EP1642075B1 - Exhaust steam line for steam plants - Google Patents

Exhaust steam line for steam plants Download PDF

Info

Publication number
EP1642075B1
EP1642075B1 EP20040762342 EP04762342A EP1642075B1 EP 1642075 B1 EP1642075 B1 EP 1642075B1 EP 20040762342 EP20040762342 EP 20040762342 EP 04762342 A EP04762342 A EP 04762342A EP 1642075 B1 EP1642075 B1 EP 1642075B1
Authority
EP
European Patent Office
Prior art keywords
exhaust steam
line
steam line
branch
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20040762342
Other languages
German (de)
French (fr)
Other versions
EP1642075A1 (en
Inventor
Markus Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Energietchnik GmbH
Original Assignee
GEA Energietchnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEA Energietchnik GmbH filed Critical GEA Energietchnik GmbH
Publication of EP1642075A1 publication Critical patent/EP1642075A1/en
Application granted granted Critical
Publication of EP1642075B1 publication Critical patent/EP1642075B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/02Auxiliary systems, arrangements, or devices for feeding steam or vapour to condensers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S261/00Gas and liquid contact apparatus
    • Y10S261/76Steam
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8376Combined
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85938Non-valved flow dividers

Definitions

  • the invention relates to an exhaust steam line for steam power plants with the features of the preamble of claim 1.
  • the exhaust steam line of a steam power plant serves to guide the exhaust steam from the exit of the steam turbine, that is, from the turbine exhaust steam outlet via a main steam line to branch lines, via which the exhaust steam is fed to individual condensation elements. This is largely done in vacuum operation.
  • the routing of an exhaust steam line for an air-cooled condenser is usually carried out with diameters between 1 m and 10 m.
  • the invention is based on the object of providing an exhaust steam line for steam power plants with reduced assembly and material costs, in which at the same time the pressure loss is as low as possible.
  • the invention solves this problem by an exhaust steam line with the features of claim 1.
  • the core of the invention is the arrangement of Kleinabdampf founded at an angle to the horizontal, and so that the main exhaust steam line increases in the flow direction of the exhaust steam, wherein the Abknickwinkel measured between a longitudinal section of the main exhaust pipe and the branch lines is less than 90 Ā° and the length of the individual branch lines decreases in the flow direction of the exhaust steam.
  • the basic idea of the new cable routing is based on the principle of the most direct possible connection between the connection of the main exhaust steam line at a low height level to a plurality of connections of the branch pipes to distributor pipes at a higher height level.
  • the rising arrangement of the main steam discharge line has the advantage that the individual branch pipes, although they have a different length from each other, but can be designed to be shorter overall than in an exclusively horizontally extending Hauptabdampf ein. As a result, the length of the flow path is reduced overall.
  • the lower material usage leads to weight savings in the exhaust steam line and not least also to savings in costs and also in terms of assembly.
  • the cost savings in the assembly result from the fact that the branch lines composed of individual ring segments are made shorter and therefore less welding work must be carried out in order to connect the ring segments to one another.
  • the total assembly weight is lower, allowing for easier handling.
  • the foundation loads are lower, so that smaller foundations can be used.
  • a significant advantage over orthogonally configured arrangements between the main exhaust steam line and the branch lines is that the flow losses leading to pressure losses are reduced.
  • the pressure loss is proportional to the resistance coefficient of the piping system.
  • the drag coefficient is largely determined by the number and design of the manifolds and pipe branches. In the area of the connection points of the branch lines, the resistance coefficient is reduced by the oblique position of the main exhaust steam line according to the invention. Basically, the drag coefficient is the smaller the smaller the kink angle. Of the Abknickwinkel is measured between the cross-sectional plane of the main steam and the cross-sectional plane of a branch line. For parallel cross-sectional planes this angle is 0 Ā°.
  • the usual bending angle of 90 Ā° is reduced by the angle of inclination of the main exhaust steam line, so that smaller resistance coefficients result at each connection point of a branch line than with a 90 Ā° deflection. In total, this results in a much lower loss height or a lower pressure drop within the exhaust steam line than in the known orthogonally configured arrangements.
  • a further advantage is that the main exhaust steam line rises relatively gently from the lower height level of the steam turbine.
  • the bending angle measured in relation to the horizontal lies in the range of 5 Ā° to 60 Ā° according to the features of claim 2.
  • the angle is in a range of 10 Ā° to 20 Ā°.
  • Larger angles would have the disadvantage that the resistance coefficient in the transition region from the horizontal length section of the main exhaust steam line to the inclined length section of the main exhaust steam line would have a greater resistance coefficient, so that larger pressure losses occur in good time.
  • the pressure losses at very low Abknickwinkeln, especially at Abknickwinkeln of less than 10 Ā° are compared to the commonly used 90 Ā° -KrĆ¼mmern much lower.
  • additional redirecting means such as e.g. SchaufelkrĆ¼mmer be omitted, whereby the exhaust steam line according to the invention can be designed structurally simpler. Furthermore, there is a better condensate return against the steam flow direction in the main steam line.
  • the choice of the Abknickwinkels depends on the length of the main steam and the respective plant conditions. It is essential that no 90 Ā° -KrĆ¼mmer should be provided within the wiring harness to change the height level of the main steam line, but only bends that are much smaller than 90 Ā°.
  • a first main steam line and a second main steam line with opposite slope are connected to a common central line.
  • At least one of the branch lines is arranged inclined at an angle to the main exhaust steam line in the flow direction of the exhaust steam. That the upper ends of the branch lines and their junctions are not in the same vertical plane. With this arrangement, the flow losses at the individual connection points are further reduced.
  • the branch line provided at the outer end of the main exhaust steam line is arranged in the same orientation as the main steam line.
  • "Same orientation" in the context of the invention is to be understood as a parallelism or congruence of the longitudinal axes of the main steam line and branch line.
  • the angle of the main exhaust pipe to the horizontal is determined decisively by the horizontal and vertical distance of the last condensation element from the turbine. Since the Hauptabdampftechnisch goes without curvature in the end-side branch line, the Hauptabdampftechnisch is correspondingly shorter. In this arrangement, the total weight is further reduced in spite of the slightly longer executed last branch line in the sum.
  • At least one branch line is divided into at least two sub-lines.
  • the exhaust steam flowing through the branch line is thereby divided into two partial streams which flow to one condensation element each.
  • it is more appropriate to divide the branch line into two sub-lines instead to provide a further branch line, which would have to be connected directly to the main steam line.
  • the additional branching of the branch line in two or more sub-lines it is possible to further reduce the cost of materials and to reduce the total assembly weight.
  • the sub-lines are arranged inclined in an angle to the branch line sloping. In this way, the flow losses are kept as low as possible.
  • the bending angles are significantly smaller than 90 Ā°.
  • the subject of claim 11 is that in the region of at least one connection point of a branch line or a partial line a baffle for the division of the exhaust steam is arranged in Abdampfteilstrƶme.
  • the baffle has the purpose to divide the exhaust steam with the lowest possible pressure losses.
  • the pressure losses in each of the exhaust partial streams are identical.
  • the ratio of Abdampfteilstrƶme corresponds to the ratio of the following on a connection point distribution pipes. If, for example, a total of five branch lines are branched off from a main exhaust steam line, with equal amounts of the exhaust steam being supplied to the individual distributor pipes, then it is necessary to branch off at the first connection point 1/5 of the exhaust steam flow in the direction of flow.
  • the inclined wiring of the main exhaust pipe allows a freer cooling air supply below the capacitor elements, which can lead to a lower platform height and thus to reduce the steel construction costs depending on the arrangement.
  • the accessibility of the system is improved because you can go under the main steam line.
  • Figure 1 shows the state of the art an exhaust steam line 1 with a horizontal Hauptabdampf Gustav 2 with this perpendicularly upwardly branching branch lines 3.
  • distribution pipes 30 are connected by condensation elements not shown.
  • This configuration of an exhaust steam line 1 has the disadvantage that the individual branch lines 3 are very long and must be supported according to their length. Since compensators are provided in the branch lines 3 for compensation of thermal changes in length, the individual sections of the branch lines 3 must be position-oriented on the steel frame (not shown). The effort for this is not insignificant.
  • the line length is relatively large in the sum, so that considerable tonnages have to be transported. The mounting effort is therefore also high.
  • a horizontal length portion of the main exhaust pipe 2 is provided in a raised position, so that the individual branch lines 3 can be made shorter.
  • This has the advantage that the correspondingly lighter branch lines 3, despite the inclusion of compensators with less effort are iageorientierbar.
  • an at least two-fold 90 Ā° bend of the main exhaust duct is required to redirect the exhaust steam emerging in the horizontal direction into the vertical length section and from the vertical length section in turn into the horizontal length section.
  • spring supports 4 are used to compensate for the thermally induced change in length to ensure adequate support of the horizontally extending length portion of the main steam line.
  • additional shock brakes must be provided in the form of hydraulic dampers.
  • the spring supports 4 in combination with the impact brakes are relatively complex components, since they must be provided several times depending on the length of the main steam pipe 2 to ensure a uniform lifting or lowering of the horizontal length portion of the main steam line 2.
  • the other spring supports 4 are indicated schematically by double broken lines.
  • FIG. 3.1 shows the exhaust steam line 5 according to the invention, which differs from the embodiments of FIGS. 1 and 2, that is to say from the prior art in that the main steam exhaust line 10 is arranged at an angle W to the horizontal H in the direction of flow of the exhaust steam.
  • the angle W is 10 Ā°.
  • a total of five branch lines 6 extending vertically upwards are connected to the main exhaust steam line 10, wherein the line cross-section decreases after each connection point 7 of a branch line 6.
  • the right branch line 6 in the image plane is much shorter than the first outgoing branch line 6 in the left half of the picture.
  • the bending angle W1 measured between the rising length section 9 of the main exhaust steam line 10 and the respective branch lines 6 is less than 90 Ā°. In this embodiment, it is 80 Ā°.
  • the resistance coefficients of the pipe branches are therefore smaller than with a 90 Ā° branch.
  • the rising length section 9 of the main exhaust pipe 10 is mounted on pendulum supports 11.
  • the pendulum supports 11 compensate for acting in the longitudinal direction of the rising length portion 9 thermal length changes. Elaborate spring struts and shock brakes are not required in this arrangement.
  • the rising length section 9 does not exert any inadmissible forces on the steam turbine in the case of vertically acting earthquake loads, so that the constructional outlay for an exhaust steam line 5 configured according to the invention is lower overall. Due to the rising course of the main exhaust steam line 10, a freer air inlet below the platform of the air-cooled condensation elements is possible. In addition, the accessibility to the entire system is improved. In the embodiment of FIG. 1, very long paths often had to be covered, since the direct route was blocked by the main exhaust steam line 2 arranged near the bottom.
  • the embodiment of Figure 3.2 differs from that of Figure 3.1 in that the individual branch lines 6 ', 6 ", 6'" are not aligned perpendicular to the horizontal, but also extend obliquely rising.
  • the pitch of the rising length portion 9 of the main exhaust pipe or the angle W is set so that the branch pipe 6 "located at the outer end of the rising length portion 9 has the same orientation as the rising length portion 9 of the main exhaust pipe
  • the angle W is greater than the horizontal H in FIG. 3.2, it is larger than in the embodiment FIG.
  • Each located between two connection points 7 portion of the rising length portion 9 is supported by a support 11 '.
  • the bending angles W3 ', W3 "to the outer end of the rising length section 9 can become smaller and even approach zero, as FIG. 3.2 shows.
  • a central line 16 is likewise provided, from which in each case a main waste steam line 17 to the right and a main waste steam line 18 to the left with opposite directions Slope gone.
  • the individual Hauptabdampftechnischen 17, 18 are in turn supported by supports 11, in particular pendulum supports.
  • supports 11, in particular pendulum supports for the advantages of this embodiment, reference is made to the description of Figure 3.1, which also applies to this variant of the exhaust steam line 19 according to the invention.
  • the pendulum supports 11 can also be replaced by fixed supports with a Teflon stainless steel GleitfuƟ.
  • the embodiment of Figure 6.2 differs from that of Figure 6.1, inter alia, in that the angle W between the horizontal H and the Hauptabdampf Kochen 17, 18 is increased.
  • the angle W is chosen so that the respective last or end-side branch line 6 "'runs in alignment with the main exhaust steam line 17, 18. That is to say that the outer branch line 6"' has become part of the main exhaust steam line 17, 18.
  • the central branch lines 6 "of the individual main exhaust steam lines 17, 18 do not run perpendicular to the horizontal H, as is the case in Figure 6.1, but are also inclined, the angle between the main steam exhaust line 17, 18 and these branch lines 6 In comparison with the embodiments of FIGS.
  • FIG. 7 shows an embodiment of an exhaust steam line 20 in which the angle W between the horizontal H and the main exhaust steam line 21 is increased compared to the previous embodiments.
  • the Kleinabdampf Arthur 21 is connected directly to a central line 22 without a horizontally extending center piece.
  • the angle W is in turn chosen so that the last or end-side branch line 6 "'in alignment with the main exhaust steam line 21 runs. Since the Hauptabdampftechnisch 21 increases relatively steeply in this embodiment, the Abknickwinkel W2 between the vertically upwardly from the main steam outlet 21 outgoing branch lines 6, 6a and the Hauptabdampftechnisch 21 is very small, so that the flow losses in the connection points 7 of Hauptabdampf effet 21 are low.
  • the special feature of this embodiment is that the branch line 6a is divided into two sub-lines 23, 24, each sub-line 23, 24 leading to a respective condensation element, not shown.
  • the branch line 6a extends from the main steam line 21, starting initially vertically up to a junction 7a. From this connection point 7a branches off in a Abknickwinkel W4 the sub-line 24, while the other sub-line 23 is continued in a straight extension of the branch line 6a vertically upwards. Through the additional part of line 24, a further branch line is saved, which would have to be performed on the Hauptabdampf Koch 21. In particular, in the case of steeper exhaust steam lines 21, it is therefore expedient to provide additional ramifications or partial lines to the individual branch lines.
  • FIGS. 7 and 8 show an enlarged section of the embodiment of Figure 7.
  • baffles 25, 26, 27 are integrated into the connection points 7, 7a.
  • the baffles 25, 26, 27 serve to divide the Abdampfstroms in Abdampfteilstrƶme corresponding to the ratio of the following on a connection point 7, 7a distribution pipes.
  • a total of four distributor tubes of the condensation elements are fed with exhaust steam. Accordingly, there is a division of the exhaust steam in a ratio of 1: 1 at each connection point.
  • the uniform distribution is achieved in that the baffles 25, 26, 27 are already mounted in front of the respective connection points 7, 7a within the main steam line 21 and the branch line 6a.
  • a circular cross-section of the main exhaust steam line 21 and the branch line 6a is thereby divided into two semicircles. Differs the cross section of Hauptabdampf effet 21 and the branch line 6a from a circular cross-section from, there is an area equal division.
  • the respective baffle 25, 26, 27 is preferably designed such that an areal same division is realized both in front of the respective connection point 7, 7a and in the region of the respective connection point 7, 7a. It is essential that the pressure losses of Abdampfteilstrƶme in the region of the connection points 7, 7a are almost equal and the Abdampfmenge is divided into equal parts.
  • the respective baffles 25, 26, 27 configured angled.
  • the respective front length region 28 of the individual baffles 25, 26, 27 has a length L which corresponds to the diameter D 1 , D 2 , D 3 of the main steam line 21 and the exhaust steam line 6 a in front of the respective connection point 7, 7 a.
  • the beginning of a connection point 7, 7a is defined as the intersection of the central longitudinal axes of the respective branch line 6, 6a with the main exhaust steam line 21 or as the intersection of the part line 24 with the branch line 6a. It can be seen that the straight course of the respectively front longitudinal sections 28 of the baffles 25, 26, 27 extends beyond this point of intersection, before the respective rear longitudinal section 29 is attached at an angle.
  • the starting point of the rear longitudinal section 29 is selected so that the flow cross sections in the region of the connection points 7, 7a are as equal as possible.

Abstract

The steam drainage line (5) has a number of air-cooled condensation elements connection to a main steam drainage line (10) via individual branch lines (6), with the cross-section of the main steam drainage line reduced in stages after each branch line tap-off point (7). The main steam drainage line is inclined upwards at an angle (W) to the horizontal (H) in the flow direction of the steam.

Description

Die Erfindung betrifft eine Abdampfleitung fĆ¼r Dampfkraftanlagen mit den Merkmalen des Oberbegriffs des Patentanspruchs 1.The invention relates to an exhaust steam line for steam power plants with the features of the preamble of claim 1.

Die Abdampfleitung einer Dampfkraftanlage, insbesondere einer Dampfturbine, dient dazu, den Abdampf vom Austritt der Dampfturbine, das heiƟt von deren Turbinenabdampfstutzen Ć¼ber eine Hauptabdampfleitung zu Abzweigleitungen zu fĆ¼hren, Ć¼ber welche der Abdampf einzelnen Kondensationselementen zugeleitet wird. Dies erfolgt weitestgehend im Vakuumbetrieb. Die LeitungsfĆ¼hrung einer Abdampfleitung fĆ¼r einen luftgekĆ¼hlten Kondensator erfolgt Ć¼blicherweise mit Durchmessern zwischen 1 m und 10 m.The exhaust steam line of a steam power plant, in particular a steam turbine, serves to guide the exhaust steam from the exit of the steam turbine, that is, from the turbine exhaust steam outlet via a main steam line to branch lines, via which the exhaust steam is fed to individual condensation elements. This is largely done in vacuum operation. The routing of an exhaust steam line for an air-cooled condenser is usually carried out with diameters between 1 m and 10 m.

Innerhalb der Abdampfleitung treten ƶrtliche Strƶmungsverluste auf, die durch eine lokale Ƅnderung des Strƶmungsquerschnitts oder der FlieƟrichtung verursacht werden. Bei bekannten Abdampfleitungen ist trotz der stufenfƶrmigen Verkleinerung des Leitungsquerschnitts an der Anschlussstelle der Abzweigleitung ein Druckverlust an der Anschlussƶffnung der Abzweigleitung durch den frei an dieser Anschlussƶffnung vorbei strƶmenden Abdampf zu erwarten. Aus der DE-PS 1 945 314 ist eine Abdampfleitung bekannt, bei welcher ein mƶglichst geringer Druckverlust an den Abzweigstellen von Abzweigleitungen dadurch erreicht werden soll, dass die Verkleinerung des Leitungsquerschnitts jeweils durch zwei ineinander geschobene, gegeneinander abgedichtete RohrleitungsstĆ¼cke unterschiedlichen Durchmessers erzielt wird, wobei das kleinere RohrleitungsstĆ¼ck in das grĆ¶ĆŸere unter Bildung eines Ringraums so weit eingeschoben ist, dass die Anschlussƶffnung der Abzweigleitung im grĆ¶ĆŸeren RohrleitungsstĆ¼ck in radialer Richtung Ć¼berdeckt ist. Nachteilig bei dieser AusfĆ¼hrungsform ist, dass der Druckverlust nicht Ć¼ber ein bestimmtes MindestmaƟ reduziert werden kann. GrundsƤtzlich entstehen bei der Umlenkung des Abdampfstroms Verluste im Bereich der Anschlussstellen. Zu diesen Strƶmungsverlusten kommen Druckverluste hinzu, die aufgrund der LeitungslƤnge auftreten.Within the exhaust steam line occur local flow losses, which are caused by a local change in the flow cross-section or the flow direction. In known exhaust steam lines, despite the stepped reduction of the cross-section of the pipe at the connection point of the branch pipe, there is a pressure loss at the connection opening of the branch pipe to be expected by the exhaust steam flowing freely past this connection opening. From DE-PS 1 945 314 a Abdampfleitung is known, in which the lowest possible pressure loss at the branch points of branch lines should be achieved in that the reduction of the line cross section is achieved by two nested, mutually sealed pipe sections of different diameters, wherein the smaller pipe piece is pushed into the larger to form an annular space so far that the connection opening of the branch line is covered in the larger pipe section in the radial direction. A disadvantage of this embodiment is that the pressure loss can not be reduced to a certain minimum. In principle, losses occur in the area of the connection points during the diversion of the exhaust steam flow. These flow losses are accompanied by pressure losses that occur due to the length of the pipe.

VerlƤuft die Hauptabdampfleitung horizontal in BodennƤhe, mĆ¼ssen entsprechend lang ausgefĆ¼hrte, nach oben abgehende Abzweigleitungen vorgesehen werden. Es wurde daher die horizontal verlaufende Hauptabdampfleitung hƶher montiert, so dass die einzelnen Abzweigleitungen kĆ¼rzer ausgefĆ¼hrt werden kƶnnen. Das bringt allerdings die Notwendigkeit mit sich, wenigstens zwei 90Ā°-Umlenkungen innerhalb der Hauptabdampfleitung vorzusehen, wobei zur Reduzierung des Widerstandsbeiwerts innerhalb der KrĆ¼mmer SchaufelkrĆ¼mmer installiert werden mĆ¼ssen. Diese kƶnnen einerseits ein sehr hohes Eigengewicht von 7 bis 20 t besitzen und bringen zum anderen einen erhƶhten Montageaufwand mit sich.Runs the main steam pipe horizontally near the bottom, must be provided correspondingly long running, upwardly branching outlets. Therefore, the horizontal main exhaust steam line was mounted higher, so that the individual branch lines can be made shorter. However, this entails the need to provide at least two 90 Ā° deflections within the main steam line, with blade manifolds to be installed to reduce the drag coefficient within the manifold. These can on the one hand have a very high weight of 7 to 20 t and bring to the other an increased installation costs with it.

Der Erfindung liegt hiervon ausgehend die Aufgabe zugrunde, eine Abdampfleitung fĆ¼r Dampfkraftanlagen mit reduziertem Montage- und Materialaufwand zu schaffen, bei welcher zugleich der Druckverlust mƶglichst gering ist.On this basis, the invention is based on the object of providing an exhaust steam line for steam power plants with reduced assembly and material costs, in which at the same time the pressure loss is as low as possible.

Die Erfindung lƶst diese Aufgabe durch eine Abdampfleitung mit den Merkmalen des Patentanspruchs 1. Der Kern der Erfindung ist die Anordnung der Hauptabdampfleitung in einem Winkel zur Horizontalen, und zwar so dass die Hauptabdampfleitung in Strƶmungsrichtung des Abdampfs ansteigt, wobei der zwischen einem LƤngsabschnitt der Hauptabdampfleitung und den Abzweigleitungen gemessene Abknickwinkel kleiner al 90Ā° ist und die LƤnge der einzelnen Abzweigleitungen in Strƶmungsrichtung des Abdampfes abnimmt.The invention solves this problem by an exhaust steam line with the features of claim 1. The core of the invention is the arrangement of Hauptabdampfleitung at an angle to the horizontal, and so that the main exhaust steam line increases in the flow direction of the exhaust steam, wherein the Abknickwinkel measured between a longitudinal section of the main exhaust pipe and the branch lines is less than 90 Ā° and the length of the individual branch lines decreases in the flow direction of the exhaust steam.

Die Grundidee der neuen LeitungsfĆ¼hrung beruht auf dem Prinzip einer mƶglichst direkten Verbindung zwischen dem Anschluss der Hauptabdampfleitung auf einem niedrigen Hƶhenniveau zu mehreren AnschlĆ¼ssen der Abzweigleitungen an Verteilerrohre auf einem hƶheren Hƶhenniveau. Die ansteigende Anordnung der Hauptabdampfleitung hat den Vorteil, dass die einzelnen Abzweigleitungen zwar eine voneinander abweichende LƤnge besitzen, jedoch insgesamt kĆ¼rzer gestaltet werden kƶnnen als bei einer ausschlieƟlich horizontal verlaufenden Hauptabdampfleitung. Dadurch ist die LƤnge des Strƶmungspfads insgesamt reduziert.The basic idea of the new cable routing is based on the principle of the most direct possible connection between the connection of the main exhaust steam line at a low height level to a plurality of connections of the branch pipes to distributor pipes at a higher height level. The rising arrangement of the main steam discharge line has the advantage that the individual branch pipes, although they have a different length from each other, but can be designed to be shorter overall than in an exclusively horizontally extending Hauptabdampfleitung. As a result, the length of the flow path is reduced overall.

Der geringere Materialeinsatz fĆ¼hrt zu Gewichtseinsparungen bei der Abdampfleitung und nicht zuletzt auch zu Einsparungen bei den Kosten und auch hinsichtlich der Montage. Die Kosteneinsparungen bei der Montage ergeben sich unter anderem daraus, dass die aus einzelnen Ringsegmenten zusammengesetzten Abzweigleitungen kĆ¼rzer ausgefĆ¼hrt sind und daher weniger SchweiƟarbeiten durchgefĆ¼hrt werden mĆ¼ssen, um die Ringsegmente miteinander zu verbinden. Zudem ist das Montagegesamtgewicht geringer, was ein einfacheres Handling ermƶglicht. SchlieƟlich sind auch die Fundamentlasten geringer, so dass kleinere Fundamente verwendet werden kƶnnen.The lower material usage leads to weight savings in the exhaust steam line and not least also to savings in costs and also in terms of assembly. Among other things, the cost savings in the assembly result from the fact that the branch lines composed of individual ring segments are made shorter and therefore less welding work must be carried out in order to connect the ring segments to one another. In addition, the total assembly weight is lower, allowing for easier handling. Finally, the foundation loads are lower, so that smaller foundations can be used.

Ein wesentlicher Vorteil gegenĆ¼ber rechtwinklig konfigurierten Anordnungen zwischen der Hauptabdampfleitung und den Abzweigleitungen ist, dass die zu Druckverlusten fĆ¼hrenden Strƶmungsverluste reduziert sind. Der Druckverlust verhƤlt sich proportional zum Widerstandsbeiwert des Rohrleitungssystems. Der Widerstandsbeiwert wird maƟgeblich durch die Anzahl und Ausbildung der KrĆ¼mmer und Rohrverzweigungen bestimmt. Im Bereich der Anschlussstellen der Abzweigleitungen ist der Widerstandsbeiwert durch die erfindungsgemƤƟe SchrƤgstellung der Hauptabdampfleitung reduziert. GrundsƤtzlich ist der Widerstandsbeiwert um so geringer je kleiner der Abknickwinkel ist. Der Abknickwinkel wird zwischen der Querschnittsebene der Hauptabdampfleitung und der Querschnittsebene einer Abzweigleitung gemessen. Bei parallelen Querschnittsebenen betrƤgt dieser Winkel 0Ā°. Bei der erfindungsgemƤƟen Anordnung ist der Ć¼bliche Abknickwinkel von 90Ā° um den Neigungswinkel der Hauptabdampfleitung reduziert, so dass sich an jeder Anschlussstelle einer Abzweigleitung kleinere Widerstandsbeiwerte ergeben als bei einer 90Ā°-Umlenkung. In der Summe ergibt sich dadurch eine wesentlich geringere Verlusthƶhe bzw. ein geringerer Druckverlust innerhalb der Abdampfleitung als bei den bekannten rechtwinklig konfigurierten Anordnungen.A significant advantage over orthogonally configured arrangements between the main exhaust steam line and the branch lines is that the flow losses leading to pressure losses are reduced. The pressure loss is proportional to the resistance coefficient of the piping system. The drag coefficient is largely determined by the number and design of the manifolds and pipe branches. In the area of the connection points of the branch lines, the resistance coefficient is reduced by the oblique position of the main exhaust steam line according to the invention. Basically, the drag coefficient is the smaller the smaller the kink angle. Of the Abknickwinkel is measured between the cross-sectional plane of the main steam and the cross-sectional plane of a branch line. For parallel cross-sectional planes this angle is 0 Ā°. In the arrangement according to the invention, the usual bending angle of 90 Ā° is reduced by the angle of inclination of the main exhaust steam line, so that smaller resistance coefficients result at each connection point of a branch line than with a 90 Ā° deflection. In total, this results in a much lower loss height or a lower pressure drop within the exhaust steam line than in the known orthogonally configured arrangements.

Ein weiterer Vorteil ist, dass die Hauptabdampfleitung von dem niedrigeren Hƶhenniveau der Dampfturbine ausgehend relativ sanft ansteigt. Der gegenĆ¼ber der Horizontalen gemessenen Abknickwinkel liegt gemƤƟ den Merkmalen des Patentanspruchs 2 in einem Bereich von 5Ā° bis 60Ā°. Vorzugsweise liegt der Winkel in einem Bereich von 10Ā° bis 20Ā°. GrĆ¶ĆŸere Winkel hƤtten den Nachteil, dass der Widerstandsbeiwert im Ɯbergangsbereich von dem horizontalen LƤngenabschnitt der Hauptabdampfleitung zu dem geneigten LƤngenabschnitt der Hauptabdampfleitung einen grĆ¶ĆŸeren Widerstandsbeiwert hƤtte, so dass bereits frĆ¼hzeitig grĆ¶ĆŸere Druckverluste auftreten. Die Druckverluste bei sehr geringen Abknickwinkeln, insbesondere bei Abknickwinkeln von unter 10Ā°, sind gegenĆ¼ber den Ć¼blicherweise verwendeten 90Ā°-KrĆ¼mmern wesentlich geringer. Zudem kann auf zusƤtzliche Umleiteinrichtungen, wie z.B. SchaufelkrĆ¼mmer, verzichtet werden, wodurch die erfindungsgemƤƟe Abdampfleitung konstruktiv einfacher gestaltet sein kann. Des Weiteren ergibt sich eine bessere KondensatrĆ¼ckfĆ¼hrung gegen die Dampfstromrichtung in der Hauptabdampfleitung.A further advantage is that the main exhaust steam line rises relatively gently from the lower height level of the steam turbine. The bending angle measured in relation to the horizontal lies in the range of 5 Ā° to 60 Ā° according to the features of claim 2. Preferably, the angle is in a range of 10 Ā° to 20 Ā°. Larger angles would have the disadvantage that the resistance coefficient in the transition region from the horizontal length section of the main exhaust steam line to the inclined length section of the main exhaust steam line would have a greater resistance coefficient, so that larger pressure losses occur in good time. The pressure losses at very low Abknickwinkeln, especially at Abknickwinkeln of less than 10 Ā°, are compared to the commonly used 90 Ā° -KrĆ¼mmern much lower. In addition, additional redirecting means, such as e.g. SchaufelkrĆ¼mmer be omitted, whereby the exhaust steam line according to the invention can be designed structurally simpler. Furthermore, there is a better condensate return against the steam flow direction in the main steam line.

Die Wahl des Abknickwinkels richtet sich nach der LƤnge der Hauptabdampfleitung und den jeweiligen Anlagenbedingungen. Wesentlich ist, dass zur VerƤnderung des Hƶhenniveaus der Hauptabdampfleitung keine 90Ā°-KrĆ¼mmer innerhalb des Leitungsstrangs vorgesehen sein sollen, sondern lediglich Abwinklungen, die wesentlich kleiner als 90Ā° sind.The choice of the Abknickwinkels depends on the length of the main steam and the respective plant conditions. It is essential that no 90 Ā° -KrĆ¼mmer should be provided within the wiring harness to change the height level of the main steam line, but only bends that are much smaller than 90 Ā°.

Im Rahmen der Erfindung ist es mƶglich, dass eine erste Hauptabdampfleitung und eine zweite Hauptabdampfleitung mit gegenlƤufiger Steigung an eine gemeinsame Zentralleitung angeschlossen sind. Dies entspricht im wesentlichen einer V-fƶrmigen Anordnung der Hauptabdampfleitungen mit zentraler AbdampfzufĆ¼hrung, fĆ¼r welche die oben genannten Vorteile ebenso gelten.In the context of the invention, it is possible that a first main steam line and a second main steam line with opposite slope are connected to a common central line. This corresponds essentially to a V-shaped arrangement of the main steam exhaust pipes with central exhaust steam supply, for which the above-mentioned advantages also apply.

In der AusfĆ¼hrungsform des Patentanspruchs 7 ist wenigstens eine der Abzweigleitungen in einem Abknickwinkel zur Hauptabdampfleitung in Strƶmungsrichtung des Abdampfes schrƤg ansteigend angeordnet. D.h. die oberen Enden der Abzweigleitungen und ihre Anschlussstellen liegen nicht in derselben Vertikalebene. Bei dieser Anordnung werden die Strƶmungsverluste an den einzelnen Anschlussstellen nochmals reduziert.In the embodiment of claim 7, at least one of the branch lines is arranged inclined at an angle to the main exhaust steam line in the flow direction of the exhaust steam. That the upper ends of the branch lines and their junctions are not in the same vertical plane. With this arrangement, the flow losses at the individual connection points are further reduced.

Als besonders vorteilhaft wird es angesehen, wenn die am ƤuƟeren Ende der Hauptabdampfleitung vorgesehene Abzweigleitung in gleicher Orientierung angeordnet ist wie die Hauptabdampfleitung. "Gleiche Orientierung" im Sinne der Erfindung ist als ParallelitƤt oder Deckungsgleichheit der LƤngsachsen von Hauptabdampfleitung und Abzweigleitung zu verstehen. Bei dieser Konfiguration wird der Winkel der Hauptabdampfleitung gegenĆ¼ber der Horizontalen entscheidend durch den horizontalen und vertikalen Abstand des letzten Kondensationselements von der Turbine bestimmt. Da die Hauptabdampfleitung ohne KrĆ¼mmung in die endseitige Abzweigleitung Ć¼bergeht, ist die Hauptabdampfleitung entsprechend kĆ¼rzer. Bei dieser Anordnung ist das Gesamtgewicht trotz der etwas lƤnger ausgefĆ¼hrten letzten Abzweigleitung in der Summe weiter reduziert.It is considered to be particularly advantageous if the branch line provided at the outer end of the main exhaust steam line is arranged in the same orientation as the main steam line. "Same orientation" in the context of the invention is to be understood as a parallelism or congruence of the longitudinal axes of the main steam line and branch line. In this configuration, the angle of the main exhaust pipe to the horizontal is determined decisively by the horizontal and vertical distance of the last condensation element from the turbine. Since the Hauptabdampfleitung goes without curvature in the end-side branch line, the Hauptabdampfleitung is correspondingly shorter. In this arrangement, the total weight is further reduced in spite of the slightly longer executed last branch line in the sum.

In einer weiteren AusfĆ¼hrungsform der erfindungsgemƤƟen Abdampfleitung ist vorgesehen, dass wenigstens eine Abzweigleitung in mindestens zwei Teilleitungen gegliedert ist. Der die Abzweigleitung durchstrƶmende Abdampfstrom wird dadurch in zwei Teilstrƶme aufgeteilt, die zu je einem Kondensationselement strƶmen. Unter bestimmten geometrischen VerhƤltnissen ist es zweckmƤƟiger, die Abzweigleitung in zwei Teilleitungen aufzuteilen, anstelle eine weitere Abzweigleitung vorzusehen, die unmittelbar an die Hauptabdampfleitung angeschlossen werden mĆ¼sste. Durch die zusƤtzliche VerƤstelung der Abzweigleitung in zwei oder mehrere Teilleitungen ist es mƶglich, den Materialaufwand weiter zu reduzieren und das Montagegesamtgewicht zu verringern. Vorteilhaft sind die Teilleitungen in einem Abknickwinkel zur Abzweigleitung schrƤg ansteigend angeordnet. Auf diese Weise werden die Strƶmungsverluste so gering wie mƶglich gehalten. Die Abknickwinkel sind deutlich kleiner als 90Ā°.In a further embodiment of the exhaust steam line according to the invention it is provided that at least one branch line is divided into at least two sub-lines. The exhaust steam flowing through the branch line is thereby divided into two partial streams which flow to one condensation element each. Under certain geometric conditions, it is more appropriate to divide the branch line into two sub-lines, instead to provide a further branch line, which would have to be connected directly to the main steam line. The additional branching of the branch line in two or more sub-lines, it is possible to further reduce the cost of materials and to reduce the total assembly weight. Advantageously, the sub-lines are arranged inclined in an angle to the branch line sloping. In this way, the flow losses are kept as low as possible. The bending angles are significantly smaller than 90 Ā°.

Gegenstand des Patentanspruchs 11 ist, dass im Bereich mindestens einer Anschlussstelle einer Abzweigleitung oder einer Teilleitung ein Leitblech fĆ¼r die Aufteilung des Abdampfstroms in Abdampfteilstrƶme angeordnet ist. Das Leitblech hat den Zweck, den Abdampfstrom mit mƶglichst geringen Druckverlusten aufzuteilen. Vorzugsweise sind die Druckverluste in jedem der Abdampfteilstrƶme indentisch. Im Rahmen des Patentanspruchs 12 ist vorgesehen, dass das VerhƤltnis der Abdampfteilstrƶme dem VerhƤltnis der auf eine Anschlussstelle folgenden Verteilerrohre entspricht. Zweigen beispielsweise von einer Hauptabdampfleitung insgesamt fĆ¼nf Abzweigleitungen ab, wobei den einzelnen Verteilerrohren gleiche Mengen des Abdampfs zugefĆ¼hrt werden sollen, dann muss an der in Strƶmungsrichtung ersten Anschlussstelle 1/5 des Abdampfstroms abgezweigt werden. An der nƤchsten Anschlussstelle ist von dem reduzierten Abdampfteilstrom 1/4 abzuzweigen. Dementsprechend 1/3 und 1/2 an den darauffolgenden Anschlussstellen. Ist eine Abzweigleitung in zwei Teilleitungen gegliedert, die zu jeweils einem Verteilerrohr fĆ¼hren, ist der entsprechenden Abzweigleitung die doppelte Abdampfmenge zuzufĆ¼hren.The subject of claim 11 is that in the region of at least one connection point of a branch line or a partial line a baffle for the division of the exhaust steam is arranged in Abdampfteilstrƶme. The baffle has the purpose to divide the exhaust steam with the lowest possible pressure losses. Preferably, the pressure losses in each of the exhaust partial streams are identical. In the context of claim 12 it is provided that the ratio of Abdampfteilstrƶme corresponds to the ratio of the following on a connection point distribution pipes. If, for example, a total of five branch lines are branched off from a main exhaust steam line, with equal amounts of the exhaust steam being supplied to the individual distributor pipes, then it is necessary to branch off at the first connection point 1/5 of the exhaust steam flow in the direction of flow. At the next junction, branch off from the reduced partial exhaust steam 1/4. Accordingly, 1/3 and 1/2 at the subsequent connection points. If a branch line is subdivided into two sub-lines, which lead to one distributor pipe in each case, twice the amount of exhaust steam must be supplied to the corresponding branch line.

Die geneigte LeitungsfĆ¼hrung der Hauptabdampfleitung ermƶglicht eine freiere KĆ¼hlluftzufĆ¼hrung unterhalb der Kondensatorelemente, was je nach Anordnung zu einer geringeren Plattformhƶhe und damit zur Reduzierung der Stahlbaukosten fĆ¼hren kann. Zudem wird die ZugƤnglichkeit der Anlage verbessert, da man unter der Hauptabdampfleitung hindurch gehen kann.The inclined wiring of the main exhaust pipe allows a freer cooling air supply below the capacitor elements, which can lead to a lower platform height and thus to reduce the steel construction costs depending on the arrangement. In addition, the accessibility of the system is improved because you can go under the main steam line.

Die Erfindung wird nachfolgend anhand der in den Zeichnungen schematisch dargestellten AusfĆ¼hrungsbeispiele nƤher erlƤutert. Es zeigen:

Figuren 1 und 2
den Stand der Technik bezĆ¼glich der LeitungsfĆ¼hrung von Abdampfleitungen fĆ¼r luftgekĆ¼hlte Kondensatoren;
Figuren 3.1 und 3.2
schematische Darstellungen einer ersten und zweiten AusfĆ¼hrungsform der erfindungsgemƤƟen Abdampfleitung;
Figuren 4 und 5
den Stand der Technik einer Abdampfleitung mit zentraler DampfzufĆ¼hrung;
Figuren 6.1 und 6.2
zwei AusfĆ¼hrungsformen der erfindungsgemƤƟen Abdampfleitung in V-fƶrmiger Konfiguration mit zentraler AbdampfzufĆ¼hrung und
Figur 7
eine weitere AusfĆ¼hrungsform der erfindungsgemƤƟen Abdampfleitung und
Figur 8
eine Variante der AusfĆ¼hrungsform der Figur 7
The invention will be explained in more detail with reference to the embodiments schematically illustrated in the drawings. Show it:
Figures 1 and 2
the prior art regarding the routing of exhaust ducts for air-cooled condensers;
Figures 3.1 and 3.2
schematic representations of a first and second embodiment of the exhaust steam line according to the invention;
FIGS. 4 and 5
the prior art of an exhaust steam line with central steam supply;
Figures 6.1 and 6.2
two embodiments of the exhaust steam line according to the invention in a V-shaped configuration with central exhaust steam supply and
FIG. 7
a further embodiment of the exhaust steam line according to the invention and
FIG. 8
a variant of the embodiment of Figure 7

Figur 1 zeigt zum Stand der Technik eine Abdampfleitung 1 mit einer horizontalen Hauptabdampfleitung 2 mit hieran senkrecht nach oben abgehenden Abzweigleitungen 3. An die oberen Enden der Abzweigleitungen 3 sind Verteilerrohre 30 von nicht nƤher dargestellten Kondensationselementen angeschlossen. Diese Konfiguration einer Abdampfleitung 1 hat den Nachteil, dass die einzelnen Abzweigleitungen 3 sehr lang sind und auf ihrer LƤnge entsprechend unterstĆ¼tzt werden mĆ¼ssen. Da zur Kompensation von thermischen LƤngenƤnderungen Kompensatoren in den Abzweigleitungen 3 vorgesehen sind, mĆ¼ssen die einzelnen Abschnitte der Abzweigleitungen 3 an dem nicht nƤher dargestellten StahlgerĆ¼st lageorientiert werden. Der Aufwand hierfĆ¼r ist nicht unerheblich. Die LeitungslƤnge ist in der Summe relativ groƟ, so dass erhebliche Tonnagen transportiert werden mĆ¼ssen. Der montagetechnische Aufwand ist folglich ebenfalls hoch.Figure 1 shows the state of the art an exhaust steam line 1 with a horizontal Hauptabdampfleitung 2 with this perpendicularly upwardly branching branch lines 3. At the upper ends of the branch lines 3 distribution pipes 30 are connected by condensation elements not shown. This configuration of an exhaust steam line 1 has the disadvantage that the individual branch lines 3 are very long and must be supported according to their length. Since compensators are provided in the branch lines 3 for compensation of thermal changes in length, the individual sections of the branch lines 3 must be position-oriented on the steel frame (not shown). The effort for this is not insignificant. The line length is relatively large in the sum, so that considerable tonnages have to be transported. The mounting effort is therefore also high.

In der AusfĆ¼hrungsform der Figur 2, die ebenfalls zum Stand der Technik gehƶrt, ist ein horizontaler LƤngenabschnitt der Hauptabdampfleitung 2 in einer angehobenen Position vorgesehen, so dass die einzelnen Abzweigleitungen 3 kĆ¼rzer ausgefĆ¼hrt sein kƶnnen. Dies hat den Vorteil, dass die entsprechend leichteren Abzweigleitungen 3 trotz Eingliederung von Kompensatoren mit geringerem Aufwand iageorientierbar sind. Andererseits ist eine zumindest zweifache 90Ā°-Abwinklung der Hauptabdampfleitung erforderlich, um den in horizontaler Richtung austretenden Abdampfstrom in den vertikalen LƤngenabschnitt umzuleiten und von dem vertikalen LƤngenabschnitt wiederum in den horizontalen LƤngenabschnitt. Diese Umlenkungen um jeweils 90Ā° wĆ¼rde ohne Verwendung zusƤtzlicher SchaufelkrĆ¼mmer innerhalb der KrĆ¼mmer zu hohen Strƶmungsverlusten fĆ¼hren. Bei grĆ¶ĆŸeren Anlagen liegt die Masse eines derartigen SchaufelkrĆ¼mmers bei ca. 7 - 20 t, die in angehobener Position aufgestƤndert werden mĆ¼ssen. Diese hohe Masse ist zudem hinsichtlich der Erdbebensicherheit problematisch. Da der horizontale LƤngenabschnitt der Hauptdampfleitung einschlieƟlich des SchaufelkrĆ¼mmers im Ɯbergang zum vertikalen LƤngenabschnitt der Hauptdampfleitung eine erhebliche Masse besitzt, ist es erforderlich, in erdbebengefƤhrdeten Gebieten besondere StĆ¼tzkonstruktionen einzusetzen, um vertikal wirkende ErdbebenstĆ¶ĆŸe abzufangen.In the embodiment of Figure 2, which also belongs to the prior art, a horizontal length portion of the main exhaust pipe 2 is provided in a raised position, so that the individual branch lines 3 can be made shorter. This has the advantage that the correspondingly lighter branch lines 3, despite the inclusion of compensators with less effort are iageorientierbar. On the other hand, an at least two-fold 90 Ā° bend of the main exhaust duct is required to redirect the exhaust steam emerging in the horizontal direction into the vertical length section and from the vertical length section in turn into the horizontal length section. These deflections by 90 Ā° would lead to high flow losses without the use of additional blade elbow within the manifold. For larger systems, the mass of such a vane is about 7 - 20 t, which must be raised in the raised position. This high mass is also problematic in terms of earthquake resistance. Since the horizontal length of the main steam line including the vane has a significant mass in the transition to the vertical length of the main steam line, it is necessary to use special support structures in earthquake-prone areas to intercept vertical-acting earthquake shocks.

Im Stand der Technik werden zum Ausgleich der thermisch bedingten LƤngenƤnderung FederstĆ¼tzen 4 verwendet, um eine hinreichende UnterstĆ¼tzung des horizontal verlaufenden LƤngenabschnitts der Hauptabdampfleitung zu gewƤhrleisten. Es besteht allerdings das Risiko, dass bei vertikalen ErdbebenstĆ¶ĆŸen die relativ hohe Masse der Hauptabdampfleitung und des SchaufelkrĆ¼mmers nicht durch die Federn der FederstĆ¼tzen aufgefangen werden kann, weshalb zusƤtzliche StoƟbremsen in Form von hydraulischen DƤmpfern vorgesehen werden mĆ¼ssen. Diese StoƟbremsen in Kombination mit den Federn der FederstĆ¼tzen 4 bilden eine Feder-DƤmpfer-Anordnung, die verhindert, dass sich die bei einem Erdbeben eingeleiteten KrƤfte von der Hauptabdampfleitung 2 bis in die Dampfturbine fortsetzen, an welche die Hauptabdampfleitung 2 letztendlich angeschlossen ist. Die FederstĆ¼tzen 4 in Kombination mit den StoƟbremsen-sind relativ aufwƤndige Bauteile, da sie in AbhƤngigkeit von der LƤnge der Hauptabdampfleitung 2 mehrfach vorgesehen sein mĆ¼ssen, um ein gleichmƤƟiges Anheben bzw. Absenken des horizontalen LƤngenabschnitts der Hauptabdampfleitung 2 zu gewƤhrleisten. In Figur 2 sind die weiteren FederstĆ¼tzen 4 durch doppelt unterbrochene Linien schematisch angedeutet.In the prior art spring supports 4 are used to compensate for the thermally induced change in length to ensure adequate support of the horizontally extending length portion of the main steam line. However, there is a risk that in vertical earthquake shocks, the relatively high mass of the main exhaust pipe and the blade elbow can not be absorbed by the springs of the spring struts, so additional shock brakes must be provided in the form of hydraulic dampers. These shock brakes in combination with The springs of the spring supports 4 form a spring-damper arrangement, which prevents the forces introduced during an earthquake from the main steam line 2 to continue into the steam turbine to which the main steam line 2 is finally connected. The spring supports 4 in combination with the impact brakes are relatively complex components, since they must be provided several times depending on the length of the main steam pipe 2 to ensure a uniform lifting or lowering of the horizontal length portion of the main steam line 2. In Figure 2, the other spring supports 4 are indicated schematically by double broken lines.

Figur 3.1 zeigt die erfindungsgemƤƟe Abdampfleitung 5, die sich von den AusfĆ¼hrungsformen der Figuren 1 und 2, das heiƟt von dem Stand der Technik dadurch unterscheidet, dass die Hauptabdampfleitung 10 in einem Winkel W zur Horizontalen H in Strƶmungsrichtung des Abdampfs ansteigend angeordnet ist. In diesem AusfĆ¼hrungsbeispiel betrƤgt der Winkel W 10Ā°. Insgesamt sind fĆ¼nf vertikal nach oben abgehende Abzweigleitungen 6 an die Hauptabdampfleitung 10 angeschlossen, wobei sich der Leitungsquerschnitt nach jeder Anschlussstelle 7 einer Abzweigleitung 6 verkleinert. Bei dieser Konfiguration ist die in der Bildebene rechte Abzweigleitung 6 wesentlich kĆ¼rzer als die zuerst abgehende Abzweigleitung 6 in der linken BildhƤlfte. Aufgrund der geneigten Anordnung ist der zwischen dem ansteigenden LƤngenabschnitt 9 der Hauptabdampfleitung 10 und den jeweiligen Abzweigleitungen 6 gemessene Abknickwinkel W1 kleiner als 90Ā°. In diesem AusfĆ¼hrungsbeispiel betrƤgt er 80Ā°. Die Widerstandsbeiwerte der Rohrverzweigungen sind daher kleiner als bei einem 90Ā°-Abzweig.FIG. 3.1 shows the exhaust steam line 5 according to the invention, which differs from the embodiments of FIGS. 1 and 2, that is to say from the prior art in that the main steam exhaust line 10 is arranged at an angle W to the horizontal H in the direction of flow of the exhaust steam. In this embodiment, the angle W is 10 Ā°. A total of five branch lines 6 extending vertically upwards are connected to the main exhaust steam line 10, wherein the line cross-section decreases after each connection point 7 of a branch line 6. In this configuration, the right branch line 6 in the image plane is much shorter than the first outgoing branch line 6 in the left half of the picture. Due to the inclined arrangement, the bending angle W1 measured between the rising length section 9 of the main exhaust steam line 10 and the respective branch lines 6 is less than 90 Ā°. In this embodiment, it is 80 Ā°. The resistance coefficients of the pipe branches are therefore smaller than with a 90 Ā° branch.

Ein weiterer Vorteil ist, dass der zwischen dem horizontalen LƤngenabschnitt 8 und dem ansteigenden LƤngenabschnitt 9 der Hauptabdampfleitung 10 vorhandene Abknickwinkel W2 zu sehr geringen Widerstandsbeiwerten innerhalb dieses KrĆ¼mmers fĆ¼hrt, so dass die Montage eines SchaufelkrĆ¼mmers nicht erforderlich ist. Der Abdampf kann bei reduzierter GesamtlƤnge der Leitungen ohne Verwendung von SchaufelkrĆ¼mmern bei zugleich reduzierten Druckverlusten den nicht nƤher dargestellten Kondensationselementen an den oberen Enden der Abzweigleitungen 6 zugefĆ¼hrt werden.Another advantage is that the Abknickwinkel W2 existing between the horizontal length section 8 and the increasing length section 9 of the main exhaust pipe 10 leads to very low resistance coefficients within this bend, so that the assembly of a vane bend is not required. The exhaust steam can at reduced total length of Lines without the use of vane elbows at the same time reduced pressure losses are supplied to the condensation elements not shown at the upper ends of the branch lines 6.

Der ansteigende LƤngenabschnitt 9 der Hauptabdampfleitung 10 ist auf PendelstĆ¼tzen 11 gelagert. Die PendelstĆ¼tzen 11 gleichen die in LƤngsrichtung des ansteigenden LƤngenabschnitts 9 wirkenden thermischen LƤngenƤnderungen aus. AufwƤndige FederstĆ¼tzen und StoƟbremsen sind bei dieser Anordnung nicht erforderlich. Der ansteigende LƤngenabschnitt 9 Ć¼bt bei vertikal wirkenden Erdbebenbelastungen keine unzulƤssigen KrƤfte auf die Dampfturbine aus, so dass der konstruktive Aufwand fĆ¼r eine erfindungsgemƤƟ konfigurierte Abdampfleitung 5 insgesamt geringer ist. Durch den ansteigenden Verlauf der Hauptabdampfleitung 10 ist ein freierer Lufteintritt unterhalb der Plattform der luftgekĆ¼hlten Kondensationselemente mƶglich. Zudem ist die ZugƤnglichkeit zu der gesamten Anlage verbessert. In der AusfĆ¼hrungsform der Figur 1 mussten hƤufig sehr weite Wege zurĆ¼ckgelegt werden, da der direkte Weg von der in BodennƤhe angeordneten Hauptabdampfleitung 2 blockiert wurde. Bei der erfindungsgemƤƟen Anordnung ist es mƶglich, unter der Hauptabdampfleitung 10 hindurch zu gehen. Ein weiterer Vorteil ist die reduzierte AngriffsflƤche der Abdampfleitung 5 fĆ¼r Windlasten. Es wird deutlich, dass bei der LeitungsfĆ¼hrung der Figur 3.1 und 3.2 in der Summe eine geringere AngriffsflƤche vorhanden ist als bei der AusfĆ¼hrungsform der Figur 1 oder 2.The rising length section 9 of the main exhaust pipe 10 is mounted on pendulum supports 11. The pendulum supports 11 compensate for acting in the longitudinal direction of the rising length portion 9 thermal length changes. Elaborate spring struts and shock brakes are not required in this arrangement. The rising length section 9 does not exert any inadmissible forces on the steam turbine in the case of vertically acting earthquake loads, so that the constructional outlay for an exhaust steam line 5 configured according to the invention is lower overall. Due to the rising course of the main exhaust steam line 10, a freer air inlet below the platform of the air-cooled condensation elements is possible. In addition, the accessibility to the entire system is improved. In the embodiment of FIG. 1, very long paths often had to be covered, since the direct route was blocked by the main exhaust steam line 2 arranged near the bottom. In the arrangement according to the invention, it is possible to pass under the main steam discharge line 10. Another advantage is the reduced attack surface of the exhaust steam line 5 for wind loads. It becomes clear that, in the case of the routing of FIGS. 3.1 and 3.2, a lower attack surface is present overall than in the embodiment of FIG. 1 or 2.

Die AusfĆ¼hrungsform der Figur 3.2 unterscheidet sich von derjenigen der Figur 3.1 dadurch, dass die einzelnen Abzweigleitungen 6', 6", 6'" nicht senkrecht zur Horizontalen ausgerichtet sind, sondern ebenfalls schrƤg ansteigend verlaufen. In diesem AusfĆ¼hrungsbeispiel ist die Steigung des ansteigenden LƤngenabschnitts 9 der Hauptabdampfleitung bzw. der Winkel W so gewƤhlt, dass die am ƤuƟeren Ende des ansteigenden LƤngenabschnitts 9 angeordnete Abzweigleitung 6'" die gleiche Orientierung besitzt wie der ansteigende LƤngenabschnitt 9 der Hauptabdampfleitung. Bei der AusfĆ¼hrungsform der Figur 3.2 ist zwar der Winkel W gegenĆ¼ber der Horizontalen H grĆ¶ĆŸer als bei der AusfĆ¼hrungsform der Figur 3.1, so dass geringfĆ¼gig hƶhere Strƶmungsverluste im Ɯbergangsbereich vom horizontalen LƤngenabschnitt 8 zum ansteigenden LƤngenabschnitt 9 auftreten, allerdings ist der mit W3', W3" bezeichnete Abknickwinkel zwischen dem ansteigenden LƤngenabschnitt 9 und den Abzweigleitungen 6', 6" kleiner als bei der AusfĆ¼hrungsform der Figur 3.1, so dass diese Strƶmungsverluste an den Anschlussstellen 7 der einzelnen Abzweigleitungen 6', 6" sowohl einzeln als auch in der Summe erheblich geringer sind. Dadurch kann der Leitungsquerschnitt des ansteigenden LƤngenabschnitts 9 von der ersten Anschlussstelle 7 an kleiner bemessen sein, wodurch erhebliche Material- und Gewichtseinsparungen, somit auch geringere Montagegewichte und geringere Montagekosten mƶglich sind. Hieraus resultieren geringere Eigen-, Wind-, Erdbeben- und Fundamentlasten.The embodiment of Figure 3.2 differs from that of Figure 3.1 in that the individual branch lines 6 ', 6 ", 6'" are not aligned perpendicular to the horizontal, but also extend obliquely rising. In this embodiment, the pitch of the rising length portion 9 of the main exhaust pipe or the angle W is set so that the branch pipe 6 "located at the outer end of the rising length portion 9 has the same orientation as the rising length portion 9 of the main exhaust pipe Although the angle W is greater than the horizontal H in FIG. 3.2, it is larger than in the embodiment FIG. 3.1, so that slightly higher flow losses occur in the transition region from the horizontal length section 8 to the rising length section 9, but the angle of deflection between the rising length section 9 and the branch lines 6 ', 6 ", designated W3', W3", is smaller than in the embodiment 3.1, so that these flow losses at the connection points 7 of the individual branch lines 6 ', 6 "are considerably less, both individually and in total Significant material and weight savings, thus also lower assembly weights and lower assembly costs are possible resulting in lower intrinsic, wind, earthquake and foundation loads.

Jedes zwischen zwei Anschlussstellen 7 gelegene TeilstĆ¼ck des ansteigenden LƤngenabschnitts 9 wird von einer StĆ¼tze 11' getragen. Die Abknickwinkel W3', W3" kƶnnen grundsƤtzlich voneinander abweichen. Insbesondere kƶnnen die Abknickwinkel W3', W3" zum ƤuƟeren Ende des ansteigenden LƤngenabschnitts 9 kleiner werden und sogar gegen Null gehen, wie Figur 3.2 zeigt.Each located between two connection points 7 portion of the rising length portion 9 is supported by a support 11 '. In principle, the bending angles W3 ', W3 "to the outer end of the rising length section 9 can become smaller and even approach zero, as FIG. 3.2 shows.

Im Stand der Technik sind auch Abdampfleitungen 12, 13 bekannt, wie sie in den Figuren 4 und 5 dargestellt sind. Diese AusfĆ¼hrungsformen entsprechen im wesentlichen den an einer Vertikalachse gespiegelten Anordnungen der Figuren 1 und 2 mit dem Unterschied, dass hier insgesamt 4 bis 12 Abzweigleitungen vorgesehen sind, die Ć¼ber die jeweils quer abgehenden Ƅste der Hauptabdampfleitungen 14 an eine Zentralleitung 15 angeschlossen sind. In Figur 5 sind auch bei dieser AusfĆ¼hrungsform die bereits in Figur 2 erlƤuterten FederstĆ¼tzen 4 eingezeichnet. Die Nachteile wurden anhand der Figuren 1 und 2 erlƤutert und gelten auch fĆ¼r diese AusfĆ¼hrungsform.In the prior art also exhaust steam lines 12, 13 are known, as shown in Figures 4 and 5. These embodiments essentially correspond to the mirrored on a vertical axis arrangements of Figures 1 and 2 with the difference that here a total of 4 to 12 branch lines are provided, which are connected via the respective transversely departing branches of Hauptabdampfleitungen 14 to a central line 15. In Figure 5, the already explained in Figure 2 spring supports 4 are also drawn in this embodiment. The disadvantages were explained with reference to FIGS. 1 and 2 and also apply to this embodiment.

In der erfindungsgemƤƟen AusfĆ¼hrungsform der Figur 6.1 ist ebenfalls eine Zentralleitung 16 vorgesehen, von der jeweils eine Hauptabdampfleitung 17 nach rechts und eine Hauptabdampfleitung 18 nach links mit gegenlƤufiger Steigung abgeht. Die einzelnen Hauptabdampfleitungen 17, 18 sind wiederum Ć¼ber StĆ¼tzen 11, insbesondere PendelstĆ¼tzen gelagert. Zu den Vorteilen dieser AusfĆ¼hrungsform wird auf die Beschreibung zu Figur 3.1 verwiesen, die auch fĆ¼r diese Variante der erfindungsgemƤƟen Abdampfleitung 19 gilt.In the embodiment according to the invention of FIG. 6.1, a central line 16 is likewise provided, from which in each case a main waste steam line 17 to the right and a main waste steam line 18 to the left with opposite directions Slope gone. The individual Hauptabdampfleitungen 17, 18 are in turn supported by supports 11, in particular pendulum supports. For the advantages of this embodiment, reference is made to the description of Figure 3.1, which also applies to this variant of the exhaust steam line 19 according to the invention.

GrundsƤtzlich kƶnnen die PendelstĆ¼tzen 11 auch durch feststehende StĆ¼tzen mit einem Teflon-Edelstahl-GleitfuƟ ersetzt werden.Basically, the pendulum supports 11 can also be replaced by fixed supports with a Teflon stainless steel GleitfuƟ.

Die AusfĆ¼hrungsform der Figur 6.2 unterscheidet sich von derjenigen der Figur 6.1 unter anderem dadurch, dass der Winkel W zwischen der Horizontalen H und den Hauptabdampfleitungen 17, 18 vergrĆ¶ĆŸert ist. Der Winkel W ist so gewƤhlt, dass die jeweils letzte oder endseitige Abzweigleitung 6"' fluchtend mit der Hauptabdampfleitung 17, 18 verlƤuft. D.h. die ƤuƟere Abzweigleitung 6"' ist gewissermaƟen Bestandteil der Hauptabdampfleitung 17, 18 geworden. Ein weiterer Unterschied ist, dass die mittleren Abzweigleitungen 6" der einzelnen Hauptabdampfleitungen 17, 18 nicht senkrecht zur Horizontalen H verlaufen, wie es in Figur 6.1 der Fall ist, sondern ebenfalls geneigt sind. Der Abknickwinkel zwischen der Hauptabdampfleitung 17, 18 und diesen Abzweigleitungen 6" ist mit W3" bezeichnet. Im Vergleich mit den AusfĆ¼hrungsformen der Figuren 4 und 5 ist erkennbar, dass der Abknickwinkel W3" deutlich kleiner ist als 90Ā° und auch gegenĆ¼ber der AusfĆ¼hrungsform der Figur 6.1 nochmals verkleinert ist. Auch bei dieser AusfĆ¼hrung tragen die kĆ¼rzeren und daher leichteren Abdampfleitungen 6, 6", 6'" zu nochmals reduzierten Eigen-, Wind-, Erdbeben- und Fundamentlasten bei. Die Montagegewichte werden ebenfalls nochmals reduziert.The embodiment of Figure 6.2 differs from that of Figure 6.1, inter alia, in that the angle W between the horizontal H and the Hauptabdampfleitungen 17, 18 is increased. The angle W is chosen so that the respective last or end-side branch line 6 "'runs in alignment with the main exhaust steam line 17, 18. That is to say that the outer branch line 6"' has become part of the main exhaust steam line 17, 18. A further difference is that the central branch lines 6 "of the individual main exhaust steam lines 17, 18 do not run perpendicular to the horizontal H, as is the case in Figure 6.1, but are also inclined, the angle between the main steam exhaust line 17, 18 and these branch lines 6 In comparison with the embodiments of FIGS. 4 and 5, it can be seen that the bending angle W3 "is significantly smaller than 90 Ā° and is also reduced again compared to the embodiment of FIG. 6.1. Also in this embodiment, the shorter and therefore lighter exhaust steam lines 6, 6 ", 6 '" contribute to further reduced intrinsic, wind, earthquake and foundation loads. The assembly weights are also reduced again.

Figur 7 zeigt eine AusfĆ¼hrungsform einer Abdampfleitung 20, bei welcher der Winkel W zwischen der Horizontalen H und der Hauptabdampfleitung 21 gegenĆ¼ber den vorherigen AusfĆ¼hrungsformen vergrĆ¶ĆŸert ist. Die Hauptabdampfleitung 21 ist ohne ein horizontal verlaufendes MittelstĆ¼ck unmittelbar an eine Zentralleitung 22 angeschlossen. Der Winkel W ist wiederum so gewƤhlt, dass die letzte oder endseitige Abzweigleitung 6"' fluchtend mit der Hauptabdampfleitung 21 verlƤuft. Da die Hauptabdampfleitung 21 in diesem AusfĆ¼hrungsbeispiel relativ steil ansteigt, ist der Abknickwinkel W2 zwischen den senkrecht nach oben von der Hauptabdampfleitung 21 abgehenden Abzweigleitungen 6, 6a und der Hauptabdampfleitung 21 sehr klein, so dass die Strƶmungsverluste in den Anschlussstellen 7 der Hauptabdampfleitung 21 gering sind. Das Besondere an dieser AusfĆ¼hrungsform ist, dass die Abzweigleitung 6a in zwei Teilleitungen 23, 24 gegliedert ist, wobei jede Teilleitung 23, 24 zu jeweils einem nicht nƤher dargestellten Kondensationselement fĆ¼hrt. Die Abzweigleitung 6a erstreckt sich von der Hauptabdampfleitung 21 ausgehend zunƤchst senkrecht nach oben bis zu einer Anschlussstelle 7a. Von dieser Anschlussstelle 7a zweigt in einem Abknickwinkel W4 die Teilleitung 24 ab, wƤhrend die andere Teilleitung 23 in gerader VerlƤngerung der Abzweigleitung 6a senkrecht nach oben weitergefĆ¼hrt wird. Durch die zusƤtzliche Teilleitung 24 wird eine weitere Abzweigleitung eingespart, die bis auf die Hauptabdampfleitung 21 gefĆ¼hrt werden mĆ¼sste. Insbesondere bei steiler verlaufenden Abdampfleitungen 21 ist es daher zweckmƤƟig, zusƤtzliche VerƤstelungen, bzw. Teilleitungen an den einzelnen Abzweigleitungen vorzusehen.FIG. 7 shows an embodiment of an exhaust steam line 20 in which the angle W between the horizontal H and the main exhaust steam line 21 is increased compared to the previous embodiments. The Hauptabdampfleitung 21 is connected directly to a central line 22 without a horizontally extending center piece. The angle W is in turn chosen so that the last or end-side branch line 6 "'in alignment with the main exhaust steam line 21 runs. Since the Hauptabdampfleitung 21 increases relatively steeply in this embodiment, the Abknickwinkel W2 between the vertically upwardly from the main steam outlet 21 outgoing branch lines 6, 6a and the Hauptabdampfleitung 21 is very small, so that the flow losses in the connection points 7 of Hauptabdampfleitung 21 are low. The special feature of this embodiment is that the branch line 6a is divided into two sub-lines 23, 24, each sub-line 23, 24 leading to a respective condensation element, not shown. The branch line 6a extends from the main steam line 21, starting initially vertically up to a junction 7a. From this connection point 7a branches off in a Abknickwinkel W4 the sub-line 24, while the other sub-line 23 is continued in a straight extension of the branch line 6a vertically upwards. Through the additional part of line 24, a further branch line is saved, which would have to be performed on the Hauptabdampfleitung 21. In particular, in the case of steeper exhaust steam lines 21, it is therefore expedient to provide additional ramifications or partial lines to the individual branch lines.

Figur 8 zeigt einen vergrĆ¶ĆŸerten Ausschnitt der AusfĆ¼hrungsform der Figur 7. Im Unterschied zu der vorherigen AusfĆ¼hrungsform sind in die Anschlussstellen 7, 7a jeweils Leitbleche 25, 26, 27 integriert. Die Leitbleche 25, 26, 27 dienen zur Aufteilung des Abdampfstroms in Abdampfteilstrƶme entsprechend dem VerhƤltnis der auf eine Anschlussstelle 7, 7a folgenden Verteilerrohre. In dem AusfĆ¼hrungsbeispiel der Figuren 7 und 8 werden insgesamt vier Verteilerrohre der Kondensationselemente mit Abdampf gespeist. Dementsprechend erfolgt an jeder Anschlussstelle eine Aufteilung des Abdampfstroms in einem VerhƤltnis 1:1. Die gleichmƤƟige Aufteilung wird dadurch erreicht, dass die Leitbleche 25, 26, 27 bereits vor den jeweiligen Anschlussstellen 7, 7a innerhalb der Hauptabdampfleitung 21 bzw. der Abzweigleitung 6a montiert sind. Ein kreisrunder Querschnitt der Hauptabdampfleitung 21 bzw. der Abzweigleitung 6a wird dadurch in je zwei Halbkreise aufgeteilt. Weicht der Querschnitt der Hauptabdampfleitung 21 bzw. der Abzweigleitung 6a von einem kreisrunden Querschnitt ab, erfolgt eine flƤchenmƤƟig gleiche Aufteilung. Das jeweilige Leitblech 25, 26, 27 ist vorzugsweise derart ausgebildet, dass eine flƤchenmƤƟig gleiche Aufteilung sowohl vor der jeweiligen Anschlussstelle 7, 7a als auch im Bereich der jeweiligen Anschlussstelle 7, 7a realisiert ist. Wesentlich ist dabei, dass die Druckverluste der Abdampfteilstrƶme im Bereich der Anschlussstellen 7, 7a nahezu gleich sind und die Abdampfmenge in gleich groƟe Teile aufgeteilt wird.Figure 8 shows an enlarged section of the embodiment of Figure 7. In contrast to the previous embodiment, baffles 25, 26, 27 are integrated into the connection points 7, 7a. The baffles 25, 26, 27 serve to divide the Abdampfstroms in Abdampfteilstrƶme corresponding to the ratio of the following on a connection point 7, 7a distribution pipes. In the exemplary embodiment of FIGS. 7 and 8, a total of four distributor tubes of the condensation elements are fed with exhaust steam. Accordingly, there is a division of the exhaust steam in a ratio of 1: 1 at each connection point. The uniform distribution is achieved in that the baffles 25, 26, 27 are already mounted in front of the respective connection points 7, 7a within the main steam line 21 and the branch line 6a. A circular cross-section of the main exhaust steam line 21 and the branch line 6a is thereby divided into two semicircles. Differs the cross section of Hauptabdampfleitung 21 and the branch line 6a from a circular cross-section from, there is an area equal division. The respective baffle 25, 26, 27 is preferably designed such that an areal same division is realized both in front of the respective connection point 7, 7a and in the region of the respective connection point 7, 7a. It is essential that the pressure losses of Abdampfteilstrƶme in the region of the connection points 7, 7a are almost equal and the Abdampfmenge is divided into equal parts.

In dem gezeigten AusfĆ¼hrungsbeispiel sind die jeweiligen Leitbleche 25, 26, 27 abgewinkelt konfiguriert. Der jeweils vordere LƤngenbereich 28 der einzelnen Leitbleche 25, 26, 27 besitzt eine LƤnge L, die dem Durchmesser D1, D2, D3 der Hauptabdampfleitung 21 bzw. der Abdampfleitung 6a vor der jeweiligen Anschlussstelle 7, 7a entspricht. Der Beginn einer Anschlussstelle 7, 7a wird als Schnittpunkt der MittellƤngsachsen der jeweiligen Abzweigleitung 6, 6a mit der Hauptabdampfleitung 21 bzw. als Schnittpunkt der Teilleitung 24 mit der Abzweigleitung 6a definiert. Es ist erkennbar, dass sich der gerade Verlauf der jeweils vorderen LƤngenabschnitte 28 der Leitbleche 25, 26, 27 Ć¼ber diesen Schnittpunkt hinaus erstreckt, bevor der jeweils hintere LƤngenabschnitt 29 jeweils im Winkel angesetzt ist. Der Ansatzpunkt des hinteren LƤngenabschnitts 29 ist so gewƤhlt, dass die Strƶmungsquerschnitte im Bereich der Anschlussstellen 7, 7a mƶglichst gleich groƟ sind.In the embodiment shown, the respective baffles 25, 26, 27 configured angled. The respective front length region 28 of the individual baffles 25, 26, 27 has a length L which corresponds to the diameter D 1 , D 2 , D 3 of the main steam line 21 and the exhaust steam line 6 a in front of the respective connection point 7, 7 a. The beginning of a connection point 7, 7a is defined as the intersection of the central longitudinal axes of the respective branch line 6, 6a with the main exhaust steam line 21 or as the intersection of the part line 24 with the branch line 6a. It can be seen that the straight course of the respectively front longitudinal sections 28 of the baffles 25, 26, 27 extends beyond this point of intersection, before the respective rear longitudinal section 29 is attached at an angle. The starting point of the rear longitudinal section 29 is selected so that the flow cross sections in the region of the connection points 7, 7a are as equal as possible.

BezugszeichenaufstellungREFERENCE NUMBERS

1 -1 -
Abdampfleitungexhaust steam
2 -2 -
Hauptabdampfleitungmain steam
3 -3 -
Abzweigleitungbranch line
4 -4 -
FederstĆ¼ckespring pieces
5 -5 -
Abdampfleitungexhaust steam
6 -6 -
Abzweigleitung
6' - Abzweigleitung
6" - Abzweigleitung
6"' - Abzweigleitung
branch line
6 '- branch line
6 "branch line
6 "branch pipe
6a -6a -
Abzweigleitungbranch line
7 -7 -
Anschlussstellejunction
7a -7a -
Anschlussstellejunction
8 -8th -
horizontaler LƤngenabschnitthorizontal length section
9 -9 -
ansteigender LƤngenabschnittincreasing length section
10 -10 -
Hauptabdampfleitungmain steam
11 -11 -
PendelstĆ¼tze oder Teflon-Edelstahl-GleitfuƟPendulum support or Teflon stainless steel sliding foot
11' -11 '-
StĆ¼tzesupport
12 -12 -
Abdampfleitungexhaust steam
13 -13 -
Abdampfleitungexhaust steam
14 -14 -
Hauptabdampfleitungmain steam
15 -15 -
ZentralleitungCentral line
16 -16 -
ZentralleitungCentral line
17 -17 -
Hauptabdampfleitungmain steam
18-18-
Hauptabdampfleitungmain steam
19 -19 -
Abdampfleitungexhaust steam
20 -20 -
Abdampfleitungexhaust steam
21 -21 -
Hauptabdampfleitungmain steam
22 -22 -
ZentralleitungCentral line
23 -23 -
Teilleitungsubline
24 -24 -
Teilleitungsubline
25 -25 -
Leitblechbaffle
26 -26 -
Leitblechbaffle
27 -27 -
Leitblechbaffle
28 -28 -
vorderer LƤngenbereich v. 25, 26, 27front length range v. 25, 26, 27
29 -29 -
hinterer LƤngenbereich v. 25, 26, 27rear length range v. 25, 26, 27
30 -30 -
Verteilerrohrmanifold
D1 -D 1 -
Durchmesser v. 21Diameter v. 21
D2 -D 2 -
Durchmesser v. 21Diameter v. 21
D3 -D 3 -
Durchmesser v. 6aDiameter v. 6a
H -H -
Horizontalehorizontal
L -L -
LƤngelength
W -W -
Winkelangle
W1 -W1 -
Abknickwinkelsharp angle
W2 -W2 -
Abknickwinkelsharp angle
W3 -W3 -
Abknickwinkelsharp angle
W3' -W3 '-
Abknickwinkelsharp angle
W3" -W3 "-
Abknickwinkelsharp angle
W4 -W4 -
Abknickwinkelsharp angle

Claims (12)

  1. Exhaust steam line for steam power plants, the steam power plants having a plurality of in particular air-cooled condensation elements, with a main exhaust steam line (10, 17, 18, 21) to which are connected at least two branch lines (6, 6', 6", 6"', 6a) which each lead to a condensation element, the line cross section of the main exhaust steam line (10, 17, 18, 21) being reduced in size in terms of line cross section downstream of a connecting point (7) of a branch line (6, 6', 6", 6"', 6a), characterized in that the main exhaust steam line (10, 17, 18, 21) is arranged so as to rise at an angle (W) to the horizontal (H) in the flow direction of the exhaust steam, the bend angle (W1, W2, W3, W3', W3") measured between a longitudinal section (9) of the main exhaust steam line (10, 17, 18, 21) and the branch lines (6, 6' , 6" , 6"' , 6a) being less than 90Ā°, and the length of the individual branch lines (6, 6', 6", 6"', 6a) decreasing in the flow direction of the exhaust steam.
  2. Exhaust steam line according to Claim 1, characterized in that the angle (W) is in a range from 5Ā° to 60Ā°.
  3. Exhaust steam line according to Claim 1 or 2, characterized in that the angle (W) is in a range from 10Ā° to 20Ā°.
  4. Exhaust steam line according to one of Claims 1 to 3, characterized in that a first main exhaust steam line (17) and a second main exhaust steam line (18) of opposing gradient are connected to a common central line (16).
  5. Exhaust steam line according to one of Claims 1 to 4, characterized in that the main exhaust steam line (10, 17, 18) is mounted on supports (11) which have compensation means for compensating for thermal length variations of the main exhaust steam line (10, 17, 18).
  6. Exhaust steam line according to Claim 5, characterized in that the supports (11) have a pendulum section or a sliding section which can compensate for length variations of the main exhaust steam line (10, 18, 19).
  7. Exhaust steam line according to one of Claims 1 to 6, characterized in that at least one of the branch lines (6', 6", 6"') is arranged so as to rise obliquely in the flow direction of the exhaust steam at a bend angle (W3, W3', W3") relative to the main exhaust steam line (10, 17, 18).
  8. Exhaust steam line according to one of Claims 1 to 7, characterized in that an end branch line (6"') of the main exhaust steam line (17, 18, 21) has the same orientation as the main exhaust steam line (17, 18, 21).
  9. Exhaust steam line according to one of Claims 1 to 8, characterized in that at least one branch line (6a) is divided into at least two sub-lines (23, 24).
  10. Exhaust steam line according to Claim 9, characterized in that at least one sub-line (24) is arranged so as to rise obliquely at a bend angle (W4) relative to the branch line (6a).
  11. Exhaust steam line according to one of Claims 1 to 10, characterized in that a metal guide plate (25, 26, 27) for dividing the exhaust steam flow into partial exhaust steam flows is arranged in the region of at least one connecting point (7, 7a) of a branch line (6, 6' , 6", 6"', 6a) or of a sub-line (23, 24).
  12. Exhaust steam line according to Claim 11, characterized in that the ratio of the partial exhaust steam flows corresponds to the ratio of the distributor pipe (30) downstream of a connecting point (7, 7a).
EP20040762342 2003-07-08 2004-07-02 Exhaust steam line for steam plants Active EP1642075B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10330659A DE10330659B3 (en) 2003-07-08 2003-07-08 Steam drainage line for steam turbine power generation plant, with branch lines leading to air-cooled condensation elements tapped off from upwards inclined main steam drainage line
PCT/DE2004/001417 WO2005005902A1 (en) 2003-07-08 2004-07-02 Exhaust steam line for steam plants

Publications (2)

Publication Number Publication Date
EP1642075A1 EP1642075A1 (en) 2006-04-05
EP1642075B1 true EP1642075B1 (en) 2006-12-13

Family

ID=33482966

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20040762342 Active EP1642075B1 (en) 2003-07-08 2004-07-02 Exhaust steam line for steam plants

Country Status (14)

Country Link
US (1) US7168448B2 (en)
EP (1) EP1642075B1 (en)
KR (1) KR100739933B1 (en)
CN (2) CN100340743C (en)
AT (1) ATE348308T1 (en)
AU (1) AU2004255669B2 (en)
DE (2) DE10330659B3 (en)
EG (1) EG24188A (en)
ES (1) ES2277278T3 (en)
IL (1) IL171512A (en)
MX (1) MXPA05008679A (en)
RU (1) RU2298750C2 (en)
WO (1) WO2005005902A1 (en)
ZA (1) ZA200506469B (en)

Cited By (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US10995999B2 (en) 2017-10-31 2021-05-04 Hamon Thermal Europe S.A. Cooling unit, installation and process

Families Citing this family (28)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
FI115852B (en) * 2003-03-03 2005-07-29 Uponor Innovation Ab dISTRIBUTOR
DE10330659B3 (en) * 2003-07-08 2004-12-23 Gea Energietechnik Gmbh Steam drainage line for steam turbine power generation plant, with branch lines leading to air-cooled condensation elements tapped off from upwards inclined main steam drainage line
FR2896792B1 (en) * 2006-01-27 2008-07-18 Millipore Corp SYSTEM AND METHOD FOR PURIFYING WATER
FR2896793B1 (en) * 2006-01-27 2008-08-08 Millipore Corp SYSTEM AND METHOD FOR PURIFYING WATER
JP3987093B1 (en) * 2006-07-10 2007-10-03 悭ćƒŖćƒ³ćƒ“ćƒćƒ¬ćƒƒć‚øę Ŗ式会ē¤¾ Distributor
DE102007058030A1 (en) * 2007-11-30 2009-06-04 Bohnenstengel, Christel Cooling arrangement for use in thermal power station for cooling e.g. water vapor-air-mixture, has cooling device including ventilation elements, and internal area comprising auxiliary chambers attached to group of ventilation elements
US8151885B2 (en) * 2009-04-20 2012-04-10 Halliburton Energy Services Inc. Erosion resistant flow connector
US8992601B2 (en) 2009-05-20 2015-03-31 480 Biomedical, Inc. Medical implants
NO333218B1 (en) * 2011-01-27 2013-04-15 Fmc Kongsberg Subsea As Manifold for use in a flow system
WO2013095424A1 (en) * 2011-12-21 2013-06-27 Alstom Technology Ltd Shape optimized headers and methods of manufacture thereof
DE102012004275A1 (en) * 2012-03-01 2013-09-05 Ulrich Schmid Device for generating electricity from waste heat in hermetically operated heat- and power-combination plant, has liquefier whose outlet is moved to pump, where exhaust system downstream to power engine is guided in direction of liquefier
WO2013181512A1 (en) * 2012-05-31 2013-12-05 Evapco, Inc. Turbine exhaust duct design for air cooled condensers
CN102809305B (en) * 2012-08-21 2014-04-16 哈尔ę»Øå·„äøšå¤§å­¦ļ¼ˆåØęµ·ļ¼‰ Steam distribution device for direct air-cooled condenser for power station
CN103148710A (en) * 2013-04-07 2013-06-12 äø­å›½ē”µåŠ›å·„ē؋锾问集团äøœåŒ—ē”µåŠ›č®¾č®”院 Direct air-cooled steam exhaust pipe arrangement structure of large-size unit
US20160102895A1 (en) * 2014-10-08 2016-04-14 Spx Cooling Technologies, Inc. Modular air cooled condenser flow converter apparatus and method
CN104677133B (en) * 2015-01-21 2018-09-11 北äŗ¬é¾™ęŗå†·å“ꊀęœÆęœ‰é™å…¬åø A kind of exhaust system and indirect air cooling system
CN107531431A (en) * 2015-03-19 2018-01-02 č‰¾ę™®å°¼å…¬åø Pressure difference method of inspection for pneumatic conveying
US9969569B2 (en) 2015-09-22 2018-05-15 Deere & Company Agricultural vehicle pneumatic distribution system
CN105466235A (en) * 2015-12-22 2016-04-06 äø­å›½ē”µåŠ›å·„ē؋锾问集团č„æ北ē”µåŠ›č®¾č®”é™¢ęœ‰é™å…¬åø Direct dry cooling system of natural draft cooling tower
CN106761970B (en) * 2016-12-13 2018-02-16 华北ē”µåŠ›å¤§å­¦ A kind of more joint construction unit exhaust steam cooling systems and more joint construction air cooling turbo-generators
CN106705696B (en) * 2017-01-18 2019-01-08 ēŽ‹å›½é™… Two-way steam condensate parallel connection balances escaper
CA3038323A1 (en) * 2018-03-28 2019-09-28 Ipeg, Inc. System and method using telemetry to configure control systems for pneumatic conveying systems
US10926965B2 (en) * 2018-03-28 2021-02-23 Ipeg, Inc. System and method using telemetry to characterize, maintain and analyze pneumatic conveying systems
CN112912670B (en) * 2018-09-07 2023-07-18 č‰¾åØę™®ē§‘å…¬åø Advanced large-scale on-site erection air cooling industrial steam condenser
US10982904B2 (en) 2018-09-07 2021-04-20 Evapco, Inc. Advanced large scale field-erected air cooled industrial steam condenser
CN109141038A (en) * 2018-09-29 2019-01-04 äø­å†¶åŒ—ę–¹ļ¼ˆå¤§čæžļ¼‰å·„ēØ‹ęŠ€ęœÆęœ‰é™å…¬åø Ring cold machine liquid bath thawing apparatus
CN109289293A (en) * 2018-11-23 2019-02-01 陕č„æē‡ŽåŽŸå‡€åŒ–č®¾å¤‡ęœ‰é™å…¬åø A kind of disturbed flow type feeding device
WO2021050105A1 (en) * 2019-09-13 2021-03-18 Evapco, Inc. Advanced large scale field-erected air cooled industrial steam condenser

Family Cites Families (23)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US2164011A (en) * 1937-05-13 1939-06-27 Donald F Ainslee Orchard heating system
US2723680A (en) * 1950-07-01 1955-11-15 Neyrpic Ets Conduit elements
DE1082286B (en) * 1957-01-28 1960-05-25 Arbed Air-cooled surface condenser
US3037629A (en) * 1958-12-23 1962-06-05 Stamicarbon Separating a mixture of solid particles of various sizes suspended in liquid
US3103942A (en) * 1961-09-22 1963-09-17 Du Pont Apparatus and process for distributing viscous liquids
DE1945314C3 (en) * 1969-09-06 1974-03-07 Kraftwerk Union Ag, 4330 Muelheim Exhaust line for steam power plants
GB1370321A (en) * 1971-02-11 1974-10-16 Gkn Birwelco Ltd Steam condensers
US3794056A (en) * 1972-11-17 1974-02-26 R Warren Fluidic pulse and flow divider
FR2245236A5 (en) * 1973-05-07 1975-04-18 Regamey Pierre
FR2338472A2 (en) * 1976-01-19 1977-08-12 Neu Ets Tubular heat exchanger cooling water by air - which is opened out for increased efficiency without increased cost
DE3040927C1 (en) * 1980-10-30 1981-10-15 Kraftwerk Union AG, 4330 MĆ¼lheim Distributor for two-phase mixtures, especially water-steam mixtures in once-through boilers
SU1108118A1 (en) * 1982-12-13 1984-08-15 Š”Š½ŠµŠæрŠ¾Š“Š·ŠµŃ€Š¶ŠøŠ½ŃŠŗŠøŠ¹ Š˜Š½Š“устрŠøŠ°Š»ŃŒŠ½Ń‹Š¹ Š˜Š½ŃŃ‚Šøтут Š˜Š¼.Šœ.Š˜.ŠŃ€ŃŠµŠ½ŠøчŠµŠ²Š° Arrangement for processing sintering mixture with steam
US4574837A (en) * 1983-09-29 1986-03-11 Exxon Production Research Co. Method and apparatus for splitting two-phase gas-liquid flows having a known flow profile
US4609009A (en) * 1985-12-11 1986-09-02 Environmental Elements Corp. Stepped plenum system
CH667704A5 (en) * 1986-02-07 1988-10-31 Sulzer Ag METHOD AND DEVICE FOR EVENLY DISTRIBUTING A LIQUID TO A CROSS-SECTIONAL SURFACE.
US4800921A (en) * 1986-06-20 1989-01-31 Exxon Production Research Company Method and apparatus for dividing a single stream of liquid and vapor into multiple streams having similar vapor to liquid rations
US4824614A (en) * 1987-04-09 1989-04-25 Santa Fe Energy Company Device for uniformly distributing a two-phase fluid
US5709468A (en) * 1992-11-27 1998-01-20 Texaco Group, Inc. Method for equalizing steam quality in pipe networks
US5407274A (en) * 1992-11-27 1995-04-18 Texaco Inc. Device to equalize steam quality in pipe networks
AU1181199A (en) * 1997-10-17 1999-05-10 Zakrytoe Aktsionernoe Obschestvo "Entek" Exhaust duct for a steam turbine
JP2002129906A (en) * 2000-10-20 2002-05-09 Toshiba Corp Method for supplying cooling steam into steam turbine exhaust chamber and its device
CN2530042Y (en) * 2002-04-05 2003-01-08 äøœę–¹ę±½č½®ęœŗ厂 Direct air cooling turbine steam exhauster for power station
DE10330659B3 (en) * 2003-07-08 2004-12-23 Gea Energietechnik Gmbh Steam drainage line for steam turbine power generation plant, with branch lines leading to air-cooled condensation elements tapped off from upwards inclined main steam drainage line

Cited By (1)

* Cited by examiner, ā€  Cited by third party
Publication number Priority date Publication date Assignee Title
US10995999B2 (en) 2017-10-31 2021-05-04 Hamon Thermal Europe S.A. Cooling unit, installation and process

Also Published As

Publication number Publication date
EG24188A (en) 2008-10-08
DE502004002322D1 (en) 2007-01-25
KR20060029279A (en) 2006-04-05
MXPA05008679A (en) 2005-10-05
DE10330659B3 (en) 2004-12-23
EP1642075A1 (en) 2006-04-05
AU2004255669B2 (en) 2007-05-24
US20050161094A1 (en) 2005-07-28
RU2005129703A (en) 2006-02-10
RU2298750C2 (en) 2007-05-10
AU2004255669A1 (en) 2005-01-20
ATE348308T1 (en) 2007-01-15
CN2695642Y (en) 2005-04-27
CN1576520A (en) 2005-02-09
CN100340743C (en) 2007-10-03
US7168448B2 (en) 2007-01-30
WO2005005902A8 (en) 2005-09-09
ZA200506469B (en) 2006-08-30
IL171512A (en) 2011-06-30
WO2005005902A1 (en) 2005-01-20
KR100739933B1 (en) 2007-07-16
ES2277278T3 (en) 2007-07-01

Similar Documents

Publication Publication Date Title
EP1642075B1 (en) Exhaust steam line for steam plants
DE69915776T2 (en) Side part for heat exchangers and heat exchangers with side plates
EP0617778B1 (en) Fossil-fuelled continuous steam generator
WO2017167458A1 (en) Wound heat exchanger
EP0769118B1 (en) Water-steam separator
EP0619466B1 (en) Steam condenser
DE19642100B4 (en) steam condenser
EP0073851B2 (en) Steam generator with two vertical gas passages connected by a transverse gas passage
DE19606201B4 (en) Device for holding the tubes of a tube bundle
DE10033691A1 (en) Condenser neck used to feed steam from steam turbine to condenser has two level cover plates and two side walls that widen in flow direction of steam and have favorable shape with respect to flow technology
DE3911257C2 (en) Heat exchanger
EP1126227A1 (en) Steam condenser
DE2615492B2 (en) BLOW-OFF FOR A REACTOR SAFETY VALVE
EP0098631B1 (en) High-pressure feed water heater disposed upright in a header construction with a desuperheater casing
DE1590143C3 (en) oil-filled, cooled high-voltage cable
DE2826707A1 (en) Steam heated heat exchanger with grouped pipes - has symmetrical construction and steam loading eliminating thermal stresses
EP2037199A1 (en) Heat exchanger
DE2653192A1 (en) THERMAL EXPANSION COMPENSATOR WITH AN ELASTIC ROD
DE2753841C2 (en)
AT395068B (en) PIPE SNAIL, ESPECIALLY FOR HEAT EXCHANGERS
DE2425539A1 (en) COMBINED MOISTURE SEPARATOR AND OVERHEATER
DE975508C (en) Tube heat exchanger
DE3132865A1 (en) PIPE TO BE LAYED IN THE SCREED OF A FLOOR AND IN FINISHED ELEMENTS
DE19742821A1 (en) Cooler for a hot carrying gas contained in a single vessel
EP1174672A2 (en) Combined- or steam-power-plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050712

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

DAX Request for extension of the european patent (deleted)
GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004002322

Country of ref document: DE

Date of ref document: 20070125

Kind code of ref document: P

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070313

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20070400380

Country of ref document: GR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070514

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2277278

Country of ref document: ES

Kind code of ref document: T3

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070914

BERE Be: lapsed

Owner name: GEA ENERGIETECHNIK G.M.B.H.

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061213

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070614

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004002322

Country of ref document: DE

Owner name: ENEXIO ACC GMBH, DE

Free format text: FORMER OWNER: GEA ENERGIETECHNIK GMBH, 44809 BOCHUM, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004002322

Country of ref document: DE

Owner name: ENEXIO ACC GMBH, DE

Free format text: FORMER OWNER: ENEXIO GERMANY GMBH, 44809 BOCHUM, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220714 AND 20220720

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: ENEXIO ACC GMBH

Effective date: 20220913

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230728

Year of fee payment: 20

Ref country code: RO

Payment date: 20230801

Year of fee payment: 20

Ref country code: IT

Payment date: 20230727

Year of fee payment: 20

Ref country code: IE

Payment date: 20230727

Year of fee payment: 20

Ref country code: GB

Payment date: 20230728

Year of fee payment: 20

Ref country code: ES

Payment date: 20230926

Year of fee payment: 20

Ref country code: BG

Payment date: 20230721

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20230728

Year of fee payment: 20

Ref country code: DE

Payment date: 20230728

Year of fee payment: 20