EP1640169B1 - Device to produce digital multi-colour images - Google Patents

Device to produce digital multi-colour images Download PDF

Info

Publication number
EP1640169B1
EP1640169B1 EP05020623A EP05020623A EP1640169B1 EP 1640169 B1 EP1640169 B1 EP 1640169B1 EP 05020623 A EP05020623 A EP 05020623A EP 05020623 A EP05020623 A EP 05020623A EP 1640169 B1 EP1640169 B1 EP 1640169B1
Authority
EP
European Patent Office
Prior art keywords
light
exposure
light source
exposure head
interference filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05020623A
Other languages
German (de)
French (fr)
Other versions
EP1640169A3 (en
EP1640169A2 (en
Inventor
Verner Delueg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Durst Phototechnik AG
Original Assignee
Durst Phototechnik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Durst Phototechnik AG filed Critical Durst Phototechnik AG
Priority to AT05020623T priority Critical patent/ATE437757T1/en
Publication of EP1640169A2 publication Critical patent/EP1640169A2/en
Publication of EP1640169A3 publication Critical patent/EP1640169A3/en
Application granted granted Critical
Publication of EP1640169B1 publication Critical patent/EP1640169B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/46Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources characterised by using glass fibres

Definitions

  • the invention relates to an apparatus and a method for generating a multicolor image from data of a digital image on a photosensitive material, according to the features in the preambles of claims 1 and 22.
  • the arrangement of the exit ends of the optical fibers is imaged by a lens system of the exposure head on the surface of the photographic paper, so that a plurality of pixels can be exposed simultaneously.
  • the exposure head is moved across the photo paper so that at the same time a plurality of parts of pixels can be created during such movement.
  • the photographic paper is then advanced by a length corresponding to the number of lines first produced, whereupon a further sequence of lines of pixels, through which the exposure head moving above the paper is transferred to the photographic paper.
  • the effect is corrected which is that the exposure effect having a first exposure intensity and a first exposure time is not equal to the exposure effect achieved, for example, by half the first exposure intensity over a period of twice the first exposure time.
  • This effect is also called reciprocity failure.
  • other corrections are required at the edges between two strips consisting of adjacent pixel lines, which are generated by the exposure head, than is the case with pixel lines in the interior of a strip is. To avoid banding and thus impairing the image quality.
  • each channel consisting of light rays which propagate through successive total total reflections at the interface between the core and cladding in the fiber and as a function of their angle are arranged to the fiber axis such that they are located for each channel at each point in the fiber between two cones whose common vertex is formed by this point and which are rotationally symmetrical about a common axis parallel to the fiber axis.
  • the two cones determine the part of the opening angle of the fiber associated with each channel, the aperture parts associated with all the channels being at most adjacent or preferably separated from each other by opening part of the fiber which are free of active radiation, with independent luminous fluxes in each channel in the Fiber input are fed by means that are specific to the angular geometry of each channel associated opening part. Finally, the light fluxes propagating in the channels are recovered at the fiber output by analogous specific means.
  • the Patent Application US 2002/134909 describes the calibration of the light-emitting elements in an optical printer. This is done by attaching the optical printer to an external monitor.
  • This external monitoring device comprises a sensor mounting part, on which in a straight line, a plurality of photosensors are mounted. Further, there is a signal propagating circuit for processing the signals output from the photosensors and a reference voltage generating circuit.
  • a comparison and control circuit for comparing the outputs of the signal processing circuit with the reference voltage outputs a signal based on the result of the comparison.
  • the photosensors receive the light emitted from the light emitting elements of the optical printer which is to be subjected to calibration.
  • the signal processing circuit includes a plurality of integrated circuits which receive the output signals from the plurality of photosensors and integrate these signals for a prescribed period of time. Finally, there is an arithmetic circuit for calculating the mean value of the output signal of the integration circuit and outputting the calibration voltage.
  • the arrangement of a lens system has the advantage that the exit ends of the optical fiber need not be moved directly over the photosensitive material. By imaging the exit ends of the optical fibers with the proposed lens system, the inaccuracies due to the divergence of the exiting light beam from the optical fibers can be avoided. It is achieved by the mask that both the position and the shape of the pixels can be determined with high precision and mechanical inaccuracies in the assembly of the optical fibers in the exposure head are canceled out.
  • the advantage of the design of the device according to claim 2 is that due to the characteristic of the course of the spectral transmittance of the interference filter used, an optimum yield of light of the light sources used is achieved.
  • the design of the device according to claim 5 has the advantage that the light sources, the interference filter and the entrance hatch of the optical fiber in the coupling unit can be arranged very compact and space-saving.
  • the coupling units are arranged in a stationary light source unit, the advantage is achieved that the weight of the exposure head is thus kept as low as possible.
  • the advantage is achieved that the achievable light intensities of the exposure head can be easily checked and especially when using light emitting diodes as light sources whose nonlinear relationship between Drive current and light intensity measured and in the exposure of digital images, this relationship can be considered.
  • the advantage is achieved, which thus also corresponds to the overlap of lines or inter-lines Overlapping in the lateral direction between each other within a line adjacent pixels is achieved.
  • the formation of vertical stripes, which could be noticeable as corresponding artifacts are thus avoided.
  • the design of the device according to claim 21 has the advantage that masks with very high precision are available with the masks formed by coated glass flakes.
  • the object of the invention is solved independently by the method according to the features of claim 22.
  • the advantage here is that with one third of the optical fibers, the Aus GmbH can be found and at the same time a higher accuracy of the exposure of the individual pixels of the digital image can be achieved.
  • the Fig. 1 shows a device 1 for exposing a photosensitive material 2 with digital images 3 in a schematically simplified representation.
  • the device 1 has for this purpose a transport device 4, with the aid of which the photosensitive material 2 can be moved in the feed direction 5.
  • the photosensitive material 2 is formed by, for example, photographic paper or a film.
  • a transport roller 7 operated by a motor 6 With the aid of a transport roller 7 operated by a motor 6, the material 2 is moved or positioned underneath an exposure head 8.
  • the exposure head 8 can be moved back and forth along guides 9 oriented transversely or perpendicular to the feed direction 5 with the aid of an exposure head drive 10.
  • the latter is alternately moved back in the direction 11 and in the direction 12, the material 2 being moved further in the feed direction 5 between the transverse movements of the exposure head 8 and being repositioned.
  • There is such a line by line or pointwise exposure of the photosensitive material 2 by 8 light pulses are directed to the material 2 by the exposure head.
  • the generation of the light pulses takes place in a light source unit 13 with light sources 14, 15, 16, which are preferably each formed by a light-emitting diode (LED). It is provided, for example, that the light source 14 of the generation of red light, the light source 15 of the generation of green light and the light source 16 of the generation of blue light, so that generates a triple of complementary primary colors by a triple of light sources 14, 15, 16 can be.
  • the light sources 14, 15, 16 are to a coupling unit 17 summarized, wherein the light is merged or coupled into a single optical fiber 18.
  • the light source unit 13 has a number of a plurality of such coupling units 17, the light of which is guided into the exposure head 8 through the optical fibers 18, which are combined to form a fiber bundle 19.
  • each pixel can be exposed simultaneously with the three primary colors.
  • the color components of the light sources 14, 15, 16 in that their light intensity is continuously variable, it is thus possible to produce any desired color on a pixel.
  • each of the light sources 14, 15, 16 of each of the coupling units 17 has a drive circuit 20.
  • Each of these drive circuits 20 comprises at least one digital / analog converter 21 and a timer 22.
  • the execution of the exposure process of the device 1 by means of a central controller 23, the information of the digital image 3 in control signals for the transport device 4, the exposure head 10 and the driving circuits 20 for the light sources 14, 15, 16 converts.
  • the controller 23 is connected to a displacement sensor 24 in connection.
  • the device 1 additionally comprises a measuring cell 25 for measuring the light intensities of the exposure head 8.
  • a measuring cell 25 for measuring the light intensities of the exposure head 8.
  • the light sources 14, 15, 16 are formed by LEDs
  • the strong, non-linearity of Connection, between drive current and light emission are measured.
  • the correction parameters derived from this are taken into account during the exposure.
  • This measuring cell 25 is preferably arranged in the region of a parking position of the exposure head 8 outside the actual exposure range of the device 1, so that measurements on the measuring cell 25 can also be carried out automatically.
  • the Fig. 2 shows a schematic diagram of one of the coupling units 17, according to Fig. 1 ,
  • a fiber holder 27 for the inlet-side end of the optical fiber 18 is arranged on a frame 26 of the coupling-in unit 17.
  • the optical fiber 18 is additionally attached in a socket 28, which can be inserted into the fiber holder 27 and fixed there.
  • the fiber holder 27 has at one end a, corresponding to the longitudinal extension of the socket 28 of the optical fiber 18, aligned entrance hatch 29, through which the light of the light sources 14, 15, 16 enters or is coupled into the optical fiber.
  • the light sources 14, 15, 16 are each held in a holder or a tube 30, 31, 32 and their light is focused in each case by a lens 33, 34, 35.
  • the tubes 30, 31, 32 or optical axes 36, 37, 38 of the lenses 33, 34, 35 are aligned approximately star-shaped.
  • the optical axis 38 of the lens 35 is aligned parallel and in alignment with respect to an optical axis 39 of the entrance hatch 29.
  • the optical axes 36, 37 of the lenses 33, 34 with respect to the optical axis 39 of the engagement hatch 29 are obliquely aligned and passes the light of the light sources 14, 15 by deflection or reflection at an interference filter 40 or 41 in the entrance hatch 29th the fiber holder 27.
  • the optical axes 36, 37 close with the optical axis 39 of the entrance hatch 29 preferably an angle of 60 °. This allows a very compact arrangement of the tubes 30, 31, 32 and the interference filter 40 with respect to the fiber holder 27th
  • interference filter 40, 41 for deflecting the beam path of the light sources 14, 15 offers the advantage that light losses can be kept particularly low.
  • interference filters are formed by alternating-layer systems, ie multiple layers with alternating high and low refractive indices. Since the layers are virtually free of absorption, a nearly lossless division of a spectral range to reflection and transmission is possible, the limit being determined by a steep edge of the transmission curve.
  • a filter is used for the interference filter 40 whose spectral transmittance for red light is almost zero, while light of a smaller wavelength range, such as the green light of the light source 15 and the blue light of the light source 16 Interference filter can pass almost unattenuated.
  • the red light of the light source 14 is reflected and passes through the entrance hatch 29 in the optical fiber 18.
  • a filter is used as the interference filter 41 whose spectral transmittance for green Light is almost equal to 0, while the blue light of the light source 16 can pass almost lossless through the interference filter 41.
  • the green light of the light source 15 is thus reflected to the interference filter 41 and passes through the engagement hatch 29 in the optical fiber 18.
  • the peculiarity of the coupling unit 17 is thus that for the deflection of the beam path of the first light source 14 toward the entrance hatch 29 for the Optical fiber 18, an interference filter 40 is used whose spectral transmittance for the wavelength of the light of the light source 14 is almost 0, while the spectral transmittance for the wavelengths of light of the other light sources 15, 16, which must pass through the interference filter 40, almost equal 1 is.
  • the second indifference filter 41 on the other hand, has a spectral transmittance which is almost equal to 0 for the wavelength of the light of the second light source 15, while the spectral transmittance of the light of the light source 16 which must pass through this indifference filter 41 is almost equal to 1.
  • the light sources 14, 15, 16 in the respective tubes 30, 31, 32 can also be provided that their position with respect to the longitudinal extent of the respective tube 30, 31, 32 can be adjusted. Likewise, the position of the tubes 30, 31, 32 with respect to the frame 26 in the longitudinal extension of the tubes 30, 31, 32 are adjusted. This ensures that the light intensity that reaches the entrance hatch 29 of the fiber holder 27 has the maximum achievable value.
  • the Fig. 3 shows the exposure head 8 arranged above the photosensitive material 2 (according to FIG Fig. 1 ), cut shown.
  • the photosensitive material 2 is guided in the region below the exposure head 8 via a table or a plate 42 with a flat upper side. This ensures that the material 2 is aligned parallel to the exit ends of the optical fibers 18.
  • the optical fibers 18 From the stationarily arranged light source unit 13 (FIG. Fig. 1 ), the optical fibers 18 carry the light in the exposure head 8.
  • the optical fiber 18 each end in a socket 43 which are mounted in a carrier 44.
  • the light from the optical fibers 18 is directed by the interposition of a lens system 45 on the photosensitive material 2.
  • a mask 47 is arranged with hatches 48 or interposed.
  • the Fig. 4 shows the mask 47 of the exposure head 8 according to Fig. 3 ,
  • the hatches 48 are distributed in a grid-shaped manner on the mask 47, so that with respect to a direction perpendicular to the directions 11, 12 of the movement of the exposure head 8 successive hatches 48 are offset by a hatch distance d 49.
  • a total of 41 hatches 48 are provided, so that when moving the exposure head 8 in one of the directions 11, 12 41 lines 40 of pixels on the material 2 can be exposed.
  • the lens system 45 (FIG. Fig. 3 ) occurring image reversal in the further description disregarded.
  • Around the exit ends 46 of the optical fibers 18 (FIG. Fig.
  • the hatches 48 are in each case also successively in the lateral direction, ie with respect to the directions 11, 12, offset from each other in successive rows 50.
  • the mask 47 is preferably formed from a glass sheet provided with a coating. For exact mounting in the exposure head 8, the mask 47 also has centering marks 51.
  • Fig. 5 shows a greatly enlarged detail of the mask 47 with two hatches 48, according to Fig. 4 ,
  • the illustrated section shows two hatches 48 and dashed lines indicated exposure strips 52, as they are generated by the passage of the hatches 48 in the direction 11 on the photosensitive material 2.
  • first movement of the exposure head 8 (FIG. Fig. 1 ) over the material 2 of the lines of the digital image 3 to be generated only every second line 50 is generated.
  • the generation of corresponding intermediate lines 53 ensues, during a second movement of the exposure head 8, on the basis of the data of the digital image 3.
  • successive lines 50, 53 thus have a line spacing z 54 whose value is equal to half the hatch distance d 49.
  • This method of applying nested lines 50 and intermediate lines 53 is also referred to as interlacing.
  • each hatch 48 perpendicular to the direction 11, 12 of the movement of the exposure head (8) has a height 55 whose value is greater than the line spacing z 54.
  • the exposure strips 52 of lines 50 and exposure strips 56 of FIG Intermediate lines 53 between each successive lines 50 and intermediate lines 53 overlap each other. This can be avoided unwanted streaking.
  • a width 57 of the hatch 48 has a value which is greater than the line spacing z 54. Both the height 55 and the width 57 of the hatch 48 thus extend beyond the maximum theoretical areal extent of a pixel. This corresponds just to a square with a side length which is equal to the line spacing z 54.
  • width 57 of the hatch 48 is consequently also an overlap between adjacent Pixels within a line 50, 53 reached.
  • the lateral overlap with respect to the direction 11, 12 is additionally increased by the fact that the exposure head 8 is moved continuously over the photosensitive material 2 ( Fig. 1 ). This overlap of the exposure areas of individual pixels in the lateral direction 11, 12 results from the path traveled by the exposure head 8 or the hatch 48 during the duration of an exposure pulse.
  • the maximum duration of an exposure pulse is equal to the transit time for covering the width of an exposure point corresponding to FIG Line spacing z 54.
  • a value between 60% and 95%, in particular 90%, of the propagation time for the width of an exposure point or the transit time for the distance of the line spacing z 54 is preferably selected.
  • lateral contours 58, 59 correspond at least approximately to a Gaussian bell curve. Points of material 2 near the maximum width of the hatch 48, i. in an area near the width 57 of the hatch 48, are thus exposed to the exposure of a light pulse much longer than is the case for other points. This is symbolically indicated by exposure curves 60 of the exposure strips 52 and exposure curves 61 of the exposure strips 56, respectively. It is easy to see that in areas where exposure strips 52 and exposure strips 56 overlap one another, the exposure curves 60, 61 overlap, resulting in an overall exposure curve with approximately constant progression and no abrupt changes.
  • the height 55 as well as the width 57 of the hatch 48 are preferably equal to 1.8 times the line spacing z 54.
  • T difference stands for the time duration between the first exposure process and the second exposure process at the same location of the material 2.
  • the method for correcting the intermittency effect thus consists in first producing at least one first line 50 of pixels 53 during a first movement of the exposure head 8 and subsequently producing at least one second line 53 of pixels 62 during a second movement of the exposure head the first row 50 and the second row 53 at least partially overlap each other.
  • corrected image data for the second line 53 is calculated by compensating for the changed exposure effect of the second exposure process for each of the pixels 62. This compensation is effected by a change in the intensity and / or by the change in the pulse duration of the corresponding exposure pulse by a value which is proportional to the logarithm of the ratio of the time interval between the exposure of the pixel 63 and the exposure of the pixel 63 and a reference time interval.
  • the Fig. 6 shows an enlarged section of the photosensitive material 2 with the lines 50 exposed thereon and an intermediate line 53.
  • a pixel 62 of the intermediate line 53 and in each case a pixel 63 of the two adjacent rows 50 are indicated by a respective dashed square with the side length corresponding to the value of the line spacing z 54.
  • Outlines of the hatches 48 should be illustrated, the exposure is carried out according to the image data of the digital image 3 ( Fig. 1 ), beyond the range of the theoretical maximum areal extent of the pixels 62, 63. The consequence is that, already in the description to Fig. 5 explained overlap of the exposure strips 52, 56 (FIG. Fig. 5 ).
  • the time difference corresponds to a path 64 of the exposure head 8, as determined by detecting the position of the exposure head 8 by means of the displacement sensor 24 (FIG. Fig. 1 ) and the speed of movement can be determined.
  • the delay difference due to the lateral displacement of the hatches 48 would also have to be considered.
  • this difference in transit time is negligible in relation to the total runtime.
  • Fig. 7 shows a flowchart of the method for exposing digital images 3 with a correction of the Intermittenz effect.
  • a first step 71 the image data is divided into image data corresponding to lines 50 and image data corresponding to intermediate lines 53 (FIG. Fig. 5 and 6
  • a recording of the movement sequence of the exposure head 8 and the advancing movement of the photosensitive material 2 (FIG. Fig. 1 ).
  • time intervals or differential times for adjacent pixels 62, 63 for lines 50 and intermediate lines 53 are determined.
  • correction values for the exposure of the intermediate lines 53 are then calculated and thus new corrected image data for the intermediate lines 53 is determined.
  • a subsequent step 75 then the control of the light sources 14, 15, 16, by the image data to the lines 50 and the intermediate lines 53 are alternately transferred to the drive circuit 20.
  • the exemplary embodiments show possible embodiments of the device or the method for generating a multicolored image from data of a digital image, it being noted at this point that the invention is not limited to the specifically illustrated embodiments of the same, but rather also various combinations of the individual embodiments are possible with each other and this possibility of variation due to the teaching of technical action by objective invention in the skill of working in this technical field expert. There are therefore also all possible embodiments, which are possible by combinations of individual details of the illustrated and described embodiment, the scope of protection.

Abstract

A device (1) has a transport device (4) for moving the material (2) in a forward (feed) direction (5) and an exposure head (8) which can move to and fro in a perpendicular direction relative to the feed direction (5) over the material (2), and in which the exposure head (8) has several exit ends of optical fibers (18) for generating picture elements on the material (2). Coupling units (17) are formed, through which are joined a first (14), a second (15), and a third (16) light source to a single optical fiber (18) in which the colors of the light of the three light sources (14, 15, 16) form a triplet of complementary basic colors. An independent claim is included for a method for generating a multi-colored image.

Description

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Erzeugen eines mehrfarbigen Bildes aus Daten eines digitalen Bildes auf einem fotosensitivem Material, entsprechend den Merkmalen in den Oberbegriffen der Ansprüche 1 und 22.The invention relates to an apparatus and a method for generating a multicolor image from data of a digital image on a photosensitive material, according to the features in the preambles of claims 1 and 22.

Aus dem Dokument US 6,452,696 B 1 ist ein Verfahren und eine Vorrichtung zur Steuerung einer Mehrzahl von Lichtquellen in einem digitalen Drucker bekannt. Digitale Bilddaten werden dazu zur Belichtung eines fotosensitivem Materials verwendet, indem Licht punktweise auf das Fotopapier einwirkt. Der Lichtimpuls zur Belichtung eines Bildpunktes auf dem Fotopapier wird jeweils durch eine Leuchtdiode (LED), entsprechend der abgespeicherten, digitalen Bildinformation, erzeugt und durch eine Lichtleiterfaser in einen Belichtungskopf geleitet, durch den der Lichtimpuls schließlich auf das Fotopapier gerichtet wird. Die Austrittsenden einer Mehrzahl von Lichtleiterfasern sind in einem Rahmen des Belichtungskopfes unmittelbar nebeneinander liegend, aneinandergereiht. Die Anordnung der Austrittsenden der Lichtleiterfasern wird durch ein Linsensystem des Belichtungskopfes auf die Oberfläche des Fotopapiers abgebildet, sodass gleichzeitig eine Mehrzahl von Bildpunkten belichtet werden kann. Der Belichtungskopf wird quer über das Fotopapier bewegt, sodass während einer solchen Bewegung gleichzeitig eine Mehrzahl von Teilen von Bildpunkten erzeugt werden kann. Durch eine Transporteinrichtung wird sodann das Fotopapier um eine, der zuerst erzeugten Anzahl von Zeilen entsprechenden Länge, weitergeschoben, woraufhin eine weitere Folge von Zeilen von Bildpunkten, durch den sich über dem Papier bewegenden Belichtungskopf auf das Fotopapier übertragen wird. Aus dem Dokument US 6,452,696 B1 ist außerdem bekannt, durch Ausführen von Testbelichtungen Korrekturtabellen zu bestimmen, durch die die ungleichförmige Belichtungswirkung, in Abhängigkeit von der Belichtungsintensität und der Belichtungsdauer, berücksichtigt werden kann. Damit wird der Effekt korrigiert, der darin besteht, dass die Belichtungswirkung mit einer ersten Belichtungsintensität und einer ersten Belichtungsdauer nicht gleich ist der Belichtungswirkung die beispielsweise erreicht wird, durch die Hälfte der ersten Belichtungsintensität über einen Zeitraum der doppelten ersten Belichtungszeit. Dieser Effekt wird auch als Reziprozitätsfehler bezeichnet. Es ist auch bereits bekannt, dass an den Kanten zwischen zwei aus nebeneinander liegenden Bildpunktzeilen bestehenden Streifen, die durch den Belichtungskopf erzeugt werden, andere Korrekturen erforderlich sind, als dies bei Bildpunktzeilen im Inneren eines Streifens der Fall ist. Um Streifenbildungen und damit Beeinträchtigungen der Bildqualität zu vermeiden.From the document US 6,452,696 B 1 discloses a method and apparatus for controlling a plurality of light sources in a digital printer. Digital image data are used to expose a photosensitive material by applying light point by point to the photographic paper. The light pulse for exposing a pixel on the photographic paper is in each case by a light-emitting diode (LED), according to the stored digital image information, generated and passed through an optical fiber in an exposure head, through which the light pulse is finally directed to the photographic paper. The outlet ends of a plurality of optical fibers are in a frame of the exposure head immediately adjacent to each other, strung together. The arrangement of the exit ends of the optical fibers is imaged by a lens system of the exposure head on the surface of the photographic paper, so that a plurality of pixels can be exposed simultaneously. The exposure head is moved across the photo paper so that at the same time a plurality of parts of pixels can be created during such movement. By means of a transport device, the photographic paper is then advanced by a length corresponding to the number of lines first produced, whereupon a further sequence of lines of pixels, through which the exposure head moving above the paper is transferred to the photographic paper. From the document US 6,452,696 B1 It is also known, by carrying out test exposures, to determine correction tables by which the non-uniform exposure effect, as a function of the exposure intensity and the exposure time, can be taken into account. Thus, the effect is corrected which is that the exposure effect having a first exposure intensity and a first exposure time is not equal to the exposure effect achieved, for example, by half the first exposure intensity over a period of twice the first exposure time. This effect is also called reciprocity failure. It is also already known that other corrections are required at the edges between two strips consisting of adjacent pixel lines, which are generated by the exposure head, than is the case with pixel lines in the interior of a strip is. To avoid banding and thus impairing the image quality.

Aus der Patentanmeldung EP 072 840 ist ein Verfahren zum Multiplexen von Kanälen zum Übertragen von Informationen mittels über eine Stufenindex-Faser übertragener Lichtwellen bekannt, wobei jeder Kanal aus Lichtstrahlen besteht, die durch aufeinander folgende totale Totalreflektionen an der Übergangsfläche zwischen Kern und Mantel in der Faser fortschreiten und in Abhängigkeit ihres Winkels zur Faserachse derart angeordnet sind, dass sie sich für jeden Kanal an jedem Punkt in der Faser zwischen zwei Kegeln befinden, deren gemeinsamer Scheitelpunkt durch diesen Punkt gebildet wird und die um eine gemeinsame Achse parallel zur Faserachse rotationssymmetrisch sind. Dabei bestimmen die zwei Kegel den jedem Kanal zugeordneten Teil des Öffnungswinkels der Faser, wobei die allen Kanäle zugeordneten Öffnungsteile einander allenfalls benachbart sind oder vorzugsweise voneinander durch Öffnungsteil der Faser getrennt sind, die frei von aktiver Strahlung sind, wobei unabhängige Lichtströme in jeden Kanal in den Fasereingang eingespeist werden durch Mittel, die spezifisch für die Winkelgeometrie des jedem Kanal zugeordnete Öffnungsteils sind. Schließlich werden die in den Kanälen fortschreitenden Lichtströme am Faserausgang durch analoge spezifische Mittel wiedergewonnen.From the patent application EP 072 840 A method is known for multiplexing channels for transmitting information by means of light waves transmitted through a step-index fiber, each channel consisting of light rays which propagate through successive total total reflections at the interface between the core and cladding in the fiber and as a function of their angle are arranged to the fiber axis such that they are located for each channel at each point in the fiber between two cones whose common vertex is formed by this point and which are rotationally symmetrical about a common axis parallel to the fiber axis. The two cones determine the part of the opening angle of the fiber associated with each channel, the aperture parts associated with all the channels being at most adjacent or preferably separated from each other by opening part of the fiber which are free of active radiation, with independent luminous fluxes in each channel in the Fiber input are fed by means that are specific to the angular geometry of each channel associated opening part. Finally, the light fluxes propagating in the channels are recovered at the fiber output by analogous specific means.

Die Patentanmeldung US 2002/134909 beschreibt die Kalibrierung der lichtemittierenden Elemente in einem optischen Drucker. Diese wird durchgeführt, indem man den optischen Drucker an einer externen Überwachungsvorrichtung anbringt. Diese externe Überwachungsvorrichtung umfasst ein Sensor-Montageteil, worauf in einer geraden Linie, eine Mehrzahl von Fotosensoren angebracht sind. Ferner ist eine Signalverabreitungsschaltung für die Verarbeitung der von den Fotosensoren ausgegebenen Signale und ein Schaltkreis zur Erzeugung einer Referenzspannung vorhanden. Ein Vergleichs- und Steuerschaltkreis zum Vergleichen der Ausgänge der Signalverarbeitungsschaltung mit der Referenzspannung gibt ein auf dem Resultat des Vergleichs basierendes Signal ab. Die Fotosensoren empfangen das von den lichtemittierenden Elementen des optischen Druckers abgegebene Licht, welches einer Kalibrierung unterzogen werden soll. Die Signalverarbeitungsschaltung umfasst eine Mehrzahl von integrierten Schaltungen, welche die Ausgangssignale von der Mehrzahl der Fotosensoren empfangen und diese Signale über einen vorgeschriebenen Zeitabschnitt integrieren. Schließlich ist ein Arithmetikschaltkreis zum Berechnen des Mittelwertes des Ausgangssignals des Integrationsschaltkreises und Ausgeben der Kalibrierspannung vorhanden. -The Patent Application US 2002/134909 describes the calibration of the light-emitting elements in an optical printer. This is done by attaching the optical printer to an external monitor. This external monitoring device comprises a sensor mounting part, on which in a straight line, a plurality of photosensors are mounted. Further, there is a signal propagating circuit for processing the signals output from the photosensors and a reference voltage generating circuit. A comparison and control circuit for comparing the outputs of the signal processing circuit with the reference voltage outputs a signal based on the result of the comparison. The photosensors receive the light emitted from the light emitting elements of the optical printer which is to be subjected to calibration. The signal processing circuit includes a plurality of integrated circuits which receive the output signals from the plurality of photosensors and integrate these signals for a prescribed period of time. Finally, there is an arithmetic circuit for calculating the mean value of the output signal of the integration circuit and outputting the calibration voltage. -

Es ist die Aufgabe der Erfindung eine Vorrichtung bzw. ein Verfahren zum Erzeugen eines mehrfarbigen Bildes aus Daten eines digitalen Bildes auf einem fotosensitivem Material anzugeben, mit der bzw. dem Bilder hoher Qualität auf fotosensitiven Materialien erzeugt werden können.It is the object of the invention to provide an apparatus for producing a multicolor image from data of a digital image on a photosensitive material capable of producing high quality images on photosensitive materials.

Diese Aufgabe der Erfindung wird durch die Vorrichtung entsprechend den Merkmalen des Anspruchs 1 gelöst. Die Anordnung eines Linsensystems hat den Vorteil, dass die Austrittsenden der Lichtleiterfasern nicht direkt über dem fotosensitivem Material bewegt werden müssen. Durch die Abbildung der Austrittsenden der Lichtleiterfasern mit dem vorgesehenen Linsensystem, können auch die Ungenauigkeiten infolge der Divergenz der austretenden Lichtbündel aus den Lichtleiterfasern vermieden werden. Durch die Maske wird erreicht, dass sowohl die Position als auch die Form der Bildpunkte mit hoher Präzision festgelegt werden kann und mechanische Ungenauigkeiten der Montage der Lichtleiterfasern in dem Belichtungskopf aufgehoben werden.This object of the invention is achieved by the device according to the features of claim 1. The arrangement of a lens system has the advantage that the exit ends of the optical fiber need not be moved directly over the photosensitive material. By imaging the exit ends of the optical fibers with the proposed lens system, the inaccuracies due to the divergence of the exiting light beam from the optical fibers can be avoided. It is achieved by the mask that both the position and the shape of the pixels can be determined with high precision and mechanical inaccuracies in the assembly of the optical fibers in the exposure head are canceled out.

Der Vorteil der Ausbildung der Vorrichtung gemäß Anspruch 2 liegt darin, dass aufgrund der Charakteristik des Verlaufs des spektralen Transmissionsgrads der verwendeten Interferenzfilter, eine optimale Ausbeute des Lichts der verwendeten Lichtquellen erreicht wird.The advantage of the design of the device according to claim 2 is that due to the characteristic of the course of the spectral transmittance of the interference filter used, an optimum yield of light of the light sources used is achieved.

Vorteilhaft sind auch die Weiterbildung der Vorrichtung gemäß den Ansprüchen 3 und 4, da damit eine sehr hohe Ausbeute der Lichtintensität der Lichtquellen erreicht werden kann.Also advantageous are the development of the device according to claims 3 and 4, since thus a very high yield of light intensity of the light sources can be achieved.

Die Ausbildung der Vorrichtung gemäß Anspruch 5 hat den Vorteil, das derart die Lichtquellen die Interferenzfilter und die Eintrittsluke der Lichtfaser in der Einkoppeleinheit sehr kompakt und Platz sparend angeordnet werden können.The design of the device according to claim 5 has the advantage that the light sources, the interference filter and the entrance hatch of the optical fiber in the coupling unit can be arranged very compact and space-saving.

Vorteilhaft ist auch die Ausbildung der Vorrichtung gemäß Anspruch 6. Diese ermöglicht eine einfache Montage bzw. Verbindung der Lichtleiterfasern mit der Einkoppeleinheit.Also advantageous is the design of the device according to claim 6. This allows a simple assembly or connection of the optical fibers with the coupling unit.

Durch die Weiterbildung der Vorrichtung gemäß Anspruch 7, wonach die Einkoppeleinheiten in einer stationären Lichtquelleneinheit angeordnet sind, wird der Vorteil erzielt, dass das Gewicht des Belichtungskopfes damit möglichst gering gehalten wird.Due to the development of the device according to claim 7, wherein the coupling units are arranged in a stationary light source unit, the advantage is achieved that the weight of the exposure head is thus kept as low as possible.

Vorteilhaft sind auch die Ausbildungen der Vorrichtung gemäß den Ansprüchen 8 und 9, da mit Leuchtdioden sehr präzise, kurze Lichtimpulse erzeugt werden können, sodass entsprechend hohe Geschwindigkeiten des Belichtungskopfes beim Bewegen über dem fotosensitivem Material möglich sind.Also advantageous are the embodiments of the device according to claims 8 and 9, since with LEDs very precise, short light pulses can be generated so that correspondingly high speeds of the exposure head when moving over the photosensitive material are possible.

Durch die Ausbildung der Vorrichtung gemäß Anspruch 10, stehen kontinuierlich veränderbare Lichtimpulse zur Belichtung zur Verfügung.Due to the design of the device according to claim 10, continuously variable light pulses for exposure are available.

Durch die Ausbildung der Vorrichtung mit einer Messzelle zur Messung der Lichtintensitäten des Belichtungskopfes gemäß den Ansprüchen 11 und 12, wird der Vorteil erzielt, dass damit die erreichbaren Lichtintensitäten des Belichtungskopfes einfach überprüft werden können und insbesondere bei der Verwendung von Leuchtdioden als Lichtquellen deren nichtlinearer Zusammenhang zwischen Ansteuerstrom und Lichtintensität gemessen und bei der Belichtung von digitalen Bildern diese Beziehung berücksichtigt werden kann.By forming the device with a measuring cell for measuring the light intensities of the exposure head according to claims 11 and 12, the advantage is achieved that the achievable light intensities of the exposure head can be easily checked and especially when using light emitting diodes as light sources whose nonlinear relationship between Drive current and light intensity measured and in the exposure of digital images, this relationship can be considered.

Durch die Weiterbildung der Vorrichtung gemäß Anspruch 13, wonach ein Weggeber zur Erfassung der Position des Belichtungskopfes ausgebildet ist, wird der Vorteil erzielt, dass damit eine sehr präzise Steuerung der Bildpunkterzeugung entsprechend der seitlichen Position der entsprechenden Bildpunkte ermöglicht wird.The development of the device according to claim 13, according to which a displacement sensor is designed to detect the position of the exposure head, the advantage is achieved that thus a very precise control of the pixel production is made possible according to the lateral position of the corresponding pixels.

Vorteilhaft sind auch die Weiterbildungen der Vorrichtung gemäß den Ansprüchen 14 und 15, da es damit möglich ist, das Auftragen der Bildpunkte durch abwechselndes Erzeugen von Zeilen und Zwischenzeilen, indem nur jeweils jede zweite Zeile des digitalen Bildes belichtet wird und daran anschließend entsprechende Zwischenzeilen belichtet werden, auszuführen.Also advantageous are the developments of the device according to claims 14 and 15, since it is possible, the application of the pixels by alternately generating lines and inter-lines, by only every second line of the digital image is exposed and subsequently exposed to corresponding inter-lines to execute.

Durch die Ausbildung der Vorrichtung gemäß den Ansprüchen 16 und 17, ist in vorteilhafter Weise eine Überlappung von jeweils aufeinander folgenden Zeilen bzw. Zwischenzeilen möglich, wodurch Bildfehler infolge von Ungenauigkeiten, die sich durch horizontale Streifenbildungen bemerkbar machen könnten, vermieden werden können.Due to the design of the device according to claims 16 and 17, an overlap of each successive lines or intermediate lines is possible in an advantageous manner, whereby image errors due to inaccuracies that could make noticeable by horizontal banding can be avoided.

Durch die Ausbildung der Vorrichtung gemäß den Ansprüchen 18 und 19 wird der Vorteil erzielt, das damit auch eine der Überlappung von Zeilen bzw. Zwischenzeilen entsprechende Überlappung in seitlicher Richtung zwischen einander innerhalb einer Zeile benachbarten Bildpunkten erreicht wird. Die Ausbildung vertikaler Streifen, die sich als entsprechende Bildfehler bemerkbar machen könnten, werden damit vermieden.By the formation of the device according to claims 18 and 19, the advantage is achieved, which thus also corresponds to the overlap of lines or inter-lines Overlapping in the lateral direction between each other within a line adjacent pixels is achieved. The formation of vertical stripes, which could be noticeable as corresponding artifacts are thus avoided.

Durch die Weiterbildung der Vorrichtung gemäß Anspruch 20, wonach seitliche Konturen der Luken in der Maske annähernd einer Gaußschen Glockenkurve entsprechen, wird erreicht, dass auch bei unpräziser Vorschubbewegung der Transporteinrichtung ein möglichst gleichmäßiger Verlauf der Gesamtbelichtung zwischen zwei einander benachbarten Zeilen bzw. Zwischenzeilen weitestgehend erhalten bleibt.Due to the development of the device according to claim 20, according to which lateral contours of the hatches in the mask approximately correspond to a Gaussian bell curve, it is achieved that even with imprecise feed movement of the transport device as even as possible a course of the total exposure between two adjacent lines or interstitial lines remains largely ,

Die Ausbildung der Vorrichtung gemäß Anspruch 21 hat den Vorteil, dass mit den durch beschichtete Glasblättchen gebildeten Masken, Masken mit sehr hoher Präzision zur Verfügung stehen.The design of the device according to claim 21 has the advantage that masks with very high precision are available with the masks formed by coated glass flakes.

Die Aufgabe der Erfindung wird eigenständig auch durch das Verfahren entsprechend den Merkmalen des Anspruches 22 gelöst. Von Vorteil ist dabei, dass mit einem Drittel der Lichtleiterfasern das Auslangen gefunden werden kann und gleichzeitig eine höhere Genauigkeit der Belichtung der einzelnen Bildpunkte des digitalen Bildes erzielbar ist.The object of the invention is solved independently by the method according to the features of claim 22. The advantage here is that with one third of the optical fibers, the Auslangen can be found and at the same time a higher accuracy of the exposure of the individual pixels of the digital image can be achieved.

Vorteilhafte Weiterbildungen des Verfahrens sind auch in den Ansprüchen 23 bis 29 beschrieben.Advantageous developments of the method are also described in claims 23 to 29.

Zum besseren Verständnis der Erfindung wird diese anhand der nachfolgenden Figuren näher erläutert.For a better understanding of the invention, this will be explained in more detail with reference to the following figures.

Es zeigen in schematisch vereinfachter Darstellung:

Fig. 1
eine Vorrichtung zum Belichten eines fotosensitivem Materials mit digitalen Bildern;
Fig. 2
eine Prinzipdarstellung einer Einkoppeleinheit, gemäß Fig. 1;
Fig. 3
den über dem fotosensitiven Material angeordneten Belichtungskopf (gemäß Fig. 1), geschnitten dargestellt;
Fig. 4
die Maske des Belichtungskopfes gemäß Fig. 3;
Fig. 5
ein stark vergrößertes Detail der Maske mit zwei Luken, gemäß Fig. 4;
Fig. 6
einen vergrößerten Ausschnitt des photosensitiven Materials mit den darauf belichteten Zeilen und einer Zwischenzeile;
Fig. 7
ein Ablaufschema des Verfahrens zum Belichten von digitalen Bildern mit einer Korrektur des Intermittenz-Effektes.
In a simplified schematic representation:
Fig. 1
an apparatus for exposing a photosensitive material to digital images;
Fig. 2
a schematic diagram of a coupling unit, according to Fig. 1 ;
Fig. 3
the exposure head arranged above the photosensitive material (according to FIG Fig. 1 ) shown in section;
Fig. 4
the mask of the exposure head according to Fig. 3 ;
Fig. 5
a greatly enlarged detail of the mask with two hatches, according to Fig. 4 ;
Fig. 6
an enlarged section of the photosensitive material with the lines exposed thereon and an intermediate line;
Fig. 7
a flow chart of the method for exposing digital images with a correction of the Intermittenz effect.

Einführend sei festgehalten, dass in den unterschiedlich beschriebenen Ausführungsformen gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen versehen werden, wobei die in der gesamten Beschreibung enthaltenen Offenbarungen sinngemäß auf gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen übertragen werden können. Auch sind die in der Beschreibung gewählten Lageangaben, wie z.B. oben, unten, seitlich usw. auf die unmittelbar beschriebene sowie dargestellte Figur bezogen und sind bei einer Lageänderung sinngemäß auf die neue Lage zu übertragen. Weiters können auch Einzelmerkmale oder Merkmalskombinationen aus den gezeigten und beschriebenen unterschiedlichen Ausführungsbeispielen für sich eigenständige, erfinderische oder erfindungsgemäße Lösungen darstellen.By way of introduction, it should be noted that in the differently described embodiments, the same parts are provided with the same reference numerals or the same component names, wherein the disclosures contained in the entire description can be mutatis mutandis to the same parts with the same reference numerals or component names. Also, the location information chosen in the description, such as top, bottom, side, etc. related to the immediately described and illustrated figure and are to be transferred to the new situation mutatis mutandis when a change in position. Furthermore, individual features or combinations of features from the different exemplary embodiments shown and described can also represent independent, inventive or inventive solutions.

Die Fig. 1 zeigt eine Vorrichtung 1 zum Belichten eines fotosensitivem Materials 2 mit digitalen Bildern 3 in schematisch vereinfachter Darstellung.The Fig. 1 shows a device 1 for exposing a photosensitive material 2 with digital images 3 in a schematically simplified representation.

Die Vorrichtung 1 verfügt dazu über eine Transporteinrichtung 4, mit deren Hilfe das fotosensitive Material 2 in Vorschubrichtung 5 bewegt werden kann. Das fotosensitive Material 2 wird beispielsweise durch Fotopapier oder einen Film gebildet. Mit Hilfe einer, durch einen Motor 6 betriebenen Transportwalze 7 wird das Material 2 unterhalb eines Belichtungskopfes 8 vorwärts bewegt bzw. positioniert. Der Belichtungskopf 8 ist entlang von quer bzw. senkrecht zur Vorschubrichtung 5 ausgerichteten Führungen 9 mit Hilfe eines Belichtungskopfsantriebs 10 hin und her bewegbar. Zur Belichtung des Materials 2 mit dem Belichtungskopf 8 wird dieser alternierend in Richtung 11 hin und in Richtung 12 wieder zurückbewegt, wobei zwischen den Querbewegungen des Belichtungskopf 8 das Material 2 in Vorschubrichtung 5 weiterbewegt und neu positioniert wird. Es erfolgt derart eine zeilenweise bzw. punktweise Belichtung des fotosensitivem Materials 2, indem durch den Belichtungskopf 8 Lichtimpulse auf das Material 2 gerichtet werden.The device 1 has for this purpose a transport device 4, with the aid of which the photosensitive material 2 can be moved in the feed direction 5. The photosensitive material 2 is formed by, for example, photographic paper or a film. With the aid of a transport roller 7 operated by a motor 6, the material 2 is moved or positioned underneath an exposure head 8. The exposure head 8 can be moved back and forth along guides 9 oriented transversely or perpendicular to the feed direction 5 with the aid of an exposure head drive 10. For the exposure of the material 2 with the exposure head 8, the latter is alternately moved back in the direction 11 and in the direction 12, the material 2 being moved further in the feed direction 5 between the transverse movements of the exposure head 8 and being repositioned. There is such a line by line or pointwise exposure of the photosensitive material 2 by 8 light pulses are directed to the material 2 by the exposure head.

Die Erzeugung der Lichtimpulse erfolgt in einer Lichtquelleneinheit 13 mit Lichtquellen 14, 15, 16, die bevorzugt jeweils durch eine Leuchtdiode (LED ) gebildet sind. Dabei ist beispielsweise vorgesehen, dass die Lichtquelle 14 der Erzeugung von rotem Licht, die Lichtquelle 15 der Erzeugung von grünem Licht und die Lichtquelle 16 der Erzeugung von blauem Licht dient, sodass durch ein Tripel von Lichtquellen 14, 15, 16 ein Tripel komplementärer Grundfarben erzeugt werden kann. Die Lichtquellen 14, 15, 16 sind zu einer Einkoppeleinheit 17 zusammengefasst, wobei deren Licht in eine einzige Lichtleiterfaser 18 zusammengeführt bzw. eingekoppelt wird. Die Lichtquelleneinheit 13 weist eine Anzahl von mehreren solcher Einkoppeleinheiten 17 auf, deren Licht durch die Lichtleiterfasern 18, die zu einem Faserbündel 19 zusammengefasst sind, in den Belichtungskopf 8 geleitet wird. Entsprechend der Anzahl von Lichtleiterfasern 18 ist es somit möglich, eine der Anzahl der Einkoppeleinheiten 17 entsprechende Anzahl von Zeilen auf dem fotosensitivem Material 2 gleichzeitig zu belichten, wobei jeder Bildpunkt gleichzeitig mit den drei Grundfarben belichtet werden kann. Durch entsprechende Mischung der Farbanteile der Lichtquellen 14, 15, 16, indem deren Lichtintensität kontinuierlich veränderbar ist, kann so auf einem Bildpunkt jede beliebige Farbe erzeugt werden.The generation of the light pulses takes place in a light source unit 13 with light sources 14, 15, 16, which are preferably each formed by a light-emitting diode (LED). It is provided, for example, that the light source 14 of the generation of red light, the light source 15 of the generation of green light and the light source 16 of the generation of blue light, so that generates a triple of complementary primary colors by a triple of light sources 14, 15, 16 can be. The light sources 14, 15, 16 are to a coupling unit 17 summarized, wherein the light is merged or coupled into a single optical fiber 18. The light source unit 13 has a number of a plurality of such coupling units 17, the light of which is guided into the exposure head 8 through the optical fibers 18, which are combined to form a fiber bundle 19. According to the number of optical fibers 18, it is thus possible to simultaneously expose a number of lines corresponding to the number of coupling units 17 on the photosensitive material 2, wherein each pixel can be exposed simultaneously with the three primary colors. By appropriate mixing of the color components of the light sources 14, 15, 16 in that their light intensity is continuously variable, it is thus possible to produce any desired color on a pixel.

Zur Erzeugung der Lichtimpulse weist jede der Lichtquellen 14, 15, 16 einer jeder der Einkoppeleinheiten 17 eine Ansteuerschaltung 20 auf. Jede dieser Ansteuerschaltungen 20 umfasst zumindest einen Digital-/Analogwandler 21 und einen Zeitgeber 22. Die Ausführung des Belichtungsvorgangs der Vorrichtung 1 erfolgt mit Hilfe einer zentralen Steuerung 23, die die Informationen des digitalen Bildes 3 in Steuersignale für die Transporteinrichtung 4, den Belichtungskopfantrieb 10 und die Ansteuerschaltungen 20 für die Lichtquellen 14, 15, 16 umwandelt. Zur Bestimmung der momentanen Position des Belichtungskopfs 8 bzw. der Faserenden der Lichtleiterfasern 18 steht die Steuerung 23 mit einen Weggeber 24 in Verbindung.To generate the light pulses, each of the light sources 14, 15, 16 of each of the coupling units 17 has a drive circuit 20. Each of these drive circuits 20 comprises at least one digital / analog converter 21 and a timer 22. The execution of the exposure process of the device 1 by means of a central controller 23, the information of the digital image 3 in control signals for the transport device 4, the exposure head 10 and the driving circuits 20 for the light sources 14, 15, 16 converts. To determine the current position of the exposure head 8 or the fiber ends of the optical fibers 18, the controller 23 is connected to a displacement sensor 24 in connection.

Die Vorrichtung 1 umfasst zusätzlich eine Messzelle 25 zur Messung der Lichtintensitäten des Belichtungskopfes 8. Insbesondere im Fall, dass die Lichtquellen 14, 15, 16 durch LED's gebildet sind, kann durch Vermessung der Lichtintensitäten mit Hilfe der Messzelle 25 die starke, Nicht-Linearität des Zusammenhanges, zwischen Ansteuerstrom und Lichtemission gemessen werden. Die daraus abgeleiteten Korrekturparameter werden während der Belichtung berücksichtigt. Durch periodisches Wiederholen entsprechender Vermessungen mit der Messzelle 25 können aber auch Veränderungen infolge der Alterung bzw. der thermischen Belastungen der LED's kompensiert werden. Diese Messzelle 25 ist vorzugsweise im Bereich einer Parkposition des Belichtungskopfes 8 außerhalb des eigentlichen Belichtungsbereiches der Vorrichtung 1 angeordnet, sodass Vermessungen an der Messzelle 25 auch automatisiert durchgeführt werden können.The device 1 additionally comprises a measuring cell 25 for measuring the light intensities of the exposure head 8. In particular, in the case that the light sources 14, 15, 16 are formed by LEDs, by measuring the light intensities by means of the measuring cell 25, the strong, non-linearity of Connection, between drive current and light emission are measured. The correction parameters derived from this are taken into account during the exposure. However, by periodically repeating corresponding measurements with the measuring cell 25, it is also possible to compensate for changes as a result of the aging or the thermal loads on the LEDs. This measuring cell 25 is preferably arranged in the region of a parking position of the exposure head 8 outside the actual exposure range of the device 1, so that measurements on the measuring cell 25 can also be carried out automatically.

Die Fig. 2 zeigt eine Prinzipdarstellung einer der Einkoppeleinheiten 17, gemäß Fig. 1.The Fig. 2 shows a schematic diagram of one of the coupling units 17, according to Fig. 1 ,

An einem Rahmen 26 der Einkoppeleinheit 17 ist eine Faserhaltung 27 für das Einlassseitige Ende der Lichtleiterfaser 18 angeordnet. Die Lichtleiterfaser 18 ist dazu zusätzlich in einer Fassung 28 befestigt, wobei diese in die Faserhalterung 27 eingeschoben und dort fixiert werden kann. Die Faserhalterung 27 weist an einem Ende eine, entsprechend der Längserstreckung der Fassung 28 der Lichtleiterfaser 18, ausgerichtete Eintrittsluke 29 auf, durch die das Licht der Lichtquellen 14, 15, 16 in die Lichtleiterfaser eintritt bzw. in diese eingekoppelt wird. Die Lichtquellen 14, 15, 16 sind jeweils in einer Halterung bzw. einem Tubus 30, 31, 32 gefasst und wird deren Licht jeweils durch eine Linse 33, 34, 35 fokussiert. Die Tuben 30, 31, 32 bzw. optische Achsen 36, 37, 38 der Linsen 33, 34, 35 sind dabei annäherungsweise sternförmig ausgerichtet. Die optische Achse 38 der Linse 35 ist parallel und fluchtend bezüglich einer optischen Achse 39 der Eintrittsluke 29 ausgerichtet. Im Gegensatz dazu sind die optischen Achsen 36, 37 der Linsen 33, 34 gegenüber der optischen Achse 39 der Eingriffsluke 29 schräg ausgerichtet und gelangt das Licht der Lichtquellen 14, 15 durch Umlenkung bzw. Reflexion an einem Interreferenzfilter 40 bzw. 41 in die Eintrittsluke 29 der Faserhalterung 27. Die optischen Achsen 36, 37 schließen mit der optischen Achse 39 der Eintrittsluke 29 bevorzugt einen Winkel von 60 ° ein. Dies ermöglicht eine sehr kompakte Anordnung der Tuben 30, 31, 32 und der Interferenzfilter 40 in Bezug auf die Faserhalterung 27.On a frame 26 of the coupling-in unit 17, a fiber holder 27 for the inlet-side end of the optical fiber 18 is arranged. The optical fiber 18 is additionally attached in a socket 28, which can be inserted into the fiber holder 27 and fixed there. The fiber holder 27 has at one end a, corresponding to the longitudinal extension of the socket 28 of the optical fiber 18, aligned entrance hatch 29, through which the light of the light sources 14, 15, 16 enters or is coupled into the optical fiber. The light sources 14, 15, 16 are each held in a holder or a tube 30, 31, 32 and their light is focused in each case by a lens 33, 34, 35. The tubes 30, 31, 32 or optical axes 36, 37, 38 of the lenses 33, 34, 35 are aligned approximately star-shaped. The optical axis 38 of the lens 35 is aligned parallel and in alignment with respect to an optical axis 39 of the entrance hatch 29. In contrast, the optical axes 36, 37 of the lenses 33, 34 with respect to the optical axis 39 of the engagement hatch 29 are obliquely aligned and passes the light of the light sources 14, 15 by deflection or reflection at an interference filter 40 or 41 in the entrance hatch 29th the fiber holder 27. The optical axes 36, 37 close with the optical axis 39 of the entrance hatch 29 preferably an angle of 60 °. This allows a very compact arrangement of the tubes 30, 31, 32 and the interference filter 40 with respect to the fiber holder 27th

Die Verwendung der Interferenzfilter 40, 41 zur Umlenkung des Strahlengangs der Lichtquellen 14, 15 bietet den Vorteil, dass damit Lichtverluste besonders gering gehalten werden können. Derartige Interferenzfilter werden durch Wechselschichtsysteme, d.h. Mehrfachschichten mit abwechselnd hoher und niedriger Brechzahl gebildet. Da die Schichten praktisch absorptionsfrei sind, ist eine nahezu verlustlose Aufteilung eines Spektralbereichs auf Reflexion und Transmission möglich, wobei die Grenze durch eine steile Kante der Transmissionskurve bestimmt wird. Zur Umlenkung des roten Lichts der Lichtquelle 14 wird für den Interferenzfilter 40 demnach ein Filter verwendet, dessen spektraler Transmissionsgrad für rotes Licht nahezu gleich null ist, während Licht eines kleineren Wellenbereichs, wie das grüne Licht der Lichtquelle 15 und das blaue Licht der Lichtquelle 16 den Interferenzfilter nahezu ungeschwächt passieren kann. Das rote Licht der Lichtquelle 14 hingegen wird reflektiert und tritt durch die Eintrittsluke 29 in die Lichtleiterfaser 18. Analog dazu wird als Interferenzfilter 41 ein Filter verwendet, dessen spektraler Transmissionsgrad für grünes Licht nahezu gleich 0 ist, während das blaue Licht der Lichtquelle 16 nahezu verlustfrei durch den Interferenzfilter 41 hindurchtreten kann. Das grüne Licht der Lichtquelle 15 wird demnach an den Interferenzfilter 41 reflektiert und gelangt durch die Eingriffsluke 29 in die Lichtleiterfaser 18. Die Besonderheit der Einkoppeleinheit 17 besteht somit darin, dass für das Umlenken des Strahlengangs der ersten Lichtquelle 14 hin auf die Eintrittsluke 29 für den Lichtleiterfaser 18 ein Interferenzfilter 40 verwendet wird, dessen spektraler Transmissionsgrad für die Wellenlänge des Lichtes der Lichtquelle 14 nahezu gleich 0 ist, während der spektrale Transmissionsgrad für die Wellenlängen des Lichts der weiteren Lichtquellen 15, 16, das durch den Interferenzfilter 40 hindurchtreten muss, nahezu gleich 1 ist. Der zweite Indifferenzfilter 41 hingegen weist einen spektralen Transmissionsgrad auf, der für die Wellenlänge des Lichts der zweiten Lichtquelle 15 nahezu gleich 0 ist, während der spektrale Transmissionsgrad des Lichts der Lichtquelle 16 das durch diesen Indifferenzfilter 41 hindurchtreten muss, nahezu gleich 1 ist.The use of the interference filter 40, 41 for deflecting the beam path of the light sources 14, 15 offers the advantage that light losses can be kept particularly low. Such interference filters are formed by alternating-layer systems, ie multiple layers with alternating high and low refractive indices. Since the layers are virtually free of absorption, a nearly lossless division of a spectral range to reflection and transmission is possible, the limit being determined by a steep edge of the transmission curve. For deflecting the red light of the light source 14, a filter is used for the interference filter 40 whose spectral transmittance for red light is almost zero, while light of a smaller wavelength range, such as the green light of the light source 15 and the blue light of the light source 16 Interference filter can pass almost unattenuated. The red light of the light source 14, however, is reflected and passes through the entrance hatch 29 in the optical fiber 18. Analogously, a filter is used as the interference filter 41 whose spectral transmittance for green Light is almost equal to 0, while the blue light of the light source 16 can pass almost lossless through the interference filter 41. The green light of the light source 15 is thus reflected to the interference filter 41 and passes through the engagement hatch 29 in the optical fiber 18. The peculiarity of the coupling unit 17 is thus that for the deflection of the beam path of the first light source 14 toward the entrance hatch 29 for the Optical fiber 18, an interference filter 40 is used whose spectral transmittance for the wavelength of the light of the light source 14 is almost 0, while the spectral transmittance for the wavelengths of light of the other light sources 15, 16, which must pass through the interference filter 40, almost equal 1 is. The second indifference filter 41, on the other hand, has a spectral transmittance which is almost equal to 0 for the wavelength of the light of the second light source 15, while the spectral transmittance of the light of the light source 16 which must pass through this indifference filter 41 is almost equal to 1.

Für die Anordnung der Lichtquellen 14, 15, 16 in den jeweiligen Tuben 30, 31, 32 kann auch vorgesehen sein, dass deren Lage bezüglich der Längserstreckung des jeweiligen Tubus 30, 31, 32 justiert werden kann. Ebenso kann die Lage der Tuben 30, 31, 32 bezüglich des Rahmens 26 in Längserstreckung der Tuben 30, 31, 32 justiert werden. Damit wird erreicht, dass die Lichtintensität, die in die Eintrittsluke 29 der Faserhalterung 27 gelangt, den maximal erreichbaren Wert hat.For the arrangement of the light sources 14, 15, 16 in the respective tubes 30, 31, 32 can also be provided that their position with respect to the longitudinal extent of the respective tube 30, 31, 32 can be adjusted. Likewise, the position of the tubes 30, 31, 32 with respect to the frame 26 in the longitudinal extension of the tubes 30, 31, 32 are adjusted. This ensures that the light intensity that reaches the entrance hatch 29 of the fiber holder 27 has the maximum achievable value.

Die Fig. 3 zeigt den über dem fotosensitiven Material 2 angeordneten Belichtungskopf 8 (gemäß Fig. 1), geschnitten dargestellt.The Fig. 3 shows the exposure head 8 arranged above the photosensitive material 2 (according to FIG Fig. 1 ), cut shown.

Das fotosensitive Material 2 wird im Bereich unterhalb des Belichtungskopfes 8 über einen Tisch bzw. eine Platte 42 mit einer ebenen Oberseite geführt. Damit wird sichergestellt, dass das Material 2 parallel bezüglich den Austrittsenden der Lichtleiterfasern 18 ausgerichtet ist. Von der stationär angeordneten Lichtquelleneinheit 13 (Fig. 1) führen die Lichtleiterfasern 18 das Licht in den Belichtungskopf 8. Die Lichtleiterfasern 18 enden jeweils in einer Fassung 43, die in einem Träger 44 befestigt sind. Das Licht aus den Lichtleiterfasern 18 wird durch Zwischenschaltung eines Linsensystems 45 auf das fotosensitive Material 2 gerichtet. Zwischen den dem Material 2 zugewandten Austrittsenden 46 der Lichtleiterfasern 8 und dem Linsensystems 45 ist eine Maske 47 mit Luken 48 angeordnet bzw. zwischengeschaltet.The photosensitive material 2 is guided in the region below the exposure head 8 via a table or a plate 42 with a flat upper side. This ensures that the material 2 is aligned parallel to the exit ends of the optical fibers 18. From the stationarily arranged light source unit 13 (FIG. Fig. 1 ), the optical fibers 18 carry the light in the exposure head 8. The optical fiber 18 each end in a socket 43 which are mounted in a carrier 44. The light from the optical fibers 18 is directed by the interposition of a lens system 45 on the photosensitive material 2. Between the material 2 facing the outlet ends 46 of the optical fibers 8 and the lens system 45, a mask 47 is arranged with hatches 48 or interposed.

Durch Verwendung dieser Maske 47 werden Ungenauigkeiten in der Positionierung der Austrittsenden 46 der Lichtleiterfasern 18 ausgeglichen. Sowohl das Einsetzen der Lichtleiterfasern 18 in die Fassungen 43 als auch das Einsetzen dieser Fassungen 43 in den Träger 44 ist mit mechanischen Ungenauigkeiten verbunden, die durch die mit den Luken 48 versehene Maske 47 zur Gänze aufgehoben werden können und somit nur noch Ungenauigkeiten von der Herstellung der Maske 47 selbst verbleiben. Die Luken 48 in der Maske 47 wirken jeweils als Blenden für das aus den Austrittsenden 46 austretende Licht und kann damit sowohl die Form der einzelnen Pixelpunkte als auch deren relativer Abstand sehr genau festgelegt werden. Indem die Luken 48 der Maske 47 durch das Linsensystem 45 im Verhältnis 1:1 auf dem Material 2 abgebildet werden, kann auch auf dem Material 2 die gleiche Genauigkeit der gegenseitigen Abstände als auch die Form der Bildpunkte erreicht werden.By using this mask 47 inaccuracies in the positioning of the exit ends 46 of the optical fibers 18 are compensated. Both the insertion of the optical fibers 18 in the sockets 43 and the insertion of these sockets 43 in the carrier 44 is associated with mechanical inaccuracies that can be completely eliminated by the mask 47 provided with the hatches 48 and thus only inaccuracies of manufacture the mask 47 itself remain. The hatches 48 in the mask 47 in each case act as diaphragms for the light emerging from the exit ends 46 and can thus be determined very precisely both the shape of the individual pixel points and their relative distance. By the hatches 48 of the mask 47 are imaged by the lens system 45 in the ratio 1: 1 on the material 2, on the material 2, the same accuracy of the mutual distances and the shape of the pixels can be achieved.

Die Fig. 4 zeigt die Maske 47 des Belichtungskopfes 8 gemäß Fig. 3.The Fig. 4 shows the mask 47 of the exposure head 8 according to Fig. 3 ,

Die Luken 48 sind rasterförmig auf der Maske 47 verteilt, sodass bezüglich einer Richtung senkrecht zu den Richtungen 11, 12 der Bewegung des Belichtungskopfes 8 jeweils aufeinander folgende Luken 48 um einen Lukenabstand d 49 versetzt sind. Im dargestellten Ausführungsbeispiel sind insgesamt 41 Luken 48 vorhanden, sodass bei einer Bewegung des Belichtungskopfes 8 in einer der Richtungen 11, 12 41 Zeilen 40 von Bildpunkten auf dem Material 2 belichtet werden können. In der Fig. 4 ist dies durch die im oberen Bereich der Maske 47 dargestellten Zeilen 50 für die Bewegungsrichtung 11 beispielhaft angedeutet. Der Einfachheit halber soll die durch das Linsensystem 45 (Fig. 3) erfolgende Bildumkehr in der weiteren Beschreibung unberücksichtigt bleiben. Um die Austrittsenden 46 der Lichtleiterfasern 18 (Fig. 3) ohne gegenseitige räumliche Behinderung jeweils über einer der Lucken 48 positionieren zu können, sind die Luken 48 zu jeweils aufeinander folgenden Zeilen 50 zusätzlich auch in seitlicher Richtung, d.h. bezüglich der Richtungen 11, 12 gegeneinander versetzt. Bei der Ansteuerung der Lichtquellen 14, 15, 16 unterschiedlicher Lichtleiterfasern 18 ist diese seitliche Versetzung der Luken 48 durch eine entsprechende zeitliche Verzögerung der Übertragung der Daten des digitalen Bildes 3 zu der Ansteuerschaltung 20 (Fig. 1) zu berücksichtigen. Die Maske 47 wird vorzugsweise aus einem mit einer Beschichtung versehenen Glasblättchen gebildet. Zur exakten Montage im Belichtungskopf 8, weist die Maske 47 auch Zentriermarken 51 auf.The hatches 48 are distributed in a grid-shaped manner on the mask 47, so that with respect to a direction perpendicular to the directions 11, 12 of the movement of the exposure head 8 successive hatches 48 are offset by a hatch distance d 49. In the illustrated embodiment, a total of 41 hatches 48 are provided, so that when moving the exposure head 8 in one of the directions 11, 12 41 lines 40 of pixels on the material 2 can be exposed. In the Fig. 4 This is indicated by the lines 50 shown in the upper area of the mask 47 for the direction of movement 11 by way of example. For the sake of simplicity, the lens system 45 (FIG. Fig. 3 ) occurring image reversal in the further description disregarded. Around the exit ends 46 of the optical fibers 18 (FIG. Fig. 3 ) to be able to position each other over one of the gaps 48 without mutual spatial obstruction, the hatches 48 are in each case also successively in the lateral direction, ie with respect to the directions 11, 12, offset from each other in successive rows 50. When activating the light sources 14, 15, 16 of different optical fibers 18, this lateral displacement of the hatches 48 by a corresponding time delay of the transmission of the data of the digital image 3 to the drive circuit 20 (FIG. Fig. 1 ). The mask 47 is preferably formed from a glass sheet provided with a coating. For exact mounting in the exposure head 8, the mask 47 also has centering marks 51.

Fig. 5 zeigt ein stark vergrößertes Detail der Maske 47 mit zwei Luken 48, gemäß Fig. 4. Fig. 5 shows a greatly enlarged detail of the mask 47 with two hatches 48, according to Fig. 4 ,

Der dargestellte Ausschnitt zeigt zwei Luken 48 und strichliert angedeutet Belichtungsstreifen 52, wie sie durch das Vorbeibewegen der Luken 48 in Richtung 11 auf dem photosensitiven Material 2 erzeugt werden. Erfindungsgemäß ist vorgesehen, dass während einer ersten Bewegung des Belichtungskopfes 8 (Fig. 1) über das Material 2 von den zu erzeugenden Zeilen des digitalen Bildes 3 nur jede zweite Zeile 50 erzeugt wird. Nachdem das Material 2 in Vorschubrichtung 5 entsprechend weiterbewegt wurde, erfolgt daraufhin, während einer zweiten Bewegung des Belichtungskopfs 8, die Erzeugung von entsprechenden Zwischenzeilen 53, auf Basis der Daten des digitalen Bildes 3. Bezüglich der Vorschubrichtung 5 aufeinander folgende Zeilen 50, 53 haben somit einen Zeilenabstand z 54, dessen Wert gleich ist der Hälfte des Lukenabstands d 49. Dieses Verfahren des Auftragens von ineinander verschachtelten Zeilen 50 und Zwischenzeilen 53 wird auch als Interlacing bezeichnet. Dabei wird vorzugsweise ein Belichtungskopf 8 mit einer ungeradzahligen Anzahl von Lichtleiterfasern 18 bzw. von Luken 48 verwendet, sodass die Transporteinrichtung 4 mit einer jeweils gleichen Vorschublänge im Ausmaß des Produkts der Anzahl der Lichtleiterfasern 18 und der Hälfte des Lukenabstandes d 49 betrieben werden kann (Vorschublänge = Anzahl Lichtleiterfasern * d/2).The illustrated section shows two hatches 48 and dashed lines indicated exposure strips 52, as they are generated by the passage of the hatches 48 in the direction 11 on the photosensitive material 2. According to the invention, during a first movement of the exposure head 8 (FIG. Fig. 1 ) over the material 2 of the lines of the digital image 3 to be generated only every second line 50 is generated. After the material 2 has been correspondingly moved further in the feed direction 5, the generation of corresponding intermediate lines 53 ensues, during a second movement of the exposure head 8, on the basis of the data of the digital image 3. With respect to the feed direction 5, successive lines 50, 53 thus have a line spacing z 54 whose value is equal to half the hatch distance d 49. This method of applying nested lines 50 and intermediate lines 53 is also referred to as interlacing. In this case, preferably an exposure head 8 is used with an odd number of optical fibers 18 or of hatches 48, so that the transport device 4 can be operated with a respective same feed length in the extent of the product of the number of optical fibers 18 and half of the hatch distance d 49 (feed length = Number of optical fibers * d / 2).

Erfindungsgemäß weist jede Luke 48 senkrecht bezüglich der Richtung 11, 12 der Bewegung des Belichtungskopfes (8) eine Höhe 55 auf, deren Wert größer ist als der Zeilenabstand z 54. Dies hat zur Folge, dass die Belichtungsstreifen 52 von Zeilen 50 und Belichtungsstreifen 56 von Zwischenzeilen 53 zwischen jeweils aufeinander folgenden Zeilen 50 und Zwischenzeilen 53 einander überlappen. Damit können unerwünschte Streifenbildungen vermieden werden. Bei Luken 48 deren Höhe 55 gleich ist dem theoretisch maximalen Wert der Höhe eines Bildpunktes, nämlich gleich dem Zeilenabstand z 54, kann es in Folge einer nicht ausreichend exakten Vorwärtsbewegung des Materials 2 durch die Transporteinrichtung 4 zu unbelichteten Luken kommen, die sich als Streifen im Bild bemerkbar machen. Weiters ist vorgesehen, dass eine Breite 57 der Luke 48 einen Wert hat, der größer ist als der Zeilenabstand z 54. Sowohl die Höhe 55 als auch die Breite 57 der Luke 48 reichen somit über die maximale theoretische flächenmäßige Ausdehnung eines Bildpunktes hinaus. Diese entspricht gerade einem Quadrat mit einer Seitenlänge, die gleich ist dem Zeilenabstand z 54. Durch die so gewählte Breite 57 der Luke 48 wird folglich auch eine Überlappung zwischen benachbarten Bildpunkten innerhalb einer Zeile 50, 53 erreicht. Die seitliche Überlappung bezüglich der Richtung 11, 12 wird zusätzlich noch dadurch erhöht, dass der Belichtungskopf 8 kontinuierlich über das photosensitive Material 2 bewegt wird (Fig. 1). Diese Überlappung der Belichtungsbereiche von einzelnen Bildpunkten in seitlicher Richtung 11, 12 ergibt sich aus dem während der Dauer eines Belichtungsimpulses zurückgelegten Weg des Belichtungskopfes 8 bzw. der Luke 48. Die maximale Dauer eines Belichtungsimpulses ist gleich der Laufzeit zum Zurücklegen der Breite eines Belichtungspunktes entsprechend dem Zeilenabstand z 54. Für die Dauer der Belichtungsimpulse wird bevorzugt ein Wert zwischen 60 % und 95 %, insbesondere 90 %, der Laufzeit für die Breite eines Belichtungspunktes bzw. der Laufzeit für die Strecke des Zeilenabstands z 54 gewählt.According to the invention, each hatch 48 perpendicular to the direction 11, 12 of the movement of the exposure head (8) has a height 55 whose value is greater than the line spacing z 54. As a result, the exposure strips 52 of lines 50 and exposure strips 56 of FIG Intermediate lines 53 between each successive lines 50 and intermediate lines 53 overlap each other. This can be avoided unwanted streaking. For hatches 48 whose height 55 is equal to the theoretically maximum value of the height of a pixel, namely equal to the line spacing z 54, it can lead to unexposed hatches as a result of not sufficiently precise forward movement of the material 2 by the transport device 4, which is a strip in the Make picture noticeable. Furthermore, it is provided that a width 57 of the hatch 48 has a value which is greater than the line spacing z 54. Both the height 55 and the width 57 of the hatch 48 thus extend beyond the maximum theoretical areal extent of a pixel. This corresponds just to a square with a side length which is equal to the line spacing z 54. By thus selected width 57 of the hatch 48 is consequently also an overlap between adjacent Pixels within a line 50, 53 reached. The lateral overlap with respect to the direction 11, 12 is additionally increased by the fact that the exposure head 8 is moved continuously over the photosensitive material 2 ( Fig. 1 ). This overlap of the exposure areas of individual pixels in the lateral direction 11, 12 results from the path traveled by the exposure head 8 or the hatch 48 during the duration of an exposure pulse. The maximum duration of an exposure pulse is equal to the transit time for covering the width of an exposure point corresponding to FIG Line spacing z 54. For the duration of the exposure pulses, a value between 60% and 95%, in particular 90%, of the propagation time for the width of an exposure point or the transit time for the distance of the line spacing z 54 is preferably selected.

Betreffend die Form der Luke 48 ist vorgesehen, dass seitliche Konturen 58, 59 zumindest annähernd einer Gaußschen Glockenkurve entsprechen. Punkte des Materials 2 in der Nähe der maximalen Breite der Luke 48, d.h. in einem Bereich in der Nähe der Breite 57 der Luke 48, sind somit wesentlich länger der Belichtung durch einen Lichtimpuls ausgesetzt, als dies für andere Punkte der Fall ist. Dies wird symbolisch durch Belichtungskurven 60 der Belichtungsstreifen 52 bzw. Belichtungskurven 61 der Belichtungsstreifen 56 angedeutet. Es ist leicht zu erkennen, dass in Bereichen, wo Belichtungsstreifen 52 und Belichtungsstreifen 56 einander überlappen, eine Überlagerung der Belichtungskurven 60, 61 erfolgt und sich somit eine Gesamtbelichtungskurve mit annähernd konstantem Verlauf und ohne sprunghafte Änderungen ergibt. Auch Ungenauigkeiten, die infolge von nicht exakt ausgeführten Vorschüben durch die Transporteinrichtung 4 auftreten können, haben dadurch auf die Gesamtbelichtungskurve nur sehr geringe Auswirkung und sind folglich im Erscheinungsbild des fertig belichteten Bildes praktisch nicht erkennbar. Die Höhe 55 als auch die Breite 57 der Luke 48 sind vorzugsweise gleich dem 1,8-fachen des Zeilenabstands z 54.Regarding the shape of the hatch 48, it is provided that lateral contours 58, 59 correspond at least approximately to a Gaussian bell curve. Points of material 2 near the maximum width of the hatch 48, i. in an area near the width 57 of the hatch 48, are thus exposed to the exposure of a light pulse much longer than is the case for other points. This is symbolically indicated by exposure curves 60 of the exposure strips 52 and exposure curves 61 of the exposure strips 56, respectively. It is easy to see that in areas where exposure strips 52 and exposure strips 56 overlap one another, the exposure curves 60, 61 overlap, resulting in an overall exposure curve with approximately constant progression and no abrupt changes. Also, inaccuracies that may occur as a result of not exactly running feeds through the transport device 4, thereby have only a very small effect on the overall exposure curve and are therefore practically unrecognizable in the appearance of the finished exposed image. The height 55 as well as the width 57 of the hatch 48 are preferably equal to 1.8 times the line spacing z 54.

Wegen der Überlappung der Belichtungsstreifen 56 von Zwischenzeilen 53 mit den Belichtungsstreifen 52 der Zeilen 50 werden Stellen des Materials 2, die sich in den Überlappungsbereich befinden, mit einem zeitlichen Abstand zweimal hintereinander belichtet. Da die Belichtungswirkung in einem solchen Fall beim zweiten Belichtungsvorgang eine andere ist, als wenn eine Stelle zum ersten Mal belichtet wird, ist erfindungsgemäß vorgesehen, dass eine Kompensation durch eine Korrektur der Lichtintensitäten und/oder der Impulsdauer der Lichtimpulse vorgenommen wird. Die unterschiedliche Belichtungswirkung von zwei aufeinander folgenden Belichtungen eines photosensitiven Materials ist als so genannter Intermittenz-Effekt von photophysikalischen Belichtungssystemen bekannt. Die Berechnung der Korrekturwerte für die Intensität der Belichtung erfolgt anhand einer Funktion der Form: CORR = St a ¨ rke * log T - Differenz / T - Nominal

Figure imgb0001

  • Stärke: einstellbare Korrekturwirkung
  • T-Differenz: aktuelles Zeitintervall
  • T-Nominal: Referenz-Zeitinterfall
Because of the overlap of the exposure strips 56 of interstitial lines 53 with the exposure strips 52 of the lines 50, locations of the material 2 that are in the overlap area are exposed twice in succession. Since the exposure effect is different in such a case in the second exposure process, as when a location is exposed for the first time, it is provided according to the invention that a compensation by a correction of the light intensities and / or the pulse duration of the light pulses is made. The different exposure effect of two on each other The following exposures of a photosensitive material is known as the so-called Intermittenz effect of photophysical exposure systems. The calculation of the correction values for the intensity of the exposure takes place by means of a function of the form: CORR = St a ¨ strength * log T - difference / T - Nominal
Figure imgb0001
  • Strength: adjustable correction effect
  • T difference: current time interval
  • T-Nominal: reference time interval

Die Werte für "Stärke" und "T-Nominal" können durch Testbelichtungen ermittelt werden. T-Differenz steht für die zeitliche Dauer zwischen dem ersten Belichtungsvorgang und dem zweiten Belichtungsvorgang an der gleichen Stelle des Materials 2.The values for "Thickness" and "T-Nominal" can be determined by test exposures. T difference stands for the time duration between the first exposure process and the second exposure process at the same location of the material 2.

Das Verfahren zur Korrektur des Intermittenzeffektes besteht somit darin, dass zunächst während einer ersten Bewegung des Belichtungskopfes 8 zumindest eine erste Zeile 50 von Bildpunkten 53 erzeugt wird und daran anschließend während einer zweiten Bewegung des Belichtungskopfes zumindest eine zweite Zeile 53 von Bildpunkten 62 erzeugt wird, wobei die erste Zeile 50 und die zweite Zeile 53 einander zumindest teilweise überlappen. Vor dem Erzeugen der zweiten Zeile 53 werden korrigierte Bilddaten für die zweite Zeile 53 berechnet, indem die veränderte Belichtungswirkung des zweiten Belichtungsvorganges für einen jeden der Bildpunkte 62 kompensiert wird. Diese Kompensation erfolgt durch eine Änderung der Intensität und/oder durch die Änderung der Impulsdauer des entsprechenden Belichtungsimpulses um einen Wert der proportional ist zum Logarithmus aus dem Verhältnis des Zeitintervalls zwischen der Belichtung des Bildpunktes 63 und der Belichtung des Bildpunktes 63 und einem Referenz-Zeitintervall.The method for correcting the intermittency effect thus consists in first producing at least one first line 50 of pixels 53 during a first movement of the exposure head 8 and subsequently producing at least one second line 53 of pixels 62 during a second movement of the exposure head the first row 50 and the second row 53 at least partially overlap each other. Before generating the second line 53, corrected image data for the second line 53 is calculated by compensating for the changed exposure effect of the second exposure process for each of the pixels 62. This compensation is effected by a change in the intensity and / or by the change in the pulse duration of the corresponding exposure pulse by a value which is proportional to the logarithm of the ratio of the time interval between the exposure of the pixel 63 and the exposure of the pixel 63 and a reference time interval.

Die Fig. 6 zeigt einen vergrößerten Ausschnitt des photosensitiven Materials 2 mit den darauf belichteten Zeilen 50 und einer Zwischenzeile 53.The Fig. 6 shows an enlarged section of the photosensitive material 2 with the lines 50 exposed thereon and an intermediate line 53.

Anhand dieser Darstellung soll die Korrektur des oben erwähnten Intermittenz-Effektes näher beschrieben werden. Ein Bildpunkt 62 der Zwischenzeile 53 und jeweils ein Bildpunkt 63 der beiden benachbarten Zeilen 50 sind durch je ein strichliertes Quadrat mit der Seitenlänge entsprechend dem Wert des Zeilenabstands z 54 angedeutet. Wie durch die ebenfalls eingezeichneten Umrisse der Luken 48 illustriert werden soll, erfolgt die Belichtung entsprechend der Bilddaten des digitalen Bildes 3 (Fig. 1), über den Bereich der theoretischen maximalen flächenmäßigen Ausdehnung der Bildpunkte 62, 63 hinaus. Die Folge ist die, bereits in der Beschreibung zur Fig. 5 erläuterte Überlappung der Belichtungsstreifen 52, 56 (Fig. 5).Based on this representation, the correction of the above-mentioned Intermittenz effect will be described in more detail. A pixel 62 of the intermediate line 53 and in each case a pixel 63 of the two adjacent rows 50 are indicated by a respective dashed square with the side length corresponding to the value of the line spacing z 54. As by the also marked Outlines of the hatches 48 should be illustrated, the exposure is carried out according to the image data of the digital image 3 ( Fig. 1 ), beyond the range of the theoretical maximum areal extent of the pixels 62, 63. The consequence is that, already in the description to Fig. 5 explained overlap of the exposure strips 52, 56 (FIG. Fig. 5 ).

Es sei nun angenommen, dass die Belichtung des photosensitiven Materials 2 mit den Zeilen 50 während einer Bewegung des Belichtungskopfes 8 (Fig. 1) entsprechend der Richtung 11 (gemäß Fig. 6 von links nach rechts) erfolgt. Entsprechend der seitlichen Position der Bildpunkte 63 werden diese zu einem ersten Zeitpunkt belichtet, woraufhin sich der Belichtungskopf 8 bis zum rechten Rand des Bildes bewegt, bis die entsprechenden Zeilen 50 vollständig belichtet worden sind. Es erfolgt sodann ein Vorschub des photosensitiven Materials 2 in Vorschubrichtung 5, sodass anschließend die Zwischenzeilen 53 belichtet werden können. Der Beliehtungskopf 8 (Fig. 1) wechselt seine Bewegungsrichtung in Richtung 12 (gemäß Fig. 6 von rechts nach links) und es erfolgt die Belichtung der Zwischenzeile 53 bis schließlich zu einem zweiten Zeitpunkt der Bildpunkt 62 belichtet wird. Durch Messung bzw. Vorausberechnung der Zeitdifferenz zwischen dem ersten Zeitpunkt der Belichtung der Bildpunkte 63 und dem zweiten Zeitpunkt der Belichtung des Bildpunkts 62 ist es möglich, einen Korrekturwert für den zur Belichtung des Bildpunktes 62 erforderlichen Lichtimpulses zu berechnen und bei der Ansteuerung der Lichtquellen 14, 15, 16 (Fig. 1) mit zu berücksichtigen. Die Zeitdifferenz entspricht einem Weg 64 des Belichtungskopfes 8, wie sie durch Erfassung der Position des Belichtungskopfes 8 mit Hilfe des Weggebers 24 (Fig. 1) und der Bewegungsgeschwindigkeit bestimmt werden kann. Für eine exakte Bestimmung der entsprechenden Zeitintervalle müsste streng genommen auch der in Folge der seitlichen Versetzung der Luken 48 bedingte Laufzeitunterschied berücksichtigt werden. Dieser Laufzeitunterschied ist jedoch im Verhältnis zur Gesamtlaufzeit vernachlässigbar. Es erfolgt somit eine Erfassung der zeitlichen Abfolge des Belichtungsverlaufes beim Belichten des photosensitiven Materials 2 und eine Berechnung des Zeitintervalls zum Belichten voneinander benachbarten Bildpunkten 62, 63 von aufeinander folgenden Zeilen 50 bzw. Zwischenzeilen 53 und auf Basis des so bestimmten Zeitintervalls eine Korrektur zur Kompensation des so genannten Intermittenz-Effektes. Der errechnete Korrekturwert wird vor Ausführen des entsprechenden Belichtungszyklus zu den Bilddaten des digitalen Bildes 3 (Fig. 1) hinzugerechnet.Assume now that the exposure of the photosensitive material 2 to the lines 50 during movement of the exposure head 8 (FIG. Fig. 1 ) corresponding to the direction 11 (according to FIG Fig. 6 from left to right). Corresponding to the lateral position of the pixels 63, they are exposed at a first time, whereupon the exposure head 8 moves to the right edge of the image until the corresponding lines 50 have been completely exposed. There is then an advance of the photosensitive material 2 in the feed direction 5, so that subsequently the intermediate lines 53 can be exposed. The feeding head 8 ( Fig. 1 ) changes its direction of movement in direction 12 (according to Fig. 6 from right to left) and the exposure of the intermediate line 53 until the pixel 62 is finally exposed at a second time. By measuring or calculating the time difference between the first time of exposure of the pixels 63 and the second time of exposure of the pixel 62, it is possible to calculate a correction value for the light pulse required to expose the pixel 62 and to control the light sources 14, 15, 16 ( Fig. 1 ) to take into account. The time difference corresponds to a path 64 of the exposure head 8, as determined by detecting the position of the exposure head 8 by means of the displacement sensor 24 (FIG. Fig. 1 ) and the speed of movement can be determined. For an exact determination of the corresponding time intervals, strictly speaking, the delay difference due to the lateral displacement of the hatches 48 would also have to be considered. However, this difference in transit time is negligible in relation to the total runtime. There is thus a detection of the time sequence of the exposure course during exposure of the photosensitive material 2 and a calculation of the time interval for exposing adjacent pixels 62, 63 of successive lines 50 and intermediate lines 53 and on the basis of the time interval thus determined a correction for the compensation of so-called intermittency effect. The calculated correction value is converted to the image data of the digital image 3 before the corresponding exposure cycle is executed (FIG. Fig. 1 ) added.

Fig. 7 zeigt ein Ablaufschema des Verfahrens zum Belichten von digitalen Bildern 3 mit einer Korrektur des Intermittenz-Effektes. Fig. 7 shows a flowchart of the method for exposing digital images 3 with a correction of the Intermittenz effect.

Ausgehend von den Bilddaten eines digitalen Bildes 3 erfolgt in einem ersten Schritt 71 eine Aufteilung der Bilddaten in Bilddaten entsprechend Zeilen 50 und Bilddaten entsprechend Zwischenzeilen 53 (Fig. 5 und 6), in einem weiteren Schritt 72 erfolgt eine Aufzeichnung des Bewegungsablaufs des Belichtungskopfes 8 und der Vorschubbewegung des photosensitiven Materials 2 (Fig. 1). In einem Schritt 73 werden ausgehend von diesen Informationen Zeitintervalle bzw. Differenzzeiten für einander benachbarte Bildpunkte 62, 63 zu Zeilen 50 und Zwischenzeilen 53 bestimmt. In einem Schritt 74 werden sodann Korrekturwerte für die Belichtung der Zwischenzeilen 53 berechnet und damit neue korrigierte Bilddaten für die Zwischenzeilen 53 bestimmt. In einem daran anschließenden Schritt 75 erfolgt sodann die Ansteuerung der Lichtquellen 14, 15, 16, indem die Bilddaten zu den Zeilen 50 und den Zwischenzeilen 53 alternierend an die Ansteuerschaltung 20 übergeben werden.Starting from the image data of a digital image 3, in a first step 71, the image data is divided into image data corresponding to lines 50 and image data corresponding to intermediate lines 53 (FIG. Fig. 5 and 6 In a further step 72, a recording of the movement sequence of the exposure head 8 and the advancing movement of the photosensitive material 2 (FIG. Fig. 1 ). In a step 73, on the basis of this information, time intervals or differential times for adjacent pixels 62, 63 for lines 50 and intermediate lines 53 are determined. In a step 74, correction values for the exposure of the intermediate lines 53 are then calculated and thus new corrected image data for the intermediate lines 53 is determined. In a subsequent step 75 then the control of the light sources 14, 15, 16, by the image data to the lines 50 and the intermediate lines 53 are alternately transferred to the drive circuit 20.

Die Ausführungsbeispiele zeigen mögliche Ausführungsvarianten der Vorrichtung bzw. des Verfahrens zum Erzeugen eines mehrfarbigen Bildes aus Daten eines digitalen Bildes, wobei an dieser Stelle bemerkt sei, dass die Erfindung nicht auf die speziell dargestellten Ausführungsvarianten derselben eingeschränkt ist, sondern vielmehr auch diverse Kombinationen der einzelnen Ausführungsvarianten untereinander möglich sind und diese Variationsmöglichkeit aufgrund der Lehre zum technischen Handeln durch gegenständliche Erfindung im Können des auf diesem technischen Gebiet tätigen Fachmannes liegt. Es sind also auch sämtliche denkbaren Ausführungsvarianten, die durch Kombinationen einzelner Details der dargestellten und beschriebenen Ausführungsvariante möglich sind, vom Schutzumfang mitumfasst.The exemplary embodiments show possible embodiments of the device or the method for generating a multicolored image from data of a digital image, it being noted at this point that the invention is not limited to the specifically illustrated embodiments of the same, but rather also various combinations of the individual embodiments are possible with each other and this possibility of variation due to the teaching of technical action by objective invention in the skill of working in this technical field expert. There are therefore also all possible embodiments, which are possible by combinations of individual details of the illustrated and described embodiment, the scope of protection.

Der Ordnung halber sei abschließend darauf hingewiesen, dass zum besseren Verständnis des Aufbaus der Vorrichtung diese bzw. deren Bestandteile teilweise unmaßstäblich und/oder vergrößert und/oder verkleinert dargestellt wurden.For the sake of order, it should finally be pointed out that, for better understanding of the structure of the device, these or their components have been shown partially unevenly and / or enlarged and / or reduced in size.

Die den eigenständigen erfinderischen Lösungen zugrunde liegende Aufgabe kann der Beschreibung entnommen werden.The problem underlying the independent inventive solutions can be taken from the description.

Vor allem können die einzelnen in den Fig. 1, 2; 3, 4, 5; 6, 7 gezeigten Ausführungen den Gegenstand von eigenständigen, erfindungsgemäßen Lösungen bilden. Die diesbezüglichen, erfindungsgemäßen Aufgaben und Lösungen sind den Detailbesehreibungen dieser Figuren zu entnehmen.Above all, the individual in the Fig. 1 . 2 ; 3 . 4 . 5 ; 6 . 7 shown embodiments form the subject of independent solutions according to the invention. The relevant objects and solutions according to the invention can be found in the detailed descriptions of these figures.

BezugszeichenaufstellungREFERENCE NUMBERS

11
Vorrichtungcontraption
22
Materialmaterial
33
Bildimage
44
Transporteinrichtungtransport means
55
Vorschubrichtungfeed direction
66
Motorengine
77
Transportwalzetransport roller
88th
Belichtungskopfexposure head
99
Führungguide
1010
BelichtungskopfantriebExposure Head Drive
1111
Richtungdirection
1212
Richtungdirection
1313
Richtungdirection
1414
LichtquelleneinheitLight source unit
1515
Lichtquellelight source
1616
Lichtquellelight source
1717
Einkoppeleinheitcoupling unit
1818
LichtleiterfaserOptical fiber
1919
Faserbündelfiber bundles
2020
Ansteuerschaltungdrive circuit
2121
Digital-/Analog-WandlerDigital / analog converter
2222
Zeitgebertimer
2323
Steuerungcontrol
2424
Weggeberencoder
2525
Messzellecell
2626
Rahmenframe
2727
Faserhalterungfiber mount
2828
Fassungversion
2929
Eintrittslukeadmission Luke
3030
Tubustube
3131
Tubustube
3232
Tubustube
3333
Linselens
3434
Linselens
3535
Linselens
3636
optische Achseoptical axis
3737
optische Achseoptical axis
3838
optische Achseoptical axis
3939
optische Achseoptical axis
4040
Interferenzfilterinterference filters
4141
Interferenzfilterinterference filters
4242
Platteplate
4343
Fassungversion
4444
Trägercarrier
4545
Linsensystemlens system
4646
Austrittsendeexit end
4747
Maskemask
4848
Lukehatch
4949
Lukenabstand dHatch distance d
5050
Zeilerow
5151
Zentriermarkecentering mark
5252
Belichtungsstreifenexposure strips
5353
Zwischenzeileintermediate line
5454
Zeilenabstand zLine spacing z
5555
Höheheight
5656
Belichtungsstreifenexposure strips
5757
Breitewidth
5858
Konturcontour
5959
Konturcontour
6060
Belichtungskurveexposure curve
6161
Belichtungskurveexposure curve
6262
Bildpunktpixel
6363
Bildpunktpixel
6464
Wegpath
7070
Schrittstep
7171
Schrittstep
7272
Schrittstep
7373
Schrittstep
7474
Schrittstep

Claims (29)

  1. Device (1) for generating a multi-colour image from data of a digital image (3) on a photosensitive material (2), with a conveyor system (4) for moving the material (2) in a feed direction (5), and with an exposure head (8) which can be moved backwards and forwards across the material (2) in a direction (11, 12) extending perpendicular to the feed direction (5), and the exposure head (8) has a several outlet ends (46) of light-conducting fibres (18) for generating pixels (62, 63) on the material (2), and coupling units (17) are provided by means of which a first light source (14), a second light source (15) and a third light source (16) are respectively connected to a single light-conducting fibre (18), and the colour of the light of the first light source (14), the colour of the light of the second light source (15) the colour of the light of the third light source (16) form a trio of complementary basic colours, characterised in that a mask (47) with exposure apertures (48) is disposed in the exposure head (8) between the outlet ends (46) of the light-conducting fibres (18) and a lens system (45) for reproducing the outlet ends (46) of the light-conducting fibres (18) on the material (2).
  2. Device as claimed in claim 1, characterised in that the coupling unit (17) for connecting the light sources (14, 15, 16) to an inlet port (29) of the light-conducting fibres (18) comprises a first interference filter (40) and a second interference filter (41), and the light of the first light source (14) is reflected on the first interference filter (40), and the light of the second light source (15) is reflected on the second interference filter (41) and passes through the first interference filter (40), and the light of the third light source (16) passes through the second interference filter (41) and through the first interference filter (40).
  3. Device as claimed in claim 1 or 2, characterised in that the light sources (14, 15, 16) are each disposed in a tube (30, 31, 32), each equipped with a lens (33, 34, 35) for focusing the light of the light sources (14, 15, 16) on the fibre inlet port (29) for the light-conducting fibre (18).
  4. Device as claimed in claim 3, characterised in that the position of the light sources (14, 14, 16) in the respective tubes (30, 31, 32) can be adjusted with respect to the longitudinal extension of the respective tube (30, 31, 32).
  5. Device as claimed in claim 3 or 4, characterised in that the optical axes (36, 37) of the lenses (33, 34) of the first and the second light sources (14, 15) each subtend an angle of 60° with an optical axis (39) of the inlet port (29), and an optical axis (38) of the lens (35) is oriented parallel with the optical axis (39).
  6. Device as claimed in one of claims 2 to 5, characterised in that the inlet port (29) is disposed in a fibre holder (27) and the light-conducting fibre (18) secured in a socket (28) can be inserted in the fibre holder (27) and fixed in the fibre holder (27).
  7. Device as claimed in one of claims 2 to 6, characterised in that the coupling units (17) are disposed in a stationary light source unit (13).
  8. Device as claimed in one of the preceding claims, characterised in that the light sources (14, 15, 16) are light-emitting diodes (LEDs).
  9. Device as claimed in one of the preceding claims, characterised in that the trio of basic colours is red, green and blue.
  10. Device as claimed in one of the preceding claims, characterised in that each of the light sources (14, 15, 16) is connected to a control circuit (20), and the control circuit (20) comprises at least one digital-analogue converter (21) and a timer (22).
  11. Device as claimed in one of the preceding claims, characterised in that it has a measuring cell (25) for measuring the light intensities of the exposure head (8).
  12. Device as claimed in claim 11, characterised in that the measuring cell (25) is disposed outside of the exposure area of the exposure head (8) when the latter is in an idle position.
  13. Device as claimed in one of the preceding claims, characterised in that it has a distance transmitter (24) for detecting the position of the exposure head (8).
  14. Device as claimed in one of the preceding claims, characterised in that exposure apertures (48) disposed one after the other are offset with respect to a direction extending perpendicular to the directions (11, 12) of movement of the exposure head (8) by an aperture spacing d (49).
  15. Device as claimed in one of the preceding claims, characterised in that the aperture spacing d (49) has a value equal to twice a line spacing z (54) of lines of the digital image (3) to be generated.
  16. Device as claimed in one of the preceding claims, characterised in that the exposure apertures (48) have a height (55) perpendicular to the direction (11, 12) of movement of the exposure head (8), the value of which is greater than the line spacing z (54).
  17. Device as claimed in claim 16, characterised in that the height (55) is equal to 1.8 times the line spacing z (54).
  18. Device as claimed in one of the preceding claims, characterised in that the exposure apertures (48) have a width (57) by reference to the direction (11,12) of movement of the exposure head (8), the value of which is greater than the line spacing z (54).
  19. Device as claimed in claim 18, characterised in that the width (57) is equal to 1.8 times the line spacing z (54).
  20. Device as claimed in one of the preceding claims, characterised in that the exposure apertures (48) are shaped with lateral contours (58, 59) at least approximately conforming to a Gaussian bell curve.
  21. Device as claimed in one of the preceding claims, characterised in that the mask (47) is made from a glass leaf provided with a coating.
  22. Method of generating a multi-colour image from data of a digital image (3) on a photosensitive material (2), and the material (2) is moved by a conveyor system (4) in a feed direction (5), and pixels (62, 63) are generated on the material (2) by an exposure head (8) which is able to move backwards and forwards across the material (2) in a direction (11, 12) extending perpendicular to the feed direction (5) and has a plurality of outlet ends (46) of light-conducting fibres (18), and the light of a first light source (14), the light of a second light source (15) and the light of a third light source (16) is directed through a single light-conducting fibre (18), and the colour of the light of the first light source (14), the colour of the light of the second light source (15) and the colour of the light of the third light source (16) form a trio of complementary basic colours, characterised in that a mask (47) with exposure apertures (48) is disposed in the exposure head (8) between the outlet ends (46) of the light-conducting fibres (18) and a lens system (45) for reproducing the outlet ends (46) of the light-conducting fibres (18) on the material (2).
  23. Method as claimed in claim 22, characterised in that a first interference filter (40) and a second interference filter (40) are used to introduce the light into the light-conducting fibres (18), and the light of the first light source (14) is reflected on the first interference filter (40), and the light of the second light source (15) is reflected on the second interference filter (41) and passes through the first interference filter (40), and the light of the third light source (16) passes through the second interference filter (41) and through the first interference filter (40).
  24. Method as claimed in one of claims 22 to 23, characterised in that, during the course of a first movement of the exposure head (8), only every second line (50) of the lines of the digital image (3) to be produced is generated, after which the material (2) is advanced further in the feed direction (5) and intermediate lines (53) are then generated during the course of a second movement of the exposure head (8).
  25. Method as claimed in claim 22 or 24, characterised in that the exposure apertures (48) have a height (55) perpendicular to the direction (11, 12) of movement of the exposure head (8), the value of which is greater than the line spacing z (54), and exposed strips (52) of lines (50) and exposed strips (56) of intermediate lines (53) are generated, and exposed strips (52, 53) of successively following lines (50) and intermediate lines (53) partially overlap one another.
  26. Method as claimed in claim 25, characterised in that, prior to generating the intermediate lines (53), corrected image data is computed for the intermediate lines (53) by compensating, for each and every image pixel (62) of the intermediate lines (53), the altered exposure effect of the second exposure process which follows the first exposure process after a time interval, , and such compensation takes place by changing the intensity and/or by changing the pulse duration by a value which is proportional to the logarithm of the ratio between the time interval and a reference time interval (value ∼ log(time interval/reference time interval)).
  27. Method as claimed in claim 26, characterised in that test exposures are run and from these, the reference time interval and a proportionality factor are determined for the value of the change in intensity and/or a proportionality factor is determined for the value of the change in pulse duration for the specific photosensitive material (2).
  28. Method as claimed in one of claims 22 to 27, characterised in that the light sources (14, 15, 16) are light-emitting diodes (LEDs).
  29. Method as claimed in claim 28, characterised in that the light intensities of the exposure head (8) for different control currents of the LEDs are measured with a measuring cell (25) and correction parameters for compensating non-linearities of the LEDs are determined.
EP05020623A 2004-09-27 2005-09-22 Device to produce digital multi-colour images Active EP1640169B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT05020623T ATE437757T1 (en) 2004-09-27 2005-09-22 DEVICE FOR GENERATING A MULTI-COLOR DIGITAL IMAGE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0161104A AT500831B1 (en) 2004-09-27 2004-09-27 DEVICE FOR PRODUCING A MULTICOLOR DIGITAL IMAGE

Publications (3)

Publication Number Publication Date
EP1640169A2 EP1640169A2 (en) 2006-03-29
EP1640169A3 EP1640169A3 (en) 2007-10-17
EP1640169B1 true EP1640169B1 (en) 2009-07-29

Family

ID=35636630

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05020623A Active EP1640169B1 (en) 2004-09-27 2005-09-22 Device to produce digital multi-colour images

Country Status (4)

Country Link
US (1) US20060066924A1 (en)
EP (1) EP1640169B1 (en)
AT (3) AT505139B1 (en)
DE (1) DE502005007768D1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006104171A1 (en) * 2005-03-28 2006-10-05 Fujifilm Corporation Image recording method and device
BE1017522A6 (en) * 2007-03-21 2008-11-04 Flooring Ind Ltd METHOD FOR MANUFACTURING FLOOR PANELS, AS WELL AS FLOOR PANEL AND HALF PRODUCT.
US8482802B2 (en) * 2010-03-29 2013-07-09 Eastman Kodak Company Screened hardcopy reproduction apparatus with compensation
BE1019383A3 (en) 2010-06-23 2012-06-05 Flooring Ind Ltd Sarl METHOD FOR MANUFACTURING PANELS AND PANEL OBTAINED HEREBY
DK2471662T3 (en) * 2010-12-30 2012-11-05 Alltec Angewandte Laserlicht Technologie Gmbh Monitoring device and method for monitoring the selection of elements in a selection head
EP2472843B1 (en) 2010-12-30 2018-11-07 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Method for controlling an apparatus for printing and/or scanning an object
EP2471665B1 (en) * 2010-12-30 2013-03-27 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Marking and/or scanning head, apparatus and method
DK2471669T3 (en) * 2010-12-30 2013-07-29 Alltec Angewandte Laserlicht Technologie Gmbh Marking apparatus
DK2471666T3 (en) 2010-12-30 2012-10-01 Alltec Angewandte Laserlicht Technologie Gmbh Selection device and method for operating a marker device
DK2471658T3 (en) 2010-12-30 2019-01-21 Alltec Angewandte Laserlicht Tech Gesellschaft Mit Beschraenkter Haftung MARKING DEVICES
ES2409886T3 (en) 2010-12-30 2013-06-28 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Device for marking and / or scanning an object
EP2472268B1 (en) 2010-12-30 2013-02-13 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Marking or scanning apparatus with a measuring device for measuring the speed of an object and a method of measuring the speed of an object with such a marking or scanning apparatus
ES2793373T3 (en) * 2010-12-30 2020-11-13 Alltec Angewandte Laserlicht Tech Gesellschaft Mit Beschraenkter Haftung Sensor apparatus
EP2471663B1 (en) * 2010-12-30 2012-09-12 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Method for applying a marking on an object and marking apparatus

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4504111A (en) 1981-02-23 1985-03-12 U.S. Philips Corporation Method of multiplexing transmission chanels in a step-index optical fibre and device for carrying out the method
US4540246A (en) * 1983-03-28 1985-09-10 Polaroid Corporation Holographic optical apparatus for use with expanded-beam type fiber optical components
JP2733055B2 (en) * 1986-08-13 1998-03-30 富士写真フイルム 株式会社 Head device for side printing
US4770485A (en) * 1987-05-05 1988-09-13 Hughes Aircraft Company Apparatus to launch separated mode groups into optical fibers
US4886355A (en) * 1988-03-28 1989-12-12 Keane Thomas J Combined gloss and color measuring instrument
FR2632404B1 (en) * 1988-06-03 1990-09-21 Elf Aquitaine INTERFEROMETRIC SENSOR AND ITS USE IN AN INTERFEROMETRIC DEVICE
JPH04110916A (en) * 1990-08-31 1992-04-13 Sony Corp Multiplexing device for semiconductor laser
JPH0655773A (en) * 1992-08-04 1994-03-01 Minolta Camera Co Ltd Solid scanning-type printing head
US5535271A (en) * 1994-05-27 1996-07-09 Hughes Electronics Apparatus and method for dual tone multifrequency signal detection
US6053598A (en) * 1995-04-13 2000-04-25 Pitney Bowes Inc. Multiple print head packaging for ink jet printer
US5534746A (en) * 1995-06-06 1996-07-09 Thomson Consumer Electronics, Inc. Color picture tube having shadow mask with improved aperture spacing
DE69926229T2 (en) * 1998-05-01 2006-05-24 ZBE, Inc., Santa Barbara METHOD AND DEVICE FOR RECORDING DIGITAL IMAGES ON PHOTOSENSITIVE MATERIAL
US6452696B1 (en) * 1998-05-01 2002-09-17 Zbe Incorporated Method and apparatus for controlling multiple light sources in a digital printer
US6081286A (en) * 1998-05-02 2000-06-27 Fotland; Richard Allen Method and apparatus for high speed charge image generation
JP2000033731A (en) 1998-07-17 2000-02-02 Citizen Watch Co Ltd Calibration device of light emitting element in optical printer
JP3642975B2 (en) * 1999-03-30 2005-04-27 フジノン株式会社 Exposure equipment
JP2002307742A (en) * 2001-04-09 2002-10-23 Hitachi Cable Ltd Led printing head
US7006537B2 (en) * 2001-08-07 2006-02-28 Hrl Laboratories, Llc Single polarization fiber laser
US6636292B2 (en) * 2001-09-05 2003-10-21 Eastman Kodak Company Printing apparatus for photosensitive media having a hybrid light source
JP2003121923A (en) * 2001-10-03 2003-04-23 Lg Electronics Inc Projector device and color synthesizing device

Also Published As

Publication number Publication date
EP1640169A3 (en) 2007-10-17
AT500831B1 (en) 2008-05-15
EP1640169A2 (en) 2006-03-29
AT500831A1 (en) 2006-04-15
DE502005007768D1 (en) 2009-09-10
US20060066924A1 (en) 2006-03-30
AT505139B1 (en) 2012-04-15
ATE437757T1 (en) 2009-08-15
AT505139A1 (en) 2008-11-15

Similar Documents

Publication Publication Date Title
EP1640169B1 (en) Device to produce digital multi-colour images
DE3719766C2 (en)
DE3806785C2 (en) Optical printer
DE2243036A1 (en) METHOD AND EQUIPMENT FOR COLOR DETACHING A BEAM OF LIGHT
WO1992008103A1 (en) Process and device for the opto-electronic measurement of objects
EP0847187A2 (en) Scanning apparatus for picture-element-wise photoelectric measurement of a measured object
DE1165303B (en) Optical image transmission system
DE3519236C2 (en) Automatic notching device for the preparation of moving photographic document strips
EP1291645A1 (en) Apparatus for automatic measurement of test fields
DE2537343A1 (en) DENSITOMETRY METHOD AND DENSITOMETER FOR CARRYING OUT THE METHOD
EP0312056B1 (en) Electroerosion machine
DE4109744C2 (en) Method for determining the area coverage of a printing template, in particular a printing plate, and device for performing the method
EP1768380A2 (en) Densitometer
DE3422566C2 (en)
DE3515608A1 (en) METHOD FOR COMPENSATING COLORS IN DEVICES FOR PRODUCING PHOTOGRAPHIC COLOR PRINTS
DE3641635C2 (en) Method and device for controlling the exposure in three primary colors during color copying
DE2451352A1 (en) PHOTOELECTRIC CONVERTER
CH630184A5 (en) Film scanner
DE102007059766A1 (en) Overlapping region correcting method for scanning device, involves arranging marker above scanning plane, such that cameras detect common point in overlapping region by rays that run past marker laterally
EP0372101A1 (en) X-ray diagnostic apparatus with an image intensifier television system
WO2005078401A1 (en) Filter unit with an adjustable wavelength and assembly comprising said filter unit
DE202010008409U1 (en) Apparatus for colorimetry in a rotary printing machine
DE102018100417B4 (en) Method and device for optical target tracking of a target object that can be irradiated with a high-energy laser
EP1655946A1 (en) Scanner for photoelectric measurement of an object
WO2023220763A1 (en) Optical fibre ribbon and method for the production thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080409

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AXX Extension fees paid

Extension state: YU

Payment date: 20080409

Extension state: HR

Payment date: 20080409

Extension state: MK

Payment date: 20080409

Extension state: AL

Payment date: 20080409

Extension state: BA

Payment date: 20080409

17Q First examination report despatched

Effective date: 20080603

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502005007768

Country of ref document: DE

Date of ref document: 20090910

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091109

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: DURST PHOTOTECHNIK A.G.

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091129

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100531

26N No opposition filed

Effective date: 20100503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091030

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090922

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090922

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090729