EP1639062A2 - Procede et installation de production simultanee d un gaz na turel apte a etre liquefie et d une coupe de liquides du gaz naturel. - Google Patents

Procede et installation de production simultanee d un gaz na turel apte a etre liquefie et d une coupe de liquides du gaz naturel.

Info

Publication number
EP1639062A2
EP1639062A2 EP04767210A EP04767210A EP1639062A2 EP 1639062 A2 EP1639062 A2 EP 1639062A2 EP 04767210 A EP04767210 A EP 04767210A EP 04767210 A EP04767210 A EP 04767210A EP 1639062 A2 EP1639062 A2 EP 1639062A2
Authority
EP
European Patent Office
Prior art keywords
natural gas
column
purified
treated
liquefied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04767210A
Other languages
German (de)
English (en)
Other versions
EP1639062B1 (fr
Inventor
Henri Paradowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TotalEnergies SE
Technip Energies France SAS
Original Assignee
Technip France SAS
Total SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technip France SAS, Total SE filed Critical Technip France SAS
Priority to PL04767210T priority Critical patent/PL1639062T3/pl
Publication of EP1639062A2 publication Critical patent/EP1639062A2/fr
Application granted granted Critical
Publication of EP1639062B1 publication Critical patent/EP1639062B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0055Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0057Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream after expansion of the liquid refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0229Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
    • F25J1/0231Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the working-up of the hydrocarbon feed, e.g. reinjection of heavier hydrocarbons into the liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0239Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/04Processes or apparatus using separation by rectification in a dual pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/78Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/02Mixing or blending of fluids to yield a certain product
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/60Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/02Recycle of a stream in general, e.g. a by-pass stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/66Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2280/00Control of the process or apparatus
    • F25J2280/02Control in general, load changes, different modes ("runs"), measurements

Definitions

  • the present invention relates to a process for the simultaneous production of a natural gas that can be liquefied and to a section of a natural gas that can be liquefied.
  • natural gas liquids (NGLs) from a starting natural gas comprising nitrogen, methane, C 2 to C 5 hydrocarbons, and heavy hydrocarbons in Ce "1" , of the type comprising the following steps :
  • step (b) cooling the pre-treated natural gas from step (a) to a temperature close to its dew point; (c) the cooled pre-treated natural gas from step (b) is expanded and the expanded natural gas is introduced into an NGL recovery unit comprising at least one main distillation column, so as to produce one part, at the top of the column, a purified natural gas and secondly, said cut of NGL; and (d) forming said natural gas capable of being liquefied from the purified natural gas from step (c).
  • the process of the present invention is applicable to production facilities, from a natural gas extracted from the subsoil, of liquefied natural gas (which will be referred to as "LNG”) as the main product and a cut.
  • LNG liquefied natural gas
  • NNL natural gas liquids
  • NGL is understood to mean C 2 + to C 3 + hydrocarbons that can be extracted from natural gas.
  • these NGLs may include ethane, propane, butane, and Cs + hydrocarbons.
  • LNG produced after extraction of NGLs has a reduced heating value compared to LNG produced without extraction of NGLs.
  • Known natural gas liquefaction plants comprise successively a liquefied gas production unit, a liquefaction unit itself and an LNG denitrogenation unit.
  • the unit for producing a gas capable of being liquefied necessarily comprises means for removing heavy hydrocarbons C 6 + which can crystallize during liquefaction.
  • Such a process has a thermodynamic efficiency optimized for the production of a natural gas at ambient temperature and for the extraction of NGL.
  • this process does not give much satisfaction in the case where the natural gas obtained must be liquefied. Indeed, the energy expenditure required for the liquefaction of the natural gas obtained is relatively high.
  • the main purpose of the invention is to overcome this disadvantage, that is to say to have a simultaneous production process of LNG and a cut of NGL, more economical and more flexible than existing processes.
  • the object of the invention is a process of the aforementioned type, characterized in that step (a) comprises the following sub-steps:
  • step (d) comprises the following sub-steps: (d1) purified natural gas extracted from the head of said main column is compressed at a liquefaction pressure in at least a first compressor;
  • step (d2) the purified compressed natural gas resulting from step (d1) is cooled by heat exchange with said purified natural gas extracted from the head of the main column, in a first heat exchanger, for producing the natural gas suitable for liquefying;
  • step (b) comprises the following substep:
  • step (b1) the pre-treated natural gas from step (a) is cooled by exchanging heat with the purified natural gas extracted from the second main column in a second heat exchanger;
  • step (c) comprises the following sub-steps:
  • step (d) introducing cooled pre-treated natural gas from step (b) into a separator flask to provide a liquid stream and a gas stream; (c2) the gas stream from (d) is expanded in a turbine coupled to the first compressor;
  • step (c3) introducing the stream from step (c2) into the main column at an intermediate N3 level;
  • step (c4) the liquid stream resulting from step (d) is expanded and this expanded liquid stream is introduced into the main column at a level N2 lower than the level N3;
  • step (d1) the purified compressed natural gas is compressed at the outlet of the first compressor into a second compressor fed by
  • the liquefied natural gas further comprises a portion of the pre-treated natural gas directly from step (a);
  • the method comprises a start-up phase wherein the natural gas which can be liquefied consists predominantly or completely by the gas natural pretreated directly from step (a) said natural gas which can be liquefied is relatively enriched C 2 to C 5 hydrocarbons, and the process comprises a subsequent production step in which the portion of pre-treated natural gas directly from step (a) in the liquefied natural gas is adjusted as a function of the desired C 2 to C 5 hydrocarbon content in the liquefied natural gas; and
  • the invention further relates to a plant for the simultaneous production of a liquefied natural gas and a section of natural gas liquids (NGLs) from a starting natural gas comprising nitrogen, methane, C 2 to C 5 hydrocarbons, and C 4 heavy hydrocarbons of the type comprising:
  • an NGL recovery unit comprising means for expanding the cooled pre-treated natural gas and comprising at least one main distillation column which produces, on the one hand, at the top of the column, a purified natural gas and on the other hand, said cut of NGL;
  • the pre-treatment unit comprises: (a) means for cooling the starting natural gas to a temperature close to its dew point;
  • the installation according to the invention may include any of the following characteristics, taken in isolation or all combinations "possible:
  • the means for forming natural gas that can be liquefied include:
  • (d1) compression means purified natural gas extracted from the head of the main column at a liquefaction pressure, comprising at least a first compressor;
  • the cooling means of the pre-treated natural gas comprise a second heat exchanger which puts the gas in heat exchange relationship with said purified natural gas extracted from the main column;
  • the LNG recovery unit includes:
  • (c3) means for introducing the gas stream expanded in the main column to an intermediate level N3;
  • (c4) means for expanding said liquid stream and means for introducing the expanded liquid stream into the main column at a level N2 less than N3;
  • the means for compressing the purified natural gas extracted from the head of the main column further comprises a second compressor driven by an external energy source and intended to increase the pressure of the compressed purified natural gas to the pressure of liquefaction;
  • the means for forming the purified natural gas comprise means for selectively introducing an adjustable portion of the pretreated natural gas directly from the pre-treatment unit into a line of natural gas capable of being liquefied.
  • the plant shown in the Figure relates to the simultaneous production, from a source 11 of decarbonated, desulphurized and dry starting natural gas, of LNG 13 as the main product and a section of NGL 15 as a by-product.
  • This installation comprises a C 6 + heavy hydrocarbon removal unit 17, a NGL recovery unit 19, and a liquefaction unit 21.
  • the heavy hydrocarbon removal unit 17 successively comprises, downstream of the source 11, first, second and third refrigerants 25, 27, 29, and a first distillation column, or auxiliary distillation column 31 equipped with a head condenser.
  • This condenser comprises, between the head of the first column 31 and a first separator tank 33, a fourth refrigerant 35 on the one hand, and a reflux pump 37 on the other hand.
  • the NGL recovery unit 19 comprises first, second, and third heat exchangers 41, 43, 45, a second separator tank 47, a second distillation column, or main distillation column 49, a first turbine 51 coupled to a first compressor 53, a second compressor 55 driven by an external power source 56, a fifth refrigerant 57 and a pump 59 for extracting NGLs.
  • Unit 21 for liquefying natural gas comprises fourth and fifth heat exchangers 65, 67 cooled by a refrigerating cycle 69.
  • This cycle 69 comprises a compressor 73 with three stages 73A, 73B,
  • first and second intermediate refrigerants 75A and 75B and an outlet refrigerant 75C four refrigerants 77A-77D in series, a third separator tank 79 and first and second hydraulic turbines 81 and 83.
  • the initial molar composition of the decarbonated, desulfurized and dry starting natural gas stream 101 comprises 3.90% nitrogen, 87.03% methane, 5.50% ethane, 2.00% propane, 0.34% iso butane, 0.54% n-butane, 0.18% iso pentane, 0.15% n-pentane, 0.31% C 6 , 0.03 hydrocarbons % C 7 hydrocarbons and 0.02% C 8 hydrocarbons.
  • This gas 101 is successively cooled in the first, second and third refrigerants 25, 27, 29 to form the cooled starting natural gas 103.
  • This gas 103 is then introduced into the distillation column 31.
  • This column 31 produces at the bottom a cup 105 heavy hydrocarbons at C 6 + .
  • This cup 105 is expanded in an expansion valve 106 to produce a relaxed heavy hydrocarbon stream 107, which is introduced into the second distillation column 49 at a lower N1 level.
  • the first column 31 produces a stream 109 of pretreated gas at the head.
  • This stream 109 is cooled and partially condensed in the fourth refrigerant 35, and then introduced into the first separator tank 33, where separation takes place between a gas phase constituting the pre-treated natural gas 111 and a liquid phase constituting a liquid. of reflux 112, which is refluxed in the purification column by the reflux pump 37.
  • the molar composition of the pretreated gas stream 111 comprises
  • the pre-treated natural gas stream 111 is then split into a feed stream 113 of the LNG recovery unit 19 and a feed stream of the gas liquefaction unit 21.
  • the distribution between these two currents is chosen by the control of two respective control valves 114 and 116.
  • the stream 113 introduced into the recovery unit 19 is cooled in the second heat exchanger 43 to give a two-phase flow 117 of cooled pre-treated natural gas.
  • This stream 117 is introduced into the second separator tank 47, which produces a vapor stream 119 and a liquid stream 121.
  • the liquid stream 121 is expanded in an expansion valve 123 and then introduced into the column 49 at a level N2 higher than the N1 level.
  • the vapor stream 119 is separated into a majority fraction 125 and a minor fraction 127.
  • the major fraction 125 is expanded in the turbine 51. to give a relaxed main fraction 129, which is introduced at a level N3 greater than the level N2 in the column 49.
  • the minor fraction 127 is cooled in the third heat exchanger 45, expanded in an expansion valve 131 and then introduced at an upper N4 level of the distillation column 49.
  • the N4 level is higher than the N3 level.
  • Column 49 is also equipped with an intermediate reboiler
  • a reboiler stream 143 is extracted from this column at a level N1a less than N2 and greater than N1. This current is heated in the second heat exchanger 43 and reintroduced into the second column 49 at a level N1 b between the level N1a and the level N1.
  • the NGL section 15 is withdrawn from the bottom of the distillation column 49 by the pump 59.
  • a bottom reboiler 145 is mounted on the column 49 to adjust the molar ratio of the C1 hydrocarbons to the C hydrocarbons. ⁇ from the LGN 15 cut. This ratio is preferably less than 0.02.
  • this cut of NGL comprises 0.3688% of methane
  • the recovery rate of ethane is greater than 30%.
  • the propane recovery rate is greater than 80% and is preferably greater than 90%.
  • the recovery rate of hydrocarbons ⁇ C 4 + is greater than 90% and preferentially greater than 95%.
  • a stream 151 of purified natural gas is extracted at the top of the column 49. This stream 151 is heated successively in the heat exchanger 45, in the heat exchanger 43 and then in the heat exchanger 41. note that no external cold source is required for the operation of the LNG recovery unit 19.
  • the heated gas stream 153 from the exchanger 41 is then compressed successively in the first compressor 51 and then in the second compressor 55 to produce a gas stream 155 at the liquefaction pressure.
  • This stream 155 is cooled in the fifth refrigerant 57 and then in the first heat exchanger 41 to give a stream 157 of purified cooled gas.
  • the stream 157 is mixed with the feed stream 115 of the gas liquefaction unit, extracted from the C 6 + heavy hydrocarbon removal unit 17.
  • This stream 157 and this stream 115 have substantially equal temperatures and pressures and form the stream 161 of natural gas capable of being liquefied.
  • the molar composition of this liquefied natural gas stream 161 comprises 4.1221% nitrogen, 91.9686% methane, 3.7118% ethane, 0.1858% propane, 0.0063% and the like. % iso butane, 0.0051% n-butane and 0.0003% C 5 + hydrocarbons.
  • the stream 161 of natural gas that can be liquefied is then successively cooled in the fourth and fifth heat exchangers 65, 67 to produce the LNG stream 13.
  • This LNG stream 13 then undergoes denitrogenation in a unit 165.
  • the refrigeration in the fourth and fifth heat exchangers 65, 67 is provided by a flow 201 of refrigerant mixture.
  • This stream 201 partially liquefied in the fourth refrigerant 77D, is introduced into the separator tank 71 and separated into a vapor phase 201 and a liquid phase 203.
  • the vapor phase 203 is liquefied in the heat exchanger 65 to provide a liquid stream which is then subcooled in the fifth heat exchanger 67 to provide a subcooled liquid stream 207.
  • This subcooled liquid flow 207 is expanded in the first hydraulic turbine 81, then in an expansion valve 208, to give a first refrigeration flow 209.
  • This flow 209 vaporizes in the heat exchanger 67 and allows the liquid to be liquefied. gas 161.
  • the liquid phase 205 is sub-cooled in the exchanger 65 to give a subcooled flow which, in turn, is expanded in the second hydraulic turbine 83 and then in an expansion valve 210, to give a second refrigerant stream 211
  • the streams 209 and 211 are mixed to give a combined stream 213 which is vaporized in the exchanger 65. This vaporization cools the stream 161 and condenses the vapor phase 203 of the refrigerant mixture stream 201.
  • the mixture stream 213 is then compressed in the compressor 77, whose characteristics are given in the table below, to obtain a compressed mixture stream 215.
  • This stream of compressed mixture 215 is then successively cooled in the four refrigerants in series 81 to form the stream 201.
  • the first, second, third and fourth refrigerants 25, 27, 29, 35 for cooling the starting natural gas on the one hand, and the four refrigerants 77A to 77D for cooling the mixing flow 201 on the other hand, use the same propane refrigeration cycle (not shown).
  • This cycle comprises the following four vaporization stages: 6.7 ° C. and 7.92 bars, 0 ° C. and 4.76 bars, -20 ° C. and 2.44 bars, -36 ° C. and 1.30 bars.
  • the pressure of the distillation column 31 is preferably between 45 and 65 bar.
  • the pressure in the second column is greater than 35 bars.
  • the purified gas stream 157 and the feed stream of the gas liquefying unit 115 are produced at a pressure greater than 55 bar.
  • This method thus makes it possible to achieve energy savings as shown in the table below, where the powers consumed in a reference installation without an auxiliary column 31 and in an installation according to the invention are compared. More specifically, in years of the reference installation, the starting natural gas stream 101 is directly fed into the LNG extraction unit 19 and the refrigerants 25, 27, 29 and 35 which use the propane cycle serve also to pre-cool the gas flow at the liquefaction pressure 155, unlike the installation according to the invention where the exchanger 41 is used to perform this pre-cooling.
  • the installation according to the invention makes it possible simultaneously to produce LNG 13 and a cut of LGN 15 with a saving of 2285 kW compared to the reference installation. Furthermore, when starting the installation according to the invention, the entire stream of pre-treated natural gas 111 leaving the unit 17 for removing heavy hydrocarbons is directed directly to the liquefaction unit -21 by The feedstock 115.
  • the produced LNG then has a relatively high calorific power.
  • the NGL recovery unit 19 is then started gradually, without affecting the productivity of the liquefaction unit 21.
  • the heating value of the LNG produced is then adjusted by the relative flow rates of the feed streams 113 of the recovery unit. of LNG and 115 of the gas liquefaction unit.
  • all the pre-treated natural gas stream 111 leaving the heavy hydrocarbon removal unit 17 is directed directly to the liquefaction unit 21 by the feed stream 115.
  • the LNG recovery unit may comprise a third distillation column mounted downstream of the second distillation column and operating at a lower or higher pressure than this second column.
  • This third column enriches NGLs in a particular component such as propane.
  • An example of such a unit is described in EP-A-0 535 752. Thanks to the invention which has just been described, it is possible to have a facility that simultaneously produces LNG and NGLs economically and flexible with high extraction rates for C 2 -C 5 hydrocarbons. The energy consumption is significantly reduced, surprisingly, by the insertion of an auxiliary distillation column upstream of the LNG recovery unit and the introduction into this unit of the top fraction of this column. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Ce procédé comprend les étapes suivantes :(a) on introduit le gaz naturel de départ (101) dans une première colonne de distillation (31) qui produit en tête un gaz naturel pré-traité (111), lequel gaz naturel pré-traité (111) ne contient pratiquement plus d'hydrocarbures en C6+ ; (b) on introduit le gaz naturel pré-traité (111) dans une unité (19) de récupération des LGN comprenant au moins une deuxième colonne de distillation (49), de façon à produire, d'une part, en tête de colonne, un gaz naturel purifié (151), et d'autre part, une coupe de LGN (15) ; et (c) on forme ledit gaz naturel apte à être liquéfié (161) à partir du gaz naturel purifié (151) issu de l'étape (b) .

Description

Procédé et installation de production simultanée d'un gaz naturel apte à être liquéfié et d'une coupe de liquides du gaz naturel La présente invention est relative à un procédé de production simultanée d'un gaz naturel apte à être liquéfié et d'une coupe de liquides de gaz naturel (LGN) à partir d'un gaz naturel de départ comprenant de l'azote, du méthane, des hydrocarbures en C2 à C5, et des hydrocarbures lourds en Ce"1", du type comprenant les étapes suivantes :
(a) on pré-traite ledit gaz naturel de départ pour obtenir un gaz naturel pré-traité ;
(b) on refroidit le gaz naturel pré-traité issu de l'étape (a) jusqu'à une température voisine de son point de rosée ; (c) on détend le gaz naturel pré-traité refroidi issu de l'étape (b) et on introduit le gaz naturel détendu dans une unité de récupération des LGN comprenant au moins une colonne de distillation principale, de façon à produire, d'une part, en tête de colonne, un gaz naturel purifié et d'autre part, ladite coupe de LGN ; et (d) on forme ledit gaz naturel apte à être liquéfié à partir du gaz naturel purifié issu de l'étape (c).
Le procédé de la présente invention s'applique aux installations de production, à partir d'un gaz naturel extrait du sous-sol, de gaz naturel liquéfié (que l'on désignera par « GNL ») comme produit principal et d'une coupe de liquides du gaz naturel (que l'on désignera par « LGN ») comme produit secondaire.
Dans la présente invention, on entend par LGN des hydrocarbures en C2 + à C3 + qui peuvent être extraits du gaz naturel. A titre d'exemple, ces LGN peuvent comprendre de l'éthane, du propane, du butane, et des hydrocarbu- res en Cs+.
Le GNL produit après extraction des LGN possède un pouvoir calorifique réduit par rapport à un GNL produit sans extraction des LGN.
Des installations de liquéfaction de gaz naturel connues comportent successivement une unité de production d'un gaz apte à être liquéfié, une unité de liquéfaction proprement dite et une unité de déazotation du GNL. L'unité de production d'un gaz apte à être liquéfié comprend nécessairement des moyens d'élimination des hydrocarbures lourds en C6 + qui peuvent cristalliser lors de la liquéfaction.
Pour produire simultanément du gaz naturel apte à être liquéfié, et des LGN, on peut par exemple utiliser un procédé du type précité, tel que celui décrit dans la demande FR -A- 2 817 766.
Un tel procédé possède un rendement thermodynamique optimisé pour la production d'un gaz naturel à température ambiante et pour l'extraction de LGN.
Par suite, ce procédé ne donne pas eηtière satisfaction dans le cas où le gaz naturel obtenu doit être liquéfié. En effet, la dépense énergétique nécessaire pour la liquéfaction du gaz naturel obtenu est relativement élevée.
L'invention a pour but principal de remédier à cet inconvénient, c'est- à-dire de disposer d'un procédé de production simultanée de GNL et d'une coupe de LGN, plus économique et plus souple que les procédés existants. A cet effet, l'invention a pour objet un procédé du type précité, caractérisé en ce l'étape (a) comprend les sous-étapes suivantes :
(ai) on refroidit le gaz naturel de départ jusqu'à une température voisine de son point de rosée ; (a2) on introduit ledit gaz naturel de départ refroidi issu de l'étape
(ai) dans une colonne de distillation auxiliaire qui produit en tête ledit gaz naturel pré-traité, lequel gaz naturel pré-traité ne contient pratiquement plus d'hydrocarbures en Cδ +, cette première colonne de distillation auxiliaire produisant en outre une coupe d'hydrocarbures lourds essentiellement en C6 +. Le procédé suivant l'invention peut comporter une ou plusieurs des caractéristiques suivantes, prises isolément ou suivant toutes les combinaisons possibles :
- l'étape (d) comprend les sous-étapes suivantes : (d1) on comprime à une pression de liquéfaction le gaz naturel puri- fié extrait de la tête de ladite colonne principale dans au moins un premier compresseur ;
(d2) on refroidit le gaz naturel purifié comprimé issu de l'étape (d1), par échange de chaleur avec ledit gaz naturel purifié extrait de la tête de la colonne principale, dans un premier échangeur de chaleur, pour produire le gaz naturel apte à être liquéfié ;
- l'étape (b) comprend la sous-étape suivante :
(b1) on refroidit le gaz naturel pré-traité issu de l'étape (a) par , échange de chaleur avec le gaz naturel purifié extrait de la deuxième colonne principale dans un deuxième échangeur de chaleur ;
- l'étape (c) comprend les sous-étapes suivantes :
(d) on introduit le gaz naturel pré-traité refroidi issu de l'étape (b) dans un ballon séparateur pour obtenir un flux liquide et un flux gazeux ; (c2) on détend le flux gazeux issu de (d) dans une turbine accouplée au premier compresseur ;
(c3) on introduit le flux issu de l'étape (c2) dans la colonne principale à un niveau N3 intermédiaire ;
(c4) on détend le flux liquide issu de l'étape (d) et on introduit ce flux liquide détendu dans la colonne principale à un niveau N2 inférieur au niveau N3 ;
- dans l'étape (d1), on comprime le gaz naturel purifié comprimé en sortie du premier compresseur dans un deuxième compresseur alimenté par
. une source d'énergie externe pour atteindre ladite pression de liquéfaction ; - la pression de la colonne de distillation principale est supérieure à
35 bars ;
- le gaz naturel apte à être liquéfié comprend en outre une partie du gaz naturel pré-traité directement issu de l'étape (a) ;
- le procédé comprend une phase de démarrage dans laquelle le gaz naturel apte à être liquéfié est constitué majoritairement ou totalement par le gaz'naturel pré-traité directement issu de l'étape (a), ledit gaz naturel apte à être liquéfié étant relativement enrichi en hydrocarbures de C2 à C5, et le procédé comprend une phase ultérieure de production dans laquelle la partie de gaz naturel pré-traité directement issu de l'étape (a) dans le gaz naturel apte à être liquéfié est ajustée en fonction de la teneur en hydrocarbures de C2 à C5 désirée dans le gaz naturel apte à être liquéfié ; et
- un liquide produit par la colonne auxiliaire est détendu et introduit dans la colonne principale. L'invention a en outre pour objet une installation de production simultanée d'un gaz naturel apte à être liquéfié et d'une coupe de liquides de gaz naturel (LGN) à partir d'un gaz naturel de départ comprenant de l'azote, du méthane, des hydrocarbures en C2 à C5, et des hydrocarbures lourds en Ce* du type comprenant :
(a) une unité de pré-traitement dudit gaz naturel de départ pour obtenir un gaz naturel pré-traité ;
(b) des moyens de refroidissement du gaz naturel pré-traité jusqu'à une température voisine de son point de rosée ; (c) une unité de récupération des LGN comprenant des moyens de détente du gaz naturel pré-traité refroidi et comprenant au moins une colonne principale de distillation qui produit, d'une part, en tête de colonne, un gaz naturel purifié et d'autre part ladite coupe de LGN ; et
(d) des moyens d'amenée du gaz naturel purifié issu de l'étape . (c) dans une conduite de gaz naturel apte à être liquéfié ; caractérisée en ce que l'unité de pré-traitement comprend : (ai) des moyens de refroidissement du gaz naturel de départ jusqu'à une température voisine de son point de rosée ;
(a2) une colonne de distillation auxiliaire du gaz naturel de départ re- froidi qui produit en tête ledit gaz naturel pré-traité, lequel ne contient pratiquement plus d'hydrocarbures en C6 +, cette colonne auxiliaire produisant en outre une coupe d'hydrocarbures lourds essentiellement en Cβ+.
L'installation suivant l'invention peut comporter ou plusieurs des caractéristiques suivantes, prises isolément ou suivant toutes les combinaisons " possibles :
- les moyens de formation du gaz naturel apte à être liquéfié comprennent :
(d1) des moyens de compression du gaz naturel purifié extrait de la tête de la colonne principale à une pression de liquéfaction, comportant au moins un premier compresseur ;
(d2) un premier échangeur de chaleur qui met le gaz naturel purifié comprimé issu desdits moyens de compression en relation d'échange thermique avec ledit gaz naturel purifié extrait de la tête de la colonne principale, ledit gaz naturel purifié comprimé étant refroidi dans ce premier échangeur pour produire le gaz naturel apte à être liquéfié ;
- les moyens de refroidissement du gaz naturel pré-traité comprennent un deuxième échangeur de chaleur qui met ce gaz en relation d'échange thermique avec ledit gaz naturel purifié extrait de la colonne principale ;
- l'unité de récupération des LNG comprend :
(d) un ballon séparateur du gaz naturel pré-traité refroidi qui produit un flux liquide et un flux gazeux ; (c2) une première turbine de détente dudit flux gazeux accouplée audit premier compresseur ;
(c3) des moyens d'introduction du flux gazeux détendu dans la colonne principale à un niveau intermédiaire N3 ;
(c4) des moyens de détente dudit flux liquide et des moyens d'introduction du flux liquide détendu dans la colonne principale à un niveau N2 inférieur à N3 ;
- les moyens de compression du gaz naturel purifié extrait de la tête de la colonne principale comprennent en outre un deuxième compresseur entraîné par une source d'énergie externe et destiné à augmenter la pres- sion du gaz naturel purifié comprimé jusqu'à la pression de liquéfaction ; et
- les moyens de formation du gaz naturel purifié comprennent des moyens d'introduction sélective d'une partie réglable du gaz naturel prétraité directement issu de l'unité de pré-traitement dans une conduite de gaz naturel apte à être liquéfié. Un exemple de mise en œuvre de l'invention va maintenant être décrit en regard de la Figure unique annexée, qui représente un schéma synoptique fonctionnel d'une, installation selon l'invention.
L'installation représentée sur la Figure est relative à la production simultanée, à partir d'une source 11 de gaz naturel de départ décarbonaté, désulfuré et sec, de GNL 13 comme produit principal et d'une coupe de LGN 15 comme produit secondaire. Cette installation comprend une unité 17 d'élimination des hydrocarbures lourds en C6 +, une unité 19 de récupération des LGN, et une unité 21 de liquéfaction. Dans ce qui suit, on désignera par une même référence un flux de liquide et la conduite qui le véhicule, et les pressions considérées sont des pressions absolues.
L'unité 17 d'élimination des hydrocarbures lourds comprend succes- sivement, en aval de la source 11 , des premier, deuxième et troisième réfrigérants 25, 27, 29, et une première colonne de distillation, ou colonne de distillation auxiliaire 31 équipée d'un condenseur de tête. Ce condenseur comprend, entre la tête de la première colonne 31 et un premier ballon séparateur 33, un quatrième réfrigérant 35 d'une part, et une pompe de reflux 37 d'autre part.
L'unité 19 de récupération des LGN comprend des premier, deuxième, et troisième échangeύrs de chaleur 41 , 43, 45, un deuxième ballon séparateur 47, une deuxième colonne de distillation, ou colonne de distillation principale 49, une première turbine 51 accouplée à un premier com- presseur 53, un deuxième compresseur 55 entraîné par une source d'énergie externe 56, un cinquième réfrigérant 57 et une pompe 59 d'extraction des LGN.
L'unité 21 de liquéfaction de gaz naturel comprend des quatrième et cinquième échangeurs de chaleur 65, 67 refroidis par un cycle frigorifique 69.
Ce cycle 69 comprend un compresseur 73 à trois étages 73A, 73B,
73C, muni de premier et second réfrigérants intermédiaires 75A et 75B et d'un réfrigérant de sortie 75C, quatre réfrigérants 77A à 77D en série, un troisième ballon séparateur 79 et des première et seconde turbines hydrau- liques 81 et 83.
Un exemple de mise en œuvre du procédé selon l'invention va maintenant être décrit.
La composition molaire initiale du flux 101 de gaz naturel de départ décarbonaté, désulfuré et sec comprend 3,90% d'azote, 87,03% de mé- thane, 5,50% d'éthane, 2,00% de propane, 0,34% d'iso butane, 0,54% de n- butane, 0,18 % d'iso pentane, 0,15% de n-pentane, 0,31 % d'hydrocarbures en C6, 0,03% d'hydrocarbures en C7 et 0,02% d'hydrocarbures en C8. Ce gaz 101 est successivement refroidi dans les premier, deuxième et troisième réfrigérants 25, 27, 29 pour former le gaz naturel de départ refroidi 103. Ce gaz 103 est ensuite introduit dans la colonne de distillation 31. Cette colonne 31 produit en pied une coupe 105 d'hydrocarbures lourds en C6 +. Cette coupe 105 est détendue dans une vanne de détente 106 pour produire un flux 107 d'hydrocarbures lourds détendu, qui est introduit dans la deuxième colonne de distillation 49 à un niveau N1 inférieur.
Par ailleurs, la première colonne 31 produit en tête un flux 109 de gaz pré-traité. Ce flux 109 est refroidi et partiellement condensé dans le qua- trième réfrigérant 35, puis introduit dans le premier ballon séparateur 33, où s'effectue la séparation entre une phase gazeuse constituant le gaz naturel pré-traité 111 et une phase liquide constituant un liquide de reflux 112, lequel est retourné en reflux dans la colonne de purification par la pompe de reflux 37. La composition molaire du flux de gaz prétraité 111 comprend
3,9783% d'azote, 88.2036% de méthane, 5.3622% d'éthane, 1.7550% de propane, 0.2488% d'iso butane, 0.3465% de n-butane, 0.0616 % d'iso pen- tane, 0.0384%» de n-pentane, 0,0057% d'hydrocarbures en Ce.
Dans ce flux 111 , les hydrocarbures en C6 + sont sensiblement élimi- nés.
Le flux de gaz naturel pré-traité 111 est ensuite partagé en un courant 113 d'alimentation de l'unité 19 de récupération de LNG et un courant 1 5 d'alimentation de l'unité 21 de liquéfaction de gaz. La répartition entre ces deux courants est choisie par la commande de deux vannes de réglage res- pectives 114 et 116.
Le courant 113 introduit dans l'unité 19 de récupération est refroidi dans le deuxième échangeur de chaleur 43 pour donner un flux diphasique 117 de gaz naturel pré-traité refroidi. Ce flux 117 est introduit dans le deuxième ballon séparateur 47, qui produit un flux de vapeur 119 et un flux de liquide 121. Le flux de liquide 121 est détendu dans une vanne de détente 123, puis introduit dans la colonne 49 à un niveau N2 supérieur au niveau N1. Le flux de vapeur 119 est séparé en une fraction majoritaire 125 et une fraction minoritaire 127.
La fraction majoritaire 125 est détendue dans la turbine 51. pour donner une fraction principale détendue 129, qui est introduite à un niveau N3 supérieur au niveau N2 dans la colonne 49.
La fraction minoritaire 127 est refroidie dans le troisième échangeur de chaleur 45, détendue dans une vanne de détente 131 puis introduite à un niveau N4 supérieur de la colonne de distillation 49. Le niveau N4 est supérieur au niveau N3. La colonne 49 est par ailleurs équipée d'un rebouilleur intermédiaire
141. Un courant de rebouilleur 143 est extrait de cette colonne à un niveau N1a inférieur à N2 et supérieur à N1. Ce courant est réchauffé dans le deuxième échangeur de chaleur 43 et réintroduit dans la deuxième colonne 49 à un niveau N1 b compris entre le niveau N1a et le niveau N1. La coupe 15 de LGN est extraite de la cuve de la colonne de distillation 49 par la pompe 59. En outre, un rebouilleur de cuve 145 est monté sur la colonne 49 pour ajuster le rapport molaire des hydrocarbures en Ci par rapport aux hydrocarbures en C de la coupe de LGN 15. Ce rapport est pré- férentiellement inférieur à 0,02. Ainsi, cette coupe de LGN 15 comprend 0,3688% de méthane,
36,8810% d'éthane, 33,8344% de propane, 6,1957% d'iso butane, 9,9267% de n-butane, 3,3354% d'iso pentane, 2,7808% de n-pentane, 5,7498% d'hydrocarbures en C6, 0,5564% d'hydrocarbures en C7, 0,3710% d'hydrocarbures en Ce. Les taux d'extraction respectifs dé l'éthane, du propane, et des hydrocarbures en C4 + sont 36,15%, 91 ,21%, et 99,3%. Ainsi, par le procédé selon l'invention, le taux de récupération d'éthane est supérieur à 30%. Le taux de récupération de propane est supérieur à 80% et est préférentielle- ment supérieur à 90%. Le taux de récupération des hydrocarbures ~en C4 + est supérieur à 90% et est préférentiellement supérieur à 95%.
Un flux 151 de gaz naturel purifié est extrait en tête de la colonne 49. Ce flux 151 est réchauffé successivement dans l'échangeur de chaleur 45, dans l'échangeur de chaleur 43 puis dans l'échangeur de chaleur 41. On remarque qu'aucune source de froid extérieure n'est nécessaire pour le fonctionnement de l'unité 19 de récupération des LNG.
Le flux gazeux réchauffé 153 issu de l'échangeur 41 est alors comprimé successivement dans le premier compresseur 51 puis dans le deuxième compresseur 55 pour produire un flux gazeux 155, à la pression de liquéfaction.
Ce flux 155 est refroidi dans le cinquième réfrigérant 57 puis dans le premier échangeur de chaleur 41 pour donner un flux 157 de gaz purifié refroidi. Le flux 157 est mélangé au courant d'alimentation 115 de l'unité de liquéfaction de gaz, extrait de l'unité 17 d'élimination des hydrocarbures en lourds en C6 +. Ce flux 157 et ce courant 115 ont des températures et des pressions sensiblement égales et forment le flux 161 de gaz naturel apte à être à liquéfier.
La composition molaire de ce flux 161 de gaz naturel apte à être li- quéfié comprend 4,1221% d'azote, 91 ,9686% de méthane, 3,7118% d'éthane, 0,1858% de propane, 0,0063% d'iso butane, 0,0051 % de n-butane et 0,0003% d'hydrocarbures en C5 +.
Le flux 161 de gaz naturel apte à être liquéfié est ensuite refroidi successivement dans les quatrième et cinquième echangeurs de chaleur 65, 67 pour produire le flux de GNL 13. Ce flux de GNL 13 subit ensuite une déazotation dans une unité 165.
La réfrigération dans les quatrième et cinquième echangeurs de chaleur 65, 67 est fournie par un flux 201 de mélange réfrigérant. Ce flux 201 , partiellement liquéfié dans le quatrième réfrigérant 77D, est introduit dans le ballon séparateur 71 et séparé en une phase vapeur 201 et une phase liquide 203.
Les compositions molaires de ce flux 201 et des phases liquide et vapeur 203 et 205 sont les suivantes :
La phase vapeur 203 est liquéfiée dans l'échangeur de chaleur 65 pour donner un flux liquide qui est ensuite sous-refroidi dans le cinquième échangeur de chaleur 67 pour donner un flux liquide 207 sous-refroidi .
Ce flux liquide sous-refroidi 207 est détendu dans la première turbine hydraulique 81 , puis dans une vanne de détente 208, pour donner un premier flux de réfrigération 209. Ce flux 209 se vaporise dans l'échangeur de chaleur 67 et permet de liquéfier le gaz 161.
La phase liquide 205 est sous-refroidie dans l'échangeur 65 pour donner un flux sous-refroidi qui, à son tour, est détendu dans la deuxième turbine hydraulique 83 puis dans une vanne de détente 210, pour donner un second flux de réfrigérant 211. Les flux 209 et 211 sont mélangés pour donner un flux combiné 213 qui est vaporisé dans l'échangeur 65. Cette vaporisation refroidit le flux 161 et condense la phase vapeur 203 du flux de mélange réfrigérant 201. Le flux de mélange 213 est ensuite comprimé dans le compresseur 77, dont les caractéristiques sont données dans le tableau ci- dessous, pour obtenir un flux de mélange 215 comprimé.
Ce flux de mélange comprimé 215 est alors successivement refroidi dans les quatre réfrigérants en série 81 pour former le flux 201.
Les premier, deuxième, troisième et quatrième réfrigérants 25, 27, 29, 35 de refroidissement du gaz naturel de départ d'une part, et les quatre réfrigérants 77A à 77D de refroidissement du flux de mélange 201 d'autre part, utilisent le même cycle frigorifique au propane (non représenté). Ce cycle comporte les quatre étages de vaporisation suivants : 6,7°C et 7,92 bars, 0°C et 4,76 bars, -20°C et 2,44 bars, -36°C et 1 ,30 bar.
A titre d'exemple, une modélisation des températures, pressions et débits de l'installation en fonctionnement représentée sur la Figure est donnée dans le tableau ci-dessous.
Comme illustré dans cet exemple, la pression de la colonne de distillation 31 est préférentiellement comprise entre 45 et 65 bars. Préférentielle- ment, la pression dans la seconde colonne est supérieure à 35 bars.
Il est ainsi possible d'optimiser le fonctionnement de chacune des co- lonnes pour favoriser d'une part, l'extraction d'hydrocarbures en Cβ+ dans la colonne 31 et d'autre part, l'extraction d'éthane et de propane dans la colonne 49.
Par ailleurs, le flux de gaz purifié 157 et le courant d'alimentation de l'unité de liquéfaction de gaz 115 sont produits à une pression supérieure à 55 bars.
Ce procédé permet ainsi de réaliser des gains d'énergie comme illustré dans le tableau ci-dessous, où les puissances consommées dans une installation de référence dépourvue de colonne auxiliaire 31 et dans une installation selon l'invention sont comparées. Plus précisément, d'ans l'installation de référence, le flux de gaz naturel de départ 101 est directement amené dans l'unité 19 d'extraction des LNG et les réfrigérants 25, 27, 29 et 35 qui utilisent le cycle au propane servent également à pré-refroidir le flux gazeux à la pression de liquéfaction 155, contrairement à l'installation selon l'invention où l'échangeur 41 est uti- lise pour effectuer ce pré-refroidissement.
Ainsi, l'installation selon l'invention permet de produire simultanément du GNL 13 et une coupe de LGN 15 avec une économie de 2285 kW par rapport à l'installation de référence. Par ailleurs, lors du démarrage de l'installation selon l'invention, la totalité du flux de gaz naturel pré-traité 111 sortant de l'unité 17 d'élimination des hydrocarbures lourds est dirigée directement vers l'unité de liquéfaction -21 par le courant d'alimentation 115. Le GNL produit possède alors un pou- voir calorifique relativement élevé. L'unité 19 de récupération des LGN est ensuite démarrée progressivement, sans affecter la productivité de l'unité de liquéfaction 21. Le pouvoir calorifique du GNL produit est ensuite ajusté par les débits relatifs des courants d'alimentation 113 de l'unité de récupération de LNG et 115 de l'unité de liquéfaction de gaz. De même, en cas d'incident dans l'unité 19 de récupération de LNG, la totalité du flux de gaz naturel pré-traité 111 sortant de l'unité d'élimination des hydrocarbures lourds 17 est dirigée directement vers l'unité de liquéfaction 21 par le courant d'alimentation 115.
En variante, l'unité de récupération de LNG peut comprendre une troisième colonne de distillation montée en aval de la deuxième colonne de distillation et qui fonctionne à une pression inférieure ou supérieure à cette deuxième colonne. Cette troisième colonne permet d'enrichir les LGN en un composant particulier comme le propane. Un exemple d'une telle unité est décrit dans EP-A- 0 535 752. Grâce à l'invention qui vient d'être décrite, il est possible de disposer d'une installation qui produit simultanément du GNL et des LGN de manière économique et flexible en disposant de taux élevés d'extraction pour les hydrocarbures en C2 à C5. La consommation d'énergie est significativement réduite, de manière surprenante, par l'insertion d'une colonne de distillation auxiliaire en amont de l'unité de récupération des LNG et par l'introduction dans cette unité de la fraction de tête de cette colonne.
La productivité d'une telle installation est accrue par la possibilité de diriger au moins une partie de cette fraction de tête directement vers l'unité de liquéfaction, notamment lors des phases de démarrage de l'installation ou en cas de panne dans l'unité de récupération de LNG
Par ailleurs, cette installation permet de produire des GNL dont on peut ajuster le pouvoir calorifique.

Claims

REVENDICATIONS 1. Procédé de production simultanée d'un gaz naturel (161) apte à être liquéfié et d'une coupe (15) de liquides de gaz naturel (LGN) à partir d'un gaz naturel de départ (101) comprenant de l'azote, du méthane, des hydrocarbures en C2 à C5, et des hydrocarbures lourds en Cβ+ ; du type comprenant les étapes suivantes :
(a) on pré-traite ledit gaz naturel de départ (101) pour obtenir un gaz naturel pré-traité (111);
(b) on refroidit le gaz naturel pré-traité (111) issu de l'étape (a) jus- qu'à une température voisine de son point de rosée ;
(c) on détend, le gaz naturel pré-traité refroidi (117) issu de l'étape (b) et on introduit le gaz naturel détendu (121 , 127, 129) dans une unité (19) de récupération des LGN comprenant au moins une colonne de distillation principale (49), de façon à produire, d'une part, en tête de colonne, un gaz naturel purifié (151), et d'autre part, ladite coupe de LGN (15) ; et
(d) on forme ledit gaz naturel apte à être liquéfié (161) à partir du gaz naturel purifié (151) issu de l'étape (c) ;
.caractérisé en ce que l'étape (a) comprend les sous-étapes suivantes : (ai) on refroidit le gaz naturel de départ (101) jusqu'à une température voisine de son point de rosée ;
(a2) on introduit ledit gaz naturel de départ refroidi (103) issu de l'étape (ai) dans une colonne de distillation auxiliaire (31) équipée d'un condenseur de tête (32) produisant un reflux, la colonne de distillation auxi- liaire (31) opérant à une pression comprise entre 45 et 65 bars et produisant en tête ledit gaz naturel pré-traité (111), lequel gaz naturel pré-traité (111) ne contient pratiquement plus d'hydrocarbures en C6 +, cette colonne de distillation auxiliaire (31) produisant en outre une coupe (105) d'hydrocarbures lourds essentiellement en C6 + ; en ce que l'étape (c) comprend les sous-étapes suivantes :
(d) on introduit le gaz naturel pré-traité refroidi (117) issu de l'étape (b) dans un ballon séparateur (47) pour obtenir un flux liquide (121) et un flux gazeux (125) ; (c2) on détend le flux gazeux (125) issu de l'étape (d) dans une turbine (51) accouplée à un premier compresseur (53) ;
(c3) on introduit le flux (129) issu de l'étape (c2) dans la colonne principale (49) à un niveau N3 intermédiaire ; (c4) on détend le flux liquide (121) issu de l'étape (d) et on introduit ce flux liquide (121) détendu dans la colonne principale (49) à un niveau N2 inférieur au niveau N3 ; et en ce que le gaz naturel apte à être liquéfié (161) comprend en outre une partie (115) du gaz naturel pré-traité (111) directement issu de l'étape (a).
2. Procédé selon la revendication 1 , caractérisé en ce que l'étape (d) comprend les sous-étapes suivantes :
(d1) on comprime à une pression de liquéfaction le gaz naturel purifié (151) extrait de la tête de ladite colonne principale (49) dans au moins le premier compresseur (53) ;
(d2) on refroidit le gaz naturel purifié comprimé (155) issu de l'étape (d1), par échange de chaleur avec ledit gaz naturel purifié (151) extrait de la tête de la colonne principale (49), dans un premier échangeur de chaleur (41), pour produire le gaz naturel apte à être liquéfié (161).
3. Procédé selon la revendication 2, caractérisé en ce que l'étape
(b) comprend la sous-étape suivante :
(b1) on refroidit le gaz naturel pré-traité (113) issu de l'étape (a) par échange de chaleur avec le gaz naturel purifié (151) extrait de la deuxième colonne principale (49) dans un deuxième échangeur de chaleur (43).
4. Procédé selon la revendication 2 ou 3, caractérisé en ce que, dans l'étape (d1), on comprime le gaz naturel purifié (153) comprimé en sortie du premier compresseur (53) dans un deuxième compresseur (55) alimenté par une source d'énergie externe (56) pour atteindre ladite pression de liquéfaction.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que la pression de la colonne de distillation principale (49) est supérieure à 35 bars.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend une phase de démarrage dans laquelle le gaz naturel apte à être liquéfié (161) est constitué majoritairement ou totalement par le gaz naturel pré-traité (111) directement issu de l'étape (a), ledit gaz naturel apte à être liquéfié (161) étant relativement enrichi en hydrocarbures de C2 à C5, et en ce que le procédé comprend une phase ultérieure de production dans laquelle la partie (115) de gaz naturel pré-traité (111) directement issue de l'étape (a) dans le gaz naturel apte à être liquéfié (161) est ajustée en fonction de la teneur en hydrocarbures de C2 à C5 désirée dans le gaz naturel apte à être liquéfié (161).
7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un liquide (105) produit par la colonne auxiliaire (31) est détendu et introduit dans la colonne principale (49).
8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la colonne de distillation auxiliaire (31) est adaptée pour extraire sensiblement 98% en moles des hydrocarbures en C6 + présents dans le gaz naturel de départ (101).
9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que la teneur molaire en hydrocarbures en C6 + dans le gaz naturel prétraité (111) est sensiblement égale à 57 ppm.
10. Installation de production simultanée d'un gaz naturel apte à être liquéfié (161) et d'une coupe (15) de liquides de gaz naturel (LGN) à partir d'un gaz naturel de départ (101) comprenant de l'azote, du méthane, des hydrocarbures en C2 à C5, et des hydrocarbures lourds en C6 + , du type comprenant :
(a) une unité (17) de pré-traitement dudit gaz naturel de départ (11) pour obtenir un gaz naturel pré-traité (111) ;
(b) des moyens (43) de refroidissement du gaz naturel pré-traité (111) jusqu'à une température voisine de son point de rosée ; (c) une unité (19) de récupération des LGN comprenant des moyens de détente (51 , 123, 131) du gaz naturel pré-traité refroidi (117) et comprenant au moins une colonne principale de distillation (49) qui produit, d'une part, en tête de colonne, un gaz naturel purifié (151), et d'autre part ladite coupe e LGN (15) ; et
(d) des moyens (53, 55, 41) de formation du gaz naturel apte à être liquéfié à partir du gaz naturel purifié (151) issu de l'étape (c) ; caractérisée en ce que l'unité (17) de pré-traitement comprend :
(ai) des moyens (25, 27, 29) de refroidissement du gaz naturel de départ (101) jusqu'à une température voisine de son point de rosée ;
(a2) une colonne de distillation auxiliaire (31) du gaz naturel de départ refroidi (103) équipée d'un condenseur de tête (32) produisant un reflux, la colonne de distillation auxiliaire (31) opérant à une pression comprise entre 45 et 65 bars et produisant en tête ledit gaz naturel pré-traité (111), lequel ne contient pratiquement plus d'hydrocarbures en C6 +, cette colonne auxiliaire produisant en'outre une coupe (105) d'hydrocarbures lourds essentiellement en Cβ+ ; en ce que l'unité (19) de récupération des LNG comprend :
(d) un ballon séparateur (47) du gaz naturel pré-traité refroidi (117) qui produit un flux liquide (121 ) et un flux gazeux (119);
(c2) une première turbine de détente (51) dudit flux gazeux accouplée à un premier compresseur (53); (c3) des moyens d'introduction du flux gazeux détendu (129) dans la colonne principale (49) à un niveau intermédiaire N3 ;
(c4) des moyens de détente (123) dudit flux liquide (121) et des moyens d'introduction du flux liquide détendu dans la colonne principale (49) à un niveau N2 inférieur à N3 ; et en ce que les moyens de formation du gaz naturel apte à être liquéfié (161) comprennent des moyens d'introduction sélective d'une partie réglable (115) du gaz naturel pré-traité (111) directement issu de l'unité de pré-traitement (17) dans une conduite de gaz naturel apte à être liquéfié (161).
11. Installation selon la revendication 10, caractérisée en ce que les moyens de formation (53, 55, 41) du gaz naturel apte à être liquéfié (161) comprennent : (d1) des moyens (53, 55) de compression du gaz naturel purifié (151) extrait de la tête de la colonne principale (49) à une pression de liquéfaction, comportant au moins le premier compresseur (53);
(d2) un premier échangeur de chaleur (41) qui met le gaz naturel purifié comprimé (155) issu desdits moyens de compression (53, 55) en relation d'échange thermique avec ledit gaz naturel purifié (151) extrait de la tête de la colonne principale (49), ledit gaz naturel purifié comprimé (155) étant refroidi dans ce premier échangeur (41) pour produire le gaz naturel apte à être liquéfié (161).
12. Installation selon la revendication 11 , caractérisée en ce que les moyens de refroidissement (43) du gaz naturel pré-traité (111) comprennent un deuxième échangeur de chaleur (43) qui met ce gaz (111) en relation d'échange thermique avec ledit gaz naturel purifié (151) extrait de la colonne principale (49).
13. Installation selon la revendication 11 ou 12, caractérisée en ce que les moyens de compression (53, 55) du gaz naturel purifié (151) extrait de la tête de la colonne principale (49) comprennent en outre un deuxième compresseur (55) entraîné par une source d'énergie externe et destiné à augmenter la pression du gaz naturel purifié comprimé (155) jusqu'à la pression de liquéfaction.
EP04767210A 2003-06-02 2004-05-28 Procede et installation de production simultanee d un gaz na turel apte a etre liquefie et d une coupe de liquides du gaz naturel. Expired - Lifetime EP1639062B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL04767210T PL1639062T3 (pl) 2003-06-02 2004-05-28 Sposób i instalacja do równoczesnego wytwarzania gazu ziemnego, który może zostać skroplony i frakcji ciekłej gazu

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0306632A FR2855526B1 (fr) 2003-06-02 2003-06-02 Procede et installation de production simultanee d'un gaz naturel apte a etre liquefie et d'une coupe de liquides du gaz naturel
PCT/FR2004/001334 WO2004108865A2 (fr) 2003-06-02 2004-05-28 Procede et installation de production simultanee d'un gaz naturel apte a etre liquefie et d'une coupe de liquides du gaz naturel.

Publications (2)

Publication Number Publication Date
EP1639062A2 true EP1639062A2 (fr) 2006-03-29
EP1639062B1 EP1639062B1 (fr) 2007-05-02

Family

ID=33427602

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04767210A Expired - Lifetime EP1639062B1 (fr) 2003-06-02 2004-05-28 Procede et installation de production simultanee d un gaz na turel apte a etre liquefie et d une coupe de liquides du gaz naturel.

Country Status (16)

Country Link
US (1) US7237407B2 (fr)
EP (1) EP1639062B1 (fr)
JP (1) JP4669473B2 (fr)
KR (1) KR101062153B1 (fr)
CN (1) CN100588702C (fr)
AT (1) ATE361352T1 (fr)
CA (1) CA2527381C (fr)
CY (1) CY1106780T1 (fr)
DE (1) DE602004006266T2 (fr)
ES (1) ES2286670T3 (fr)
FR (1) FR2855526B1 (fr)
MX (1) MXPA05012952A (fr)
PL (1) PL1639062T3 (fr)
PT (1) PT1639062E (fr)
TW (1) TWI352614B (fr)
WO (1) WO2004108865A2 (fr)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2400683C2 (ru) * 2005-04-12 2010-09-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ и аппаратура для ожижения потока природного газа
US20070012072A1 (en) * 2005-07-12 2007-01-18 Wesley Qualls Lng facility with integrated ngl extraction technology for enhanced ngl recovery and product flexibility
US7500370B2 (en) * 2006-03-31 2009-03-10 Honeywell International Inc. System and method for coordination and optimization of liquefied natural gas (LNG) processes
WO2007116050A2 (fr) * 2006-04-12 2007-10-18 Shell Internationale Research Maatschappij B.V. Procédé et appareil de liquéfaction d'un flux de gaz naturel
RU2436024C2 (ru) * 2006-05-19 2011-12-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ и устройство для обработки потока углеводородов
US8571688B2 (en) 2006-05-25 2013-10-29 Honeywell International Inc. System and method for optimization of gas lift rates on multiple wells
WO2008008335A2 (fr) * 2006-07-10 2008-01-17 Fluor Technologies Corporation Configurations et procédés de conditionnement de gaz riche permettant la récupération du lgn
EP2054685A2 (fr) * 2006-08-23 2009-05-06 Shell Internationale Research Maatschappij B.V. Procédé et dispositif pour traiter un courant d'hydrocarbures
CN101568769A (zh) * 2006-12-26 2009-10-28 开利公司 具有经济器、中间冷却器和多级压缩机的制冷剂系统
US8549876B2 (en) 2007-01-25 2013-10-08 Shell Oil Company Method and apparatus for cooling a hydrocarbon stream
US7946127B2 (en) 2007-02-21 2011-05-24 Honeywell International Inc. Apparatus and method for optimizing a liquefied natural gas facility
EP2119758A4 (fr) * 2007-03-13 2011-08-31 Mitsui Shipbuilding Eng Procédé de production d'un hydrate gazeux
FR2914990B1 (fr) * 2007-04-13 2010-02-26 Air Liquide Procede de mise en froid d'une ligne d'echange cryogenique.
EP1988494A1 (fr) * 2007-04-30 2008-11-05 Honeywell International Inc. Système et procédé pour la coordination et l'optimisation de procédés de gaz naturel liquéfié (LNG)
AU2010201571B2 (en) * 2007-07-09 2012-04-19 LNG Technology, LLC A method and system for production of liquid natural gas
US9003828B2 (en) * 2007-07-09 2015-04-14 Lng Technology Pty Ltd Method and system for production of liquid natural gas
US8534094B2 (en) 2008-04-09 2013-09-17 Shell Oil Company Method and apparatus for liquefying a hydrocarbon stream
DE102008019392A1 (de) * 2008-04-17 2009-10-22 Linde Aktiengesellschaft Verfahren zum Verflüssigen einer Kohlenwasserstoffreichen Fraktion
US8209997B2 (en) 2008-05-16 2012-07-03 Lummus Technology, Inc. ISO-pressure open refrigeration NGL recovery
US20100175425A1 (en) * 2009-01-14 2010-07-15 Walther Susan T Methods and apparatus for liquefaction of natural gas and products therefrom
US8627681B2 (en) * 2009-03-04 2014-01-14 Lummus Technology Inc. Nitrogen removal with iso-pressure open refrigeration natural gas liquids recovery
CN101508925B (zh) * 2009-03-13 2012-10-10 北京永记鑫经贸有限公司 一种天然气液化工艺
US8097182B2 (en) * 2009-06-17 2012-01-17 A.S. Trust & Holdings, Inc. Hydrocarbon refrigerant and detergent composition
US10082331B2 (en) * 2009-07-16 2018-09-25 Conocophillips Company Process for controlling liquefied natural gas heating value
FR2954345B1 (fr) * 2009-12-18 2013-01-18 Total Sa Procede de production de gaz naturel liquefie ayant un pouvoir calorifique superieur ajuste
AU2011296633B2 (en) * 2010-09-03 2016-07-14 Twister B.V. Refining system and method for refining a feed gas stream
AP2014007424A0 (en) 2011-08-10 2014-02-28 Conocophillips Co Liquefied natural gas plant with ethylene independent heavies recovery system
CN104736504A (zh) * 2012-07-26 2015-06-24 氟石科技公司 用于深度的进料气体烃露点调整的构造和方法
RU2641778C2 (ru) 2012-12-28 2018-01-22 Линде Инжиниринг Норз Америка Инк. Комплексный способ извлечения газоконденсатных жидкостей и сжижения природного газа
CN103865601B (zh) * 2014-03-13 2015-07-08 中国石油大学(华东) 丙烷预冷脱乙烷塔顶回流的重烃回收方法
KR101561385B1 (ko) * 2014-03-28 2015-10-27 영남대학교 산학협력단 천연가스의 예비 분리를 통한 천연가스오일 회수방법
JP6527714B2 (ja) * 2015-02-25 2019-06-05 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード 液体燃料ガスの供給装置および供給方法
US11402155B2 (en) 2016-09-06 2022-08-02 Lummus Technology Inc. Pretreatment of natural gas prior to liquefaction
JP7026490B2 (ja) * 2017-11-21 2022-02-28 レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Bog再凝縮装置およびそれを備えるlng貯蔵システム。
CN109294647B (zh) * 2018-09-17 2021-08-13 广州智光节能有限公司 天然气的提纯系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3440828A (en) * 1966-02-11 1969-04-29 Air Prod & Chem Liquefaction of natural gas employing cascade refrigeration
US4456461A (en) * 1982-09-09 1984-06-26 Phillips Petroleum Company Separation of low boiling constituents from a mixed gas
FR2681859B1 (fr) * 1991-09-30 1994-02-11 Technip Cie Fse Etudes Const Procede de liquefaction de gaz naturel.
US5325673A (en) * 1993-02-23 1994-07-05 The M. W. Kellogg Company Natural gas liquefaction pretreatment process
US5555748A (en) * 1995-06-07 1996-09-17 Elcor Corporation Hydrocarbon gas processing
US6354105B1 (en) * 1999-12-03 2002-03-12 Ipsi L.L.C. Split feed compression process for high recovery of ethane and heavier components
US6401486B1 (en) 2000-05-18 2002-06-11 Rong-Jwyn Lee Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants
FR2817766B1 (fr) * 2000-12-13 2003-08-15 Technip Cie Procede et installation de separation d'un melange gazeux contenant du methane par distillation,et gaz obtenus par cette separation
TW573112B (en) * 2001-01-31 2004-01-21 Exxonmobil Upstream Res Co Process of manufacturing pressurized liquid natural gas containing heavy hydrocarbons
US6526777B1 (en) * 2001-04-20 2003-03-04 Elcor Corporation LNG production in cryogenic natural gas processing plants
US6742358B2 (en) * 2001-06-08 2004-06-01 Elkcorp Natural gas liquefaction
UA76750C2 (uk) * 2001-06-08 2006-09-15 Елккорп Спосіб зрідження природного газу (варіанти)
US6662589B1 (en) * 2003-04-16 2003-12-16 Air Products And Chemicals, Inc. Integrated high pressure NGL recovery in the production of liquefied natural gas

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004108865A2 *

Also Published As

Publication number Publication date
CA2527381C (fr) 2012-03-13
KR20060021869A (ko) 2006-03-08
TWI352614B (en) 2011-11-21
PL1639062T3 (pl) 2007-11-30
EP1639062B1 (fr) 2007-05-02
TW200503815A (en) 2005-02-01
FR2855526A1 (fr) 2004-12-03
CN100588702C (zh) 2010-02-10
DE602004006266T2 (de) 2008-01-10
WO2004108865A3 (fr) 2005-02-17
ES2286670T3 (es) 2007-12-01
US20040244415A1 (en) 2004-12-09
JP4669473B2 (ja) 2011-04-13
CA2527381A1 (fr) 2004-12-16
KR101062153B1 (ko) 2011-09-05
FR2855526B1 (fr) 2007-01-26
CY1106780T1 (el) 2012-05-23
DE602004006266D1 (de) 2007-06-14
JP2007526924A (ja) 2007-09-20
MXPA05012952A (es) 2006-02-28
US7237407B2 (en) 2007-07-03
PT1639062E (pt) 2007-08-09
CN1813046A (zh) 2006-08-02
WO2004108865A2 (fr) 2004-12-16
ATE361352T1 (de) 2007-05-15

Similar Documents

Publication Publication Date Title
EP1639062B1 (fr) Procede et installation de production simultanee d un gaz na turel apte a etre liquefie et d une coupe de liquides du gaz naturel.
EP1352203B1 (fr) Procede de refrigeration de gaz liquefie et installation mettant en oeuvre celui-ci
EP1946026B1 (fr) Procede de traitement d'un courant de gnl obtenu par refroidissement au moyen d'un premier cycle de refrigeration et installation associee
EP0644996B1 (fr) Procede et installation de refroidissement d'un gaz, notamment pour la liquefaction de gaz naturel
EP2344821B1 (fr) Procédé de production de courants d'azote liquide et gazeux, d'un courant gazeux riche en hélium et d'un courant d'hydrocarbures déazoté et installation associée
EP1828697B1 (fr) Procede et installation de production de gaz naturel traite , d ' une coupe riche en hydrocarbures en c3 + et courant riche en ethane
EP2122282A2 (fr) Procédé de séparation d'un mélange de monoxyde de carbone, de méthane, d'hydrogène et éventuellement d'azote par distillation cryogénique
FR2829401A1 (fr) Procede et installation de fractionnement de gaz de la pyrolyse d'hydrocarbures
EP0789208A1 (fr) Procédé et installation de production d'oxygène gazeux sous haute pression
EP2553055A2 (fr) Procédé de traitement d'un courant de gaz craqué issu d'une installation de pyrolyse d'hydrocarbures et installation associée
EP2494295B1 (fr) Procédé de fractionnement d'un courant de gaz craqué pour obtenir une coupe riche en éthylène et un courant de combustible, et installation associée
CA2823900C (fr) Procede de production d'une coupe riche en hydrocarbures c3+ et d'un courant riche en methane et ethane
EP3060629B1 (fr) Procédé de fractionnement d'un courant de gaz craqué, mettant en oeuvre un courant de recycle intermédiaire, et installation associée
WO2018055264A1 (fr) Procédé de purification de gaz naturel à liquéfier
FR3116109A1 (fr) Procédé d’extraction d’éthane dans un courant de gaz naturel de départ et installation correspondante
EP3387352A1 (fr) Procédé de liquéfaction de gaz naturel et d'azote

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051128

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602004006266

Country of ref document: DE

Date of ref document: 20070614

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070802

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070730

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20070402321

Country of ref document: GR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070813

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2286670

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070802

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070531

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070502

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071103

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160412

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160516

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CY

Payment date: 20160419

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004006266

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20230601

Year of fee payment: 20

Ref country code: IT

Payment date: 20230427

Year of fee payment: 20

Ref country code: FR

Payment date: 20230421

Year of fee payment: 20

Ref country code: ES

Payment date: 20230605

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230526

Year of fee payment: 20

Ref country code: PL

Payment date: 20230421

Year of fee payment: 20

Ref country code: GR

Payment date: 20230427

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230427

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 20