11 , et son entrée inverseuse (-) est reliée comme précédemment à la source du modulateur M par l'intermédiaire d'un interrupteur de commande 12. Comme précédemment, la tension de commande de donnée Vdata est injectée dans l'entrée non inverseuse (+) de l'amplificateur. A la différence du premier mode de réalisation, la tension d'alimentation Vdd de l'émetteur est reliée ici à la source du modulateur M par l'intermédiaire d'un composant passif R. Comme le modulateur est de type P, le drain du modulateur est ici relié à l'anode de l'émetteur de lumière E. Lorsqu'une tension de commande de donnée Vdata est appliquée à la grille du modulateur de type p, un courant de drain traverse ici le modulateur, de sa source vers son drain. Ce composant passif peut, par exemple, comprendre une électrode, une résistance, une diode ou un circuit électrique. Dans l'exemple de réalisation de la figure 4, ce composant passif est constitué avantageusement d'une résis- tance R à couches minces. Lorsqu'un émetteur est sélectionné, une tension de donnée Vdata est appliquée à grille du modulateur M et donc à la borne commune à la résistance R et à la source du modulateur, et un courant de drain traverse le modulateur M et l'émetteur E. Ce courant est défini selon la loi linéaire suivante : Id = (Vdd- Vdata)/R (équation 1) On a donc ici un générateur de courant commandé par la tension de donnée Vdata sur la base d'une charge fixe R. Du fait de cette charge fixe, le pilotage des émetteurs peut être conduit avantageusement tout à fait indépendamment des caractéristiques des diodes ou émetteurs E. On peut constater que le courant traversant le modulateur et l'émetteur E est indépendant de sa tension de seuil de déclenchement. De plus, comme la tension d'alimentation du circuit Vdd est constante, le courant de drain est directement pilotable par la tension de donnée Vdata. Pour une tension de commande de donnée fixée, le courant de drain est donc constant. Par ailleurs, comme décrit précédemment, après un balayage des pixels, le modulateur M est dans son mode de fonctionnement en régime de saturation et le courant de drain est défini par la relation suivante : Id =k/2.W/l (Vgs-Vth)2 (équation 2) Pour une tension de donnée fixée, le courant de drain Id est constant (cf. équation 1), la différence entre la tension de déclenchement de seuil Vth et la tension entre la grille et la source est donc constante. Ainsi, grâce à la contre-réaction de l'amplificateur opérationnel, la ten- sion de déclenchement de seuil Vth et la tension entre la grille et la source s'ajustent l'une à l'autre en permanence. En conséquence, le courant de drain ne varie pas en fonction du seuil de déclenchement de différents transistors de type p. La variation de pixel à pixel n'influence plus le courant traversant l'émetteur de lumière. La figure 5 représente schématiquement une partie d'un réseau d'émetteurs d'un panneau d'affichage à matrice active dans lequel les modulateurs des circuits d'adressage sont des composants de type n. Classiquement, dans un tel panneau d'affichage, le réseau d'émetteurs et leur circuit d'adressage sont disposés en lignes et en colonnes. Avantageusement, l'application d'une tension de balayage Vselect n sur l'électrode de la ligne n commande l'ensemble des premier 11 et des second 12 interrupteurs de commande des pixels de cette ligne. Des tensions de donnée vidéo, Vdata i, Vdata j correspondant aux images à afficher alimentent les amplificateurs opérationnels des colonnes via les électrodes de colonne. Avantageusement, le réseau d'émetteurs, représenté en figure 5, ne comporte qu'un seul amplificateur opérationnel par colonne. Cet amplificateur opérationnel Ajn est apte à compenser les différentes tensions de seuil de déclenchement de chacun des modulateurs Mιn, Mjm de cette colonne. Lors d'un balayage de chaque ligne du réseau d'émetteurs, balayage qui correspond à une trame d'image, les amplificateurs opérationnels Ain, Ajn des différentes colonnes du panneau d'affichage vont compenser simultanément les tensions de seuil de déclenchement de l'ensemble des modulateurs de cette ligne. La sortie de l'amplificateur opérationnel d'une colonne est reliée à la grille de chacun des modulateurs de cette colonne, via les premiers interrupteurs de commande 11. L'entrée inverseuse (-) de l'amplificateur opérationnel de cette colonne est reliée à la source de chacun des modulateurs de cette colonne, via les seconds interrupteurs de commande 12. Pour sélectionner un émetteur Ej„, une tension de sélection Vselect n est appliquée à l'électrode de ligne de la ligne n de cet émetteur Ejn et, pour obtenir rémission souhaitée, une tension de donnée Vdata i est alors appliquée à l'électrode de colonne i de la colonne de cet émetteur Eιn. Les premier 11 et second 12 interrupteurs de commande étant fermés, comme expliqué précédemment, la tension de commande de donnée Vdata i est appliquée à la source du modulateur Min. La tension de seuil de déclenchement de ce modulateur est compensée par la sortie de l'amplificateur de colonne Ain, et le modulateur Mjn émet un courant de drain dans l'émetteur Ein. Comme le panneau ou réseau d'émetteurs ne comporte qu'un seul amplificateur opérationnel par colonne pour la compensation des variations de seuil, et comme chaque pixel de ce panneau ne comprend que trois transistors, on obtient un panneau économique offrant des niveaux très homogènes de luminance et un très bon confort visuel. Figure 4 shows a second embodiment of the present invention. In the example shown, the modulator is this time of type p and the transmitter is an OLED type diode with a so-called conventional structure. The same circuit is also applicable to OLED displays with an inverted structure, provided that n-type modulators are used and the modulator-emitter series is inverted, that is, the anode of the emitters is connected to the electrode of Vdd power supply and the source of the modulators to the ground electrode via a passive component. Like the first embodiment shown in Figure 3, the operational amplifier 21 is used in feedback. Its output is connected as previously to the grid of the modulator M via an inter- control breaker 11, and its inverting input (-) is connected as previously to the source of the modulator M via a control switch 12. As before, the data control voltage Vdata is injected into the input non-inverting (+) amplifier. Unlike the first embodiment, the supply voltage Vdd of the transmitter is here connected to the source of the modulator M via a passive component R. As the modulator is of type P, the drain of the here the modulator is connected to the anode of the light emitter E. When a data control voltage Vdata is applied to the gate of the p-type modulator, a drain current here flows through the modulator, from its source to its drain. This passive component can, for example, include an electrode, a resistor, a diode or an electrical circuit. In the exemplary embodiment of FIG. 4, this passive component advantageously consists of a resistor R with thin layers. When an emitter is selected, a data voltage Vdata is applied to the gate of the modulator M and therefore to the terminal common to the resistor R and to the source of the modulator, and a drain current flows through the modulator M and the emitter E This current is defined according to the following linear law: Id = (Vdd- Vdata) / R (equation 1) So here we have a current generator controlled by the data voltage Vdata on the basis of a fixed charge R. Du made of this fixed charge, the control of the transmitters can advantageously be carried out completely independently of the characteristics of the diodes or transmitters E. It can be seen that the current passing through the modulator and the emitter E is independent of its triggering threshold voltage. In addition, as the supply voltage of the circuit Vdd is constant, the drain current is directly controllable by the data voltage Vdata. For a fixed data control voltage, the drain current is therefore constant. Furthermore, as described above, after scanning the pixels, the modulator M is in its operating mode in saturation mode and the drain current is defined by the following relation: Id = k / 2.W / l (Vgs- Vth) 2 (equation 2) For a fixed data voltage, the drain current Id is constant (cf. equation 1), the difference between the threshold trigger voltage Vth and the voltage between the gate and the source is therefore constant. Thus, thanks to the feedback from the operational amplifier, the threshold trigger voltage Vth and the voltage between the gate and the source are constantly adjusted to each other. Consequently, the drain current does not vary as a function of the triggering threshold of different p-type transistors. The pixel-to-pixel variation no longer influences the current flowing through the light emitter. FIG. 5 schematically represents part of a network of transmitters of an active matrix display panel in which the modulators of the addressing circuits are n-type components. Conventionally, in such a display panel, the network of transmitters and their addressing circuit are arranged in rows and columns. Advantageously, the application of a scanning voltage Vselect n on the electrode of line n controls all of the first 11 and second 12 switches for controlling the pixels of this line. Video data voltages, Vdata i, Vdata j corresponding to the images to be displayed supply the operational amplifiers of the columns via the column electrodes. Advantageously, the network of transmitters, represented in FIG. 5, comprises only one operational amplifier per column. This operational amplifier Aj n is able to compensate for the different triggering threshold voltages of each of the modulators M ιn , Mj m of this column. During a scan of each line of the transmitter network, scanning which corresponds to an image frame, the operational amplifiers A in , A jn of the different columns of the display panel will simultaneously compensate the triggering threshold voltages of all the modulators of this line. The output of the operational amplifier of a column is connected to the gate of each of the modulators of this column, via the first control switches 11. The inverting input (-) of the operational amplifier of this column is connected to the source of each of the modulators in this column, via the second control switches 12. To select an emitter Ej „, a selection voltage Vselect n is applied to the line electrode of line n of this emitter Ej n and, to obtain the desired remission, a data voltage Vdata i is then applied to the electrode from column i to the column of this transmitter Eι n . The first 11 and second 12 control switches being closed, as explained above, the data control voltage Vdata i is applied to the source of the modulator M in . The trigger threshold voltage of this modulator is compensated by the output of the column amplifier A in , and the modulator Mj n emits a drain current in the transmitter E in . As the panel or network of transmitters has only one operational amplifier per column for compensating for threshold variations, and since each pixel of this panel only comprises three transistors, an economical panel is obtained offering very homogeneous levels of luminance and very good visual comfort.

Claims

REVENDICATIONS 1. Dispositif d'affichage d'images à matrice active comprenant : - plusieurs émetteurs de lumière (Ejn, Ejn, Eim) formant un réseau d'émetteurs répartis en lignes et en colonnes, - des moyens de commande de l'émission des émetteurs de lumière du réseau comprenant : - pour chaque émetteur de lumière (Ejn, Ejn, Ejm) du réseau, un modulateur de courant (Mim) apte à commander ledit émetteur, et comportant une électrode de source, une électrode de drain, une électrode de grille et une ten- sion de seuil de déclenchement (Vth); la tension de seuil de déclenchement (Vth) variant d'un modulateur (Mim) à l'autre, - des moyens d'adressage de colonne aptes à adresser les émetteurs de chaque colonne d'émetteurs (Ein, Eim) par application d'une tension de donnée (Vdata i) à l'électrode de grille de leurs modulateurs (Mjn, Mim), pour les commander, - des moyens de sélection de ligne aptes à sélectionner les émetteurs de chaque ligne d'émetteurs (Ejn, Ein) par application d'une tension de sélection (Vselect n) , - des moyens de compensation (Ajn, Ajn, 11 , 21) de la tension de seuil de déclenchement (Vth) de chaque modulateur (Mim), caractérisé en ce que : - les moyens de compensation comprennent au moins un amplificateur opérationnel, la contre-réaction de cet amplificateur opérationnel étant apte à compenser la tension de seuil de déclenchement d'au moins un modulateur quelle que soit la valeur de celle-ci, et - ledit amplificateur ayant une entrée inverseuse (-), une entrée non inverseuse (+) et une borne de sortie, et - l'entrée non inverseuse (+) de l'amplificateur opérationnel étant connectée à un moyen d'adressage de la colonne commandant ledit modulateur, et - l'entrée inverseuse (-) de l'amplificateur opérationnel étant connectée à l'électrode de source dudit modulateur, et - la sortie de l'amplificateur opérationnel étant connectée à l'électrode de grille dudit modulateur. CLAIMS 1. Active matrix image display device comprising: - several light emitters (Ej n , Ej n , E im ) forming a network of emitters distributed in rows and columns, - means for controlling the transmission of light emitters from the network comprising: - for each light emitter (Ej n , Ej n , Ej m ) of the network, a current modulator (Mim) capable of controlling said emitter, and comprising a source electrode, a drain electrode, a gate electrode and a trigger threshold voltage (Vth); the triggering threshold voltage (Vth) varying from one modulator (Mi m ) to another, - column addressing means capable of addressing the transmitters of each column of transmitters (Ein, Ei m ) by application a data voltage (Vdata i) at the gate electrode of their modulators (Mj n , Mi m ), to control them, - line selection means capable of selecting the transmitters of each line of transmitters ( Ejn, Ein) by applying a selection voltage (Vselect n), - compensation means (Aj n , A jn , 11, 21) for the triggering threshold voltage (Vth) of each modulator (Mi m ) , characterized in that: - the compensation means comprise at least one operational amplifier, the feedback of this operational amplifier being able to compensate the trigger threshold voltage of at least one modulator whatever the value thereof ci, and - said amplifier having an inverting input (-), an input no n inverting (+) and an output terminal, and - the non-inverting input (+) of the operational amplifier being connected to an addressing means of the column controlling said modulator, and - the inverting input (-) of the operational amplifier being connected to the source electrode of said modulator, and - the output of the operational amplifier being connected to the gate electrode of said modulator.
2. Dispositif d'affichage d'images selon la revendication 1 caractérisé en ce que les moyens de commande comportent, pour ledit modulateur associé à un émetteur, au moins un premier interrupteur (11) de commande connecté entre la sortie de l'amplificateur opérationnel (Ain, 11 , 21) et l'électrode de grille dudit modulateur (Min); le premier interrupteur comportant une électrode de grille apte à recevoir la tension de sélection (Vselect n) de la ligne de cet émetteur (Ein). 2. image display device according to claim 1 characterized in that the control means comprise, for said modulator associated with a transmitter, at least a first control switch (11) connected between the output of the operational amplifier (A in , 11, 21) and the gate electrode of said modulator (M in ); the first switch comprising a gate electrode capable of receiving the selection voltage (Vselect n) of the line of this transmitter (E in ).
3. Dispositif d'affichage d'images selon la revendication 2 caractérisé en ce que les moyens de commande comportent, pour ledit modulateur associé à un émetteur, un second interrupteur (12) de commande connecté entre la borne inverseuse (-) de l'amplificateur opérationnel (Ain„ 11 , 21) et l'électrode de source du modulateur (M); le second interrupteur (12) comportant une électrode de grille connectée à l'électrode de grille dudit premier interrupteur (11) pour recevoir, en synchronisme, la tension de sélection (Vselect). 3. Image display device according to claim 2 characterized in that the control means comprise, for said modulator associated with a transmitter, a second control switch (12) connected between the inverting terminal (-) of the operational amplifier (A in „ 11, 21) and the source electrode of the modulator (M); the second switch (12) comprising a gate electrode connected to the gate electrode of said first switch (11) for receiving, in synchronism, the selection voltage (Vselect).
4. Dispositif d'affichage d'images selon l'une des revendications 2 à 3 caractérisé en ce que les moyens de sélection de ligne sont aptes à alimenter une électrode de grille d'au moins un desdits premiers interrupteurs pour sélectionner au moins un émetteur (Ejn) de cette ligne. 4. Image display device according to one of claims 2 to 3 characterized in that the line selection means are capable of supplying a gate electrode with at least one of said first switches to select at least one transmitter (Ej n ) of this line.
5. Dispositif d'affichage d'images selon l'une quelconque des revendications précédentes caractérisé en ce que les moyens de compensation com- prennent un amplificateur opérationnel (Ain,11 ,21) apte à compenser la tension de seuil de déclenchement (Vth) de l'ensemble des modulateurs (Min, Mιm) commandant les émetteurs (EJΠ, Ejm) d'une colonne. 5. Image display device according to any one of the preceding claims, characterized in that the compensation means include an operational amplifier (A in , 11, 21) capable of compensating the trigger threshold voltage (Vth ) of all the modulators (M in , M ιm ) controlling the transmitters (EJ Π , Ej m ) of a column.
6. Dispositif d'affichage d'images selon l'une quelconque des revendications 3 à 5 caractérisé en ce que les modulateurs (Mjn), les premier (11) et les second (12) interrupteurs de commande sont des composants fabriqués en Silicium poly-cristallin en couches minces ou en Silicium amorphe en couches minces. 6. Image display device according to any one of claims 3 to 5 characterized in that the modulators (Mj n ), the first (11) and the second (12) control switches are components made of Silicon poly-crystalline in thin layers or in amorphous silicon in thin layers.
7. Dispositif d'affichage d'images selon l'une quelconque des revendications précédentes caractérisé en ce que les modulateurs (Min) sont des transis- tors de type n et en ce que leur drain est alimenté par un moyen d'alimentation (Vdd). 7. Image display device according to any one of the preceding claims, characterized in that the modulators (Mi n ) are n-type transistors and in that their drain is supplied by a supply means ( Vdd).
8. Dispositif d'affichage d'images selon l'une quelconque des revendi- cationsl à 6, caractérisé en ce que les modulateurs (Min) sont des transistors de type p et en ce que les moyens de commande comportent, en outre, un compo- sant passif (R) disposé entre la source et une électrode d'alimentation (Vdd) du modulateur (Mm). 8. Image display device according to any one of claims 1 to 6, characterized in that the modulators (M in ) are p-type transistors and in that the control means further comprise, a composition passive health (R) disposed between the source and a supply electrode (Vdd) of the modulator (M m ).
9. Dispositif d'affichage d'images selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque émetteur (E) est une diode électroluminescente organique. 9. Image display device according to any one of the preceding claims, characterized in that each emitter (E) is an organic light-emitting diode.
10. Circuit de commande d'un modulateur de courant (M) présentant une tension de seuil de déclenchement indéfinie (Vth), le circuit comportant des moyens de compensation de la tension de seuil de déclenchement, caractérisé en ce que les moyens de compensation de la tension de seuil de déclenchement comprennent au moins un amplificateur opérationnel (11 ,21) dont la sortie est connectée à l'électrode de grille dudit modulateur et dont l'entrée inverseuse (-) est connectée à l'électrode de source dudit modulateur, et dont la contre-réaction compense la tension de seuil de déclenchement du modulateur de sorte que l'intensité du courant de drain traversant le modula- teur (M) est indépendante de la tension de seuil de déclenchement (Vth) du modulateur (M). 10. Control circuit of a current modulator (M) having an indefinite trigger threshold voltage (Vth), the circuit comprising means for compensating for the trigger threshold voltage, characterized in that the means for compensating for the triggering threshold voltage comprise at least one operational amplifier (11, 21) whose output is connected to the gate electrode of said modulator and whose inverting input (-) is connected to the source electrode of said modulator, and whose feedback compensates for the trigger threshold voltage of the modulator so that the intensity of the drain current passing through the modulator (M) is independent of the trigger threshold voltage (Vth) of the modulator (M) .
EP04767476.7A 2003-07-03 2004-06-25 Display device and control circuit for a light modulator Active EP1644913B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0308127A FR2857146A1 (en) 2003-07-03 2003-07-03 Organic LED display device for e.g. motor vehicle, has operational amplifiers connected between gate and source electrodes of modulators, where counter reaction of amplifiers compensates threshold trigger voltages of modulators
PCT/FR2004/001629 WO2005013250A1 (en) 2003-07-03 2004-06-25 Display device and control circuit for a light modulator

Publications (2)

Publication Number Publication Date
EP1644913A1 true EP1644913A1 (en) 2006-04-12
EP1644913B1 EP1644913B1 (en) 2013-08-07

Family

ID=33522734

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04767476.7A Active EP1644913B1 (en) 2003-07-03 2004-06-25 Display device and control circuit for a light modulator

Country Status (9)

Country Link
US (1) US7557778B2 (en)
EP (1) EP1644913B1 (en)
JP (2) JP2007516454A (en)
KR (1) KR101391813B1 (en)
CN (1) CN100433109C (en)
FR (1) FR2857146A1 (en)
MX (1) MXPA05014178A (en)
TW (1) TWI376975B (en)
WO (1) WO2005013250A1 (en)

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2443206A1 (en) 2003-09-23 2005-03-23 Ignis Innovation Inc. Amoled display backplanes - pixel driver circuits, array architecture, and external compensation
JP2005157123A (en) * 2003-11-27 2005-06-16 Dainippon Printing Co Ltd Organic el display device
JP2005331933A (en) * 2004-04-20 2005-12-02 Dainippon Printing Co Ltd Organic el display
CA2490858A1 (en) 2004-12-07 2006-06-07 Ignis Innovation Inc. Driving method for compensated voltage-programming of amoled displays
US10013907B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US9280933B2 (en) 2004-12-15 2016-03-08 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US8576217B2 (en) 2011-05-20 2013-11-05 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
US10012678B2 (en) 2004-12-15 2018-07-03 Ignis Innovation Inc. Method and system for programming, calibrating and/or compensating, and driving an LED display
US9799246B2 (en) 2011-05-20 2017-10-24 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
EP2688058A3 (en) 2004-12-15 2014-12-10 Ignis Innovation Inc. Method and system for programming, calibrating and driving a light emitting device display
US9275579B2 (en) 2004-12-15 2016-03-01 Ignis Innovation Inc. System and methods for extraction of threshold and mobility parameters in AMOLED displays
FR2884639A1 (en) * 2005-04-14 2006-10-20 Thomson Licensing Sa ACTIVE MATRIX IMAGE DISPLAY PANEL, THE TRANSMITTERS OF WHICH ARE POWERED BY POWER-DRIVEN POWER CURRENT GENERATORS
KR20080032072A (en) 2005-06-08 2008-04-14 이그니스 이노베이션 인크. Method and system for driving a light emitting device display
CA2518276A1 (en) 2005-09-13 2007-03-13 Ignis Innovation Inc. Compensation technique for luminance degradation in electro-luminance devices
EP1793367A3 (en) * 2005-12-02 2009-08-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9269322B2 (en) 2006-01-09 2016-02-23 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US9489891B2 (en) 2006-01-09 2016-11-08 Ignis Innovation Inc. Method and system for driving an active matrix display circuit
US8477121B2 (en) 2006-04-19 2013-07-02 Ignis Innovation, Inc. Stable driving scheme for active matrix displays
TWI366811B (en) * 2006-06-05 2012-06-21 Himax Tech Inc Amoled panel
EP1879171A1 (en) * 2006-07-10 2008-01-16 THOMSON Licensing Organic electroluminescent display
CA2556961A1 (en) 2006-08-15 2008-02-15 Ignis Innovation Inc. Oled compensation technique based on oled capacitance
EP2093748B1 (en) * 2007-03-08 2013-01-16 Sharp Kabushiki Kaisha Display device and its driving method
JP4508205B2 (en) * 2007-03-26 2010-07-21 ソニー株式会社 Display device, display device driving method, and electronic apparatus
US8335404B2 (en) * 2007-07-20 2012-12-18 Vision Louis Winter Dynamically varying classified image display system
US9370075B2 (en) 2008-12-09 2016-06-14 Ignis Innovation Inc. System and method for fast compensation programming of pixels in a display
CA2669367A1 (en) 2009-06-16 2010-12-16 Ignis Innovation Inc Compensation technique for color shift in displays
US9311859B2 (en) 2009-11-30 2016-04-12 Ignis Innovation Inc. Resetting cycle for aging compensation in AMOLED displays
US10319307B2 (en) 2009-06-16 2019-06-11 Ignis Innovation Inc. Display system with compensation techniques and/or shared level resources
US9384698B2 (en) 2009-11-30 2016-07-05 Ignis Innovation Inc. System and methods for aging compensation in AMOLED displays
CA2688870A1 (en) 2009-11-30 2011-05-30 Ignis Innovation Inc. Methode and techniques for improving display uniformity
US10996258B2 (en) 2009-11-30 2021-05-04 Ignis Innovation Inc. Defect detection and correction of pixel circuits for AMOLED displays
US8803417B2 (en) 2009-12-01 2014-08-12 Ignis Innovation Inc. High resolution pixel architecture
US20140313111A1 (en) 2010-02-04 2014-10-23 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US10163401B2 (en) 2010-02-04 2018-12-25 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
CA2692097A1 (en) 2010-02-04 2011-08-04 Ignis Innovation Inc. Extracting correlation curves for light emitting device
US10176736B2 (en) 2010-02-04 2019-01-08 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
US9881532B2 (en) 2010-02-04 2018-01-30 Ignis Innovation Inc. System and method for extracting correlation curves for an organic light emitting device
US10089921B2 (en) 2010-02-04 2018-10-02 Ignis Innovation Inc. System and methods for extracting correlation curves for an organic light emitting device
CA2696778A1 (en) 2010-03-17 2011-09-17 Ignis Innovation Inc. Lifetime, uniformity, parameter extraction methods
US8907991B2 (en) 2010-12-02 2014-12-09 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US20140368491A1 (en) 2013-03-08 2014-12-18 Ignis Innovation Inc. Pixel circuits for amoled displays
US9351368B2 (en) 2013-03-08 2016-05-24 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9886899B2 (en) 2011-05-17 2018-02-06 Ignis Innovation Inc. Pixel Circuits for AMOLED displays
US9530349B2 (en) 2011-05-20 2016-12-27 Ignis Innovations Inc. Charged-based compensation and parameter extraction in AMOLED displays
US9466240B2 (en) 2011-05-26 2016-10-11 Ignis Innovation Inc. Adaptive feedback system for compensating for aging pixel areas with enhanced estimation speed
CN106910464B (en) 2011-05-27 2020-04-24 伊格尼斯创新公司 System for compensating pixels in a display array and pixel circuit for driving light emitting devices
EP2945147B1 (en) 2011-05-28 2018-08-01 Ignis Innovation Inc. Method for fast compensation programming of pixels in a display
US9324268B2 (en) 2013-03-15 2016-04-26 Ignis Innovation Inc. Amoled displays with multiple readout circuits
US10089924B2 (en) 2011-11-29 2018-10-02 Ignis Innovation Inc. Structural and low-frequency non-uniformity compensation
US8937632B2 (en) 2012-02-03 2015-01-20 Ignis Innovation Inc. Driving system for active-matrix displays
US9747834B2 (en) * 2012-05-11 2017-08-29 Ignis Innovation Inc. Pixel circuits including feedback capacitors and reset capacitors, and display systems therefore
US8922544B2 (en) 2012-05-23 2014-12-30 Ignis Innovation Inc. Display systems with compensation for line propagation delay
US9336717B2 (en) 2012-12-11 2016-05-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
US9786223B2 (en) 2012-12-11 2017-10-10 Ignis Innovation Inc. Pixel circuits for AMOLED displays
CA2894717A1 (en) 2015-06-19 2016-12-19 Ignis Innovation Inc. Optoelectronic device characterization in array with shared sense line
US9721505B2 (en) 2013-03-08 2017-08-01 Ignis Innovation Inc. Pixel circuits for AMOLED displays
EP2779147B1 (en) 2013-03-14 2016-03-02 Ignis Innovation Inc. Re-interpolation with edge detection for extracting an aging pattern for AMOLED displays
CN110634431B (en) 2013-04-22 2023-04-18 伊格尼斯创新公司 Method for inspecting and manufacturing display panel
US9953563B2 (en) 2013-04-23 2018-04-24 Sharp Kabushiki Kaisha Display device and drive current detection method for same
DE112014003719T5 (en) 2013-08-12 2016-05-19 Ignis Innovation Inc. compensation accuracy
US9741282B2 (en) 2013-12-06 2017-08-22 Ignis Innovation Inc. OLED display system and method
US9761170B2 (en) 2013-12-06 2017-09-12 Ignis Innovation Inc. Correction for localized phenomena in an image array
US9502653B2 (en) 2013-12-25 2016-11-22 Ignis Innovation Inc. Electrode contacts
US10192479B2 (en) 2014-04-08 2019-01-29 Ignis Innovation Inc. Display system using system level resources to calculate compensation parameters for a display module in a portable device
CA2873476A1 (en) 2014-12-08 2016-06-08 Ignis Innovation Inc. Smart-pixel display architecture
CA2879462A1 (en) 2015-01-23 2016-07-23 Ignis Innovation Inc. Compensation for color variation in emissive devices
US9818338B2 (en) * 2015-03-04 2017-11-14 Texas Instruments Incorporated Pre-charge driver for light emitting devices (LEDs)
CA2886862A1 (en) 2015-04-01 2016-10-01 Ignis Innovation Inc. Adjusting display brightness for avoiding overheating and/or accelerated aging
CA2889870A1 (en) 2015-05-04 2016-11-04 Ignis Innovation Inc. Optical feedback system
CA2892714A1 (en) 2015-05-27 2016-11-27 Ignis Innovation Inc Memory bandwidth reduction in compensation system
US10657895B2 (en) 2015-07-24 2020-05-19 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
US10373554B2 (en) 2015-07-24 2019-08-06 Ignis Innovation Inc. Pixels and reference circuits and timing techniques
CA2898282A1 (en) 2015-07-24 2017-01-24 Ignis Innovation Inc. Hybrid calibration of current sources for current biased voltage progra mmed (cbvp) displays
KR102439795B1 (en) 2015-07-31 2022-09-06 삼성디스플레이 주식회사 Data driver and display apparatus including the same
CA2900170A1 (en) 2015-08-07 2017-02-07 Gholamreza Chaji Calibration of pixel based on improved reference values
CA2908285A1 (en) 2015-10-14 2017-04-14 Ignis Innovation Inc. Driver with multiple color pixel structure
CN105185313A (en) * 2015-10-15 2015-12-23 深圳市华星光电技术有限公司 AMOLED drive method
EP3550681B1 (en) * 2016-12-26 2021-12-01 Huawei Technologies Co., Ltd. Optical signal modulation circuit and device
CN106910465A (en) * 2017-02-24 2017-06-30 信利(惠州)智能显示有限公司 Luminous display unit
US10475374B2 (en) * 2018-03-14 2019-11-12 Innolux Corporation Display device
KR102627269B1 (en) * 2018-09-28 2024-01-22 엘지디스플레이 주식회사 Organic Light Emitting Display having a Compensation Circuit for Driving Characteristic
CN111489687B (en) * 2020-04-24 2021-08-06 厦门天马微电子有限公司 Pixel driving circuit, display panel, display device and driving method
CN111681601A (en) 2020-06-02 2020-09-18 武汉华星光电半导体显示技术有限公司 Display device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6097360A (en) * 1998-03-19 2000-08-01 Holloman; Charles J Analog driver for LED or similar display element
US6384804B1 (en) * 1998-11-25 2002-05-07 Lucent Techonologies Inc. Display comprising organic smart pixels
WO2002071379A2 (en) * 2000-07-18 2002-09-12 Emagin Corporation A current-type driver for organic light emitting diode displays
JP2002108285A (en) * 2000-07-27 2002-04-10 Semiconductor Energy Lab Co Ltd Drive method for display device
JP2002091377A (en) * 2000-09-11 2002-03-27 Hitachi Ltd Organic el display device
GB2367414A (en) * 2000-09-28 2002-04-03 Seiko Epson Corp Display device using TFT's
TW561445B (en) * 2001-01-02 2003-11-11 Chi Mei Optoelectronics Corp OLED active driving system with current feedback
JP3800050B2 (en) * 2001-08-09 2006-07-19 日本電気株式会社 Display device drive circuit
JP4115763B2 (en) * 2002-07-10 2008-07-09 パイオニア株式会社 Display device and display method
GB0223304D0 (en) * 2002-10-08 2002-11-13 Koninkl Philips Electronics Nv Electroluminescent display devices
DE10254511B4 (en) * 2002-11-22 2008-06-05 Universität Stuttgart Active matrix driving circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005013250A1 *

Also Published As

Publication number Publication date
CN100433109C (en) 2008-11-12
EP1644913B1 (en) 2013-08-07
MXPA05014178A (en) 2006-07-03
KR101391813B1 (en) 2014-05-07
KR20070029539A (en) 2007-03-14
CN1816837A (en) 2006-08-09
US20070057874A1 (en) 2007-03-15
JP2012230392A (en) 2012-11-22
TW200505268A (en) 2005-02-01
US7557778B2 (en) 2009-07-07
WO2005013250A1 (en) 2005-02-10
TWI376975B (en) 2012-11-11
FR2857146A1 (en) 2005-01-07
JP5688051B2 (en) 2015-03-25
JP2007516454A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
EP1644913A1 (en) Display device and control circuit for a light modulator
US9852689B2 (en) Circuit and method for driving an array of light emitting pixels
US7548222B2 (en) Active-matrix display, the emitters of which are supplied by voltage-controlled current generators
JP5618170B2 (en) Electroluminescence display device
RU2468449C2 (en) Display, method and software for correction of uneven glow
US20140124770A1 (en) Active matrix type display apparatus and a driving device of a load
US20060038804A1 (en) Display device and electronic device
WO2005029456A1 (en) Circuit and method for driving an array of light emitting pixels
CN101385064A (en) Large area thin film circuits
EP1700290B1 (en) Image display screen and method of addressing said screen
EP1771838B1 (en) Image display device and display device control method
EP1864275B1 (en) Image display device and method of controlling same
EP1697920B1 (en) Device for displaying images on an oled active matrix
US20090184900A1 (en) Image display device and display device control method
KR100692849B1 (en) Electro-Luminescence Display Device And Driving Method Thereof
EP1697997A1 (en) Image display screen and method for controlling said screen
FR2843225A1 (en) Active matrix image display device with compensation for trigger thresholds, uses measurement of current drawn by pixel driver to determine its threshold voltage and generates correction to command voltage to match threshold voltage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080529

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THOMSON LICENSING

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130405

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 626054

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130815

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602004042974

Country of ref document: DE

Effective date: 20131002

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 626054

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130807

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131209

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130710

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131108

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E019053

Country of ref document: HU

26N No opposition filed

Effective date: 20140508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602004042974

Country of ref document: DE

Effective date: 20140508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140625

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130807

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140630

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004042974

Country of ref document: DE

Representative=s name: DEHNS, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004042974

Country of ref document: DE

Representative=s name: DEHNS PATENT AND TRADEMARK ATTORNEYS, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004042974

Country of ref document: DE

Representative=s name: HOFSTETTER, SCHURACK & PARTNER PATENT- UND REC, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004042974

Country of ref document: DE

Representative=s name: DEHNS, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602004042974

Country of ref document: DE

Owner name: INTERDIGITAL CE PATENT HOLDINGS SAS, FR

Free format text: FORMER OWNER: THOMSON LICENSING, ISSY-LES-MOULINEAUX, FR

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004042974

Country of ref document: DE

Representative=s name: DEHNS PATENT AND TRADEMARK ATTORNEYS, DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD SA NEUCHATEL CONSEILS EN PROPRIETE INTE, CH

Ref country code: CH

Ref legal event code: PUE

Owner name: INTERDIGITAL CE PATENT HOLDINGS, FR

Free format text: FORMER OWNER: THOMSON LICENSING, FR

REG Reference to a national code

Ref country code: HU

Ref legal event code: FH1C

Free format text: FORMER REPRESENTATIVE(S): MAK ANDRAS, SBGK SZABADALMI UEGYVIVOEI IRODA, HU

Representative=s name: SBGK SZABADALMI UEGYVIVOEI IRODA, HU

Ref country code: HU

Ref legal event code: GB9C

Owner name: INTERDIGITAL CE PATENT HOLDINGS, FR

Free format text: FORMER OWNER(S): THOMSON LICENSING, FR

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230511

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230622

Year of fee payment: 20

Ref country code: DE

Payment date: 20230627

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230612

Year of fee payment: 20

Ref country code: HU

Payment date: 20230613

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230620

Year of fee payment: 20

Ref country code: CH

Payment date: 20230702

Year of fee payment: 20