EP1629703A1 - Verfahren zur strukturierten metallisierung von polymeren und keramischen trägermaterialien und aktivierbare verbindung zur verwendung in diesem verfahren - Google Patents

Verfahren zur strukturierten metallisierung von polymeren und keramischen trägermaterialien und aktivierbare verbindung zur verwendung in diesem verfahren

Info

Publication number
EP1629703A1
EP1629703A1 EP04738625A EP04738625A EP1629703A1 EP 1629703 A1 EP1629703 A1 EP 1629703A1 EP 04738625 A EP04738625 A EP 04738625A EP 04738625 A EP04738625 A EP 04738625A EP 1629703 A1 EP1629703 A1 EP 1629703A1
Authority
EP
European Patent Office
Prior art keywords
compound
carrier
weight
parts
activating compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04738625A
Other languages
English (en)
French (fr)
Inventor
Mario SCHRÖDNER
Hans-Klaus Roth
Gulnara Nasmutdinova
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jenoptik Automatisierungstechnik GmbH
Original Assignee
Jenoptik Automatisierungstechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jenoptik Automatisierungstechnik GmbH filed Critical Jenoptik Automatisierungstechnik GmbH
Publication of EP1629703A1 publication Critical patent/EP1629703A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1608Process or apparatus coating on selected surface areas by direct patterning from pretreatment step, i.e. selective pre-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1607Process or apparatus coating on selected surface areas by direct patterning
    • C23C18/1612Process or apparatus coating on selected surface areas by direct patterning through irradiation means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1813Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by radiant energy
    • C23C18/182Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • C23C18/1831Use of metal, e.g. activation, sensitisation with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1803Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces
    • C23C18/1824Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment
    • C23C18/1827Pretreatment of the material to be coated of metallic material surfaces or of a non-specific material surfaces by chemical pretreatment only one step pretreatment
    • C23C18/1834Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1862Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by radiant energy
    • C23C18/1868Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • C23C18/1879Use of metal, e.g. activation, sensitisation with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1875Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment only one step pretreatment
    • C23C18/1882Use of organic or inorganic compounds other than metals, e.g. activation, sensitisation with polymers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/22Roughening, e.g. by etching
    • C23C18/24Roughening, e.g. by etching using acid aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/185Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method by making a catalytic pattern by photo-imaging
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/121Metallo-organic compounds

Definitions

  • the invention relates to a method for structured metallization of a carrier made of a polymeric or ceramic material for the production of conductive structures for microelectronic applications. It includes the application of a layer of an optically activatable compound to the carrier material, which can be done by spin coating, a doctor blade process, spraying, a printing technique, dipping or another suitable process, the selective irradiation with laser or another suitable light source and the subsequent adhesive metallization in the area of the conductive structures to be produced. Depending on the carrier material used, a pretreatment to improve the adhesive strength can be advantageous.
  • the invention also relates to the composition of an optically activatable compound.
  • EP 0965656 Al a method for producing a surface activation a palladium compound, which contains a photo-labile group as ligands, described on a substrate, 'which consists of an alumina ceramic wafer with a surface roughness of 0.8 microns.
  • This compound is photochemically active so that it decomposes to the metal when it is exposed to UV radiation of a suitable wavelength.
  • An excimer lamp is specified as the UV source; Compound absorbs in the 210-260 nm and 290-330 nm range
  • DE 4124686 AI discloses a process on a carrier material using laser radiation energy, in which copper is deposited from the gas phase, which contains an organic Cu-metal complex. disadvantage This method is that the structured deposition of copper has to be carried out in a vacuum chamber under an inert gas atmosphere. The high costs for equipment and technical workload are an obstacle to the extensive use of this method within normal production processes.
  • US Pat. No. 6,319,564 B1 describes a method for producing conductive structures on a non-conductive carrier material.
  • the heavy metal complex is applied to the entire microporous surface of the carrier material and covers the surface of the carrier material in the area of the conductive structures.
  • the conductive structures are easier to manufacture than conventional conductive structures. But the application of this method is limited to microporous surfaces and to the use of a KrF excimer laser (248 nm).
  • a method for the selective metallization of non-conductive polymeric or ceramic carrier materials comprises the process steps, coating with an optically activatable transition metal complex compound, excitation of this compound with light (e.g. laser) in order to achieve activation on the surfaces to be metallized, and subsequent electroless metallization.
  • the coating can be a spin coating, a doctor blade process, spraying, a printing technique, dipping or another suitable method.
  • the function of the surface-activating compound is to prepare a surface ⁇ for activation by radiation and the subsequent electroless metallization with a desired conductive material.
  • the activated areas are provided with an adhesive metallization by the electroless metallization process.
  • Ceramic materials such as aluminum oxide ceramic,
  • Barium titanate ceramics and lead zirconate titanate ceramics as well as plastics such as polyester (PET, PBT), polyimide, polyamide, PMMA, ABS, polycarbonate, liquid crystalline polyester (LCP), polyphenylene sulfide as well as mixtures of these plastics with other plastics in question.
  • the method according to the invention enables the production of firmly adhering fine conductive structures of uniform layer thickness with a minimum width of up to 20 ⁇ m and good conductivity with short exposure times and is simple and convenient to use.
  • the surface-activating compound consists of a non-conductive transition metal complex based on palladium, platinum, gold, copper or silver as an activating compound (actually an active substance on which chemical metallization takes place) and a dicarboxylic acid derivative (i.e. a compound from the group of unsaturated carboxylic acid derivatives), e.g. Methacrylic anhydride, preferably maleic anhydride, as crosslinking agent and melamine resins as complexing agents.
  • Palladium diacetate in solution forms a palladium complex with an organic complexing agent. This is indicated by a shift in the absorption band in the UV / Vis spectrum as a result of charge transfer from the ligand to the metal. It is known that stable polyfunctional chelating agents with several ligand atoms such as N, O, S, P are used as organic complexing agents.
  • an etherified melamine / formaldehyde resin melamine resin is the organic complexing agent.
  • the crosslinker In the structuring process under the influence of light (laser), the crosslinker has the task of crosslinking the reactive components with one another and / or with the substrate material in order to ensure adhesion to the support.
  • the surface-activating compound is photochemically active in such a way that it decomposes in the presence of light of suitable wavelength and intensity at room temperature to form the metal, which is the electroless metallization initiated. However, it does not decompose in normal ambient light.
  • the metal-ligand bonds are weakened by the laser radiation, which enables the subsequent cleavage or decomposition of the connection to the metal in the region of the conductive structures to be produced. It is further assumed that the irradiated areas of the surface-activating layer form a network in the form of a polymer coating into which palladium cores are incorporated by the addition of maleic anhydride. It is possible to perform the cleavage without heating the complex. This avoids the melting of the carrier material in the work area
  • the surface-activating compound has a complex compound with palladium as the metal.
  • the irradiation is carried out with an Nd: YAG laser at a wavelength of 355 nm and the subsequently electrolessly deposited metal is copper.
  • the surface activation can be carried out at atmospheric air pressure.
  • the activation with excimer laser can take place at a wavelength of 248 nm.
  • the selective radiation for splitting off the transition metal core from the metal complex only in the areas to be metallized can be done by means of flat applied laser radiation and mask technology as well as by means of focused laser beam.
  • pretreatment can be carried out in a known manner, e.g. Etching with chromic sulfuric acid, etc., can be advantageous for achieving the desired adhesive strength.
  • Laser radiation with short wavelengths e.g. with excimer laser
  • the metallization takes place without wild growth, with the formation of very sharp contours of the conductor tracks. It is particularly suitable for the production of two- or three-dimensional circuit board structures.
  • a Kapton® 500H polyimide film is to be used as the carrier material.
  • a suitable amount of Kapton® 500H polyimide film is poured into 10% hydrochloric acid and kept at higher temperatures for 10-15 minutes (boiled if necessary). After washing with distilled water and drying in air, the carriers are ready for the next step. The intermediate storage of the beams until the next work step is possible for up to 1 month.
  • a polyester film with a rough surface (average roughness 0.7 ⁇ m) or other carrier materials with a porous surface do not require this pretreatment.
  • the surface-activating compound 0.8-2.0 parts by weight, preferably 1.0-1.3 parts by weight, of palladium diacetate are dissolved in 80 parts by weight of tetrahydrofuran, and 0.5-1.5 parts by weight, preferably 1.0-1.2 parts by weight of the organic complexing agent
  • Melamine resin made from etherified melamine / formaldehyde resins is simply dissolved in 20 parts by weight of tetrahydrofuran.
  • the two solutions are then mixed and 0.2-0.5 parts by weight of maleic anhydride are added. The mixture is ready for further processing.
  • the resulting surface-activating compound is spin-coated onto a support at a speed of 1500 min "1, a layer of 80 - 100 nm to produce thickness.
  • the coated supports are irradiated through a mask with a KrF excimer laser at a wavelength of 248 nm.
  • the surface activated in this way can be used directly for electroless copper metallization.
  • the coated and selectively irradiated carriers are placed in a MACDermid XD-6157-T copper solution for 2-10 min. Thereafter, the supports are rinsed under running deionized water to remove the remaining copper bath residues to be removed and then dried at 80 ° C in an inert atmosphere for about an hour.
  • the tape test (according to US standard: ASTM B 905, edition: 2000 Standard Test Method for Assessing the Adhesion of Metallic and Inorganic Coatings by the Mechanized Tape Test) was successful for the applied copper structure, i.e. good adhesion of the metal structure to the substrate was demonstrated.
  • 0.8-2.0 parts by weight, preferably 0.8-1.0 parts by weight of palladium diacetate, are dissolved in 50 parts by weight of tetrahydrofuran to produce the surface-activating compound.
  • 0.5 to 15 parts by weight, preferably 8 to 10 parts by weight of the organic complexing agent melamine resin from etherified melamine / formaldehyde resins are dissolved in 50 parts by weight of tetrahydrofuran.
  • the two solutions are then mixed and 0.2-0.5 parts by weight of maleic anhydride are added. The mixture is ready for further processing.
  • the resulting surface-activating compound is spun onto the carrier, here made of aluminum oxide, at a speed of 350 min -1 and then dried at 60 ° C. for 15 min.
  • the coated carriers are irradiated in a focused manner by means of frequency-doubled Nd: YAG lasers at a wavelength of 532 nm and structured directly.
  • the laser power is 5 W and the writing speed is 20 - 50 mm / s.
  • the surface activated in this way can be used directly for electroless copper metallization. However, it may also be necessary to swivel the surface for 1 min by removing residues from non-irradiated areas in a solvent (tetrahydrofuran).
  • the coated and selectively irradiated carriers are placed in a MACDermid XD-6157-T copper solution for 10-20 min and metallized at 70 ° C. without current.
  • the supports are then rinsed under running deionized water to remove the remaining copper bath residues and then dried at 80 ° C. in an inert atmosphere for 45 minutes.
  • 0.8-2.0 parts by weight of palladium diacetate, preferably 1.0-1.3 parts by weight, in 50 parts by weight of a solvent mixture of PGMEA are used to prepare the surface-activating compound
  • Melamine resin from etherified melamine / formaldehyde resins preferably 8-10 parts by weight, dissolved in 50 parts by weight of the solvent mixture.
  • the two solutions are then mixed and 0.2-0.5 parts by weight of methacrylic anhydride are added.
  • the mixture is ready for further processing.
  • the surface-activating compound formed is spun onto the support, here made of polybutylene terephthalate, at a speed of 350 min -1 and then dried at 60 ° C. for 15 min.
  • the coated supports are irradiated using an argon ion laser at a wavelength of 488 nm.
  • the surface activated in this way can be used directly for electroless copper metallization. However, it may also be necessary to clean the surface for 1 min by removing residues from unexposed areas using solvent (tetrahydrofuran).
  • the coated and selectively irradiated carriers are placed in a MACDermid XD-6157-T copper solution for 10-20 min and metallized at 70 ° C. without current.
  • the supports are then rinsed under running deionized water to remove the remaining copper bath residues and then dried at 80 ° C. in an inert atmosphere for 45 minutes.
  • the tape test was successful for the applied copper structure, i.e. good adhesion of the metal structure to the substrate was demonstrated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemically Coating (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung gut haftender leitfähiger Strukturen auf nichtleitfähigen Trägern, insbesondere zur Anwendung in elektrischen Schaltkreisen, sowie eine oberflächenaktivierende Verbindung zur Verwendung in dem Verfahren. Das Verfahren umfasst die Verfahrensschritte: Auftragen einer oberflächenaktivierenden Verbindung, deren selektive Bestrahlung und eine anschließende stromlose Metallisierung der bestrahlten Bereiche zur Ausbildung metallischer Strukturen.

Description

Verfahren zur strukturierten Metallisierung von polymeren und keramischen Trägermaterialien und aktivierbare Verbindung zur Verwendung in diesem Verfahren
Die Erfindung betrifft ein Verfahren zur strukturierten Metallisierung eines Trägers aus einem polymeren oder keramischen Material zur Herstellung von leitfähigen Strukturen für mikroelektronische Anwendungen. Es umfasst das Aufbringen einer Schicht, aus einer optisch aktivierbaren Verbindung, auf das Trägermaterial, welches durch eine Schleuderbeschichtung (Spin-coating) , einen Rakelprozess, ein Besprühen, eine Drucktechnik, Tauchen oder ein anderes geeignetes Verfahren erfolgen kann, die selektive Bestrahlung mit Laser oder einer anderen geeigneten Lichtquelle und die anschließende haftfeste Metallisierung im Bereich der herzustellenden leitfähigen Strukturen. In Abhängigkeit des verwendeten Trägermaterials kann eine Vorbehandlung zur Verbesserung der Haftfestigkeit vorteilhaft sein.
Die Erfindung betrifft auch die Zusammensetzung einer optisch aktivierbaren Verbindung.
Es ist bekannt, dass dünne Palladium-Acetat-Filme durch Lasereinwirkung zur Ablagerung von Palladium und damit als Katalysatoren für nachfolgende stromlose Beschichtung mit anderen Metallen, vor allem Kupfer, verwendet werden können. Gemäß Artikel „VUV Synchrotron radiation processing of thin palladium acetate spin-on films for metallic surface patterning" aus V.46 (1990), S. 153-157 Applied Surface Science, kann dieser sogenannte Palladiumablagerungsprozess unter Nutzung verschiedener Lichtquellen durchgeführt werden. Im Artikel „LAD - ein neuartiges lasergestütztes Beschichtungsverfahren für Feinstleitermetallisierungen" Nr. 10, V81 (1990), S.3661 „Galvanotechnik" wurde gefunden, dass bei der oben beschriebenen Methode (Nutzung eines dünnen Filmes aus Palladiumacetatlösung und nachfolgende Belichtung mit Excimerlaser bei λ = 248 nm und nachfolgende selektive stromlose Metallisierung) sehr feine Leiterstrukturen erzeugt werden können. Jedoch können keine ausreichenden Haftfestigkeiten erzielt werden (siehe hierzu auch
WO 99/05895) , bzw. nur mit sehr hohen Keimdichten, die wiederum Wildwuchs in den unbelichteten Bereichen fördern. Letzterem muss mit aufwendigen Spülprozessen, bei denen die unbelichteten Schichten entfernt werden, entgegen gewirkt werden.
In der EP 0965656 AI ist eine Methode zur Herstellung einer Oberflächenaktivierung mit einer Palladiumverbindung, welche eine photolabile Gruppe als Liganden enthält, auf einem Substrat beschrieben, ' welches aus einem Aluminiumoxid-Keramik-Wafer mit einer Oberflächenrauigkeit von 0,8 μm besteht. Diese Verbindung ist photochemisch aktiv, so dass sie sich zum Metall zersetzt, wenn sie UV- Strahlung geeigneter Wellenlänge ausgesetzt wird. - Als UV-Quelle wird eine Excimerlampe angegeben; Verbindung absorbiert im Bereich 210-260 nm und 290- 330 nm
Nachteil: lange Bestrahlungszeiten (5 bis 20 min) und Erwärmung des Substrates (bis 80°C nach 10 min)
Die DE 4124686 AI offenbart einen Prozess auf einem Trägermaterial unter Nutzung von Laserstrahlungsenergie, in welchem Kupfer aus der Gasphase, welche einen organischen Cu-Metallkomplex enthält, abgeschieden wird. Nachteil dieser Methode ist, dass die strukturierte Abscheidung von Kupfer in einer Vakuumkammer unter Inertgas - Atmosphäre durchgeführt werden muss. Die hohen Kosten für Apparate und technischen Arbeitsaufwand sind ein Hindernis für eine ausgedehnte Nutzung dieser Methode innerhalb üblicher Produktionsabläufe.
In der US 6,319,564 Bl ist eine Methode zur- Herstellung leitfähiger Strukturen auf einem nichtleitfähigen Trägermaterial beschrieben. Der Schwermetallkomplex wird auf die gesamte mikroporöse Oberfläche des Trägermaterials aufgebracht und bedeckt die Oberfläche des Trägermaterials im Bereich der leitfähigen Strukturen. Die leitfähigen Strukturen sind gemäß dieser Erfindung leichter herzustellen als herkömmliche leitfähige Strukturen. Aber die Anwendung dieser Methode ist auf mikroporöse Oberflächen sowie auf die Verwendung eines KrF-Excimerlaser (248 nm) begrenzt.
Es ist Aufgabe der Erfindung, ein Verfahren zur selektiven Metallisierung von polymeren und keramischen Trägermaterialien zu entwickeln, welches eine verbesserte Haftung der abgelagerten metallischen Strukturen gewährleistet und das zugleich kostengünstig ist und damit ausgedehnt genutzt werden kann.
Es ist auch Aufgabe der Erfindung eine verbesserte Verbindung zur Anwendung in einem erfindungsgemäßen Verfahren zu finden.
Diese Aufgabe wird für ein Verfahren zur strukturierten Metallisierung von polymeren und keramischen Trägermaterialien gemäß dem Hauptanspruch 1 und für eine Verbindung zur Verwendung in diesem Verfahren gemäß Hauptanspruch 13 gelöst. Vorteilhafte Ausführungen sind in den Unteransprüchen beschrieben.
Ein erfindungsgemäßes Verfahren zur selektiven Metallisierung von nichtleitenden polymeren oder keramischen Trägermaterialien umfasst die Verfahrensschritte, Beschichtung mit einer optisch aktivierbaren Übergangsmetallkomplexverbindung, Anregung dieser Verbindung mit Licht (z.B. Laser), um die Aktivierung auf den zu metallisierenden Flächen zu erreichen, und nachfolgende stromlose Metallisierung. Die Beschichtung kann eine Schleuderbeschichtung (Spin- coating) , ein Rakelprozeß, ein Besprühen, eine Drucktechnik, Tauchen oder ein anderes geeignetes Verfahren sein.
Die oberflächenaktivierende Verbindung hat die Aufgabe, eine Oberfläche ■ für die Aktivierung durch Strahlung und die anschließende stromlose Metallisierung mit einem gewünschten leitfähigen Material aufzubereiten. Die aktivierten Bereiche werden durch den stromlosen Metallisierungsprozess mit einer haftfesten Metallisierung versehen. Als nichtleitende Trägermaterialien kommen keramische Materialien wie Aluminiumoxidkeramik,
Siliziumnitridkeramik, Aluminiumnitridkeramik,
Bariumtitanatkeramik und Blei-Zirkonat-Titanat-Keramik sowie Kunststoffe wie Polyester (PET, PBT) , Polyimid, Polyamid, PMMA, ABS, Polycarbonat, flüssigkristalline Polyester (LCP) , Polyphenylensulfid sowie Mischungen dieser Kunststoffe mit anderen Kunststoffen in Frage. Das erfindungsgemäße Verfahren ermöglicht die Herstellung festhaftender feiner leitfähiger Strukturen gleichmäßiger Schichtdicke mit einer minimalen Breite bis zu 20 μm und guter Leitfähigkeit bei geringen Belichtungszeiten und ist einfach und bequem in der Anwendung.
Die oberflächenaktivierende Verbindung besteht aus einem nichtleitenden Übergangsmetallkomplex auf der Basis von Palladium, Platin, Gold, Kupfer oder Silber als Aktivierungsverbindung (eigentlich wirksame Substanz an der die chemische Metallisierung stattfindet) und einem Dicarbonsäureabkömmling (d.h. eine Verbindung aus der Gruppe der ungesättigten Karbonsäurederivate), z.B. Methacrylsäureanhydrid, bevorzugt Maleinsäureanhydrid, als Vernetzer sowie Melaminharzen als Komplexbildner.
Palladiumdiacetat in Lösung bildet mit einem organischen Komplexbildner einen Palladiumkomplex. Darauf weist eine Verschiebung der Absorptionsbande im UV/Vis-Spektrum hin, als Resultat eines Ladungstransfers vom Liganden zum Metall. Es ist bekannt, dass stabile polyfunktionelle Chelatbildner mit mehreren Ligantoratomen wie N, O, S, P als organische Komplexbildner verwendet werden. In der vorliegenden Erfindung ist ein Melaminharz aus veräthertem Melamin/Formaldehydharz der organische Komplexbildner. Der Vernetzer hat die Aufgabe im Prozess der Strukturierung unter Einfluss von Licht (Laser) die Reaktivkomponenten untereinander und/oder mit dem Substratmaterial zu vernetzen, um die Haftung auf dem Träger sicherzustellen.
Die oberflächenaktivierende Verbindung ist photochemisch aktiv derart, dass sie sich in Gegenwart von Licht geeigneter Wellenlänge und Intensität bei Raumtemperatur zum Metall zersetzt, welches die stromlose Metallisierung initiiert. Sie zersetzt sich aber nicht bei normalem Umgebungslicht .
Durch die Laserbestrahlung werden die Metall-Ligand- Bindungen geschwächt, was die nachfolgende Spaltung oder Zersetzung der Verbindung zum Metall im Bereich der zu erzeugenden leitfahigen Strukturen ermöglicht. Es wird weiterhin angenommen, dass die bestrahlten Flachen der oberflachenaktivierenden Schicht durch die Zugabe von Maleinsaureanhydrid ein Netzwerk bilden in Form einer Polymerbeschichtung, in die Palladiumkerne eingebaut sind. Es ist möglich, die Spaltung ohne Erwärmung des Komplexes durchzufuhren. So wird das Aufschmelzen des Tragermaterials im Arbeitsbereich vermieden
Bei einer besonders bevorzugten Methode weißt die oberflachenaktivierende Verbindung eine Komplexverbindung mit Palladium als Metall auf. Die Bestrahlung erfolgt mit einem Nd:YAG-Laser bei einer Wellenlange von 355 nm und das nachfolgend stromlos abgeschiedene Metall ist Kupfer. Die Oberflachenaktivierung kann bei atmosphärischem Luftdruck durchgeführt werden.
In einer anderen Ausgestaltungsvariante kann die Aktivierung mit Excimerlaser bei einer Wellenlange von 248 nm erfolgen.
Vergleichbare Ergebnisse werden auch mit einem Argonionenlaser bei einer Wellenlange von 488 nm erzielt.
Die selektive Bestrahlung zur Abspaltung des Ubergangsmetallkerns vom Metallkomplex nur in den zu metallisierenden Bereichen kann sowohl mittels flachig aufgebrachter Laserstrahlung und Maskentechnik als auch mittels fokussiertem Laserstrahl erfolgen.
Mit dem erfindungsgemäßen Verfahren können auf gebräuchlichen KunststoffOberflächen, wie
Spritzgussartikeln oder Folien, haftfeste Metallisierungen erzeugt werden.
Bei Verwendung von Trägermaterialien mit nicht ausreichender Haftung kann eine Vorbehandlung in bekannter Weise, z.B. Ätzen mit Chromschwefelsäure etc., für das Erreichen der gewünschten Haftfestigkeit von Vorteil sein.
Die Laserbestrahlung mit kurzen Wellenlängen, z.B. mit Excimerlaser, ermöglicht sehr feine, scharfe Strukturen. In diesem Fall findet die Metallisierung ohne wildes Wachstum unter Ausbildung sehr scharfer Konturen der Leiterbahnen statt. Es ist besonders geeignet zur Herstellung von zwei- oder dreidimensionalen Leiterplattenstrukturen.
Die Erfindung soll nachfolgend anhand von Ausführungsbeispielen näher erläutert werden.
In einem ersten Ausführungsbeispiel soll eine Polyimidfolie Kapton® 500H als Trägermaterial verwendet werden. Zur Vorbehandlung wird eine geeignete Menge der Polyimidfolie Kapton® 500H, in 10%-ige Salzsäure gegeben und 10-15 min bei höheren Temperaturen gehalten (ggf. gekocht) . Nach dem Waschen mit destilliertem Wasser und Trocknen an Luft sind die Träger für den nächsten Schritt vorbereitet. Die Zwischenlagerung der Träger bis zum nächsten Arbeitsgang ist bis zu 1 Monat möglich. Eine Polyesterfolie mit rauer Oberfläche (mittlere Rauhigkeit 0,7 μm) oder andere Trägermaterialien mit poröser Oberfläche benötigen diese Vorbehandlung nicht.
Zur Herstellung der oberflachenaktivierenden Verbindung werden 0,8 - 2,0 Gewichtsanteile vorzugsweise 1,0 - 1,3 Gewichtsanteile Palladiumdiacetat in 80 Gewichtsanteilen Tetrahydrofuran gelöst und 0,5 - 1,5 Gewichtsanteile vorzugsweise 1,0 - 1,2 Gewichtsanteile des organischen Komplexbildners Melaminharz aus verätherten Melamin/Formaldehydharzen werden einfach in 20 Gewichtsanteile Tetrahydrofuran gelöst. Beide Lösungen werden dann gemischt und 0,2 - 0,5 Gewichtsanteile Maleinsaureanhydrid werden zugeben. Die Mischung ist zur Weiterverarbeitung bereit.
Die entstandene oberflächenaktivierende Verbindung wird auf einen Träger mit einer Drehzahl von 1500 min"1 aufgeschleudert, um eine Schicht von 80 - 100 nm Dicke herzustellen.
Die beschichteten Träger werden durch eine Maske mit einem KrF-Excimerlaser bei einer Wellenlänge von 248 nm bestrahlt. Die in dieser Weise aktivierte Oberfläche kann direkt zur stromlosen Kupfermetallisierung verwendet werden. Es kann jedoch von Vorteil sein, die Oberfläche durch Waschen von Rückständen nicht bestrahlter Folie mittels Lösungsmittel z.B. Tetrahydrofuran, zu reinigen.
Als nächstes werden die beschichteten und selektiv bestrahlten Träger für 2 - 10 min in eine MACDermid XD- 6157-T Kupferlösung gegeben. Danach werden die Träger unter fließendem deionisiertem Wasser gespült, um die verbleibenden Kupferbadreste zu entfernen und anschließend bei 80°C in inerter Atmosphäre ca. eine Stunde getrocknet.
Mit dem konkret beschriebenen Verfahrensablauf wurde eine 600 nm dicke Kupferschicht in den selektiv bestrahlten Bereichen ausgebildet.
Der Tape-Test (entsprechend US-Norm: ASTM B 905, Ausgabe:2000 Standard Test Methode for Assessing the Adhesion of Metallic and Inorganic Coatings by the Mechanized Tape Test) verlief für die aufgebrachte Kupferstruktur erfolgreich, d.h. es wurde eine gute Haftung der Metallstruktur auf dem Substrat nachgewiesen.
In einem zweiten Ausführungsbeispiel werden zur Herstellung der oberflachenaktivierenden Verbindung 0,8 - 2,0 Gewichtsanteile vorzugsweise 0,8 - 1,0 Gewichtsanteile Palladiumdiacetat in 50 Gewichtsanteilen Tetrahydrofuran gelöst. Des weiteren werden 0,5 - 15 Gewichtsanteile vorzugsweise 8 - 10 Gewichtsanteile des organischen Komplexbildners Melaminharz aus veräthertem Melamin/Formaldehydharzen in 50 Gewichtsanteilen Tetrahydrofuran gelöst. Beide Lösungen werden dann gemischt und es werden 0,2 - 0,5 Gewichtsanteile Maleinsaureanhydrid zugeben. Die Mischung ist zur Weiterverarbeitung bereit.
Die entstandene oberflächenaktivierende Verbindung wird auf den Träger, hier aus Aluminiumoxid, mit einer Drehzahl von 350 min-1 aufgeschleudert und anschließend 15 min bei 60 °C getrocknet .
Die beschichteten Träger werden mittels frequenzverdoppelten Nd:YAG-Laser bei einer Wellenlänge von 532 nm fokussiert bestrahlt und dabei direkt strukturiert. Die Laserleistung beträgt hierbei 5 W und es wird mit einer Schreibgeschwindigkeit von 20 - 50 mm/s gearbeitet. Die in dieser Weise aktivierte Oberfläche kann direkt zur stromlosen Kupfermetallisierung verwendet werden. Es kann jedoch auch nötig sein, die Oberfläche durch Entfernen von Rückständen von nicht bestrahlten Bereichen in einem Lösungsmittel { Tetrahydrofuran) für 1 min zur Reinigung geschwenkt .
Als nächstes werden die beschichteten und selektiv bestrahlten Träger für 10 - 20 min in eine MACDermid XD- 6157-T Kupferlösung gegeben und bei 70°C stromlos metallisiert. Danach werden die Träger unter fließendem deionisiertem Wasser gespült, um die verbleibenden Kupferbadreste zu entfernen und anschließend bei 80 °C in inerter Atmosphäre 45 min getrocknet.
Bei der Durchführung des Verfahrens gemäß dem zweiten Ausführungsbeispiel wurde eine 400 nm dicke Kupferschicht in den selektiv bestrahlten Bereichen ausgebildet.
In einem dritten Ausführungsbeispiel werden zur Herstellung der oberflachenaktivierenden Verbindung 0,8 - 2,0 Gewichtsanteile Palladiumdiacetat, vorzugsweise 1,0 - 1,3 Gewichtsanteile, in 50 Gewichtsanteilen eines Lösungsmittelgemisches aus PGMEA
(Propylenglycolmonomethyletheracetat) und NMP (N-Methyl-2- pyrrolidon) , im Verhältnis 3:1 gelöst. Des weiteren werden
5 - 15 Gewichtsanteile des organischen Komplexbildners
Melaminharz aus verätherten Melamin/Formaldehydharzen, vorzugsweise 8 - 10 Gewichtsanteile, in 50 Gewichtsteilen des Lösungsmittelgemisches gelöst. Beide Lösungen werden dann gemischt und es werden 0,2 - 0,5 Gewichtsanteile Methacrylsäureanhydrid zugeben. Die Mischung ist zur Weiterverarbeitung bereit. Die entstandene oberflächenaktivierende Verbindung wird auf den Träger, hier aus Polybutylentherephthalat, mit einer Drehzahl von 350 min-1 aufgeschleudert und anschließend 15 min bei 60°C getrocknet.
Die beschichteten Träger werden mittels eines Argonionenlasers bei einer Wellenlänge von 488 nm bestrahlt. Die in dieser Weise aktivierte Oberfläche kann direkt zur stromlosen Kupfermetallisierung verwendet werden. Es kann jedoch auch nötig sein, die Oberfläche durch Entfernen von Rückständen nicht bestrahlter Bereiche mittels Lösungsmittel (Tetrahydrofuran) für 1 min zu reinigen.
Als nächstes werden die beschichteten und selektiv bestrahlten Träger für 10 - 20 min in eine MACDermid XD- 6157-T Kupferlösung gegeben' und bei 70°C stromlos metallisiert. Danach werden die Träger unter fließendem deionisiertem Wasser gespült, um die verbleibenden Kupferbadreste zu entfernen und anschließend bei 80°C in inerter Atmosphäre 45 min getrocknet.
Der Tape-Test verlief für die aufgebrachte Kupferstruktur erfolgreich, d.h. es wurde eine gute Haftung der Metallstruktur auf dem Substrat nachgewiesen.

Claims

Patentansprüche
1. Verfahren zur strukturierten Metallisierung von polymeren und keramischen Trägermaterialien bei dem - eine oberflächenaktivierbare Verbindung, welche einen nichtleitenden organischen Übergangsmetallkomplex als oberflächenaktivierende Verbindung, eine Dicarbonsäure als Vernetzer und Melaminharz als Komplexbildner enthält, auf das Trägermaterial mittels geeigneter Beschichtung aufgebracht wird,
- die oberflächenaktivierbare Verbindung selektiv mit Licht bestrahlt wird, und anschließend eine stromlose Metallisierung der bestrahlten Bereiche zur Ausbildung metallischer Strukturen in einem chemisch-reduktiven Bad durchgeführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass zur Aufrauung der Oberfläche des Trägers aus einem polymeren Material diese chemisch, physikalisch oder thermisch vorbehandelt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Vorbehandlung des Trägers durch Atzen der Trägeroberfläche erfolgt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass die Ätzlösung in Wasser verdünnte Salzsäurelösung ist .
5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Ätzprozess durch Erhitzen der Ätzlösung stattfindet .
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Übergangsmetallkomplex Palladium enthält.
7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die nichtleitende oberflächenaktivierbare Verbindung in einem Lösungsmittel gelöst ist und auf dem Träger in Form einer Flüssigkeit appliziert wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass das Lösungsmittel Tetrahydrofuran ist.
9. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Licht eine Laserbestrahlung mit einer Wellenlänge kleiner 600 nm ist.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Laserstrahlung mit einem frequenzverdoppelnden oder verdreifachenden Nd:YAG-Laser (λ= 532 nm bzw. 355 nm) erzeugt wird.
11. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Laserstrahlung mit einem Argonionenlaser (λ = 488 nm) erzeugt wird.
12. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Entfernung der nichtbestrahlten oberflachenaktivierenden Verbindung nach der Bestrahlung in Tetrahydrofuran vorgenommen wird.
13. Oberflächenaktivierende Verbindung zur Aktivierung der
Oberfläche eines polymeren oder keramischen Trägeres zur stromlosen Metallisierung mit einem nichtleitenden organischen Übergangsmetallkomplex als Aktivierungsverbindung, eine Dicarbonsäure als Vernetzer und Melaminharz als Komplexbildner.
14. Oberflächenaktivierende Verbindung nach Anspruch 13, dadurch gekennzeichnet, dass die Aktivierungsverbindung ein Übergangsmetallkomplex auf der Basis von Palladium ist und die Dicarbonsäure als Vernetzer Maleinsaureanhydrid ist.
15. Oberflächenaktivierende Verbindung nach Anspruch 14, dadurch gekennzeichnet, dass die Verbindung bezogen auf eine Losungsmittelanteil von 100 Gewichtsanteile 0,8-2,0 Gewichtsanteile Palladiumdiacetat, 5-15 Gewichtsanteile Melaminharz und 0,2-0,5 Gewichtsanteile Maleinsaureanhydrid enthält.
EP04738625A 2003-06-05 2004-06-04 Verfahren zur strukturierten metallisierung von polymeren und keramischen trägermaterialien und aktivierbare verbindung zur verwendung in diesem verfahren Withdrawn EP1629703A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10325520 2003-06-05
PCT/DE2004/001171 WO2004110118A1 (de) 2003-06-05 2004-06-04 Verfahren zur strukturierten metallisierung von polymeren und keramischen trägermaterialien und aktivierbare verbindung zur verwendung in diesem verfahren

Publications (1)

Publication Number Publication Date
EP1629703A1 true EP1629703A1 (de) 2006-03-01

Family

ID=33494853

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04738625A Withdrawn EP1629703A1 (de) 2003-06-05 2004-06-04 Verfahren zur strukturierten metallisierung von polymeren und keramischen trägermaterialien und aktivierbare verbindung zur verwendung in diesem verfahren

Country Status (6)

Country Link
US (1) US20070092638A1 (de)
EP (1) EP1629703A1 (de)
JP (1) JP2006526889A (de)
CN (1) CN1799293A (de)
DE (1) DE112004001472D2 (de)
WO (1) WO2004110118A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8974869B2 (en) * 2010-01-26 2015-03-10 Robert Hamilton Method for improving plating on non-conductive substrates
US8703602B2 (en) * 2010-12-02 2014-04-22 Qualcomm Incorporated Selective seed layer treatment for feature plating
TW201352095A (zh) * 2012-06-11 2013-12-16 Unimicron Technology Corp 線路板及其製作方法
CN103517568B (zh) * 2012-06-19 2016-12-21 欣兴电子股份有限公司 线路板及其制作方法
DE102014101522A1 (de) * 2014-02-07 2015-08-13 3D Schilling Gmbh Verfahren und Vorrichtung zur selektiven Aktivierung mindestens eines Bereiches einer Oberfläche eines dielektrischen Substrats
JP6344476B2 (ja) * 2014-08-29 2018-06-20 株式会社村田製作所 多層回路基板

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3814506A1 (de) * 1988-04-29 1989-11-09 Bayer Ag Verfahren zum metallisieren von substratoberflaechen
WO1995031886A1 (fr) * 1994-05-13 1995-11-23 Dai Nippon Printing Co., Ltd. Plaquette a circuit imprime multicouche et sa production, et plaque de transfert et sa production
US6210537B1 (en) * 1995-06-19 2001-04-03 Lynntech, Inc. Method of forming electronically conducting polymers on conducting and nonconducting substrates
DE19723734C2 (de) * 1997-06-06 2002-02-07 Gerhard Naundorf Leiterbahnstrukturen auf einem nichtleitenden Trägermaterial und Verfahren zu ihrer Herstellung
DE59914360D1 (de) * 1998-12-10 2007-07-12 Lpkf Laser & Electronics Ag Verfahren zur herstellung von leiterbahnstrukturen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004110118A1 *

Also Published As

Publication number Publication date
US20070092638A1 (en) 2007-04-26
WO2004110118A1 (de) 2004-12-16
DE112004001472D2 (de) 2006-04-20
JP2006526889A (ja) 2006-11-24
CN1799293A (zh) 2006-07-05

Similar Documents

Publication Publication Date Title
US6194785B1 (en) Method for circuitizing through-holes by photo-activated seeding
DE19723734C2 (de) Leiterbahnstrukturen auf einem nichtleitenden Trägermaterial und Verfahren zu ihrer Herstellung
EP0081129B1 (de) Verfahren zur Aktivierung von Substratoberflächen für die stromlose Metallisierung
DE3538652C2 (de)
EP0082438B1 (de) Verfahren zur Aktivierung von Substratoberflächen für die stromlose Metallisierung
DE1917474B2 (de) Verfahren zum Herstellen metallischer Muster auf einer Unterlage
JP2000503817A (ja) 非導電性支持体材料の上に配置されたパターン導体構造物、特に微細なパターン導体構造物およびそれの製造方法
DE3202484A1 (de) Metallisierte halbleiter und verfahren zu ihrer herstellung
EP0727925A1 (de) Verfahren zur strukturierten Metallisierung der Oberfläche von Substraten
EP0259754A2 (de) Flexible Schaltungen
DE2809842A1 (de) Verfahren zur abscheidung von metall auf einer oberflaeche
EP0153683A2 (de) Verfahren zur Herstellung von Leiterplatten
DE69838420T2 (de) Verfahren zur modifizierung von oberflächen
EP1629703A1 (de) Verfahren zur strukturierten metallisierung von polymeren und keramischen trägermaterialien und aktivierbare verbindung zur verwendung in diesem verfahren
DE19642922C2 (de) Aktivierende katalytische Lösung zur stromlosen Metallisierung und Verfahren zur Vorbereitung eines Substrats zur stromlosen Metallisierung
DE2362382B2 (de) Basismaterial für Leiterplatten
KR100292652B1 (ko) 무전해도금용활성화촉매액및무전해도금방법
DE3139168A1 (de) "strukturierte chemisch-reduktive metallabscheidung"
US5746809A (en) Activating catalytic solution for electroless plating
EP0926262B1 (de) Verfahren zur selektiven Abscheidung einer Metallschicht
EP0195332A2 (de) Elektrische Leiterplatten
DE10015214C1 (de) Verfahren zur Metallisierung eines Isolators und/oder eines Dielektrikums
DE19957130A1 (de) Metallisierungsverfahren für Dielektrika
EP0197323A2 (de) Elektrische Leiterplatten
JPH0480374A (ja) プリント配線板の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091231