EP1636624A1 - Procede de microscopie par fluorescence - Google Patents
Procede de microscopie par fluorescenceInfo
- Publication number
- EP1636624A1 EP1636624A1 EP04739720A EP04739720A EP1636624A1 EP 1636624 A1 EP1636624 A1 EP 1636624A1 EP 04739720 A EP04739720 A EP 04739720A EP 04739720 A EP04739720 A EP 04739720A EP 1636624 A1 EP1636624 A1 EP 1636624A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- dyes
- reference spectra
- detection
- spectra
- inclusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000000799 fluorescence microscopy Methods 0.000 title claims abstract description 7
- 239000000975 dye Substances 0.000 claims abstract description 43
- 238000001228 spectrum Methods 0.000 claims abstract description 25
- 230000003595 spectral effect Effects 0.000 claims abstract description 12
- 238000002189 fluorescence spectrum Methods 0.000 claims abstract description 4
- 238000001514 detection method Methods 0.000 claims description 28
- 230000008569 process Effects 0.000 claims description 6
- 230000006525 intracellular process Effects 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 238000011156 evaluation Methods 0.000 claims description 3
- 102000034287 fluorescent proteins Human genes 0.000 claims description 3
- 108091006047 fluorescent proteins Proteins 0.000 claims description 3
- 238000005204 segregation Methods 0.000 claims 1
- 230000005284 excitation Effects 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 14
- 238000010521 absorption reaction Methods 0.000 description 12
- 230000005855 radiation Effects 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 6
- 238000003384 imaging method Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 238000000295 emission spectrum Methods 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 230000031018 biological processes and functions Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 230000005283 ground state Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 230000002186 photoactivation Effects 0.000 description 2
- WKBPZYKAUNRMKP-UHFFFAOYSA-N 1-[2-(2,4-dichlorophenyl)pentyl]1,2,4-triazole Chemical compound C=1C=C(Cl)C=C(Cl)C=1C(CCC)CN1C=NC=N1 WKBPZYKAUNRMKP-UHFFFAOYSA-N 0.000 description 1
- 101000657326 Homo sapiens Protein TANC2 Proteins 0.000 description 1
- 229930182559 Natural dye Natural products 0.000 description 1
- 102100034784 Protein TANC2 Human genes 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- WZSUOQDIYKMPMT-UHFFFAOYSA-N argon krypton Chemical compound [Ar].[Kr] WZSUOQDIYKMPMT-UHFFFAOYSA-N 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005281 excited state Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000002866 fluorescence resonance energy transfer Methods 0.000 description 1
- 238000001215 fluorescent labelling Methods 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 239000000978 natural dye Substances 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 210000001747 pupil Anatomy 0.000 description 1
- 238000004621 scanning probe microscopy Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 210000004895 subcellular structure Anatomy 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6456—Spatial resolved fluorescence measurements; Imaging
- G01N21/6458—Fluorescence microscopy
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6402—Atomic fluorescence; Laser induced fluorescence
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
- G02B21/0024—Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/16—Microscopes adapted for ultraviolet illumination ; Fluorescence microscopes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N2021/6417—Spectrofluorimetric devices
Definitions
- the invention relates to a method in fluorescence microscopy, in particular laser scanning microscopy.
- the irradiated photons of a certain energy excite the dye molecules through the absorption of a photon from the ground state into an excited state.
- This excitation is usually referred to as single-photon absorption (Fig. 1a).
- the dye molecules excited in this way can return to the ground state in various ways.
- fluorescence microscopy the transition with the emission of a fluorescence photon is most important.
- the wavelength of the emitted photon is generally red-shifted due to the Stokes shift compared to the excitation radiation, so it has a longer wavelength. The Stokes shift enables the fluorescence radiation to be separated from the excitation radiation.
- Fig. 1 b shows a multi-photon excitation
- the fluorescent light is split off from the excitation radiation with suitable dichroic beam splitters in combination with block filters and observed separately. This makes it possible to display individual cell parts stained with different dyes. In principle, however, several parts of a preparation can also be colored simultaneously with different specific dyes (multiple fluorescence). Special dichroic beam splitters are used to differentiate the fluorescence signals emitted by the individual dyes.
- LSM confocal laser scanning microscope
- An LSM is essentially divided into 4 modules: light source, scan module, detection unit and microscope. These modules are described in more detail below. Reference is also made to DE19702753A1.
- lasers with different wavelengths are used in an LSM. The choice of the excitation wavelength depends on the absorption properties of the dyes to be examined.
- the excitation radiation is generated in the light source module.
- Various lasers are used here (argon, argon krypton, TiSa laser).
- the wavelengths are also selected in the light source module and the intensity of the required excitation wavelength is set, for example by using an acousto-optical crystal.
- the laser radiation then arrives in the scan module via a fiber or a suitable mirror arrangement.
- the laser radiation generated in the light source is focused into the specimen with the aid of the objective (2) and diffraction-limited via the scanner, the scanning optics and the tube lens.
- the focus raster scans the sample in the x-y direction.
- the pixel dwell times when scanning over the sample are usually in the range of less than a microsecond to a few seconds.
- confocal detection descanned detection
- MDB dichroic beam splitter
- the fluorescent light is then focused on a diaphragm (confocal diaphragm / pinhole) which is located exactly in a plane conjugate to the focal plane. This suppresses fluorescent light components outside of the focus.
- the optical resolution of the microscope can be adjusted by varying the aperture size.
- Another dirchroic block filter (EF) is located behind the diaphragm, which again suppresses the excitation radiation.
- the fluorescent light is measured using a point detector (PMT).
- PMT point detector
- the dye fluorescence is excited in a small volume at which the excitation intensity is particularly high. This area is only slightly larger than the detected area when using a confocal arrangement. The use of a confocal Aperture can thus be omitted and detection can take place directly after the lens (non-descanned detection).
- a descanned detection still takes place, but this time the pupil of the objective is imaged in the detection unit (non-confocal descanned detection).
- the plane (optical section) that is in the focal plane of the objective is reproduced by both detection arrangements in conjunction with the corresponding single-photon or multi-photon absorption.
- a three-dimensional image of the sample can then be generated with the aid of a computer.
- the LSM is therefore suitable for examining thick specimens.
- the excitation wavelengths are determined by the dye used with its specific absorption properties. Dichroic filters matched to the emission properties of the dye ensure that only the fluorescent light emitted by the respective dye is measured by the point detector.
- the spectral detection range must be restricted. The area in which the two dyes overlap is simply cut out and not detected. The efficiency of the detection unit thus deteriorates.
- the same signal-to-noise ratio can only be achieved by increasing the excitation power, which can damage the specimen. For this reason, up to 6 different dye probes are used simultaneously at the same time, since otherwise the dyes cannot be separated due to the strongly overlapping emission bands.
- fluorescent dyes are used for the specific labeling of the preparations
- the fluorescence is spectrally split in the ZEISS META Laser Scanning Microscope.
- the emission light is split off from the excitation light in the scan module or in the microscope (in the case of multi-photon absorption) using the main color splitter (MDB).
- MDB main color splitter
- a block diagram of the following detector unit is shown in Fig. 5.
- the light of the sample is now focused by means of an imaging optics PO with confocal detection through an aperture (pinhole) PH, whereby fluorescence that has arisen out of focus is suppressed.
- the aperture is omitted for undescanned detection.
- the light is now broken down into its spectral components using an angle-dispersive element DI.
- Prisms, gratings and acousto-optical elements come into question as angle-dispersive elements.
- the light split by the dispersive element into its spectral components is subsequently imaged on a line detector DE.
- This line detector DE therefore measures the emission signal as a function of the wavelength and converts it into electrical signals.
- a line filter for suppressing the excitation wavelengths can be connected upstream of the detection unit.
- the structure shown essentially describes a Cerny Turner structure.
- the light L of the sample is focused with the pinhole optics PO through the confocal aperture PH.
- this aperture can be omitted.
- the first imaging mirror S1 collimates the fluorescent light.
- the light hits a line grating G, for example a grating with a number of lines of 651 lines per mm.
- the grating bends the light in different directions according to its wavelength.
- the second imaging mirror S2 focuses the individual spectrally split wavelength components on the corresponding channels of the line detector DE.
- the use of a line secondary electron multiplier from Hamamatsu H7260 is particularly advantageous.
- the detector has 32 channels and a high sensitivity.
- the free spectral range of the embodiment described above is approximately 350 nm. In this arrangement, the free spectral range is evenly distributed over the 32 channels of the line detector, resulting in an optical resolution of approximately 10 nm. This arrangement is therefore only conditionally suitable for spectroscopy. However, their use in an imaging system is advantageous since the signal per detection channel is still relatively large due to the relatively broad spectral band detected. A shift the free spectral range can also be achieved by rotating the grating, for example.
- Another possible embodiment could involve the use of a matrix detector (e.g. a CCD).
- the dispersive element splits into different wavelength components in a coordinate.
- a complete line (or column) of the scanned image is imaged in the remaining direction on the matrix detector.
- This embodiment is particularly advantageous when building a line scanner (Lit .: Code, Kino; "Confocal Scanning Optical Microscopy and Related Imaging Systems”; Academic Press 1996).
- the basic structure corresponds essentially to that of an LSM according to Fig. 2. However, instead A line is mapped into the focus of a point focus and the sample to be examined is only scanned in one direction.
- a slit diaphragm is used as the confocal diaphragm instead of a pin diaphragm. Detection using a multiphoton absorption can also be carried out with this arrangement. Again, the confocal aperture can be omitted.
- the spectral splitting of the fluorescent light enables the spectral components to be recorded separately after the fluorescence spectra of fluorescence markers have been recorded in pure form and the spectra with fluorescence components of several markers have been recorded by a “unmixing” method (DE 19915137 A1).
- the number of fluorescent markers used for fluorescent labeling can be reduced or combinatorics can be used if not only pure fluorescence spectra are used as reference spectra but also reference spectra of mixed forms are recorded.
- These mixed forms can, for example, be characterized by the time-dependent color state of a biological material when a fluorescent marker slowly leads to staining.
- Such mixed states can furthermore be characterized by a mixed color when a fluorescent marker changes its color or its excitation properties.
- Mixing ratios of this type can be generated in various ways: they can be present in the sample, they can be generated by irradiating the sample or they can be the result of a biological process that is stimulated by irradiation.
- Mixed spectra can characterize a biological process, for example a change in concentration, a first spectrum corresponding to a lower concentration state and at least one further spectrum corresponding to a higher concentration state.
- Image channels are defined and evaluated accordingly using the different reference spectra.
- Such references can be generated over the entire image or advantageously via marked "regions of interest” (ROI).
- ROI can also be used for targeted manipulation by defined irradiation.
- a reference can be determined in a first region and in at least one In a further region, targeted irradiation and measurement can be carried out by extracting mixed spectra. The spectra can be separated and displayed after the image has been taken or during the image red colored (Lit: Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H., and Miyawaki, A. (2002), An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein.
- PNAS 99/20, 12651-12656 in the detection of organic processes, for example inter- and intracellular processes and to the marrow ation of individual cells or cell populations, can be used and spectrally detected.
- Photoconvertible dyes that dynamically change their spectra due to intracellular processes or dyes that are used for FRET but also other indicator dyes can be used advantageously by the method according to the invention.
- different cells or cell groups can have different lengths with UV or violet
- Color mixing ratios which are recorded as reference spectra. Different cell populations can then be recorded individually over time.
- An area can be selected using the ROI.
- An analysis of transport processes at cellular and subcellular level can be carried out.
- only one dye can be used, for example
- Irradiation or other effects are placed in different states that are clearly identifiable via reference formation.
- ROls can be defined interactively directly in the image.
- the selected laser is switched on and off pixel-precisely at the border of these regions.
- the radiation parameters for changing the radiation can also be automatically integrated here
- Dye properties through photoactivation or photoconversion lead for example, repetition rate, wavelength, intensity, position.
- the evaluation can be done after the experiment or online during the simulation
- the META detector makes it possible to record the entire spectrum of the emission, for example from Kaede, to spectrally separate the respective mixed forms during the measurement and to display the segregated channels.
- 4 shows schematically how different image channels CH1-CH3 are formed, wherein, as shown, different spectral mixed distributions CH1-3 are used as references and are used for image evaluation.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Optics & Photonics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Microscoopes, Condenser (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10327382A DE10327382A1 (de) | 2003-06-16 | 2003-06-16 | Verfahren zur Fluoreszenzmikroskopie |
PCT/EP2004/006202 WO2004113987A1 (fr) | 2003-06-16 | 2004-06-09 | Procede de microscopie par fluorescence |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1636624A1 true EP1636624A1 (fr) | 2006-03-22 |
Family
ID=33495111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04739720A Ceased EP1636624A1 (fr) | 2003-06-16 | 2004-06-09 | Procede de microscopie par fluorescence |
Country Status (5)
Country | Link |
---|---|
US (1) | US7688442B2 (fr) |
EP (1) | EP1636624A1 (fr) |
JP (1) | JP2006527858A (fr) |
DE (1) | DE10327382A1 (fr) |
WO (1) | WO2004113987A1 (fr) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005022880B4 (de) * | 2005-05-18 | 2010-12-30 | Olympus Soft Imaging Solutions Gmbh | Trennung spektral oder farblich überlagerter Bildbeiträge in einem Mehrfarbbild, insbesondere in transmissionsmikroskopischen Mehrfarbbildern |
WO2010022330A2 (fr) * | 2008-08-21 | 2010-02-25 | University Of Florida Research Foundation, Inc. | Perturbation différentielle induite par laser (dlip) pour bioimagerie et détection chimique |
EP2359745A1 (fr) | 2010-02-12 | 2011-08-24 | Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) | Procédé et dispositif pour imagerie photonique multi-spectrale |
DE102012219136A1 (de) | 2012-10-19 | 2014-05-28 | Leica Microsystems Cms Gmbh | Mikroskop und ein Verfahren zur Untersuchung einer Probe mit einem Mikroskop |
CA2899158C (fr) * | 2013-03-15 | 2021-05-04 | Ventana Medical Systems, Inc. | Discrimination spectrale |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60104238A (ja) * | 1983-11-10 | 1985-06-08 | Japan Spectroscopic Co | 多波長同時検出による定量分析方法 |
JP2799191B2 (ja) * | 1989-08-24 | 1998-09-17 | オリンパス光学工業株式会社 | 細胞内イオンの2次元濃度分布像を形成する方法 |
JPH04127039A (ja) * | 1990-09-19 | 1992-04-28 | Hitachi Ltd | 蛍光スペクトルによる物質の同定方法 |
JP3649823B2 (ja) * | 1996-09-17 | 2005-05-18 | 株式会社トプコン | 有機物の分析装置 |
US6167173A (en) * | 1997-01-27 | 2000-12-26 | Carl Zeiss Jena Gmbh | Laser scanning microscope |
JPH10253622A (ja) * | 1997-03-14 | 1998-09-25 | Nippon Schering Kk | 細胞(組織)の活動(エネルギー)状態の測定方法 |
DE19829657A1 (de) * | 1997-08-01 | 1999-02-04 | Ingo Klimant | Verfahren und Vorrichtung zur Referenzierung von Fluoreszenzintensitätssignalen |
EP1000345B1 (fr) * | 1997-08-01 | 2003-05-07 | PreSens Precision Sensing GmbH | Procede et dispositif pour referencer des signaux d'intensite de fluorescence |
DE19900135A1 (de) * | 1998-01-07 | 1999-08-05 | Univ Rockefeller | Verfahren zur Bestimmung der Temperatur einer einzelnen Zelle in einer Zellprobe oder Gewebebiopsie sowie Verfahren zu dessen Verwendung |
DE19915137C2 (de) * | 1999-03-26 | 2001-10-18 | Michael Schaefer | Verfahren zur Quantifizierung mehrerer Fluorochrome in einer mehrfach gefärbten Probe bei der Fluoreszenzmikroskopie und Verwendungen des Verfahrens |
DE10033180B4 (de) * | 2000-06-29 | 2006-08-31 | Carl Zeiss Jena Gmbh | Verfahren zur Detektion von Farbstoffen in der Fluoreszenzmikroskopie |
DE10038526B4 (de) * | 2000-08-08 | 2004-09-02 | Carl Zeiss Jena Gmbh | Verfahren und Anordnung zur Erfassung des wellenlängenabhängigen Verhaltens einer beleuchteten Probe |
JP4827335B2 (ja) * | 2001-08-13 | 2011-11-30 | オリンパス株式会社 | 走査型レーザ顕微鏡 |
DE10151217B4 (de) * | 2001-10-16 | 2012-05-16 | Carl Zeiss Microlmaging Gmbh | Verfahren zum Betrieb eines Laser-Scanning-Mikroskops |
-
2003
- 2003-06-16 DE DE10327382A patent/DE10327382A1/de not_active Withdrawn
-
2004
- 2004-06-09 WO PCT/EP2004/006202 patent/WO2004113987A1/fr active Application Filing
- 2004-06-09 JP JP2006515858A patent/JP2006527858A/ja active Pending
- 2004-06-09 US US10/560,426 patent/US7688442B2/en active Active
- 2004-06-09 EP EP04739720A patent/EP1636624A1/fr not_active Ceased
Non-Patent Citations (1)
Title |
---|
See references of WO2004113987A1 * |
Also Published As
Publication number | Publication date |
---|---|
US20070178602A1 (en) | 2007-08-02 |
JP2006527858A (ja) | 2006-12-07 |
US7688442B2 (en) | 2010-03-30 |
DE10327382A1 (de) | 2005-01-05 |
WO2004113987A1 (fr) | 2004-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1584918B1 (fr) | Méthode et dispositif pour mesure de durée de vie de fluorescence en imagerie nanoscopique | |
EP1504300B1 (fr) | Procede et systeme pour analyser des echantillons | |
EP2641078B1 (fr) | Microscopie à résolution en profondeur améliorée | |
DE10120425C2 (de) | Scanmikroskop | |
DE112009000698B4 (de) | Verfahren und Vorrichtung zur Lokalisation einzelner Farbstoffmoleküle in der Fluoreszenzmikroskopie | |
EP1264169B1 (fr) | Augmentation de la resolution spectrale et/ou spatiale dans un microscope a balayage laser | |
DE10151217B4 (de) | Verfahren zum Betrieb eines Laser-Scanning-Mikroskops | |
EP1307726B2 (fr) | Procédé pour déterminer le comportement, lié à la longueur d'onde, d'un échantillon éclairé | |
DE102008018476B4 (de) | Mikroskopievorrichtung | |
EP2069761B1 (fr) | Procédé et dispositif de palpage optique à haute résolution d'un échantillon | |
EP1396739B1 (fr) | Méthode et arrangement pour la modulation ajustable de la constitution spectrale et/ou de l'intensité de lumière de l'éclairage et/ou de lumière sonde | |
EP1302804A2 (fr) | Procédé pour la détermination optique de paramètres caractéristiques d'un échantillon | |
DE10033180B4 (de) | Verfahren zur Detektion von Farbstoffen in der Fluoreszenzmikroskopie | |
DE102015107367A1 (de) | Auswertung von Signalen der Fluoreszenzrastermikroskopie unter Verwendung eines konfokalen Laserscanning-Mikroskops | |
EP2516993A1 (fr) | Microscope haute à résolution et procédé de détermination de la position bi- ou tridimensionnelle d'objets | |
DE102020134495A1 (de) | Verfahren und Mikroskop zur Aufnahme von Trajektorien einzelner Partikel in einer Probe | |
EP2803978A1 (fr) | Procédé de localisation par microscopie 3D à haute résolution | |
WO2022079265A1 (fr) | Procédés et dispositif pour le relevé multi-échelle d'échantillons biologiques par microscopie optique | |
EP1636624A1 (fr) | Procede de microscopie par fluorescence | |
EP4264353B1 (fr) | Procédé et microscope pour acquérir des trajectoires de particules individuelles dans un échantillon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060110 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
APBN | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2E |
|
APBR | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3E |
|
APAF | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNE |
|
APBT | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9E |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20090714 |