EP1632985B1 - High-pressure discharge lampe - Google Patents

High-pressure discharge lampe Download PDF

Info

Publication number
EP1632985B1
EP1632985B1 EP05017122.2A EP05017122A EP1632985B1 EP 1632985 B1 EP1632985 B1 EP 1632985B1 EP 05017122 A EP05017122 A EP 05017122A EP 1632985 B1 EP1632985 B1 EP 1632985B1
Authority
EP
European Patent Office
Prior art keywords
coating
discharge
discharge vessel
pressure discharge
discharge lamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05017122.2A
Other languages
German (de)
French (fr)
Other versions
EP1632985A1 (en
Inventor
Florian Bedynek
Michael Bönigk
Dirk Grundmann
Thomas Dr. Reiners
Conrad Schimke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Osram GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200410043636 external-priority patent/DE102004043636A1/en
Priority claimed from DE200410050303 external-priority patent/DE102004050303A1/en
Priority claimed from DE200410053011 external-priority patent/DE102004053011A1/en
Priority claimed from DE200410057852 external-priority patent/DE102004057852A1/en
Application filed by Osram GmbH filed Critical Osram GmbH
Publication of EP1632985A1 publication Critical patent/EP1632985A1/en
Application granted granted Critical
Publication of EP1632985B1 publication Critical patent/EP1632985B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/54Igniting arrangements, e.g. promoting ionisation for starting
    • H01J61/547Igniting arrangements, e.g. promoting ionisation for starting using an auxiliary electrode outside the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/35Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings

Definitions

  • the invention relates to a high-pressure discharge lamp according to the preamble of patent claim 1.
  • Such a high-pressure discharge lamp is for example in the European patent specification EP 0 991 107 B1 disclosed.
  • EP 0 991 107 B1 disclosed.
  • a unilaterally capped high-pressure discharge lamp for a motor vehicle headlight which has a surrounded by a glass outer bulb discharge vessel, wherein the outer bulb is provided with a transparent, electrically conductive layer, which extends over the entire discharge space of the lamp.
  • This layer is connected to the circuit-internal ground reference potential of the operating device of the high-pressure discharge lamp in order to improve the electromagnetic compatibility of the lamp.
  • the US 6,456,005 describes a high-pressure discharge lamp with a Zündinsbe slaughterung on the discharge vessel.
  • the JP 06-060851 discloses a high pressure discharge lamp having a heat reflective coating at the ends of the discharge vessel.
  • the US 6,445,129 describes a high pressure discharge lamp with a metallic coating.
  • the high-pressure discharge lamp according to the invention has a light-permeable discharge vessel, an ionizable filling arranged in the discharge space of the discharge vessel and extending into the discharge space of the discharge vessel Electrodes for generating a gas discharge, as well as led out of the discharge vessel power supply for supplying energy to the electrodes, wherein the surface of the discharge vessel is at least partially provided with a translucent, electrically conductive coating, so that between the coating and at least one electrode and / or power supply, a capacitive coupling consists.
  • the abovementioned coating, together with the at least one electrode and optionally with the associated power supply, forms a capacitor, the quartz glass of the discharge vessel and the filling gas in the discharge space forming the dielectric of this capacitor.
  • a dielectrically impeded discharge is generated in the discharge space between the at least one electrode and the coating.
  • This dielectrically impeded discharge generates a sufficient number of free charge carriers in the discharge space in order to enable the electrical breakdown between the two electrodes of the high-pressure discharge lamp or to significantly reduce the ignition voltage required for this purpose.
  • the invention is therefore particularly suitable for mercury-free metal halide high-pressure discharge lamps, which have an increased ignition voltage due to the lack of mercury.
  • FIG. 5 is for several, in FIG. 3 schematically illustrated, mercury-free metal halide high-pressure discharge lamps with a rated power of 35 watts, which were provided with a different thickness partial coating, depicting the dependence of the breakdown voltage of the discharge path of the resistance of the partial coating according to the invention.
  • the resistance of the coating in the unit ohms / cm is plotted on a logarithmic scale and on the vertical axis the breakdown voltage of the discharge path of the lamp in kilovolts. The resistance was measured between two points of the coating, which were arranged at a distance of 1 cm.
  • the breakdown voltage for lamps of this type whose partial coating has a resistance per unit length of less than or equal to 10 5 ohm / cm, the discharge path has a significantly reduced breakdown voltage.
  • the thickness of the partial according to the invention Coating is therefore chosen so that its resistance per unit length is in the order of magnitude of 10 3 ohms / cm to 10 5 ohms / cm. With a resistance per unit length below 10 3 ohm / cm, the layer thickness is so large that it can adversely affect the optical properties of the headlamp system due to light reflection.
  • the layer thickness is selected such that its resistance per unit length is in the order of 10 4 ohms / cm.
  • the breakdown voltage of the discharge gap has been reduced in this case from 20 kV in uncoated lamps to about 17.5 kV.
  • the coating according to the invention therefore correspondingly reduces the required ignition voltage.
  • the translucent, electrically conductive coating is advantageously applied to the outer surface of the discharge vessel, since it is not exposed to the chemical attack of the metal halides and the discharge plasma there.
  • the abovementioned coating is arranged at least in the region of the discharge space and extends over a part of the circumference of the discharge space in order to ensure a good capacitive coupling of the coating to at least one electrode and preferably even to both electrodes by the planar expansion of the coating.
  • the light-transmitting, electrically conductive partial coating is formed such that it extends as far as the at least one molybdenum foil and one of the two sides the molybdenum foil faces the coating.
  • the molybdenum foil and the coating form a type of plate capacitor, wherein the material of the discharge vessel, preferably quartz glass, arranged therebetween forms the dielectric of this capacitor.
  • the light-transmitting, electrically conductive coating is advantageously on one Restricted below the electrodes arranged surface region of the discharge vessel.
  • the coating reflects a portion of the infrared radiation generated by the discharge back into the discharge space and thus provides for selective heating of the colder, lying below the electrodes areas of the discharge vessel in which collect the metal halides used for the light generation.
  • the efficiency of the lamp can be increased without also heating the hot regions of the discharge vessel lying above the electrodes.
  • the application of the coating only on the colder underside of the discharge vessel reduces the thermal load of the coating, so that correspondingly lower demands can be placed on the thermal resistance of the coating materials.
  • FIG. 6 is the luminous flux, measured in units of lumens, for two production batches of uncoated, mercury-free, horizontally operated high pressure metal halide high pressure discharge lamps with a rated power of 35 watts (Group 1 and Group 2) compared to two production batches of the invention
  • the above coating provided, operated in a horizontal operating position mercury-free metal halide high-pressure discharge lamps with a rated power of 35 watts (Group 3 and Group 4).
  • the lamps of groups 3 and 4 were aligned horizontally during operation in such a way that the coating according to the invention was arranged below the electrode connection axis. These lamps have the in FIG. 3 schematically illustrated construction. Their coating had a resistance per unit length of the order of 10 4 ohms / cm. From the FIG. 6 It can be seen that the lamps according to the invention of groups 3 and 4 have a higher luminous flux and thus a higher luminous efficacy than the uncoated lamps of groups 1 and 2.
  • the lamps according to the invention of groups 3 and 4 have a further advantage over the uncoated lamps of groups 1 and 2. As shown in FIG. 7 It can be seen that the lamps according to the invention of groups 3 and 4 have a higher burning voltage than the uncoated lamps of the groups 1 and 2. Thus, a correspondingly lower lamp current is required in the lamps according to the invention during lamp operation to achieve the desired rated power of 35 watts. Accordingly, the operating devices can be dimensioned for lower currents.
  • the high-pressure discharge lamp is designed as a single-ended high-pressure discharge lamp whose discharge vessel has a socket-sealed end and a socket-sealed end from each of which a lead-out led out for the electrodes, wherein led out of the sockelfemen end power supply with a connected to the socket recycled current return.
  • the translucent, electrically conductive coating on the basis of the above explanations and because this lamp is operated in a horizontal position with current recirculation running below the electrodes, is arranged on a surface region of the discharge vessel facing the current return.
  • the abovementioned coating is limited to a surface region of the discharge vessel which is arranged between the current return and the connection axis of the electrodes and extends in the longitudinal direction of the lamp over at least part of the discharge space and a part of one of the two ends of the discharge vessel.
  • the surface region of the discharge vessel facing the current return plays only a minor role in the use of the high-pressure discharge lamp in a vehicle headlight for generating the desired light distribution. Therefore, even a slight absorption of light caused by the coating is meaningless.
  • the high-pressure discharge lamp according to the invention is advantageously provided with a light-permeable outer bulb which encloses at least the discharge space of the discharge vessel.
  • the glass of the outer envelope is doped with ultraviolet radiation absorbing agents to absorb the UV radiation emitted by the gas discharge.
  • the space between the outer bulb and the discharge vessel is advantageously provided with a gas filling having a cold filling pressure in the range of 5 kPa to 150 kPa.
  • Cold filling pressure here means the filling pressure measured at a gas filling temperature of 22 degrees Celsius.
  • the gas filling removes gaseous contaminants such as water vapor and carbon dioxide and combustion gases formed during the lamp vessel sealing, and reduces the temperature gradient along the discharge vessel.
  • the aforementioned gas filling advantageously contains inert gases which do not undergo any chemical reaction with the material of the coating according to the invention on the discharge vessel.
  • the gas filling therefore preferably contains nitrogen or at least one noble gas.
  • the gas filling advantageously contains small amounts of oxygen in order to counteract a diffusion of oxygen from the coating, which is preferably in the form of a doped tin oxide layer or ITO layer, on the discharge vessel.
  • FIG. 3 schematically illustrated preferred embodiment of the invention is a mercury-free metal halide high pressure discharge lamp with an electrical power consumption of about 35 watts.
  • This lamp is intended for use in a vehicle headlight. It has a two-sided sealed discharge vessel 30 made of quartz glass with a volume of 24 mm 3 , in which an ionizable filling, consisting of xenon and halides of the metals sodium, scandium, zinc and indium, gas-tight enclosed.
  • the inner contour of the discharge vessel 10 is circular-cylindrical and its outer contour is ellipsoidal.
  • the inner diameter of the discharge space 106 is 2.6 mm and its outer diameter is 6.3 mm.
  • the two ends 101, 102 of the discharge vessel 10 are each sealed by means of a molybdenum foil sealing 103, 104.
  • the electrodes 11, 12 are made of tungsten. Their thickness or their diameter is 0.30 mm. The distance between the electrodes 11, 12 is 4.2 mm.
  • the electrodes 11, 12 are in each case electrically conductively connected to one of the molybdenum foil melts 103, 104 and via the base-remote power supply wire 13 and the current return 17 or via the socket-side power supply wire 14 to an electrical connection of the lamp base 15, which consists essentially of plastic.
  • the discharge vessel 10 is enveloped by a glass outer bulb 16.
  • the outer bulb 16 has an extension 161 anchored in the base 15.
  • the discharge vessel 10 has a tubular extension 105 made of quartz glass on the base side, in which the socket-side power supply 14 extends:
  • the surface region of the discharge vessel 10 facing the current return 17 is provided with a transparent, electrically conductive coating 107.
  • This coating 107 extends in the longitudinal direction of the lamp over the entire length of the discharge space 106 and over a part, about 50 percent, of the length of the sealed ends 101, 102 of the discharge vessel 10.
  • the coating 107 is mounted on the outside of the discharge vessel 10 and extends over about 5 percent to 10 percent of the circumference of the discharge vessel 10.
  • the coating 107 covers both ends 101, 102 of the discharge vessel 10 in a symmetrical manner.
  • the coating 107 consists of doped tin oxide, for example of tin oxide doped with fluorine or antimony or, for example, boron and / or lithium-doped tin oxide.
  • This high-pressure discharge lamp is operated in a horizontal position, that is, with arranged in a horizontal plane electrodes 11, 12, wherein the lamp is oriented such that the current return path 17 extends below the discharge vessel 30 and the outer bulb 16.
  • the space between the outer bulb 16 and the discharge vessel 10 is filled with an inert gas having a cold filling pressure in the range of 5 kPa to 150 kPa.
  • the inert gas is mixed with small amounts of oxygen.
  • the amount of oxygen is adjusted so that, on the one hand, diffusion of oxygen from the tin oxide layer 107 is prevented and, on the other hand, no oxidation of the dopants in the tin oxide coating 107 is caused.
  • the inert gas is preferably nitrogen or a noble gas or a noble gas mixture or a nitrogen-noble gas mixture.
  • FIG. 4 shows the discharge vessel 10 of in FIG. 3 pictured high-pressure discharge lamp with an alternative coating 107 '.
  • the coating 107 ' differs from the above-described coating 107 only in that the coating 107' extends in the longitudinal direction of the lamp only over the length of the discharge space 106 and about 50 percent of the length of the socket-proximal end 101 of the discharge vessel 10.
  • the coating 107 can also consist of another light-transmitting, electrically conductive material.
  • it may be formed as a so-called ITO layer, that is, an indium tin oxide layer.
  • the ITO layer may comprise, for example, 90 weight percent indium oxide and 10 weight percent tin oxide.
  • the coating 107 or 107 ' can be electrically coupled, for example by suitable means, to an ignition device in order to apply to the high-pressure discharge lamp via the coating 107, 107' voltage pulses for igniting the gas discharge in the discharge space 106.
  • the coating 107 or 107 ' may extend over the entire surface of the discharge vessel 10. But it is also possible that the coating 107 or 107 'extends in the region of the discharge space 106, for example, only over half or a third of the circumference of the discharge vessel 10. In the region of the ends 101, 102 of the discharge vessel 10, the coating 107 or 107 'may extend, for example, over the entire circumference of the discharge vessel 10 or even over a third, half or other fraction of the discharge vessel circumference.
  • the coating 107 or 107 ' is designed such that it serves as a starting aid and for heating the coldest point of the discharge vessel, the so-called cold spot.
  • the electrical resistance of the translucent coating 107 or 107 ' is in the range of 40,000 ohms to 200,000 ohms.

Landscapes

  • Discharge Lamps And Accessories Thereof (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Description

Die Erfindung betrifft eine Hochdruckentladungslampe gemäß dem Oberbegriff des Patentanspruchs 1.The invention relates to a high-pressure discharge lamp according to the preamble of patent claim 1.

1. Stand der Technik 1. State of the art

Eine derartige Hochdruckentladungslampe ist beispielsweise in der europäischen Patentschrift EP 0 991 107 B1 offenbart. Auf Seite 4, in den Zeilen 12 bis 26 der Spalte 6 dieser Patentschrift ist eine einseitig gesockelte Hochdruckentladungslampe für einen Kraftfahrzeugscheinwerfer beschrieben, die ein von einem gläsernen Außenkolben umgebenes Entladungsgefäß besitzt, wobei der Außenkolben mit einer lichtdurchlässigen, elektrisch leitfahigen Schicht versehen ist, die sich über den gesamten Entladungsraum der Lampe der erstreckt. Diese Schicht ist mit dem schaltungsinternen Massebezugspotential des Betriebsgerätes der Hochdruckentladungslampe verbunden, um die elektromagnetische Verträglichkeit der Lampe zu verbessern.Such a high-pressure discharge lamp is for example in the European patent specification EP 0 991 107 B1 disclosed. On page 4, in lines 12 to 26 of column 6 of this patent a unilaterally capped high-pressure discharge lamp for a motor vehicle headlight is described which has a surrounded by a glass outer bulb discharge vessel, wherein the outer bulb is provided with a transparent, electrically conductive layer, which extends over the entire discharge space of the lamp. This layer is connected to the circuit-internal ground reference potential of the operating device of the high-pressure discharge lamp in order to improve the electromagnetic compatibility of the lamp.

Die US 6,456,005 beschreibt eine Hochdruckentladungslampe mit einer Zündhilfsbeschichtung auf dem Entladungsgefäß. Die JP 06-060851 offenbart eine Hochdruckentladumgslampe mit einer Wärme reflektierenden Beschichtung an den Enden des Entladungsgefäßes. Die US 6 445 129 beschreibt eine Hochdruckentladungslampe mit einer metallischen Beschichtung.The US 6,456,005 describes a high-pressure discharge lamp with a Zündhilfsbeschichtung on the discharge vessel. The JP 06-060851 discloses a high pressure discharge lamp having a heat reflective coating at the ends of the discharge vessel. The US 6,445,129 describes a high pressure discharge lamp with a metallic coating.

II. Darstellung der Erfindung II. Presentation of the invention

Es ist die Aufgabe der Erfindung, eine Hochdruckentladungslampe, insbesondere eine quecksilberfreie Halogen-Metalldampf-Hochdruckentladungslampe für Fahrzeugscheinwerfer mit verbesserter Zündwilligkeit bereitzustellen.It is the object of the invention to provide a high-pressure discharge lamp, in particular a mercury-free metal halide high-pressure discharge lamp for vehicle headlights with improved ignitability.

Diese Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst. Besonders vorteilhafte Ausführungen der Erfindung sind in den abhängigen Patentansprüchen beschrieben.This object is achieved by the features of claim 1. Particularly advantageous embodiments of the invention are described in the dependent claims.

Die erfindungsgemäße Hochdruckentladungslampe besitzt ein lichtdurchlässiges Entladungsgefäß, eine im Entladungsraum des Entladungsgefäßes angeordnete ionisierbare Füllung und sich in den Entladungsraum des Entladungsgefäßes erstreckende Elektroden zum Erzeugen einer Gasentladung, sowie aus dem Entladungsgefäß herausgeführte Stromzuführungen zur Energieversorgung der Elektroden, wobei die Oberfläche des Entladungsgefäßes zumindest partiell mit einer lichtdurchlässigen, elektrisch leitfähigen Beschichtung versehen ist, so dass zwischen der Beschichtung und mindestens einer Elektrode oder / und Stromzuführung eine kapazitive Kopplung besteht. Die vorgenannte Beschichtung bildet zusammen mit der mindestens einen Elektrode und gegebenenfalls mit der dazugehörenden Stromzuführung einen Kondensator, wobei das dazwischen liegende Quarzglas des Entladungsgefäßes und das Füllgas im Entladungsraum das Dielektrikum dieses Kondensators bilden. Dadurch wird, insbesondere mit Hilfe der hochfrequenten Anteile des Zündimpulses, im Entladungsraum eine dielektrisch behinderte Entladung zwischen der mindestens einen Elektrode und der Beschichtung erzeugt. Diese dielektrisch behinderte Entladung generiert im Entladungsraum eine ausreichende Anzahl von freien Ladungsträgern, um den elektrischen Durchbruch zwischen den beiden Elektroden der Hochdruckentladungslampe zu ermöglichen bzw. die dafür erforderliche Zündspannung deutlich zu reduzieren. Die Erfindung eignet sich daher besonders gut für quecksilberfreie Halogen-Metalldampf-Hochdruckentladungslampen, die aufgrund des fehlenden Quecksilbers eine erhöhte Zündspannung aufweisen.The high-pressure discharge lamp according to the invention has a light-permeable discharge vessel, an ionizable filling arranged in the discharge space of the discharge vessel and extending into the discharge space of the discharge vessel Electrodes for generating a gas discharge, as well as led out of the discharge vessel power supply for supplying energy to the electrodes, wherein the surface of the discharge vessel is at least partially provided with a translucent, electrically conductive coating, so that between the coating and at least one electrode and / or power supply, a capacitive coupling consists. The abovementioned coating, together with the at least one electrode and optionally with the associated power supply, forms a capacitor, the quartz glass of the discharge vessel and the filling gas in the discharge space forming the dielectric of this capacitor. As a result, in particular with the aid of the high-frequency components of the ignition pulse, a dielectrically impeded discharge is generated in the discharge space between the at least one electrode and the coating. This dielectrically impeded discharge generates a sufficient number of free charge carriers in the discharge space in order to enable the electrical breakdown between the two electrodes of the high-pressure discharge lamp or to significantly reduce the ignition voltage required for this purpose. The invention is therefore particularly suitable for mercury-free metal halide high-pressure discharge lamps, which have an increased ignition voltage due to the lack of mercury.

In der Figur 5 ist für mehrere, in Figur 3 schematisch abgebildete, quecksilberfreie Halogen-Metalldampf-Hochdruckentladungslampen mit einer Nennleistung von 35 Watt, die mit einer unterschiedlich dicken partiellen Beschichtung versehen wurden, die Abhängigkeit der Durchbruchsspannung der Entladungsstrecke von dem Widerstand der erfindungsgemäßen partiellen Beschichtung dargestellt. Auf der horizontalen Achse ist der Widerstand der Beschichtung in der Einheit Ohm/cm im logarithmischen Maßstab abgetragen und auf der vertikalen Achse die Durchbruchsspannung der Entladungsstrecke der Lampe in Kilovolt. Gemessen wurde der Widerstand zwischen zwei Punkten der Beschichtung, die in einem Abstand von 1 cm angeordnet waren. Es ist deutlich zu erkennen, dass die Durchbruchsspannung bei Lampen dieser Art, deren partielle Beschichtung einen Widerstand pro Längeneinheit von kleiner gleich 105 Ohm/cm besitzt, die Entladungsstrecke eine signifikant reduzierte Durchbruchsspannung aufweist. Die Dicke der erfindungsgemäßen partiellen Beschichtung wird daher so gewählt, dass ihr Widerstand pro Längeneinheit in dem Größenordnungsbereich von 103 Ohm/cm bis 105 Ohm/cm liegt. Bei einem Widerstand pro Längeneinheit unterhalb von 103 Ohm/cm ist die Schichtdicke so groß, dass sie aufgrund von Lichtreflexion die optischen Eigenschaften des Scheinwerfersystems negativ beeinflussen kann. Gemäß dem besonders bevorzugten Ausführungsbeispiel der Erfindung ist die Schichtdicke so gewählt, dass ihr Widerstand pro Längeneinheit in der Größenordnung von 104 Ohm/cm liegt. Die Durchbruchsspannung der Entladungsstrecke hat sich in diesem Fall von 20 kV bei unbeschichteten Lampen auf ca. 17,5 kV reduziert. Durch die erfindungsgemäße Beschichtung wird daher die erforderliche Zündspannung entsprechend verringert.In the FIG. 5 is for several, in FIG. 3 schematically illustrated, mercury-free metal halide high-pressure discharge lamps with a rated power of 35 watts, which were provided with a different thickness partial coating, depicting the dependence of the breakdown voltage of the discharge path of the resistance of the partial coating according to the invention. On the horizontal axis, the resistance of the coating in the unit ohms / cm is plotted on a logarithmic scale and on the vertical axis the breakdown voltage of the discharge path of the lamp in kilovolts. The resistance was measured between two points of the coating, which were arranged at a distance of 1 cm. It can be clearly seen that the breakdown voltage for lamps of this type whose partial coating has a resistance per unit length of less than or equal to 10 5 ohm / cm, the discharge path has a significantly reduced breakdown voltage. The thickness of the partial according to the invention Coating is therefore chosen so that its resistance per unit length is in the order of magnitude of 10 3 ohms / cm to 10 5 ohms / cm. With a resistance per unit length below 10 3 ohm / cm, the layer thickness is so large that it can adversely affect the optical properties of the headlamp system due to light reflection. According to the particularly preferred embodiment of the invention, the layer thickness is selected such that its resistance per unit length is in the order of 10 4 ohms / cm. The breakdown voltage of the discharge gap has been reduced in this case from 20 kV in uncoated lamps to about 17.5 kV. The coating according to the invention therefore correspondingly reduces the required ignition voltage.

Die lichtdurchlässige, elektrisch leitfähige Beschichtung ist vorteilhafter Weise auf der äußeren Oberfläche des Entladungsgefäßes aufgebracht, da sie dort nicht dem chemischen Angriff der Metallhalogenide und dem Entladungsplasma ausgesetzt ist. Die vorgenannte Beschichtung ist zumindest im Bereich des Entladungsraumes angeordnet und erstreckt sich über einen Teil des Umfangs des Entladungsraumes, um durch die flächenhafte Ausdehnung der Beschichtung eine gute kapazitive Kopplung der Beschichtung zu mindestens einer Elektrode und vorzugsweise sogar zu beiden Elektroden zu gewährleisten.The translucent, electrically conductive coating is advantageously applied to the outer surface of the discharge vessel, since it is not exposed to the chemical attack of the metal halides and the discharge plasma there. The abovementioned coating is arranged at least in the region of the discharge space and extends over a part of the circumference of the discharge space in order to ensure a good capacitive coupling of the coating to at least one electrode and preferably even to both electrodes by the planar expansion of the coating.

Um die vorgenannte kapazitive Kopplung zu optimieren, ist bei Hochdruckentladungslampen mit Stromzuführungen, die mindestens eine im Material des Entladungsgefäßes eingebettete Molybdänfolie umfassen, die lichtdurchlässige, elektrisch leitfähige partielle Beschichtung derart ausgebildet, dass sie sich bis zu der mindestens einen Molybdänfolie erstreckt und eine der beiden Seiten der Molybdänfolie der Beschichtung zugewandt ist. Dadurch bilden die Molybdänfolie und die Beschichtung eine Art von Plattenkondensator, wobei das dazwischen angeordnete Material des Entladungsgefäßes, vorzugsweise Quarzglas, das Dielektrikum dieses Kondensators bildet.In order to optimize the aforementioned capacitive coupling, in high-pressure discharge lamps with power supply lines which comprise at least one molybdenum foil embedded in the material of the discharge vessel, the light-transmitting, electrically conductive partial coating is formed such that it extends as far as the at least one molybdenum foil and one of the two sides the molybdenum foil faces the coating. As a result, the molybdenum foil and the coating form a type of plate capacitor, wherein the material of the discharge vessel, preferably quartz glass, arranged therebetween forms the dielectric of this capacitor.

Bei Hochdruckentladungslampen, die für den Betrieb in horizontaler Lage, das heißt, mit in einer horizontalen Ebene angeordneten Elektroden vorgesehen sind, ist die lichtdurchlässige, elektrisch leitfähige Beschichtung vorteilhafter Weise auf einem unterhalb der Elektroden angeordneten Oberflächenbereich des Entladungsgefäßes beschränkt. Die Beschichtung reflektiert einen Teil der von der Entladung generierten Infrarotstrahlung in den Entladungsraum zurück und sorgt somit für eine selektive Erwärmung der kälteren, unterhalb der Elektroden liegenden Bereiche des Entladungsgefäßes, in denen sich die für die Lichterzeugung verwendeten Metallhalogenide sammeln. Dadurch kann die Effizienz der Lampe gesteigert werden, ohne die heißen, oberhalb der Elektroden liegenden Bereiche des Entladungsgefäßes ebenfalls zu erwärmen. Außerdem reduziert das Aufbringen der Beschichtung nur auf der kälteren Unterseite des Entladungsgefäßes die thermische Belastung der Beschichtung, so dass entsprechend geringere Anforderungen an die thermische Belastbarkeit der Beschichtungsmaterialien gestellt werden können.In the case of high-pressure discharge lamps which are provided for operation in a horizontal position, that is to say with electrodes arranged in a horizontal plane, the light-transmitting, electrically conductive coating is advantageously on one Restricted below the electrodes arranged surface region of the discharge vessel. The coating reflects a portion of the infrared radiation generated by the discharge back into the discharge space and thus provides for selective heating of the colder, lying below the electrodes areas of the discharge vessel in which collect the metal halides used for the light generation. As a result, the efficiency of the lamp can be increased without also heating the hot regions of the discharge vessel lying above the electrodes. In addition, the application of the coating only on the colder underside of the discharge vessel reduces the thermal load of the coating, so that correspondingly lower demands can be placed on the thermal resistance of the coating materials.

In der Figur 6 ist der Lichtstrom, gemessen in der Einheit Lumen, für zwei Fertigungschargen von unbeschichteten, quecksilberfreien, in horizontaler Betriebslage betriebenen Halogen-Metalldampf-Hochdruckentladungslampen mit einer Nennleistung von 35 Watt (Gruppe 1 und Gruppe 2) im Vergleich zu zwei Fertigungschargen von erfindungsgemäßen, mit der oben genannten Beschichtung versehenen, in horizontaler Betriebslage betriebenen quecksilberfreien Halogen-Metalldampf-Hochdruckentladungslampen mit einer Nennleistung von 35 Watt (Gruppe 3 und Gruppe 4) dargestellt. Die Lampen der Gruppen 3 und 4 waren während des Betriebs derart horizontal ausgerichtet, dass die erfindungsgemäße Beschichtung unterhalb der Elektroden-Verbindungsachse angeordnet war. Diese Lampen besitzen den in Figur 3 schematisch dargestellten Aufbau. Ihre Beschichtung hatte einen Widerstand pro Längeneinheit in der Größenordnung von 104 Ohm/cm. Aus der Figur 6 ist ersichtlich, dass die erfindungsgemäßen Lampen der Gruppen 3 und 4 einen höheren Lichtstrom und damit eine höhere Lichtausbeute als die unbeschichteten Lampen der Gruppen 1 und 2 aufweisen.In the FIG. 6 is the luminous flux, measured in units of lumens, for two production batches of uncoated, mercury-free, horizontally operated high pressure metal halide high pressure discharge lamps with a rated power of 35 watts (Group 1 and Group 2) compared to two production batches of the invention The above coating provided, operated in a horizontal operating position mercury-free metal halide high-pressure discharge lamps with a rated power of 35 watts (Group 3 and Group 4). The lamps of groups 3 and 4 were aligned horizontally during operation in such a way that the coating according to the invention was arranged below the electrode connection axis. These lamps have the in FIG. 3 schematically illustrated construction. Their coating had a resistance per unit length of the order of 10 4 ohms / cm. From the FIG. 6 It can be seen that the lamps according to the invention of groups 3 and 4 have a higher luminous flux and thus a higher luminous efficacy than the uncoated lamps of groups 1 and 2.

Außerdem besitzen die erfindungsgemäßen Lampen der Gruppen 3 und 4 noch einen weiteren Vorteil gegenüber den unbeschichteten Lampen der Gruppen 1 und 2. Wie aus der Figur 7 ersichtlich ist, weisen die erfindungsgemäßen Lampen der Gruppen 3 und 4 eine höhere Brennspannung auf, als die unbeschichteten Lampen der Gruppen 1 und 2. Dadurch ist bei den erfindungsgemäßen Lampen während des Lampenbetriebs ein entsprechend geringerer Lampenstrom erforderlich, um die gewünschte Nennleistung von 35 Watt zu erreichen. Dem entsprechend können die Betriebsgeräte für geringere Stromstärken dimensioniert werden.In addition, the lamps according to the invention of groups 3 and 4 have a further advantage over the uncoated lamps of groups 1 and 2. As shown in FIG. 7 It can be seen that the lamps according to the invention of groups 3 and 4 have a higher burning voltage than the uncoated lamps of the groups 1 and 2. Thus, a correspondingly lower lamp current is required in the lamps according to the invention during lamp operation to achieve the desired rated power of 35 watts. Accordingly, the operating devices can be dimensioned for lower currents.

Gemäß dem bevorzugten Ausführungsbeispiel der Erfindung ist die Hochdruckentladungslampe als einseitig gesockelte Hochdruckentladungslampe ausgebildet, deren Entladungsgefäß ein sockelnahes abgedichtetes Ende und ein sockelfemes abgedichtetes Ende besitzt, aus denen jeweils eine Stromzuführung herausgeführt für die Elektroden herausgeführt ist, wobei die aus dem sockelfemen Ende herausgeführte Stromzuführung mit einer zu dem Sockel zurückgeführten Stromrückführung verbunden ist. Bei dieser Hochdruckentladungslampe ist die lichtdurchlässige, elektrisch leitfähige Beschichtung, aufgrund der obigen Erläuterungen und weil diese Lampe in horizontaler Lage mit unterhalb der Elektroden verlaufender Stromrückführung betrieben wird, auf einem der Stromrückführung zugewandten Oberflächenbereich des Entladungsgefäßes angeordnet. Die vorgenannte Beschichtung ist bei dieser Hochdruckentladungslampe auf einen zwischen der Stromrückführung und der Verbindungsachse der Elektroden angeordneten Oberflächenbereich des Entladungsgefäßes begrenzt, der sich in Längsrichtung der Lampe zumindest über einen Teil des Entladungsraumes und einen Teil eines der beiden Enden des Entladungsgefäßes erstreckt. Der der Stromrückführung zugewandte Oberflächenbereich des Entladungsgefäßes spielt bei dem Einsatz der Hochdruckentladungslampe in einem Fahrzeugscheinwerfer für die Erzeugung der gewünschten Lichtverteilung nur eine untergeordnete Rolle. Daher ist auch eine geringfügige, durch die Beschichtung verursachte Lichtabsorption bedeutungslos.According to the preferred embodiment of the invention, the high-pressure discharge lamp is designed as a single-ended high-pressure discharge lamp whose discharge vessel has a socket-sealed end and a socket-sealed end from each of which a lead-out led out for the electrodes, wherein led out of the sockelfemen end power supply with a connected to the socket recycled current return. In this high-pressure discharge lamp, the translucent, electrically conductive coating, on the basis of the above explanations and because this lamp is operated in a horizontal position with current recirculation running below the electrodes, is arranged on a surface region of the discharge vessel facing the current return. In the case of this high-pressure discharge lamp, the abovementioned coating is limited to a surface region of the discharge vessel which is arranged between the current return and the connection axis of the electrodes and extends in the longitudinal direction of the lamp over at least part of the discharge space and a part of one of the two ends of the discharge vessel. The surface region of the discharge vessel facing the current return plays only a minor role in the use of the high-pressure discharge lamp in a vehicle headlight for generating the desired light distribution. Therefore, even a slight absorption of light caused by the coating is meaningless.

Die erfindungsgemäße Hochdruckentladungslampe ist aus Gründen der Sicherheit vorteilhafter Weise mit einem lichtdurchlässigen Außenkolben versehen, der zumindest den Entladungsraum des Entladungsgefäßes umschließt. Das Glas des Außenkolbens ist mit ultraviolette Strahlung absorbierenden Mitteln dotiert, um die von der Gasentladung emittierte UV-Strahlung zu absorbieren.For reasons of safety, the high-pressure discharge lamp according to the invention is advantageously provided with a light-permeable outer bulb which encloses at least the discharge space of the discharge vessel. The glass of the outer envelope is doped with ultraviolet radiation absorbing agents to absorb the UV radiation emitted by the gas discharge.

Der Zwischenraum zwischen Außenkolben und Entladungsgefäß ist vorteilhafterweise mit einer Gasfüllung versehen, die einen Kaltfülldruck im Bereich von 5 kPa bis 150 kPa besitzt. Kaltfülldruck bedeutet hier den Fülldruck gemessen bei einer Temperatur der Gasfüllung von 22 Grad Celsius. Durch die Gasfüllung werden gasförmige Verunreinigungen, wie zum Beispiel Wasserdampf und Kohlendioxid sowie Verbrennungsgase, die sich während der Lampengefäßabdichtung gebildet haben, entfernt, und der Temperaturgradient entlang des Entladungsgefäßes reduziert.The space between the outer bulb and the discharge vessel is advantageously provided with a gas filling having a cold filling pressure in the range of 5 kPa to 150 kPa. Cold filling pressure here means the filling pressure measured at a gas filling temperature of 22 degrees Celsius. The gas filling removes gaseous contaminants such as water vapor and carbon dioxide and combustion gases formed during the lamp vessel sealing, and reduces the temperature gradient along the discharge vessel.

Die vorgenannte Gasfüllung enthält vorteilhafterweise Inertgase, die keine chemische Reaktion mit dem Material der erfindungsgemäßen Beschichtung auf dem Entladungsgefäß eingehen. Vorzugsweise enthält die Gasfüllung daher Stickstoff oder mindestens ein Edelgas. Zusätzlich enthält die Gasfüllung vorteilhafterweise geringe Mengen von Sauerstoff, um einer Diffusion von Sauerstoff aus der vorzugsweise als dotierte Zinnoxidschicht bzw. ITO-Schicht ausgebildeten Beschichtung auf dem Entladungsgefäß entgegen zu wirken.The aforementioned gas filling advantageously contains inert gases which do not undergo any chemical reaction with the material of the coating according to the invention on the discharge vessel. The gas filling therefore preferably contains nitrogen or at least one noble gas. In addition, the gas filling advantageously contains small amounts of oxygen in order to counteract a diffusion of oxygen from the coating, which is preferably in the form of a doped tin oxide layer or ITO layer, on the discharge vessel.

III. Beschreibung des bevorzugten Ausführungsbeispiels III. Description of the Preferred Embodiment

Nachstehend wird die Erfindung anhand eines bevorzugten Ausführungsbeispiels näher erläutert. Es zeigen:

Figur 1
Eine Seitenansicht des Entladungsgefäßes der in Figur 3 abgebildeten Hochdruckentladungslampe gemäß des bevorzugten Ausführungsbeispiels
Figur 2
Eine Seitenansicht des Entladungsgefäßes der in Figur 3 abgebildeten Hochdruckentladungslampe gemäß des bevorzugten Ausführungsbeispiels in einer gegenüber Figur1 um einen Winkel von 90 Grad gedrehten Ansicht
Figur 3
Eine Seitenansicht der Hochdruckentladungslampe gemäß des bevorzugten Ausführungsbeispiels der Erfindung
Figur 4
Eine Seitenansicht des Entladungsgefäßes der in Figur 3 abgebildeten Hochdruckentladungslampe mit einer alternativen Beschichtung
Figur 5
Die Abhängigkeit der Durchbruchsspannung der Entladungsstrecke von dem Widerstand der partiellen Beschichtung
Figur 6
Der gemessene Lichtstrom für zwei Fertigungschargen von unbeschichteten Hochdruckentladungslampen und zwei Fertigungschargen von erfindungsgemäß beschichteten Hochdruckentladungslampen
Figur 7
Die Brennspannung von zwei Fertigungschargen von unbeschichteten Hochdruckentladungslampen und von zwei Fertigungschargen von erfindungsgemäß beschichteten Hochdruckentladungslampen
The invention will be explained in more detail below with reference to a preferred embodiment. Show it:
FIG. 1
A side view of the discharge vessel of in FIG. 3 illustrated high pressure discharge lamp according to the preferred embodiment
FIG. 2
A side view of the discharge vessel of in FIG. 3 illustrated high-pressure discharge lamp according to the preferred embodiment in an opposite Figur1 View rotated by 90 degrees
FIG. 3
A side view of the high pressure discharge lamp according to the preferred embodiment of the invention
FIG. 4
A side view of the discharge vessel of in FIG. 3 illustrated high pressure discharge lamp with an alternative coating
FIG. 5
The dependence of the breakdown voltage of the discharge gap on the resistance of the partial coating
FIG. 6
The measured luminous flux for two production batches of uncoated high-pressure discharge lamps and two production batches of inventively coated high-pressure discharge lamps
FIG. 7
The burning voltage of two production batches of uncoated high-pressure discharge lamps and of two production batches of coated high-pressure discharge lamps according to the invention

Bei dem in Figur 3 schematisch dargestellten bevorzugten Ausführungsbeispiel der Erfindung handelt es sich um eine quecksilberfreie Halogen-Metalldampf-Hochdruckentladungslampe mit einer elektrischen Leistungsaufnahme von ungefähr 35 Watt. Diese Lampe ist für den Einsatz in einem Fahrzeugscheinwerfer vorgesehen. Sie besitzt ein zweiseitig abgedichtetes Entladungsgefäß 30 aus Quarzglas mit einem Volumen von 24 mm3, in dem eine ionisierbare Füllung, bestehend aus Xenon und Halogeniden der Metalle Natrium, Scandium, Zink und Indium, gasdicht eingeschlossen ist. Im Bereich des Entladungsraumes 106 ist die Innenkontur des Entladungsgefäßes 10 kreiszylindrisch und seine Außenkontur ellipsoidförmig ausgebildet. Der Innendurchmesser des Entladungsraumes 106 beträgt 2,6 mm und sein Au-βendurchmesser beträgt 6,3 mm. Die beiden Enden 101, 102 des Entladungsgefäßes 10 sind jeweils mittels einer Molybdänfolien-Einschmelzung 103, 104 abgedichtet. Im Innenraum des Entladungsgefäßes 10 befinden sich zwei Elektroden 11, 12, zwischen denen sich während des Lampenbetriebes der für die Lichtemission verantwortliche Entladungsbogen ausbildet. Die Elektroden 11, 12 bestehen aus Wolfram. Ihre Dicke bzw. ihr Durchmesser beträgt 0,30 mm. Der Abstand zwischen den Elektroden 11, 12 beträgt 4,2 mm. Die Elektroden 11, 12 sind jeweils über eine der Molybdänfolien-Einschmelzungen 103, 104 und über den sockelfernen Stromzuführungsdraht 13 und die Stromrückführung 17 bzw. über den sockelseitigen Stromzuführungsdraht 14 elektrisch leitend mit einem elektrischen Anschluss des im wesentlichen aus Kunststoff bestehenden Lampensockels 15 verbunden. Das Entladungsgefäß 10 wird von einem gläsernen Außenkolben 16 umhüllt. Der Außenkolben 16 besitzt einen im Sockel 15 verankerten Fortsatz 161. Das Entladungsgefäß 10 weist sockelseitig eine rohrartige Verlängerung 105 aus Quarzglas auf, in der die sockelseitige Stromzuführung 14 verläuft:At the in FIG. 3 schematically illustrated preferred embodiment of the invention is a mercury-free metal halide high pressure discharge lamp with an electrical power consumption of about 35 watts. This lamp is intended for use in a vehicle headlight. It has a two-sided sealed discharge vessel 30 made of quartz glass with a volume of 24 mm 3 , in which an ionizable filling, consisting of xenon and halides of the metals sodium, scandium, zinc and indium, gas-tight enclosed. In the region of the discharge space 106, the inner contour of the discharge vessel 10 is circular-cylindrical and its outer contour is ellipsoidal. The inner diameter of the discharge space 106 is 2.6 mm and its outer diameter is 6.3 mm. The two ends 101, 102 of the discharge vessel 10 are each sealed by means of a molybdenum foil sealing 103, 104. In the interior of the discharge vessel 10 are two electrodes 11, 12, between which forms during the lamp operation responsible for the light emission discharge arc. The electrodes 11, 12 are made of tungsten. Their thickness or their diameter is 0.30 mm. The distance between the electrodes 11, 12 is 4.2 mm. The electrodes 11, 12 are in each case electrically conductively connected to one of the molybdenum foil melts 103, 104 and via the base-remote power supply wire 13 and the current return 17 or via the socket-side power supply wire 14 to an electrical connection of the lamp base 15, which consists essentially of plastic. The discharge vessel 10 is enveloped by a glass outer bulb 16. The outer bulb 16 has an extension 161 anchored in the base 15. The discharge vessel 10 has a tubular extension 105 made of quartz glass on the base side, in which the socket-side power supply 14 extends:

Der der Stromrückführung 17 zugewandte Oberflächenbereich des Entladungsgefä-βes 10 ist mit einer lichtdurchlässigen, elektrisch leitfähigen Beschichtung 107 versehen. Diese Beschichtung 107 erstreckt sich in Längsrichtung der Lampe über die gesamte Länge des Entladungsraumes 106 und über einen Teil, ca. 50 Prozent, der Länge der abgedichteten Enden 101, 102 des Entladungsgefäßes 10. Die Beschichtung 107 ist auf der Außenseite des Entladungsgefäßes 10 angebracht und erstreckt sich über ca. 5 Prozent bis 10 Prozent des Umfangs des Entladungsgefäßes 10. In den Figuren 1 und 2 sind zwei unterschiedliche Ansichten des Entladungsgefäßes 10 und der Beschichtung 107 der in Figur 3 abgebildeten Hochdruckentladungslampe dargestellt. Die Beschichtung 107 bedeckt hier in symmetrischer Weise beide Enden 101, 102 des Entladungsgefäßes 10. Die Beschichtung 107 besteht aus dotiertem Zinnoxid, beispielsweise aus mit Fluor oder Antimon dotiertem Zinnoxid oder beispielsweise aus mit Bor und / oder Lithium dotiertem Zinnoxid. Diese Hochdruckentladungslampe wird in horizontaler Lage betrieben, das heißt, mit in einer horizontalen Ebene angeordneten Elektroden 11, 12, wobei die Lampe derart ausgerichtet ist, dass die Stromrückführung 17 unterhalb des Entladungsgefäßes 30 und des Außenkolbens 16 verläuft.The surface region of the discharge vessel 10 facing the current return 17 is provided with a transparent, electrically conductive coating 107. This coating 107 extends in the longitudinal direction of the lamp over the entire length of the discharge space 106 and over a part, about 50 percent, of the length of the sealed ends 101, 102 of the discharge vessel 10. The coating 107 is mounted on the outside of the discharge vessel 10 and extends over about 5 percent to 10 percent of the circumference of the discharge vessel 10. In the Figures 1 and 2 are two different views of the discharge vessel 10 and the coating 107 of in FIG. 3 illustrated high-pressure discharge lamp shown. Here, the coating 107 covers both ends 101, 102 of the discharge vessel 10 in a symmetrical manner. The coating 107 consists of doped tin oxide, for example of tin oxide doped with fluorine or antimony or, for example, boron and / or lithium-doped tin oxide. This high-pressure discharge lamp is operated in a horizontal position, that is, with arranged in a horizontal plane electrodes 11, 12, wherein the lamp is oriented such that the current return path 17 extends below the discharge vessel 30 and the outer bulb 16.

Der Zwischenraum zwischen Außenkolben 16 und Entladungsgefäß 10 ist mit einem Inertgas mit einem Kaltfülldruck im Bereich von 5 kPa bis 150 kPa gefüllt. Dem Inertgas sind geringe Mengen von Sauerstoff beigemischt. Die Sauerstoffmenge ist so eingestellt, dass einerseits eine Diffusion von Sauerstoff aus der Zinnoxidschicht 107 verhindert wird und andererseits keine Oxidation der Dotierstoffe in der Zinnoxidbeschichtung 107 verursacht wird. Hierzu genügen bereits wenige ppm Sauerstoffgehalt, beispielsweise 100 ppm Sauerstoffgehalt (Gewichtsanteil) in dem Füllgas. Bei dem Inertgas handelt es sich vorzugsweise um Stickstoff oder um ein Edelgas oder ein Edelgasgemisch oder ein Stickstoff-Edelgasgemisch.The space between the outer bulb 16 and the discharge vessel 10 is filled with an inert gas having a cold filling pressure in the range of 5 kPa to 150 kPa. The inert gas is mixed with small amounts of oxygen. The amount of oxygen is adjusted so that, on the one hand, diffusion of oxygen from the tin oxide layer 107 is prevented and, on the other hand, no oxidation of the dopants in the tin oxide coating 107 is caused. For this purpose, already satisfy a few ppm oxygen content, for example, 100 ppm oxygen content (weight fraction) in the filling gas. The inert gas is preferably nitrogen or a noble gas or a noble gas mixture or a nitrogen-noble gas mixture.

Die Figur 4 zeigt das Entladungsgefäß 10 der in Figur 3 abgebildeten Hochdruckentladungslampe mit einer alternativen Beschichtung 107'. Die Beschichtung 107' unterscheidet sich von der oben beschriebenen Beschichtung 107 nur dadurch, dass die Beschichtung 107' sich in Längsrichtung der Lampe nur über die Länge des Entladungsraums 106 und ca. 50 Prozent der Länge des sockelnahen Endes 101 des Entladungsgefäßes 10 erstreckt.The FIG. 4 shows the discharge vessel 10 of in FIG. 3 pictured high-pressure discharge lamp with an alternative coating 107 '. The coating 107 'differs from the above-described coating 107 only in that the coating 107' extends in the longitudinal direction of the lamp only over the length of the discharge space 106 and about 50 percent of the length of the socket-proximal end 101 of the discharge vessel 10.

Die Erfindung beschränkt sich nicht auf die oben näher erläuterten Ausführungsbeispiele. Statt des oben genannten Materials kann die Beschichtung 107 auch aus einem anderen lichtdurchlässigen, elektrisch leitfähigen Material bestehen. Beispielsweise kann sie als so genannte ITO-Schicht, das heißt, eine Indium-Zinn-OxidSchicht, ausgebildet sein. Die ITO-Schicht kann beispielsweise 90 Gewichtsprozent Indiumoxid und 10 Gewichtsprozent Zinnoxid aufweisen. Außerdem kann die Beschichtung 107 oder 107' beispielsweise mit geeigneten Mitteln elektrisch an eine Zündvorrichtung gekoppelt sein, um über die Beschichtung 107, 107' die Hochdruckentladungslampe mit Spannungsimpulsen zum Zünden der Gasentladung in dem Entladungsraum 106 zu beaufschlagen. Die Erfindung kann ferner auch auf die konventionellen quecksilberhaltigen Halogen-Metalldampf-Hochdruckentladungslampen angewandt werden, um die oben beschriebenen Vorteile zu erzielen. Außerdem kann sich die Beschichtung 107 bzw. 107' über die gesamte Oberfläche des Entladungsgefäßes 10 erstrecken. Es ist aber auch möglich, dass sich die Beschichtung 107 bzw. 107' im Bereich des Entladungsraumes 106 beispielsweise nur über die Hälfte oder ein Drittel des Umfangs des Entladungsgefäßes 10 erstreckt. Im Bereich der Enden 101, 102 des Entladungsgefäßes 10 kann sich die Beschichtung 107 bzw. 107' beispielsweise über den gesamten Umfang des Entladungsgefäßes 10 oder auch nur über ein Drittel, die Hälfte bzw. einen anderen Bruchteil des Entladungsgefäßumfangs erstrecken. Es ist aber auch möglich, im Bereich der Enden 101, 102 keine transparente, elektrisch leitfähige Beschichtung des Entladungsgefäßes 10 vorzusehen. Die Beschichtung 107 bzw. 107' ist derart ausgebildet, dass sie als Zündhilfe und zur Erwärmung der kältesten Stelle des Entladungsgefäßes, des so genannten Cold Spot, dient. Der elektrische Widerstand der lichtdurchlässigen Beschichtung 107 bzw. 107' liegt im Bereich von 40000 Ohm bis 200000 Ohm.The invention is not limited to the embodiments explained in more detail above. Instead of the above-mentioned material, the coating 107 can also consist of another light-transmitting, electrically conductive material. For example, it may be formed as a so-called ITO layer, that is, an indium tin oxide layer. The ITO layer may comprise, for example, 90 weight percent indium oxide and 10 weight percent tin oxide. In addition, the coating 107 or 107 'can be electrically coupled, for example by suitable means, to an ignition device in order to apply to the high-pressure discharge lamp via the coating 107, 107' voltage pulses for igniting the gas discharge in the discharge space 106. The invention may also be applied to the conventional mercury-containing metal halide high-intensity discharge lamps in order to achieve the advantages described above. In addition, the coating 107 or 107 'may extend over the entire surface of the discharge vessel 10. But it is also possible that the coating 107 or 107 'extends in the region of the discharge space 106, for example, only over half or a third of the circumference of the discharge vessel 10. In the region of the ends 101, 102 of the discharge vessel 10, the coating 107 or 107 'may extend, for example, over the entire circumference of the discharge vessel 10 or even over a third, half or other fraction of the discharge vessel circumference. However, it is also possible to provide no transparent, electrically conductive coating of the discharge vessel 10 in the region of the ends 101, 102. The coating 107 or 107 'is designed such that it serves as a starting aid and for heating the coldest point of the discharge vessel, the so-called cold spot. The electrical resistance of the translucent coating 107 or 107 'is in the range of 40,000 ohms to 200,000 ohms.

Claims (9)

  1. High-pressure discharge lamp comprising a transparent discharge vessel (10), an ionizable fill which is arranged in the discharge space (106) of the discharge vessel (10) and electrodes (11, 12) extending into the discharge space (106) of the discharge vessel (10) for generating a gas discharge, and power supply lines (103, 13, 104, 14) which are passed out of the discharge vessel (10) for supplying energy to the electrodes (11, 12), wherein
    - the high-pressure discharge lamp has an electrically conductive, transparent layer (107), which acts as starting aid and is in the form of a partial coating of the surface of the discharge vessel (10), with the result that there is capacitive coupling between the coating (107) and at least one electrode (11) and/or power supply line (103, 13),
    - the high-pressure discharge lamp is provided with a base (15) at one end, and the discharge vessel (10) has a sealed end (102) close to the base and a sealed end (101) remote from the base, from which ends in each case one of the power supply lines (104, 14, 103, 13) for the electrodes (12, 11) is passed out, wherein the power supply line (103, 13) which is passed out of that end (101) of the discharge vessel (10) which is remote from the base is connected to a power return line (17) which is passed back to the base (15), and wherein the coating (107) is limited to a surface region of the discharge vessel (10) which is arranged between the power return line (17) and the connecting axis of the electrodes (11, 12),
    - the coating (107) extends in the longitudinal direction of the lamp at least over the entire length of the discharge space (106) and part of one of the two ends (101) of the discharge vessel (10),
    characterized in that
    the at least one power supply line (103, 13) comprises at least one molybdenum foil (103) which is embedded in the material of the discharge vessel (10), and the coating (107) extends up to the at least one molybdenum foil (103), wherein the at least one molybdenum foil (103) is oriented such that one of its two sides faces the coating (107), with the result that the molybdenum foil (103) and the coating (107) form a type of plate capacitor.
  2. High-pressure discharge lamp according to Claim 1, characterized in that the coating (107) is arranged on the outer surface of the discharge vessel (10).
  3. High-pressure discharge lamp according to Claim 1, which is intended for operation in the horizontal position with electrodes (11, 12) arranged in a horizontal plane, characterized in that that surface region of the discharge vessel (10) which is provided with the coating (107) is arranged beneath the electrodes (11, 12).
  4. High-pressure discharge lamp according to one or more of Claims 1 to 3, characterized in that the coating (107) consists of doped tin oxide.
  5. High-pressure discharge lamp according to one of Claims 1 to 4, characterized in that the resistance per unit length of the coating (107), measured between two points arranged at a distance on the layer, is in the range of order of magnitude of from 103 ohms/cm to 105 ohms/cm.
  6. High-pressure discharge lamp according to one or more of the preceding claims, characterized in that the high-pressure discharge lamp is provided with a transparent outer bulb (16), which surrounds at least the discharge space (106) of the discharge vessel (10).
  7. High-pressure discharge lamp according Claim 6, characterized in that the interspace between the outer bulb (16) and the discharge vessel (10) is provided with a gas fill which has a cold filling pressure in the range of from 5 kPa to 150 kPa.
  8. High-pressure discharge lamp according to Claim 7, characterized in that the gas fill contains nitrogen or at least a noble gas.
  9. High-pressure discharge lamp according to Claim 8, characterized in that the gas fill additionally contains oxygen.
EP05017122.2A 2004-09-07 2005-08-05 High-pressure discharge lampe Not-in-force EP1632985B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE200410043636 DE102004043636A1 (en) 2004-09-07 2004-09-07 Mercury-free halogen metal-vapor high-pressure discharge lamp for vehicle headlight, has discharge vessel provided partially with coating, so that capacitive coupling is produced between coating and electrode and/or power supply lines
DE200410050303 DE102004050303A1 (en) 2004-10-14 2004-10-14 Mercury-free halogen metal-vapor high-pressure discharge lamp for vehicle headlight, has discharge vessel provided partially with coating, so that capacitive coupling is produced between coating and electrode and/or power supply lines
DE200410053011 DE102004053011A1 (en) 2004-10-29 2004-10-29 Mercury-free halogen metal-vapor high-pressure discharge lamp for vehicle headlight, has discharge vessel provided partially with coating, so that capacitive coupling is produced between coating and electrode and/or power supply lines
DE200410057852 DE102004057852A1 (en) 2004-11-30 2004-11-30 Mercury-free halogen metal-vapor high-pressure discharge lamp for vehicle headlight, has discharge vessel provided partially with coating, so that capacitive coupling is produced between coating and electrode and/or power supply lines

Publications (2)

Publication Number Publication Date
EP1632985A1 EP1632985A1 (en) 2006-03-08
EP1632985B1 true EP1632985B1 (en) 2014-06-25

Family

ID=35311524

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05017122.2A Not-in-force EP1632985B1 (en) 2004-09-07 2005-08-05 High-pressure discharge lampe

Country Status (4)

Country Link
US (1) US7705540B2 (en)
EP (1) EP1632985B1 (en)
JP (1) JP4956829B2 (en)
KR (1) KR101216458B1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007042369A (en) * 2005-08-02 2007-02-15 Harison Toshiba Lighting Corp Metal-halide lamp and lighting device
DE102006007218A1 (en) * 2006-02-15 2007-08-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH High pressure discharge lamp
DE102006010803A1 (en) * 2006-03-07 2007-09-13 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH A method for producing a discharge lamp and a lamp produced by such a method
EP2041773B1 (en) 2006-07-07 2010-11-24 Philips Intellectual Property & Standards GmbH Gas-discharge lamp
USRE45342E1 (en) 2007-03-12 2015-01-20 Koninklijke Philips N.V. Low power discharge lamp with high efficacy
DE102007018614A1 (en) 2007-04-19 2008-10-23 Osram Gesellschaft mit beschränkter Haftung High pressure discharge lamp and vehicle headlight with high pressure discharge lamp
JP2008293912A (en) * 2007-05-28 2008-12-04 Phoenix Denki Kk High-voltage discharge lamp and light source device using the same
WO2008155706A1 (en) * 2007-06-21 2008-12-24 Koninklijke Philips Electronics N.V. High-pressure discharge lamp comprising a starter antenna
DE102007043165A1 (en) 2007-09-11 2009-03-12 Osram Gesellschaft mit beschränkter Haftung High pressure discharge lamp for use in vehicle headlight, has ionizable filling containing xenon halides of zinc, where portion of zinc halide in ionizable filling is smaller or equal to specific value of discharge vessel volume
DE102008009144A1 (en) 2008-02-14 2009-08-20 Osram Gesellschaft mit beschränkter Haftung Gas discharge ignition method for mercury free halogen-metal vapor- high pressure discharge lamp of motor vehicle headlight, involves producing alternating field with frequency equal/larger than twenty kilohertz in medium for ignition
DE102008014096A1 (en) 2008-03-05 2009-09-10 Osram Gesellschaft mit beschränkter Haftung Tungsten electrode for high-pressure discharge lamps and high-pressure discharge lamp with a tungsten electrode
DE102008026521A1 (en) 2008-06-03 2009-12-10 Osram Gesellschaft mit beschränkter Haftung Thorium-free high-pressure discharge lamp for high-frequency operation
DE102008057703A1 (en) 2008-11-17 2010-05-20 Osram Gesellschaft mit beschränkter Haftung Mercury-free discharge lamp
JP5493694B2 (en) * 2009-06-25 2014-05-14 東芝ライテック株式会社 Discharge lamp
DE102009052999A1 (en) 2009-11-12 2011-05-19 Osram Gesellschaft mit beschränkter Haftung High pressure discharge lamp
DE102010028156A1 (en) 2010-04-23 2011-10-27 Osram Gesellschaft mit beschränkter Haftung High pressure discharge lamp
DE102010028222A1 (en) * 2010-04-27 2011-10-27 Osram Gesellschaft mit beschränkter Haftung Method for operating a gas discharge lamp and gas discharge lamp system
TWI417474B (en) * 2010-05-31 2013-12-01 明志科技大學 A bulb and a lighting fixture capable of reducing electromagnetic radiation
DE102010062193A1 (en) 2010-11-30 2012-05-31 Osram Ag glass product
DE102010063755A1 (en) 2010-12-10 2012-06-14 Osram Ag High pressure discharge lamp
DE102011003141A1 (en) 2011-01-26 2012-07-26 Osram Ag High pressure discharge lamp
DE202011103862U1 (en) 2011-07-29 2011-10-24 Osram Ag High pressure discharge lamp
DE102013223708A1 (en) 2013-11-20 2015-05-21 Osram Gmbh High-pressure discharge lamp for motor vehicle headlights
DE102014204932A1 (en) 2014-03-17 2015-09-17 Osram Gmbh High pressure discharge lamp
DE102015200162A1 (en) 2015-01-08 2016-07-14 Osram Gmbh High pressure discharge lamp
DE102015211915A1 (en) 2015-06-26 2016-12-29 Osram Gmbh High-pressure discharge lamp for motor vehicle headlights

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660851A (en) * 1992-08-07 1994-03-04 Matsushita Electric Ind Co Ltd Metal halide lamp and its manufacture
US6445129B1 (en) * 1996-03-16 2002-09-03 Robert Bosch Gmbh Gas discharge lamp, in particular for motor-vehicle headlights
US6456005B1 (en) * 2000-10-31 2002-09-24 General Electric Company Materials and methods for application of conducting members on arc tubes

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE717783C (en) * 1939-08-31 1942-02-23 Patra Patent Treuhand On the inside wall of the vessel, a transparent and conductive ignition lightening coating for electric discharge lamps or tubes
NL277952A (en) * 1962-05-02
JPS5157979A (en) * 1974-11-15 1976-05-20 Hitachi Ltd KOATSUKINZOKUJOKIHODENTO OYOBI SONOSEIZOHOHO
US4701664A (en) * 1986-01-09 1987-10-20 Becton, Dickinson And Company Mercury arc lamp suitable for inclusion in a flow cytometry apparatus
US4918352A (en) * 1988-11-07 1990-04-17 General Electric Company Metal halide lamps with oxidized frame parts
CA2081573A1 (en) * 1990-05-22 1991-11-23 Scott R. Hunter Arc discharge lamp having reduced sodium loss
JPH065259A (en) * 1992-06-18 1994-01-14 Hamamatsu Photonics Kk Metallic vapor discharge tube
US5844350A (en) * 1992-12-18 1998-12-01 General Electric Company Coated arc tube for sodium vapor lamp
US5955846A (en) * 1995-03-15 1999-09-21 Matsushita Electric Industrial Co., Ltd. Discharge lamp lighting device and a method for lighting a discharge lamp
US5610469A (en) * 1995-03-16 1997-03-11 General Electric Company Electric lamp with ellipsoidal shroud
US5702179A (en) * 1995-10-02 1997-12-30 Osram Sylvania, Inc. Discharge lamp having light-transmissive conductive coating for RF containment and heating
JP3224993B2 (en) * 1996-11-05 2001-11-05 松下電器産業株式会社 High pressure discharge lamp and method of manufacturing the same
US6268697B1 (en) * 1997-12-16 2001-07-31 Fuji Photo Film Co., Ltd. Flash discharge tube having exterior trigger electrode
JP2000090879A (en) * 1998-09-14 2000-03-31 Osuramu Melco Kk Metal halide lamp
DE19844548A1 (en) 1998-09-29 2000-03-30 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Discharge lamp and lighting system with a discharge lamp
KR100558939B1 (en) * 2001-02-19 2006-03-10 웨스트 덴키 가부시키가이샤 Electric discharge tube, method of manufacturing the tube, stroboscopic device using the tube, and camera
KR100464709B1 (en) * 2001-03-12 2005-01-06 가부시키가이샤 고이토 세이사꾸쇼 Discharge lamp device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0660851A (en) * 1992-08-07 1994-03-04 Matsushita Electric Ind Co Ltd Metal halide lamp and its manufacture
US6445129B1 (en) * 1996-03-16 2002-09-03 Robert Bosch Gmbh Gas discharge lamp, in particular for motor-vehicle headlights
US6456005B1 (en) * 2000-10-31 2002-09-24 General Electric Company Materials and methods for application of conducting members on arc tubes

Also Published As

Publication number Publication date
JP2006080078A (en) 2006-03-23
US20060049764A1 (en) 2006-03-09
EP1632985A1 (en) 2006-03-08
KR20060051078A (en) 2006-05-19
KR101216458B1 (en) 2012-12-28
US7705540B2 (en) 2010-04-27
JP4956829B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
EP1632985B1 (en) High-pressure discharge lampe
EP1984936B1 (en) High-pressure discharge lamp
DE10354868B4 (en) Mercury-free arc tube for a discharge lamp unit
WO2005112074A2 (en) High-pressure discharge lamp
EP2499657B1 (en) Mercury-free high-pressure discharge lamp with a reduced amount of zinc halide
DE10204691C1 (en) Mercury-free, high-intensity, high pressure gas discharge lamp for vehicle headlights, has infra-red reflecting coating on lower wall to promote vaporization
EP2147456B1 (en) High-pressure discharge lamp and vehicle headlight with high-pressure discharge lamp
EP2347430B1 (en) Mercury-free discharge lamp
DE102004043636A1 (en) Mercury-free halogen metal-vapor high-pressure discharge lamp for vehicle headlight, has discharge vessel provided partially with coating, so that capacitive coupling is produced between coating and electrode and/or power supply lines
EP2529391B1 (en) High-pressure discharge lamp
DE102004057852A1 (en) Mercury-free halogen metal-vapor high-pressure discharge lamp for vehicle headlight, has discharge vessel provided partially with coating, so that capacitive coupling is produced between coating and electrode and/or power supply lines
EP2499651A1 (en) High-pressure discharge lamp having a single socket
DE102004050303A1 (en) Mercury-free halogen metal-vapor high-pressure discharge lamp for vehicle headlight, has discharge vessel provided partially with coating, so that capacitive coupling is produced between coating and electrode and/or power supply lines
DE102004053011A1 (en) Mercury-free halogen metal-vapor high-pressure discharge lamp for vehicle headlight, has discharge vessel provided partially with coating, so that capacitive coupling is produced between coating and electrode and/or power supply lines
EP3031071B1 (en) High-pressure discharge lamp for vehicle headlights
EP3072146B1 (en) High-intensity discharge lamp for motor vehicle headlights
WO2009147041A2 (en) Thorium-free high-pressure discharge-type lamp for high-frequency operation
DE3321479A1 (en) HIGH PRESSURE DISCHARGE LAMP
DE2639276A1 (en) Sodium vapour high pressure discharge lamp - uses tungsten grid for starting to allow reduced operation voltage
WO2008116493A1 (en) Filament lamp with a coiled filament with encased end
DE102007043165A1 (en) High pressure discharge lamp for use in vehicle headlight, has ionizable filling containing xenon halides of zinc, where portion of zinc halide in ionizable filling is smaller or equal to specific value of discharge vessel volume
DE19808365A1 (en) Metal halide lamp
DE102015200162A1 (en) High pressure discharge lamp
WO2009109566A1 (en) Tungsten electrode for high pressure discharge lamps and high pressure discharge lamp comprising a tungsten electrode
WO2014032925A1 (en) High-pressure discharge lamp having electrodes that are provided with an electron emitter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060821

17Q First examination report despatched

Effective date: 20060925

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140219

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BOENIGK, MICHAEL

Inventor name: GRUNDMANN, DIRK

Inventor name: BEDYNEK, FLORIAN

Inventor name: SCHIMKE, CONRAD

Inventor name: REINERS, THOMAS DR.

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BEDYNEK, FLORIAN

Inventor name: SCHIMKE, CONRAD

Inventor name: GRUNDMANN, DIRK

Inventor name: REINERS, THOMAS DR.

Inventor name: BOENIGK, MICHAEL

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 675142

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005014407

Country of ref document: DE

Effective date: 20140807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140926

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140625

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141027

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141025

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005014407

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140805

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140925

26N No opposition filed

Effective date: 20150326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140805

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 675142

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140805

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140625

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050805

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180827

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190822

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005014407

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210302