EP1628976A1 - Neue pyridopyrazine und deren verwendung als kinase-inhibitoren - Google Patents

Neue pyridopyrazine und deren verwendung als kinase-inhibitoren

Info

Publication number
EP1628976A1
EP1628976A1 EP04733782A EP04733782A EP1628976A1 EP 1628976 A1 EP1628976 A1 EP 1628976A1 EP 04733782 A EP04733782 A EP 04733782A EP 04733782 A EP04733782 A EP 04733782A EP 1628976 A1 EP1628976 A1 EP 1628976A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
aryl
heteroaryl
cycloalkyl
heterocyclyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04733782A
Other languages
English (en)
French (fr)
Inventor
Eckhard Günther
Eckhard Claus
Irene Seipelt
Ulf-R. Rapp
Ludmilla Wixler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aeterna Zentaris GmbH
Original Assignee
Zentaris AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zentaris AG filed Critical Zentaris AG
Publication of EP1628976A1 publication Critical patent/EP1628976A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/14Drugs for dermatological disorders for baldness or alopecia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Dermatology (AREA)
  • Epidemiology (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

Die Erfindung betrifft neue Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel (I), deren Herstellung und Verwendung als Arzneimittel, insbesondere zur Behandlung von malignen und anderen, auf pathologischen Zellproliferationen beruhenden Erkrankungen.

Description

Neue Pyridopyrazine und deren Verwendung als Kinase-Inhibitoren
Die Erfindung betrifft Kinase-Inhibitoren vom Typ der Pyrido[2,3-b]pyrazine, deren Herstellung und Verwendung als Arzneimittel insbesondere zur Behandlung von malignen und anderen, auf pathologischen Zellproliferationen beruhenden Erkrankungen, wie z. B. Restenose, Psoriasis, Arteriosklerose und Leberzirrhose.
Die Aktivierung von Proteinkinasen ist ein zentrales Ereignis bei zellulären Signaltransduktions-Prozessen. Eine aberrante Kinaseaktivierung wird bei diversen Krankheitszuständen beobachtet. Daher ist die gezielte Inhibition solcher konstitutiv aktiven Kinasen ein fundamentales therapeutisches Ziel.
Die Phosphorylierung von Proteinen wird im Allgemeinen durch extrazelluläre Signale initiiert und stellt einen universellen Mechanismus für die Kontrolle von verschiedenen zellulären Ereignissen, wie z. B. metabolischen Prozessen, Zellwachstum, Zellmigration, Zelldifferenzierung, Membrantransport und Apoptose dar. Für die Pro- teinphosphorylierung ist die Proteinfamilie der Kinasen verantwortlich. Diese Enzyme katalysieren den Phosphat-Transfer zu spezifischen Substratproteinen. Basierend auf der Substratspezifität werden die Kinasen in zwei Hauptklassen, die Tyrosinkina- sen und die Serin/Threonin-Kinasen unterteilt. Sowohl die Rezeptor-Tyrosin-kinasen als auch die cytoplasmatischen Tyrosin- und Serin/Threoninkinasen sind wichtige Proteine der Signaltransduktion der Zelle. Eine Überexpression bzw. Entartung dieser Proteine spielt eine wichtige Rolle bei auf pathologischen Zellproliferationen beruhenden Erkrankungen. Dazu zählen unter anderem Stoffwechselerkrankun-gen, Erkrankung des Bindegewebes und der Blutgefäße, sowie maligne und benigne Tumorerkrankungen. Bei der Tumorentstehung und Entwicklung treten sie häufig als Onkogene d.h. als aberrante, konstitutiv aktive Kinaseproteine auf. Die Folgen dieser übermäßigen Kinaseaktivierung sind z. B. das unkontrollierte .Zellwachstum und der reduzierte Zelltod. Auch die Stimulation von tumorinduzierten Wachstumsfaktoren kann Ursache für die Überstimulation von Kinasen sein. Die Entwicklung von Kina- seinhibitoren ist daher von besonderem Interesse für alle pathogenen Prozesse, die durch Kinasen beeinflusst werden. Die Erfindung ist daher darauf ausgerichtet, neue Verbindungen zu schaffen, die als Inhibitoren von solchen konstitutiv aktiven Kinasen, insbesondere den Rezeptor- Tyrosinkinasen als auch den cytoplasmatischen Tyrosin- und Serin/Threoninkinasen geeignet sind.
In 6-Position substituierte Pyrido[2,3-b]pyrazin-Derivate finden als pharmakologisch aktive Verbindungen und als Synthesebausteine in der pharmazeutischen Chemie vielfältige Verwendung. Beispielsweise werden in der Patentschrift WO99/17759 Py- rido[2,3-b]pyrazine beschrieben, die in 6-Position unter anderem Alkyl-, Aryl- und He- teroarylsubstituierte Carbamate tragen. Diese Verbindungen sollen dazu verwendet werden, die Funktion von Serin-Threonin-Proteinkinasen zu modulieren. Weiterhin werden in dem Patent WO 03/024448 A2 von Delorme et al. Amid- und Acrylamid-substituierte Pyrido[2,3-b]pyrazine beschrieben, die als zusätzliche Substi- tuenten auch Carbamate enthalten und als Histon Deacetylase-Inhibitoren zur Behandlung von Zellproliferationserkrankungen verwendet werden können. In einer weiteren Publikation (C. Temple, Jr.; J. Med. Chem. 1990, 3044-3050) wird an einem Beispiel die Synthese eines 6-Ethylcarbamat-substituierten Pyrido[2,3- b]pyrazin-Derivates beschrieben. Eine Antitumorwirkung ist weder offenbart noch nahegelegt.
Die Synthese von weiteren Derivaten des 6-Ethylcarbamat-substituierten Pyrido[2,3- b]pyrazins wird in einer Veröffentlichung von R. D. Elliott beschrieben (J. Org. Chem. 1968, 2393-2397). Eine biologische Wirkung dieser Verbindungen ist weder beschrieben noch nahegelegt.
In der Publikation von C.Temple, Jr. J. Med. Chem. 1968,1216-1218 wird die Synthese und Untersuchung von 6-Ethylcarbamat-substituierten Pyrido[2,3-b]pyrazinen als potentielle Antimalaria-Wirkstoffe beschrieben. Eine Antitumorwirkung ist weder offenbart noch nahegelegt.
Es wurde jetzt überraschend gefunden, daß neue Verbindungen aus der Reihe der Pyrido[2,3-b]pyrazine, welche in 6-Position z. B. mit Harnstoff-, Thiohamstoff-, Gua- nidin- oder Amidingruppen substituiert sind, zur Herstellung von Arzneimitteln und insbesondere zur Behandlung von malignen und anderen, auf pathologischen Zellproliferationen beruhenden Erkrankungen geeignet sind. Gemäß diesem Aspekt werden in der vorliegenden Anmeldung neue Verbindungen aus der Reihe der Pyri- do[2,3-b]pyrazine gemäß der allgemeinen Formel I beschrieben,
I
worin die Substituenten R1 -R3 folgende Bedeutung haben
R1 und R2 können unabhängig voneinander:
(i) Wasserstoff
(ii) Hydroxyl
(iii) Alkyl, wobei der Alkylrest gesättigt ist und aus 1 bis 8 C-Atomen bestehen kann,
(iv) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3) CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH- Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2) SH, S-Alkyl, S-Aryl, S- Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O- Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl- Heteroaryl, O-Alkyl-OH, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(0)-Aryl, OC(0)-Heteroaryl, OS02-Alkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Aryl, C(O)-Heteroaryl, CO2H, C02-Alkyl, CO2-Cycloalkyl, C02- Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO -Alkyl- Heterocyclyl, CO2-AlkyI-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(0)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-CycIoalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2> SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, S020-Aryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, und die Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl-, Heteroaryl-, Alkyl-Cycloalkyl-, Alkyl-Heterocyclyl-, Alkyl-Aryl- und Al- kyl-Heteroarylsubstituenten ihrerseits wiederum substituiert sein können,
(v) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)- Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHS02-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, OH, OCF3, O-Alkyl, O- Cycloalkyl, O-Aryl, O-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)- Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, CO2H, CO2-Alkyl, CO2- Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, C02-Heteroaryl, C(O)-NH2, C(O)NH- Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH- Heteroaryl, C(O)N(Alkyl)2, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO3H, S02O- Alkyl, S02O-Aryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- o- der mehrfach, gleich oder verschieden substituiert sein kann, und die Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroarylsubstituenten ihrerseits wiederum substituiert sein können, bedeutet.
R3 kann:
-C(Y)NR4R5 bedeuten, wobei Y = O, S und R4 und R5 unabhängig voneinander
(i) Wasserstoff, (ii) unsubstituiertes oder substituiertes Alkyl, wobei der Alkylrest mit F, Cl, Br, I, CF3) CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2- Heteroaryl, N02, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O- Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(0)-Alkyl, OC(O)-Cycloalkyl, OC(O)- Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, CO2H, CO2-Alkyl, C02- Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, C02-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(0)NH-Cycloalkyl, C(0)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(0)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2,
C(O)N(Cycloalkyl)2j C(O)N(Aryl)2l C(0)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, S02- Alkyl, S02-Aryl, SO2NH2, SO3H, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(iii) unsubstituiertes oder substituiertes Cycloalkyl, wobei der Cycloalkylrest mit F, Cl, Br, I, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHS02-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, OH, O- Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Aryl, O- Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)- Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2- Heteroaryl, CO2H, CO2-Alkyl, C02-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH- Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Aryl, C(O)NH- Alkyl-Heteroaryl, C(O)N(Alkyl)2, Alkyl, oder Aryl ein- oder mehrfach, gleich o- der verschieden substituiert sein kann, (iv) unsubstituiertes oder substituiertes Heterocyclyl, wobei der Heterocyclylrest mit OH, O-Alkyl, O-Aryl, NH-Alkyl, NH-Aryl, Alkyl, Alkyl-Aryl oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(v) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH- Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(0)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2) SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O- Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)- Heterocyclyl, OC(O)-Aryl, OC(0)-Heteroaryl, OSO2-Alkyl, OS02- Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, C(O)- Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2- Heterocyclyl, C02-Aryl, C02-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(0)NH- Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(0)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO- Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, S02NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(vi) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, OH, OCF3j O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, OC(O)- Alkyl, OC(O)-Cycloalkyl, OC(0)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OS02-Alkyl, OS02-Cycloalkyl, OS02-Aryl, OS02-Heteroaryl, C(O)-Alkyl, C(O)- Aryl, C(0)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, C02-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2- Alkyl-aryl, C02-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl- Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl- Heteroaryl, C(O)N(Alkyl)2, C(0)N(Cycloalkyl)2> C(O)N(Aryl)2,
C(0)N(Heteroaryl)2, SO2-Alkyl, S02-Aryl, SO2NH2) SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO20-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, bedeuten,
(vii) oder R4 und R5 zusammen Cycloalkyl oder Heterocyclyl bedeuten,
-C(Y)NR6R7 bedeuten, wobei Y = NH und R6 und R7 unabhängig voneinander
(i) Wasserstoff,
(ii) unsubstituiertes oder substituiertes Alkyl, wobei der Alkylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(0)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHS02-Cycloalkyl, NHS02-Aryl, NHSO2-Heteroaryl, N02, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O- Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)- Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OS02-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, CO2H, CO2-Alkyl, CO2- Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO -Alkyl-Heteroaryl, C(0)-NH2, C(O)NH-Alkyl, C(0)NH-Cycloalkyl, C(0)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(0)NH-Alkyl-Cycloalkyl, C(0)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(0)N(Alkyl)2,
C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(0)N(Heteroaryl)2) SO-Alkyl, SO-Aryl, SO2- Alkyl, SO2-Aryl, SO2NH2, SO3H, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(iii) unsubstituiertes oder substituiertes Cycloalkyl, wobei der Cycloalkylrest mit F, Cl, Br, I, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(0)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, OH, O- Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Aryl, O- Alkyl-Heteroaryl, OC(O)-Alkyl, OC(0)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)- Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2- Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, C02-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH- Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Aryl, C(0)NH- Alkyl-Heteroaryl, C(O)N(Alkyl)2, Alkyl, oder Aryl ein- oder mehrfach, gleich o- der verschieden substituiert sein kann,
(iv) unsubstituiertes oder substituiertes Heterocyclyl, wobei der Heterocyclylrest mit OH, O-Alkyl, O-Aryl, NH-Alkyl, NH-Aryl, Alkyl oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(v) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH- Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(0)-Alkyl, NHC(0)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O- Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, OC(0)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(0)-Heteroaryl, OSO2-Alkyl, OSO2- Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, C(O)- Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, C02-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, C02-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(0)NH-Alkyl, C(O)NH-Cycloalkyl, C(0)NH- Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO- Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2> SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(vi) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(0)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHS02-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, OC(O)- Alkyl, OC(0)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)- Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2- Alkyl-aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(0)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl- Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl- Heteroaryl, C(O)N(Alkyl)2) C(O)N(Cycloalkyl)2, C(O)N(Aryl)2)
C(O)N(Heteroaryl)2, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, bedeuten, (vii) oder R6 und R7 zusammen Cycloalkyl oder Heterocyclyl bedeuten, -C(NR8)R9 bedeuten, wobei R8 = H und R9
(i) unsubstituiertes oder substituiertes Alkyl, wobei der Alkylrest mit F, Cl, Br, I, CF3, NH , NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2l NHC(O)-Alkyl, NHC(O)- Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2- Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, N02, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O- Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl- Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(0)-Aryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, C02-Heterocyclyl, CO2-Aryl, C02-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl- Heterocyclyl, C02-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(0)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(0)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO3H, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(ii) unsubstituiertes oder substituiertes Cycloalkyl, wobei der Cycloalkylrest mit F, Cl, Br, I, NH2) NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(0)-Aryl, NHC(O)-Heteroaryl, NHS02-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, OH, O- Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Aryl, O- Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)- Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2- Heteroaryl, CO2H, CO2-Alkyl, C02-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(0)NH- Heterocyclyl, C(0)NH-Aryl, C(0)NH-Heteroaryl, C(O)NH-Alkyl-Aryl, C(0)NH- Alkyl-Heteroaryl, C(O)N(Alkyl)2, Alkyl, oder Aryl ein- oder mehrfach, gleich o- der verschieden substituiert sein kann,
(iii) unsubstituiertes oder substituiertes Heterocyclyl, wobei der Heterocyclylrest mit OH, O-Alkyl, O-Aryl, NH-Alkyl, NH-Aryl, Alkyl oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(iv) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, NH2j NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH-Alkyl- Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)- Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2- Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S- Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O- Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2- Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, C(O)- Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, C02-Aryl, CO2-Heteroaryl, CO2-Alkyl-CycloaIkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl5 C(0)NH- Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO- Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2) SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(v) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(0)-Alkyl, NHC(0)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHS02-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, OC(O)- Alkyl, OC(O)-Cycloalkyl, OC(0)-Heterocyclyl, OC(0)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)- Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, C02-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2- Alkyl-aryl, C02-Alkyl-Heteroaryl, C(0)-NH2, C(0)NH-Alkyl, C(0)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl- Cycloalkyl, C(0)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl- Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2,
C(0)N(Heteroaryl)2, SO2-Alkyl, S02-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, bedeuten.
Der Ausdruck „Alkyl" umfasst im Sinne dieser Erfindung acyclische gesättigte oder ungesättigte Kohlenwasserstoffreste, die verzweigt oder geradkettig sein können, mit 1 bis 8 C-Atomen, d.h. d-s-Alkanyle, C2-8-Alkenyle und C2-8-Alkinyle. Dabei weisen Alkenyle mindestens eine C-C-Doppelbindung und Alkinyle mindestens eine C-C- Dreifachbindung auf. Es ist bevorzugt, dass der Alkylrest ausgewählt ist aus der Gruppe, die Methyl, Ethyl, n-Propyl, 2-Propyl, n-Butyl, sec.-Butyl, fe/τ.-Butyl, / Pentyl, /so-Pentyl, neσ-Pentyl, π-Hexyl, 2-Hexyl, n-Octyl, Ethylenyl (Vinyl), Ethinyl, Propenyl (-CH2CH=CH2; -CH=CH-CH3, -C(=CH2)-CH3), Propinyl (-CH2-C≡CH, -C≡C-CH3), Bu- tenyl, Butinyl, Pentenyl, Pentinyl, Hexenyl, Hexinyl, Heptenyl, Heptinyl, Octenyl und Octinyl enthält.
Der Ausdruck „Cycloalkyl" bedeutet für die Zwecke dieser Erfindung cyclische Kohlenwasserstoffe mit 3-12 Kohlenwasserstoffen, die gesättigt oder ungesättigt sein können. Die Bindung an die Verbindungen der allgemeinen Struktur I kann über jedes beliebige und mögliche Ringglied des Cycloalkyl-Restes erfolgen. Der Cycloal- kyl-Rest kann auch Teil eines bi- oder polycyclischen Systems sein. Der Ausdruck „Heterocyclyl" steht für einen 3-, 4-, 5-, 6-, 7- oder 8-gliedrigen cycli- schen organischen Rest, der mindestens 1 , ggf. 2, 3, 4 oder 5 Heteroatome enthält, wobei die Heteroatome gleich oder verschieden sind und der cyclische Rest gesättigt oder ungesättigt, aber nicht aromatisch ist. Die Bindung an die Verbindungen der allgemeinen Struktur I kann über jedes beliebige und mögliche Ringglied des Hetero- cyclyl-Restes erfolgen. Der Heterocyclus kann auch Teil eines bi- oder polycycli- schen Systems sein. Bevorzugte Heteroatome sind Stickstoff, Sauerstoff und Schwefel. Es ist bevorzugt, dass der Heterocyclyl-Rest ausgewählt ist aus der Gruppe, die Tetrahydrofuryl, Tetrahydropyranyl, Pyrrolidinyl, Piperidinyl, Piperazinyl und Morpho- linyl enthält.
Der Ausdruck „Aryl" bedeutet im Sinne dieser Erfindung aromatische Kohlenwasserstoffe, u.a. Phenyle, Naphthyle und Anthracenyle. Die Reste können auch mit weiteren gesättigten, (partiell) ungesättigten oder aromatischen Ringsystemen kondensiert sein. Die Bindung an die Verbindungen der allgemeinen Struktur I kann über jedes beliebige und mögliche Ringglied des Aryl-Restes erfolgen.
Der Ausdruck „Heteroaryl" steht für einen 5-, 6- oder 7-gliedrigen cyclischen aromatischen Rest, der mindestens 1 , ggf. auch 2, 3, 4 oder 5 Heteroatome enthält, wobei die Heteroatome gleich oder verschieden sind. Die Bindung an die Verbindungen der allgemeinen Struktur I kann über jedes beliebige und mögliche Ringglied des Hete- roaryl-Restes erfolgen. Der Heterocyclus kann auch Teil eines bi- oder polycycli- schen Systems sein. Bevorzugte Heteroatome sind Stickstoff, Sauerstoff und Schwefel. Es ist bevorzugt, dass der Heteroaryl-Rest ausgewählt ist aus der Gruppe, die Pyrrolyl, Furyl, Thienyl, Thiazolyl, Oxazolyl, Isoxazolyl, Pyrazolyl, Imidazolyl, Pyridi- nyl, Pyrimidinyl, Pyridazinyl, Pyrazinyl, Phthalazinyl, Indolyl, Indazolyl, Indolizinyl, Chinolinyl, Isochinolinyl, Chinoxalinyl, Chinazolinyl, Carbazolyl, Phenazinyl, Phe- nothiazinyl, Acridinyl enthält.
Die Ausdrücke „Alkyl-Cycloalkyl", „Alkyl-Heterocyclyl", „Alkyl-Aryl" oder „Alkyl- Heteroaryl" bedeuten für die Zwecke der vorliegenden Erfindung, daß Alkyl, Cycloalkyl, Heterocyclyl, Aryl und Heteroaryl die oben definierten Bedeutungen haben und der Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroaryl-Rest über eine Cι-8-Alkyl-Gruppe an die Verbindungen der allgemeinen Struktur I gebunden ist. Im Zusammenhang mit „Alkyl", „Cycloalkyl", „Heterocyclyl", „Aryl", „Heteroaryl", „Alkyl- Cycloalkyl", „Alkyl-Heterocyclyl", „Alkyl-Aryl" und „Alkyl-Heteroaryl" versteht man unter dem Begriff substituiert im Sinne dieser Erfindung, insofern oben nicht explicit definiert, die Substitution eines oder mehrerer Wasserstoffreste durch F, Cl, Br, I, CN, CF3, NH2, NH-Alkyl, NH-Aryl, N(Alkyl)2, NO2, SH, S-Alkyl, OH, OCF3, O-Alkyl, O-Aryl, CHO, C02H, SO3H oder Alkyl. Die Substituenten können gleich oder verschieden sein und die Substitution kann in jeder beliebigen und möglichen Position des Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroarylrestes vorkommen.
Unter mehrfach substituierten Resten sind solche zu verstehen, die entweder an verschiedenen oder an gleichen Atomen mehrfach, z. B. zwei- oder dreifach substituiert sind, beispielsweise dreifach am gleichen C-Atom wie im Falle von CF3, -CH2CF3 oder an verschiedenen Stellen wie im Falle von -CH(OH)-CH=CH-CHCI2. Die Mehrfachsubstitution kann mit dem gleichen oder verschiedenen Substituenten erfolgen.
Sofern die erfindungsgemäßen Verbindungen der allgemeinen Formel I mindestens ein Asymmetriezentrum aufweisen, können sie in Form ihrer Racemate, in Form der reinen Enantiomeren und/oder Diastereomeren oder in Form von Mischungen dieser Enantiomeren und/oder Diastereomeren vorliegen. Die Mischungen können in jedem beliebigen Mischungsverhältnis der Stereoisomeren vorliegen.
So lassen sich beispielsweise die erfindungsgemäßen Verbindungen gemäß der allgemeinen Formel I, welche ein oder mehrere Chiralitätszentren aufweisen und die als Racemate auftreten, nach an sich bekannten Methoden in ihre optischen Isomeren, also Enantiomere oder Diastereomere auftrennen. Die Trennung kann durch Säulentrennung an chiralen Phasen oder durch Umkristallisation aus einem optisch aktiven Lösungsmittel oder unter Verwendung einer optisch aktiven Säure oder Base oder durch Derivatisierung mit einem optisch aktiven Reagenz, wie beispielsweise einem optisch aktiven Alkohol, und anschließender Abspaltung des Restes erfolgen.
Sofern möglich, können die erfindungsgemäßen Verbindungen in Form der Tautomeren vorliegen. Die erfindungsgemäßen Verbindungen der allgemeinen Formel I können, falls sie eine ausreichend basische Gruppe, wie zum Beispiel ein primäres, sekundäres oder tertiäres Amin besitzen, mit anorganischen und organischen Säuren in ihre physiologisch verträglichen Salze überführt werden. Vorzugsweise werden die pharmazeutisch annehmbaren Salze der erfindungsgemäßen Verbindungen gemäß der allgemeinen Struktur I mit Salzsäure, Bromwasserstoffsäure, Schwefelsäure, Phosphorsäure, Methansulfonsäure, p-Toluolsulfonsäure, Kohlensäure, Ameisensäure, Essigsäure, Trifluoressigsäure, Sulfoessigsäure, Oxalsäure, Malonsäure, Maleinsäure, Bernsteinsäure, Weinsäure, Traubensäure, Äpfelsäure, Embonsäure, Mandelsäure, Fumarsäure, Milchsäure, Citronensäure, Glutaminsäure oder Asparaginsäure gebildet. Bei den gebildeten Salzen handelt es sich u.a. um Hydrochloride, Hydrobromide, Sulfate, Hydrogensulfate, Phosphate, Methansulfonate, Tosylate, Carbonate, Hydro- gencarbonate, Formiate, Acetate, Triflate, Sulfoacetate, Oxalate, Malonate, Maleate, Succinate, Tartrate, Malate, Embonate, Mandelate, Fumarate, Lactate, Citrate, Glu- taminate und Aspartate. Die Stöchiometrie der gebildeten Salze der erfindungsgemäßen Verbindungen kann dabei ganzzahlige oder nicht ganzzahlige Vielfache von eins betragen.
Die erfindungsgemäßen Verbindungen der allgemeinen Formel I können, falls sie eine ausreichend saure Gruppe, wie zum Beispiel die Carboxygruppe enthalten, mit anorganischen und organischen Basen in ihre physiologisch verträglichen Salze ü- berführt werden. Als anorganische Basen kommen beispielsweise Natriumhydroxid, Kaliumhydroxid, Calciumhydroxid, als organische Basen Ethanolamin, Diethanola- min, Triethanolamin, Cyclohexylamin, Dibenzylethylendiamin und Lysin in Betracht. Die Stöchiometrie der gebildeten Salze der erfindungsgemäßen Verbindungen kann dabei ganzzahlige oder nicht ganzzahlige Vielfache von eins betragen.
Ebenfalls bevorzugt sind Solvate und insbesondere Hydrate der erfindungsgemäßen Verbindungen, die z. B. durch Kristallisation aus einem Lösungsmittel oder aus wäss- riger Lösung erhalten werden können. Es können sich dabei ein, zwei, drei oder beliebig viele Solvat- oder Wasser-Moleküle mit den erfindungsgemäßen Verbindungen zu Solvaten und Hydraten verbinden. Es ist bekannt, dass chemische Substanzen Festkörper ausbilden, die in verschiedenen Ordnungszuständen vorliegen, die man als polymorphe Formen oder Modifikationen bezeichnet. Die verschiedenen Modifikationen einer polymorphen Substanz können sich in ihren physikalischen Eigenschaften stark unterscheiden. Die erfindungsgemäßen Verbindungen der allgemeinen Formel I können in verschiedenen polymorphen Formen vorliegen, dabei können bestimmte Modifikationen metastabil sein.
Die Verfahren zur Herstellung erfindungsgemäßer substituierter Pyrido[2,3- bjpyrazine werden nachstehend erläutert.
Die Verbindungen der allgemeinen Formel I sind gemäß der folgenden Schemata (Schema 1 und 2) erhältlich:
Schema 1
2.Stufe
Schema 2
3.Stufe
Thiophosgen o.
10 Die Ausgangsverbindungen sind entweder im Handel erhältlich oder können nach an sich bekannten Verfahrensweisen hergestellt werden. Die Edukte 1 und 4 stellen wertvolle Zwischenverbindungen für die Herstellung der erfindungsgemäßen Pyrido- pyrazine der allgemeinen Formel I dar.
Für die Herstellung der Ausgangs- und Zielverbindungen sei beispielsweise auf folgende Primärliteratur verwiesen, deren Inhalt hiermit Bestandteil der Offenbarung der vorliegenden Anmeldung werden soll:
1) Houben-Weyl, Methoden der Organischen Chemie, Band 4/1 a, S. 343-350
2) Houben-Weyl, Methoden der Organischen Chemie, 4.Aufl., Band E 7b (Teil 2), S. 579; Degussa GB 1184848 (1970); S. Seko, et al. EP 735025 (1996)
3) D. Catarzi, et al.; J. Med. Chem. 1996, 1330-1336; J. K. Seydel, et al.; J. Med. Chem. 1994, 3016-3022
4) Houben-Weyl, Methods of Organic Chemistry, Volume E 9c, S.231 -235
5) A. M. Thompson, et al. J. Med. Chem. 2000, 4200-4211
6) G. Heinisch, et al. Arch. Pharm. 1997, 207-210
7) N. A. Dales, et al. Org. Lett. 2001 , 2313-2316; G. Dannhardt, et al. Arch. Pharm. 2000, 267-274
8) M. L. Mussous, et al. Tetrahedron 1999, 4077-4094; A. Kling, et al. Bioorg. Med. Chem. Lett. 2002, 441-446
9) I. K. Khanna, et al.; J. Med. Chem. 2000, 3168-3185
10) L. Younghee, et al.; Bioorg. Med. Chem. Lett. 2000, 2771 -2774; N. L. Reddy et al.; J. Med. Chem. 1998, 3298-3302
Allgemeine Vorschrift zur Darstellung der Verbindungen der allgemeinen Formel I :
1. Stufe
2,6-Diamino-3-nitropyridin wird in einem polaren, organischen Lösungsmittel, wie beispielsweise Methanol, Ethanol, Dimethylformamid oder Dioxan, allein oder in Kombination zweier dieser Lösungsmittel, gelöst. Nach Zugabe eines Katalysators, beispielsweise Raney-Nickel, Palladium auf Kohle oder Platin(IV)dioxid, setzt man das Reaktionsgemisch unter eine Wasserstoff -Atmosphäre, wobei ein Druck zwischen 1 und 5 bar eingestellt wird. Man läßt das Reaktionsgemisch mehrere Stunden, beispielsweise 1-16 Stunden, in einem Temperaturbereich zwischen 20 °C und 60 °C reagieren. Nach beendeter Umsetzung filtriert man die unlöslichen Rückstände ab, wobei das Filtermedium beispielsweise aus Kieselgel, Celite oder handelsüblichen Glasfaserfiltern bestehen kann, und wäscht mit dem entsprechenden Lösungsmittel nach. Das Rohprodukt wird, in Lösung vorliegend, ohne weitere Aufreinigung für die nächste Umsetzung verwendet.
2. Stufe
Das 1 ,2-Dion-Derivat wird in einem organischen Lösungsmittel, beispielsweise Methanol, Ethanol, Dioxan, Toluol oder Dimethylformamid, vorgelegt. 2,3,6- Triaminopyridin wird direkt nach der Reduktion als Lösung seines Rohproduktes in einem der oben genannten Lösungsmittel zum vorgelegten 1 ,2-Dion gegeben, gegebenenfalls unter Zugabe einer Säure, wie z. B. Essigsäure oder einer Base, beispielsweise Kaliumhydroxid. Das Reaktionsgemisch läßt man in einem Temperaturbereich von 20 °C bis 80 °C einige Zeit, beispielsweise 20 Minuten bis 40 Stunden, reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Bei Verwendung von Dimethylformamid wird das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase mit einem geeigneten organischen Lösungsmittel extrahiert und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise Ethanol, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
3. Stufe
Im Anschluß an das Grundverfahren können in Folgereaktionen die nach dem Grundverfahren entstandenen Produkte in einer dem Fachmann bekannten Vorgehensweise zu erfindungsgemässen Folgeprodukten gemäß der Formel I umgesetzt werden.
So kann, wenn das Produkt ein Derivat der Verbindung 5 gemäß Schema 2 sein soll, nach Ablauf der Grundreaktion das Reaktionsprodukt 4 mit einem entsprechenden Isocyanat und gegebenenfalls einer geeigneten Base, vorzugsweise Natriumhydrid, Kaliumhexamethyldisilazid, Triethylamin oder Kaliumcarbonat, in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Dimethylformamid, Acetonitril, Tetrahydro- furan, Dichlormethan, Chloroform, 1 ,2-Dichlorethan oder Dioxan umgesetzt werden. Das Reaktionsgemisch läßt man mehrere Stunden, beispielsweise 1 - 24 Stunden, in einem Temperaturbereich zwischen 0 und 80 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Bei Verwendung von Dimethylformamid wird das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase mit einem geeigneten organischen Lösungsmittel extrahiert und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise Ethanol oder Toluol, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
Oder es kann alternativ, wenn das Produkt ein Derivat der Verbindung 6 gemäß Schema 2 sein soll, nach Ablauf der Grundreaktion das Reaktionsprodukt 4 mit Phosgen oder Carbonyldiimidazol und einem entsprechenden Amin in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Tetrahydrofuran, Toluol, Dichlormethan oder Acetonitril umgesetzt werden. Gegebenenfalls wird eine geeignete Base, vorzugsweise Pyridin, Natriumhydrogencarbonat, Triethylamin, N-Methyl- morpholin oder Natriumacetat verwendet. Das Reaktionsgemisch läßt man einige Zeit, beispielsweise 15 Minuten bis 24 Stunden, in einem Temperaturbereich zwischen 0 und 60 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Bei Verwendung von Dimethylformamid wird das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase mit einem geeigneten organischen Lösungsmittel extrahiert und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielweise Ethanol oder Ethylacetat, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
So kann, wenn das Produkt ein Derivat der Verbindung 7 gemäß Schema 2 sein soll, nach Ablauf der Grundreaktion das Reaktionsprodukt 4 mit einem entsprechenden Isothiocyanat und gegebenenfalls einer geeigneten Base, vorzugsweise Natriumhydrid, Triethylamin oder Pyridin, in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Dimethylformamid, Tetrahydrofuran, Aceton oder Toluol umgesetzt werden. Das Reaktionsgemisch läßt man einige Zeit, beispielsweise 30 Minuten bis 90 Stunden, in einem Temperaturbereich zwischen 0 und 115 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Bei Verwendung von Dimethylformamid wird das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase mit einem geeigneten organischen Lösungsmittel extrahiert und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise Ethanol oder Ethylacetat, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
Oder es kann alternativ, wenn das Produkt ein Derivat der Verbindung 8 gemäß Schema 2 sein soll, nach Ablauf der Grundreaktion das Reaktionsprodukt 4 mit Thi- ophosgen oder Thiocarbonyldiimidazol und einem entsprechenden Amin in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Tetrahydrofuran, Toluol, Dichlormethan, Ethanol oder Acetonitril umgesetzt werden. Gegebenenfalls wird eine geeignete Base, vorzugsweise Pyridin, Natriumhydrogencarbonat, Kaliumcarbonat, Triethylamin oder Imidazol verwendet. Das Reaktionsgemisch läßt man mehrere Stunden, beispielsweise 1 bis 24 Stunden, in einem Temperaturbereich zwischen -10 und 80 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Bei Verwendung von Dimethylformamid wird das Reaktionsgemisch in eine große Menge Wasser eingerührt und der ausgefallene Niederschlag abfiltriert bzw. die wässrige Phase mit einem geeigneten organischen Lösungsmittel extrahiert und die organischen Phasen im Vakuum eingeengt. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielweise Ethanol oder Ethylacetat, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Ethylacetat und Hexan. So kann, wenn das Produkt ein Derivat der Verbindung 9 gemäß Schema 2 sein soll, nach Ablauf der Grundreaktion das Reaktionsprodukt 4 mit einem entsprechenden Aminonitril und gegebenenfalls einer geeigneten Base, vorzugsweise Triethylamin, oder einer geeigneten Säure, vorzugsweise Salzsäure, in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Aceton, Toluol, Chlorbenzol, Ethanol, Tetrahydrofuran oder Dimethylsulfoxid umgesetzt werden. Das Reaktionsgemisch läßt man mehrere Stunden, beispielsweise 2 bis 140 Stunden, in einem Temperaturbereich zwischen 20 und 135 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise Ethanol, oder durch Säulen- bzw. Flash- Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan.
Oder es kann, wenn das Produkt ein Derivat der Verbindung 10 gemäß Schema 2 sein soll, nach Ablauf der Grundreaktion das Reaktionsprodukt 4 mit einem entsprechenden Nitril und gegebenenfalls einer geeigneten Base, vorzugsweise Natriuma- mid oder Natriumhexamethyldisilazid, oder einem geeigneten Katalysator, beispielsweise Aluminiumtrichlorid, Trimethylaluminium, Eisessig oder Schwefelsäure, in einem geeigneten, inerten Lösungsmittel, wie beispielsweise Tetrahydrofuran, Toluol, oder Ethanol, bzw. ohne Lösungsmittel umgesetzt werden. Das Reaktionsgemisch läßt man einige Zeit, beispielsweise 30 Minuten bis 24 Stunden, in einem Temperaturbereich zwischen 0 und 200 °C reagieren. Nach beendeter Umsetzung wird ein eventuell ausgefallener Niederschlag abfiltriert, wobei das Filtermedium beispielsweise aus handelsüblichem Filterpapier bestehen kann, mit dem entsprechenden Lösungsmittel nachgewaschen und der zurückbleibende Feststoff im Vakuum getrocknet, bzw. wird das Reaktionsgemisch im Vakuum vom Lösungsmittel befreit. Die Reinigung des zurückbleibenden Rohproduktes erfolgt durch Umkristallisieren aus einem geeigneten Lösungsmittel, beispielsweise Ethanol, oder durch Säulen- bzw. Flash-Chromatographie an Kieselgel oder Aluminiumoxid. Als Laufmittel dient beispielsweise ein Gemisch aus Methanol und Dichlormethan. Unter einigen der genannten Reaktionsbedingungen können OH-, SH- und NH2- Gruppen möglicherweise unerwünschte Nebenreaktionen eingehen. Es ist daher bevorzugt, diese mit Schutzgruppen zu versehen oder im Falle von NH2 durch NO2 zu ersetzen und nachfolgend die Schutzgruppe abzuspalten oder die NO2-Gruppe zu reduzieren. So kann in Abwandlung des oben beschriebenen Verfahrens in den Ausgangsverbindungen mindestens eine OH-Gruppe beispielsweise durch eine Benzy- loxygruppe und/oder mindestens eine SH-Gruppe beispielsweise durch eine S- Benzylgruppe und/oder mindestens eine NH2-Gruppe durch eine NO2-Gruppe ersetzt werden. Nachfolgend kann mindestens eine - vorzugsweise alle - Benzyloxygrup- pe/n beispielsweise mit Wasserstoff und Palladium auf Kohle und/oder mindestens eine - vorzugsweise alle - S-Benzylgruppe/n beispielsweise mit Natrium in Ammoniak abgespalten und/oder mindestens eine - vorzugsweise alle - NO2-Gruppe/n beispielsweise mit Wasserstoff und Raney-Nickel zu NH2 reduziert werden.
Unter einigen der genannten Reaktionsbedingungen können Carbonsäureester- und Carbonsäureamidgruppen möglicherweise unerwünschte Nebenreaktionen eingehen. Es ist daher bevorzugt, Carbonsäureester- und Carbonsäureamidgruppen aus Verfahrensprodukten, welche mindestens eine OH- und/oder mindestens eine NH2- und/oder mindestens eine COOH-Gruppe enthalten, herzustellen. In Abwandlung des oben beschriebenen Verfahrens können Verfahrensprodukte, welche mindestens eine OH-Gruppe besitzen, und/oder welche mindestens eine NH2-Gruppe besitzen, durch Umsetzung mit einer aktivierten Carbonsäuregruppe, beispielsweise einer Carbonsäurechloridgruppe, in Carbonsäureester- bzw. Carbonsäureamidgruppen überführt werden. In Abwandlung des oben beschriebenen Verfahrens können Verfahrensprodukte, welche mindestens eine COOH-Gruppe besitzen, durch Umsetzung mit einem Aktivierungsmittel, wie beispielsweise Thionylchlorid oder Carbonyldiimidazol, und nachfolgender Umsetzung mit einem geeigneten Alkohol oder Amin in Carbonsäureester- bzw. Carbonsäureamidgruppen überführt werden.
Die erfindungsgemäßen Pyrido[2,3-b]pyrazin-Derivate gemäß der allgemeinen Formel I sind als Wirkstoffe in Arzneimitteln, insbesondere bei malignen und anderen, auf pathologischen Zellproliferationen beruhenden Erkrankungen, wie z. B. Resteno- se, Psoriasis, Arteriosklerose und Leberzirrhose zur Behandlung von Menschen, Säugetieren und Geflügel geeignet. Säugetiere können Haustiere wie Pferde, Kühe, Hunde, Katzen, Hasen, Schafe und dergleichen sein.
Die medizinische Wirkung der erfindungsgemäßen Pyrido[2,3-b]pyrazin-Derivate kann zum Beispiel auf einer Hemmung der Signaltransduktion durch Wechselwirkung mit Rezeptor-Tyrosinkinasen als auch mit cytoplasmatischen Tyrosin- und Se- rin/Threoninkinasen beruhen. Daneben sind noch weitere bekannte und unbekannte Wirkmechanismen zur Bekämpfung von malignen Prozessen denkbar.
Gemäß einem weiteren Aspekt der Erfindung wird ein Verfahren zur Bekämpfung von Tumoren beim Menschen und in Säugetieren bereitgestellt, welches dadurch gekennzeichnet ist, daß mindestens ein Pyrido[2,3-b]pyrazin-Derivat gemäß der allgemeinen Formel I dem Menschen oder einem Säugetier in einer für die Tumorbehandlung wirksamen Menge verabreicht wird. Die für die Behandlung zu verabreichende therapeutisch effektive Dosis des jeweiligen erfindungsgemäßen Pyrido[2,3- bjpyrazin-Derivates richtet sich u.a. nach der Art und dem Stadium der Tumorerkrankung, dem Alter und Geschlecht des Patienten, der Art der Verabreichung und der Dauer der Behandlung. Die erfindungsgemäßen Arzneimittel können als flüssige, halbfeste und feste Arzneiformen verabreicht werden. Dies erfolgt in der jeweils geeigneten Weise in Form von Aerosolen, Pulver, Puder und Streupuder, Tabletten, Dragees, Emulsionen, Schäume, Lösungen, Suspensionen, Gele, Salben, Pasten, Pillen, Pastillen, Kapseln oder Suppositorien.
Die Arzneiformen enthalten neben mindestens einem erfindungsgemäßen Bestandteil je nach eingesetzter galenischer Form gegebenenfalls Hilfsstoffe, wie unter anderem Lösungsmittel, Lösungsbeschleuniger, Lösungsvermittler, Emulgatoren, Netzmittel, Antischaummittel, Gelbildner, Verdickungsmittel, Filmbildner, Bindemittel, Puffer, Salzbildner, Trocknungsmittel, Fließregulierungsmittel, Füllstoffe, Konservierungsstoffe, Antioxidatien, Farbstoffe, Formentrennmittel, Gleitmittel, Sprengmittel, Geschmacks - und Geruchskorrigentien. Die Auswahl der Hilfsstoffe sowie die einzusetzenden Mengen derselben hängt von der gewählten galenischen Form ab und orientiert sich an den dem Fachmann bekannten Rezepturen. Die erfindungsgemäßen Arzneimittel können in einer geeigneten Darreichungsform auf die Haut, epicutan als Lösung, Suspension, Emulsion, Schaum, Salbe, Paste oder Pflaster; über die Mund- und Zungenschleimhaut, buccal, lingual oder sublingu- al als Tablette, Pastille, Dragees, Linctus oder Gurgelwasser; über die Magen- und Darmschleimhaut, enteral als Tablette, Dragees, Kapsel, Lösung, Suspension oder Emulsion; über die Rectumschleimhaut, rectal als Suppositorium, Rectalkapsel oder Salbe; über die Nasenschleimhaut, nasal als Tropfen, Salben oder Spray; über das Bronchial- und Alveolarepithel, pulmonal oder per inhalationem als Aerosol oder In- halat; über die Conjunctiva, conjunctival als Augentropfen, Augensalbe, Augentabletten, Lamellae oder Augenwasser; über die Schleimhäute der Genitalorgane, intravaginal als Vaginalkugeln, Salben und Spülung, intrauterin als Uterus-Pessare; über die ableitenden Harnwege, intraurethral als Spülung, Salbe oder Arzneistäbchen; in eine Arterie, intraarteriell als Injektion; in eine Vene, intravenös als Injektion oder Infusion; in die Haut, intracutan als Injektion oder Implantat; unter die Haut, subcutan als Injektion oder Implantat; in den Muskel, intramusculär als Injektion oder Implantat; in die Bauchhöhle, intraperitoneal als Injektion oder Infusion verabreicht werden.
Die erfindungsgemäßen Verbindungen der allgemeinen Struktur I können in Hinblick auf praktische therapeutische Erfordernisse mittels geeigneter Maßnahmen in ihrer Arzneistoffwirkung verlängert werden. Dieses Ziel kann auf chemischem und/oder galenischem Wege erreicht werden. Beispiele für die Erzielung einer Wirkungsverlängerung sind der Einsatz von Implantaten und Liposomen, die Bildung von schwerlöslichen Salzen und Komplexen oder der Einsatz von Kristall-Suspensionen.
Besonders bevorzugt sind dabei Arzneimittel, die mindestens eine Verbindung aus der nachfolgenden Gruppe der Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Struktur I enthalten und die in Form ihrer freien Base oder auch als pharmazeutisch annehmbare Salze physiologisch verträglicher Säuren vorliegen können:
1 -Allyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Beispiel 1 ) 1 -Allyl-3-(3-naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 2) 1 -Allyl-3-[3-(4-methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff (Bsp. 3) 1-Allyl-3-[3-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thiohamstoff-Hydrochlorid (Bsp. 4) 1 -(2-Methyl-allyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 5)
1 -(2-Methyl-allyl)-3-(3-naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff (Bsp. 6)
1 -[3-(4-Methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-(2-methyl-allyl)-thioharnstoff
(Bsp. 7)
1-(3-Naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-3-(4-nitro-phenyl)-thiohamstoff (Bsp.
8)
1 -[3-(4-Methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-(4-nitro-phenyl)-thioharnstoff
(Bsp. 9)
1 -te/-f-Butyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 10)
1 -Cyclopropyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff (Bsp. 11)
1 -Methyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 12)
1 -Benzyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff (Bsp. 13)
1 -(4-Fluoro-phenyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff (Bsp. 14)
1 -(3-Phenyl-pyrido[2,3-b]pyrazin-6-yl)-3-p-tolyl-hamstoff (Bsp. 15)
1-(4-Chloro-3-trifluoromethyl-phenyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-harnstoff
(Bsp. 16)
1 -(2-Morpholin-4-yl-ethyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-harnstoff (Bsp. 17)
Ausführungsbeispiele:
Gemäß der allgemeinen Vorschriften für die Stufen 1 -3, denen die Syntheseschemata 1 und 2 zugrundeliegen, wurden folgende Verbindungen synthetisiert, die unter der Angabe der jeweiligen chemischen Bezeichnung aus der nachfolgenden Übersicht hervorgehen. Ferner sind ihre NMR-spektroskopischen Daten und Schmelzpunkte beigefügt. In der sich anschließenden Tabelle 1 sind aus der allgemeinen Formel II und den Substituenten R1 , R2, X und Y die Strukturen dieser Verbindungen zu ersehen.
Die eingesetzten Chemikalien und Lösungsmittel wurden kommerziell bei den herkömmlichen Anbietern erworben (Acros, Aldrich, Fluka, Lancaster, Maybridge, Merck, Sigma, TCI, etc.) oder synthetisiert.
Die Erfindung soll anhand der nachfolgenden Beispiele näher erläutert werden, ohne darauf beschränkt zu sein.
Beispiel 1 :
Herstellung von 3-Phenyl-pyrido[2,3-b]pyrazin-6-ylamin (Umsetzung gemäß Schema 1 , 1. und 2. Stufe)
Eine Lösung aus 1.22 g 2,6-Diamino-3-nitropyridin (7.92 mmol) in 210 ml Ethanol wird mit Raney-Nickel als Katalysator bei 50 °C und 5 bar hydriert. Nach beendeter Hydrierung saugt man den Katalysator über einen Glasfaserfilter ab. In die Vorlage werden vor der Filtration 1.68 g Phenylglyoxal-Hydrat (11.03 mmol) in 50 ml Ethanol vorgelegt. Dann wird der Katalysator unter Stickstoff als Schutzgas abfiltriert und die Hydrierlösung direkt in den Reaktionskolben gesaugt. Das grün-blaue Reaktionsgemisch wird unter Stickstoff 30 min. unter Rückfluß erhitzt. Das Gemisch läßt man abkühlen und entfernt das Lösungsmittel im Vakuum. Man erhält schließlich einen dunkelbraunen Feststoff. Säulenchromatographische Reinigung an Kieselgel (Laufmittelgemisch Dichlormethan / Methanol) liefert einen hellgelben kristallinen Feststoff. Herstellung von 1-Allyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff (Umsetzung gemäß Schema 2, 3. Stufe)
0.246 g Natriumhydrid (6.14 mmol) werden in 5 ml wasserfreiem Dimethylformamid unter Stickstoff als Schutzgas vorgelegt. Das Gemisch wird im Eisbad auf 0 °C abgekühlt. 1.05 g 3-Phenyl-pyrido[2,3-b]pyrazin-6-ylamin (4.72 mmol) werden in 5 ml wasserfreiem Dimethylformamid gelöst und tropfenweise zugegeben. Man entfernt das Kühlbad und läßt das Gemisch 30 Minuten bei RT rühren. Danach kühlt man das Gemisch im Eisbad wieder auf 0 °C ab und fügt 0.469 g Allylisothiocyanat (4.72 mmol) in 4 ml wasserfreiem Dimethylformamid gelöst, tropfenweise hinzu. Nach beendeter Zugabe entfernt man das Kühlbad und läßt das Gemisch noch 1 ,5 Stunden bei Raumtemperatur rühren. Zur Aufarbeitung gießt man das Gemisch in ca. 250 ml destilliertes Wasser und saugt den ausgefallenen orangefarbenen Feststoff ab. Mehrfache säulenchromatographische Reinigung (Laufmittelgemische Dichlormethan / Methanol) und anschließende Aufreinigung an der präparativen HPLC liefern einen gelben Feststoff.
Schmelzpunkt: 239-240°C (Zers.)
1H-NMR (de-DMSO): δ = 4.40 (m, 2H), 5.30 (d, 1 H), 5.60 (d, 1 H), 6.07-6.17 (m, 1 H), 7.55-7.70 (m, 4H), 8.35 (d, 2H), 8.45 (d, 1 H), 9.50 (s, 1 H), 11.35 (s, 1 H), 12.55 (m, 1 H).
Folgende Beispiele wurden gemäß Beispiel 1 synthetisiert :
Beispiel 2: 1 -Allyl-3-(3-naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
Smp.: 242-243°C (Zers.)
1H-NMR (de-DMSO): δ = 4.42 (m, 2H), 5.37 (d, 1 H), 5.65 (d, 1 H), 6.07-6.19 (m, 1 H), 7.57-7.68 (m, 3H), 7.97-8.05 (m, 1 H), 8.07-8.19 (m, 2H), 8.40-8.52 (m, 2H), 8.99 (s, 1 H), 9.70 (s, 1 H), 11.36 (s, 1 H), 12.56 (t, 1 H). Beispiel 3: 1 -Allyl-3-[3-(4-methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thiohamstoff
Smp.: 240-241 °C (Zers.)
1H-NMR (de-DMSO): δ = 3.87 (s, 3H), 4.36-4.42 (m, 2H), 5.32 (d, 1H), 5.60 (d, 1H), 6.06-6.16 (m, 1H), 7.16 (d, 2H), 7.60 (d, 1H), 8.32 (d, 2H), 8.42 (d, 1H), 9.56 (s, 1H), 11.29(s, 1H), 12.56 (m, 1H).
Beispiel 4: 1 -Allyl-3-[3-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thiohamstoff- Hydrochlorid
Smp.: 160-161 °C (Zers.)
1H-NMR (de-DMSO): δ = 4.36-4.43 (m, 2H), 5.31 (d, 1H), 5.59 (d, 1H), 6.05-6.16 (m, 1H), 6.97 (d, 2H), 7.57 (d, 1H), 8.20 (d, 2H), 8.40 (d, 1H), 9.41 (s, 1H), 10.17 (bs, 1H), 11.24 (s,1H), 12.56 (m, 1H).
Beispiel 5: 1 -(2-Methyl-allyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
Smp.: 225-226°C (Zers.)
1H-NMR (de-DMSO): δ = 1.90 (s, 3H), 4.30-4.35 (m, 2H), 5.01 (s, 1H), 5.22 (s, 1H), 7.55-7.80 (m, 4H), 8.30-8.38 (m, 2H), 8.45 (d, 1H), 9.52 (s, 1H), 11.32 (s, 1H), 12.65 (m, 1H).
Beispiel 6: 1 -(2-Methyl-allyl)-3-(3-naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-thioharn- stoff
Smp.: 239-240°C (Zers.) 1H-NMR (de-DMSO): δ = 1.94 (s, 3H), 4.32 (m, 2H), 5.07 (s, 1 H), 5.28 (s, 1H), 7.60- 7.69 (m, 3H), 8.00-8.05 (m, 1 H), 8.07-8.12 (m, 1 H), 8.14 (d, 1 H), 8.42-8.51 (m, 2H), 8.98 (s, 1 H), 9.68 (s, 1 H), 11.32 (s, 1 H), 12.78 (m, 1 H).
Beispiel 7: 1 -[3-(4-Methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-(2-methyl-allyl)-thio- harnstoff
Smp.: 251 -252°C (Zers.)
1H-NMR (de-DMSO): δ = 1.92 (s, 3H), 3.85 (s, 3H), 4.27-4.35 (m, 2H), 5.02 (s, 1 H), 5.24 (s, 1 H), 7.15 (d, 2H), 7.58 (d, 1 H), 8.31 (d, 2H), 8.41 (d, 1 H), 9.46 (s, 1 H), 11.29 (s, 1 H), 12.68 (m, 1 H).
Beispiel 8: 1 -(3-Naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-3-(4-nitro-phenyl)-thioharn- stoff
Smp.: 260-261 °C (Zers.)
1H-NMR (de-DMSO): δ = 7.61-7.68 (m, 3H), 7.72 (d, 2H), 7.75 (d, 1 H), 8.01 -8.06 (m, 1 H), 8.16 (m, 2H), 8.26 (d, 2H), 8.53 (d, 1 H), 8.58 (d, 1 H), 9.04 (s, 1 H), 9.62 (s, 1 H), 9.76 (s, 1 H), 11.81 (s, 1 H).
Beispiel 9: 1 -[3-(4-Methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-(4-nitro-phenyl)-thio- harnstoff
Smp.: 250-251 °C (Zers.)
1H-NMR (de-DMSO): δ = 3.85 (s, 3H), 7.17 (d, 2H), 7.71 (d, 2H), 8.21 (d, 2H), 8.22- 8.27 (m, 1 H), 8.36-8.42 (m, 3H), 9.53 (s, 1 H), 9.65 (s, 1 H), 11.77 (s, 1 H). Beispiel 10: 1 -terf.Butyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
Smp.: 227°C (Zers.)
1H-NMR (de-DMSO): δ = 1.65 (s, 9H), 7.53-7.69 (m, 4H), 8.34 (d, 2H), 8.41 (d, 1 H),
9.51 (s, 1 H), 10.98 (s, 1 H), 12.75 (s, 1 H).
Beispiel 11 : 1-Cyclopropyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff
Smp.: 233-234°C
1H-NMR (de-DMSO): δ = 0.70-0.80 (m, 2H), 0.91 -1.00 (m, 2H), 3.20-3.28 (m, 1 H), 7.51-7.72 (m, 4H), 8.36 (d, 2H), 8.45 (d, 1 H), 9.52 (s, 1 H), 11.31 (s, 1 H), 12.45 (s, 1 H).
Beispiel 12: 1 -Methyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff
Smp.: 253-254°C
1H-NMR (de-DMSO): δ = 3.25 (s, 3H), 7.59-7.67 (m, 4H), 8.38 (d, 2H), 8.46 (d, 1 H),
9.52 (s, 1 H), 11.31 (s, 1 H), 12.10 (s, 1 H).
Beispiel 13: 1 -Benzyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
Smp.: 232-233°C
1H-NMR (de-DMSO): δ = 4.96 (m, 2H), 7.37-7.48 (m, 3H), 7.54-7.67 (m, 6H), 8.32 (d, 2H), 8.47 (d, 1 H), 9.52 (s, 1 H), 11.43 (s, 1 H), 12.91 (s, 1 H).
Beispiel 14: 1 -(4-Fluoro-phenyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff Smp.: 225-226°C
1H-NMR (de-DMSO): δ = 7.33 (m, 2H), 7.57-7.65 (m, 3H), 7.70-7.81 (m, 3H), 8.34 (d, 2H), 8.54 (d, 1 H), 9.57 (s, 1 H), 11.62 (s, 1 H).
Beispiel 15: 1 -(3-Phenyl-pyrido[2,3-b]pyrazin-6-yl)-3-p-tolyl-hamstoff
Smp.: 298-299°C
1H-NMR (de-DMSO): δ = 2.29 (s, 3H), 7.20 (d, 2H), 7.52 (d, 2H), 7.59-7.67 (m, 3H), 7.80 (d, 1 H), 8.38 (d, 2H), 8.44 (d, 1 H), 9.59 (s, 1 H), 10.36 (s, 1 H), 11.46 (s, 1 H).
Beispiel 16: 1 -(4-Chloro-3-trif luoromethyl-phenyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6- yl)-hamstoff
Smp.: 250°C
1H-NMR (de-DMSO): δ = 7.58-7.67 (m, 3H), 7.74 (d, 1 H), 7.80 (d, 1 H), 7.87 (d, 1 H), 8.21 (s, 1 H), 8.39 (d, 2H), 8.48 (d, 1 H), 9.53 (s, 1 H), 10.55 (s, 1 H), 11.82 (s, 1 H).
Beispiel 17: 1 -(2-Morpholin-4-yl-ethyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-harn- stoff
Smp.: 226°C
1H-NMR (de-DMSO): δ = 2.45-2.67 (m, 6H), 3.40-3.48 (m, 2H), 3.60-3.69 (m, 4H), 7.55-7.70 (m, 4H), 8.30-8.40 (m, 3H), 9.29 (s, 1 H), 9.42 (s, 1 H), 10.18 (s, 1 H). Tabelle 1 :
Biologische Wirkungen der erfindungsgemäßen Verbindungen
Die inhibitorische Wirkung der erfindungsgemäßen Verbindungen wurde an folgenden humanen Serin/ Threonin- und Tyrosinkinasen in klassischen Kinaseassays getestet: PKB/Akt1 , c-Raf, B-Raf, Mek, PDGFRbeta, Flt-3, c-Kit, c-Abl, KDR, FGFR1 und IGF1 R. Eingesetzt wurden sowohl die Volllängenkinasen als auch verkürzte Fragmente - mindestens aber die cytoplasmatischen, konstitutiv aktiven Kinasedo- mänen. Die Kinasen wurden als rekombinante Fusionsproteine mit GST-(Glutathion- S-Transferase) oder HIS-Tag in Sf9-Zellkultur hergestellt. Je nach Substrattyp wurden die verschiedenen Kinasereaktionen in Sandwich-ELISA-Formaten oder mittels einfacher Substratadsorptionstest auf 96-Well Flashplates (Perkin Eimer) durchgeführt.
Nachfolgend wird die Substanztestung an der Raf-Mek-Erk-Kaskade genauer beschrieben. Ausgewählte Testergebnisse zu den Raf- bzw. Mek-Inhibitoren sind anschließend aufgeführt.
Prozedere: Raf- ek-Erk-ELISA
Potentielle Inhibitoren wurden zunächst bei einer Konzentration von 20μg/ml in initialen Single-Dose-Bestimmungen auf 96er Mikrotiterplatten (MTPs) untersucht. Substanzen >70% Inhibition wurden für Dosis-Wirkungsstudien eingesetzt. Die Rekonstitution der Raf-Mek-Erk-Kaskade wurde mithilfe eines zellfreien ELISAs quantifiziert. Verwendet wurden folgende rekombinant hergestellte Kinaseproteine: 1.) konstitutiv aktive GST-c-Raf-DD aus Sf9-Zellen 2.) nicht aktive GST-Mek1 aus E. coli und 3.) nicht aktive His-Erk2 aus E. coli.
Ein typischer Kinaseansatz wurde in einem finalen Volumen von 50//I mit je 20-150ng Raf-, Mek-, Erk-Kinaseprotein, 1 mM ATP, 10mM MgCI2, 150mM NaCI, 25mM beta- Glycerophosphat, 25mM Hepes pH 7.5 durchgeführt. Vor der Kinasereaktion wurden die Testsubstanzen jeweils für 30 Minuten bei Raumtemperatur mit jedem der drei Kinaseproteine einzeln vorinkubiert. Für die Kinasereaktion wurden die mit Testsubstanz vorinkubierten Kinasen zusammengeführt und für 30 Minuten bei 26°C inkubiert. Durch eine finale Konzentration von 2% SDS und 10 Minuten bei 50°C im Heizblock wurde die Reaktion gestoppt. Zur Immundetektion wurden die Reaktionsansätze auf anti-Erk-Ak(K-23, Santa Cruz Biotechnology)-beschichtete 96er MTPs übertragen, 60 Minuten bei Raumtemperatur inkubiert und 3x mit TBST gewaschen. Anti-phospho-Erk-Ak (#9106, New England Biolabs) 1 :500 in 50 l TBST/1% BSA wurde zugegeben und über Nacht bei 4°C inkubiert. Nach 3x Wasch der MTPs mit TBST wurde mit sekundärem anti-Maus- lgGPOD-Konjugat (#NA931 , Pharmacia) 1 :2500 versetzt, 1 h bei Raumtemperatur inkubiert und wiederum 3x mit TBST gewaschen. Zur kolorimetrischen Detektion der Kinasereaktion wurden je 50μl OPD (o-Phenyldiamin-dihydrochlorid)-Färbepuffer auf die Kavitäten pipettiert und 30 Minuten bei 37°C inkubiert. Die Farbreaktion wurde anschließend im ELISA-Reader bei 492nm bestimmt.
Die experimentelle Bestimmung von Dosis-Wirkungskurven erfolgte mittels des selben Versuchsaufbaus bei 10 halblogarithmisch abgestuften Konzentrationen von 31.6pM-100μM. Die IC50-Werte wurden in GraphPadPrism kalkuliert.
Die erfindungsgemäßen Verbindungen zeigen eine effektive Inhibition der Erk- Phosphorylierung mit IC-50-Werten bis zu 400nM (siehe Ausführungsbeispiele 4 und 12).
Ausführungsbeispiel IC50 (pM)
1 ca. 1.0 / 3.0
2 16
3 ca. 1.0
4 0.4
5 ca. 1.0
6 ca. 100
7 43
8 > 100
9 > 100
10 > 100
11 0.9
12 0.4
13 > 100
14 ca. 50
15 > 100
16 > 100
17 15

Claims

Patentansprüche
1. Neue Pyrido[2,3-b]pyrazin-Derivate gemäß der allgemeinen Formel I
I
worin die Substituenten R1 -R3 folgende Bedeutung haben :
R1 und R2 können unabhängig voneinander:
(i) Wasserstoff
(ii) Hydroxyl
(iii) Alkyl, wobei der Alkylrest gesättigt ist und aus 1 bis 8 C-Atomen bestehen kann,
(iv) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH- Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, N02, SH, S-Alkyl, S-Aryl, S- Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O- Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl- Heteroaryl, O-Alkyl-OH, OC(O)-Alkyl, OC(0)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(0)-Heteroaryl, OSO2-Alkyl, OS02-Aryl, OSO2-Heteroaryl, C(0)-Aryl, C(O)-Heteroaryl, CO2H, C02-Alkyl, CO2-Cycloalkyl, CO2- Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl- Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(0)NH-Aryl, C(0)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, S02-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, und die Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl-, Heteroaryl-, Alkyl-Cycloalkyl-, Alkyl-Heterocyclyl-, Alkyl-Aryl- und Al- kyl-Heteroarylsubstituenten ihrerseits wiederum substituiert sein können,
(v) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)- Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHS02-Alkyl, NHS02-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, OH, OCF3, O-Alkyl, O- Cycloalkyl, O-Aryl, O-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)- Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OS02-Heteroaryl, C(O)-Alkyl, C(0)-Aryl, CO2H, CO2-Alkyl, CO2- Cycloalkyl, C02- Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, C(O)-NH2, C(O)NH- Alkyl, C(O)NH-Cycloalkyl, C(O) NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH- Heteroaryl, C(O)N(Alkyl)2, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO3H, SO2O- Alkyl, SO2O-Aryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- o- der mehrfach, gleich oder verschieden substituiert sein kann, und die Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroarylsubstituenten ihrerseits wiederum substituiert sein können, bedeutet.
R3 kann:
-C(Y)NR4R5 bedeuten, wobei Y = O, S und R4 und R5 unabhängig voneinander
(i) Wasserstoff, (ii) unsubstituiertes oder substituiertes Alkyl, wobei der Alkylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(0)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O- Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(0)-Alkyl, OC(O)-Cycloalkyl, OC(O)- Heterocyciyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(0)-Aryl, CO2H, CO2-Alkyl, CO2- Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, C02-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2,
C(O)N(Cycloalkyl)2, C(0)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, S02- Alkyl, SO2-Aryl, SO2NH2, SO3H, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(iii) unsubstituiertes oder substituiertes Cycloalkyl, wobei der Cycloalkylrest mit F, Cl, Br, I, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, OH, O- Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Aryl, O- Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)- Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2- Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH- Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Aryl, C(O)NH- Alkyl-Heteroaryl, C(O)N(Alkyl)2, Alkyl, oder Aryl ein- oder mehrfach, gleich o- der verschieden substituiert sein kann, (iv) unsubstituiertes oder substituiertes Heterocyclyl, wobei der Heterocyclylrest mit OH, O-Alkyl, O-Aryl, NH-Alkyl, NH-Aryl, Alkyl, Alkyl-Aryl oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(v) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH- Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(0)-Alkyl, NHC(0)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O- Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2- Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, C(O)- Heteroaryl, CO2H, CO2-Alkyl, C02-Cycloalkyl, CO2-Heterocyclyl, C02-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(0)NH-Alkyl, C(O)NH-Cycloalkyl, C(0)NH- Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(0)N(Aryl)2, C(O)N(Heteroaryl)2, SO- Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, S02NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(vi) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(0)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, OC(O)- Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(0)-Heteroaryl, OSO2-Alkyl, OSO -Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(0)-Alkyl, C(O)- Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, C02-Heterocyclyl, CO2-Aryl, CO2- Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2- Alkyl-aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(0)NH-Heteroaryl, C(0)NH-Alkyl- Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(0)NH-Alkyl- Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2,
C(O)N(Heteroaryl)2, SO2-Alkyl, SO2-Aryl, S02NH2j SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, bedeuten,
(vii) oder R4 und R5 zusammen Cycloalkyl oder Heterocyclyl bedeuten,
-C(Y)NR6R7 bedeuten, wobei Y = NH und R6 und R7 unabhängig voneinander
(i) Wasserstoff,
(ii) unsubstituiertes oder substituiertes Alkyl, wobei der Alkylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O- Alkyl-Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)- Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, CO2H, CO2-Alkyl, CO2- Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(0)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(0)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2,
C(0)N(Cycloalkyl)2, C(0)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2- Alkyl, SO2-Aryl, SO2NH2, SO3H, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(iii) unsubstituiertes oder substituiertes Cycloalkyl, wobei der Cycloalkylrest mit F, Cl, Br, I, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHS02-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, OH, O- Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Aryl, O- Alkyl-Heteroaryl, OC(0)-Alkyl, OC(0)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)- Aryl, OC(O)-Heteroaryl, OS02-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2- Heteroaryl, CO2H, C02-Alkyl, CO2-Cycloalkyl, C02-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(0)NH-Cycloalkyl, C(O)NH- Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Aryl, C(0)NH- Alkyl-Heteroaryl, C(0)N(Alkyl)2, Alkyl, oder Aryl ein- oder mehrfach, gleich o- der verschieden substituiert sein kann,
(iv) unsubstituiertes oder substituiertes Heterocyclyl, wobei der Heterocyclylrest mit OH, O-Alkyl, O-Aryl, NH-Alkyl, NH-Aryl, Alkyl oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(v) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH- Alkyl-Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O- Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2- Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)-Aryl, C(O)- Heteroaryl, CO2H, CO2-Alkyl, C02-Cycloalkyl, C02-Heterocyclyl, CO2-Aryl, C02-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(0)NH- Heterocyclyl, C(O)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO- Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, S02NH , SO2NH-Alkyl, S02NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, S02O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(vi) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, CN, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(0)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSOs-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Aryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, OC(O)- Alkyl, OC(0)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)- Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2- Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2- Alkyl-aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(0)NH-Cycloalkyl; C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(0)NH-Heteroaryl, C(O)NH-Alkyl- Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl- Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2,
C(O)N(Heteroaryl)2, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, bedeuten, (vii) oder R6 und R7 zusammen Cycloalkyl oder Heterocyclyl bedeuten,
-C(NR8)R9 bedeuten, wobei R8 = H und R9
(i) unsubstituiertes oder substituiertes Alkyl, wobei der Alkylrest mit F, Cl, Br, I, CF3, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)- Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2- Alkyl, NHSO2-Cycloalkyl, NHS02-Aryl, NHSO2-Heteroaryl, NO , SH, S-Alkyl, S-Cycloalkyl, S-Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O- Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl- Aryl, O-Alkyl-Heteroaryl, OC(O)-Alkyl, OC(0)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(0)-Aryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, C02-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl- Heterocyclyl, CO2-Alkyl-Aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(O)NH-Heterocyclyl, C(O)NH-Aryl, C(0)NH-Heteroaryl, C(0)NH-Alkyl-Cycloalkyl, C(0)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO-Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO3H, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(ii) unsubstituiertes oder substituiertes Cycloalkyl, wobei der Cycloalkylrest mit F, Cl, Br, I, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHS02-Alkyl, NHSO2-Cycloalkyl, NHSO2-Aryl, NHSO2-Heteroaryl, OH, O- Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Aryl, O- Alkyl-Heteroaryl, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)- Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OS02-Cycloalkyl, OSO2-Aryl, OSO2- Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, C(O)-NH2, C(0)NH-Alkyl, C(0)NH-Cycloalkyl, C(0)NH- Heterocyclyl, C(O)NH-Aryl, C(0)NH-Heteroaryl, C(O)NH-Alkyl-Aryl, C(0)NH- Alkyl-Heteroaryl, C(O)N(Alkyl)2, Alkyl, oder Aryl ein- oder mehrfach, gleich o- der verschieden substituiert sein kann,
(iii) unsubstituiertes oder substituiertes Heterocyclyl, wobei der Heterocyclylrest mit OH, O-Alkyl, O-Aryl, NH-Alkyl, NH-Aryl, Alkyl oder Aryl ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(iv) unsubstituiertes oder substituiertes Aryl, wobei der Arylrest mit F, Cl, Br, I, CF3, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH-Heteroaryl, NH-Alkyl-Cycloalkyl, NH-Alkyl-Heterocyclyl, NH-Alkyl-Aryl, NH-Alkyl- Heteroaryl, NH-Alkyl-NH2, NH-Alkyl-OH, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)- Cycloalkyl, NHC(0)-Heterocyclyl, NHC(O)-Aryl, NHC(O)-Heteroaryl, NHSO2- Alkyl, NHSO2-AryI, NHSO2-Heteroaryl, NO2, SH, S-Alkyl, S-Cycloalkyl, S- Heterocyclyl, S-Aryl, S-Heteroaryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O- Heterocyclyl, O-Aryl, O-Heteroaryl, O-Alkyl-Cycloalkyl, O-Alkyl-Heterocyclyl, O-Alkyl-Aryl, O-Alkyl-Heteroaryl, O-Alkyl-OH, OC(O)-Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2- Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(0)-Alkyl, C(O)-Aryl, C(O)- Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, CO2-Alkyl-aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(0)NH-Cycloalkyl, C(O)NH- Heterocyclyl, C(0)NH-Aryl, C(O)NH-Heteroaryl, C(O)NH-Alkyl-Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl-Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2, C(O)N(Heteroaryl)2, SO- Alkyl, SO-Aryl, SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO2O-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann,
(v) unsubstituiertes oder substituiertes Heteroaryl, wobei der Heteroarylrest mit F, Cl, Br, I, CF3, NH2, NH-Alkyl, NH-Cycloalkyl, NH-Heterocyclyl, NH-Aryl, NH- Heteroaryl, NH-Alkyl-Aryl, NH-Alkyl-Heteroaryl, N(Alkyl)2, NHC(O)-Alkyl, NHC(O)-Cycloalkyl, NHC(O)-Heterocyclyl, NHC(0)-Aryl, NHC(O)-Heteroaryl, NHSO2-Alkyl, NHSO2-Aryl, NHSO2-Heteroaryl, N02, SH, S-Alkyl, S-Aryl, OH, OCF3, O-Alkyl, O-Cycloalkyl, O-Heterocyclyl, O-Aryl, O-Heteroaryl, OC(O)- Alkyl, OC(O)-Cycloalkyl, OC(O)-Heterocyclyl, OC(O)-Aryl, OC(O)-Heteroaryl, OSO2-Alkyl, OSO2-Cycloalkyl, OSO2-Aryl, OSO2-Heteroaryl, C(O)-Alkyl, C(O)- Aryl, C(O)-Heteroaryl, CO2H, CO2-Alkyl, CO2-Cycloalkyl, CO2-Heterocyclyl, CO2-Aryl, CO2-Heteroaryl, CO2-Alkyl-Cycloalkyl, CO2-Alkyl-Heterocyclyl, C02- Alkyl-aryl, CO2-Alkyl-Heteroaryl, C(O)-NH2, C(O)NH-Alkyl, C(O)NH-Cycloalkyl, C(0)NH-Heterocyclyl, C(O)NH-Aryl, C(0)NH-Heteroaryl, C(0)NH-Alkyl- Cycloalkyl, C(O)NH-Alkyl-Heterocyclyl, C(O)NH-Alkyl-Aryl, C(O)NH-Alkyl- Heteroaryl, C(O)N(Alkyl)2, C(O)N(Cycloalkyl)2, C(O)N(Aryl)2,
C(O)N(Heteroaryl)2) SO2-Alkyl, SO2-Aryl, SO2NH2, SO2NH-Alkyl, SO2NH-Aryl, SO2NH-Heteroaryl, SO3H, SO2O-Alkyl, SO20-Aryl, SO2O-Heteroaryl, Alkyl, Cycloalkyl, Heterocyclyl, Aryl oder Heteroaryl, ein- oder mehrfach, gleich oder verschieden substituiert sein kann, bedeuten.
2. Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach anspruch 1 , worin:
„Alkyl" acyclische gesättigte oder ungesättigte Kohlenwasserstoffreste verzweigt oder geradkettig, mit 1 bis 8 C-Atomen sein können, wobei Alkenyle mindestens eine C-C- Doppelbindung und Alkinyle mindestens eine C-C-Dreifachbindung aufweisen,
„Cycloalkyl" cyclische Kohlenwasserstoffe mit 3-12 Kohlenwasserstoffen, gesättigt oder ungesättigt sein können, deren Bindung an die Verbindungen der allgemeinen Struktur I über jedes beliebige und mögliche Ringglied des Cycloalkyl-Restes erfolgen kann und der Cycloalkyl-Rest auch Teil eines bi- oder polycyclischen Systems sein kann,
„Heterocyclyl" für einen 3-, 4-, 5-, 6-, 7- oder 8-gliedrigen cyclischen organischen Rest, gesättigt oder ungesättigt, jedoch nicht aromatisch steht, der mindestens 1 , ggf. 2, 3, 4 oder 5 Heteroatome, bevorzugt Stickstoff, Sauerstoff und Schwefel enthält, wobei die Heteroatome gleich oder verschieden sind und dessen Bindung an die Verbindungen der allgemeinen Struktur I über jedes beliebige und mögliche Ringglied des Heterocyclyl-Restes erfolgen kann, wobei der Heterocyclus auch Teil eines bi- oder polycyclischen Systems sein kann, „Aryl" aromatische Kohlenwasserstoffe, u.a. Phenyle, Naphthyle und Anthracenyle bezeichnet, deren Reste auch mit weiteren gesättigten, (partiell) ungesättigten oder aromatischen Ringsystemen kondensiert sein können und deren Bindung an die Verbindungen der allgemeinen Struktur I über jedes beliebige und mögliche Ringglied des Aryl-Restes erfolgen kann,
„Heteroaryl" für einen 5-, 6- oder 7-gliedrigen cyclischen aromatischen Rest steht, der mindestens 1 , gegebenenfalls auch 2, 3, 4 oder 5 Heteroatome, bevorzugt Stickstoff, Sauerstoff, Schwefel enthält, wobei die Heteroatome gleich oder verschieden sind und dessen Bindung an die Verbindungen der allgemeinen Struktur I über jedes beliebige und mögliche Ringglied des Heteroaryl-Restes erfolgen kann, wobei der Heterocyclus auch Teil eines bi- oder polycyclischen Systems sein kann,
„Alkyl-Cycloalkyl", „Alkyl-Heterocyclyl", „Alkyl-Aryl" oder „Alkyl-Heteroaryl" die für Alkyl, Cycloalkyl, Heterocyclyl, Aryl und Heteroaryl definierten Bedeutungen haben und der Cycloalkyl-, Heterocyclyl-, Aryl- und Heteroaryl-Rest über eine Cι-8-Alkyl-Gruppe an die Verbindungen der allgemeinen Struktur I gebunden ist,
„substituiert" im Zusammenhang mit „Alkyl", „Cycloalkyl", „Heterocyclyl", „Aryl", „Heteroaryl", „Alkyl-Cycloalkyl", „Alkyl-Heterocyclyl", „Alkyl-Aryl" und „Alkyl-Heteroaryl", insofern nicht gemäß Anspruch 1 bereits explicit definiert, die Substitution eines oder mehrerer Wasserstoffreste durch F, Cl, Br, I, CN, CF3, NH2, NH-Alkyl, NH-Aryl, N(Alkyl)2, NO2, SH, S-Alkyl, OH, OCF3, O-Alkyl, O-Aryl, CO2H, SO3H oder Alkyl bedeuten kann, wobei die Substituenten gleich oder verschieden sein und in jeder beliebigen und möglichen Position des Alkyl-, Cycloalkyl-, Heterocyclyl-, Aryl- und Hete- roarylrestes vorkommen können und wobei mehrfach substituierte Reste entweder an verschiedenen oder an gleichen Atomen mehrfach, mit dem gleichen oder mit verschiedenen Substituenten erfolgen können.
3. Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass der Alkylrest Methyl, Ethyl, n-Propyl, 2-Propyl, /7-Butyl, sec.-Butyl, te/t-Butyl, n-Pentyl, /so-Pentyl, neσ-Pentyl, π-Hexyl, 2-Hexyl, n- Octyl, Ethylenyl (Vinyl), Ethinyl, Propenyl (-CH2CH=CH2; -CH=CH-CH3, -C(=CH2)- CH3), Propinyl (-CH2-C≡CH, -C≡C-CH3), Butenyl, Butinyl, Pentenyl, Pentinyl, Hexenyl, Hexinyl, Heptenyl, Heptinyl, Octenyl und Octinyl sein kann.
4. Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass der Heterocyclyl-Rest Tetrahydrofuryl, Tetra- hydropyranyl, Pyrrolidinyl, Piperidinyl, Piperazinyl und Morpholinyl sein kann.
5. Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, dass der Heteroaryl-Rest Pyrrolyl, Furyl, Thienyl, Thiazolyl, Oxazolyl, Isoxazolyl, Pyrazolyl, Imidazolyl, Pyridinyl, Pyrimidinyl, Pyridazi- nyl, Pyrazinyl, Phthalazinyl, Indolyl, Indazolyl, Indolizinyl, Chinolinyl, Isochinolinyl, Chinoxalinyl, Chinazolinyl, Carbazolyl, Phenazinyl, Phenothiazinyl, Acridinyl sein kann.
6. Physiologisch verträgliche Salze der Verbindungen nach Formel I gemäß Ansprüchen 1 bis 5, gekennzeichnet durch Neutralisation der basischen Verbindungen mit anorganischen und organischen Säuren bzw. Neutralisation der sauren Verbindungen mit anorganischen und organischen Basen, sowie deren Solvate und Hydrate.
7. Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I gemäß den Ansprüchen 1 bis 6 mit mindestens einem asymmetrischen Kohlenstoffatom in Form ihrer Racemate, in Form der reinen Enantiomeren und/oder Diastereomeren oder in Form von Mischungen dieser Enantiomeren und/oder Diastereomeren oder in Form der Tautomeren.
8. Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I gemäß den Ansprüchen 1 bis 7, insbesondere eine der folgenden Verbindungen:
1-Allyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
1-Allyl-3-(3-naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff
1-Allyl-3-[3-(4-methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff
1-Allyl-3-[3-(4-hydroxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-thioharnstoff-Hydrochlorid
1-(2-Methyl-allyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
1-(2-Methyl-allyl)-3-(3-naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff 1-[3-(4-Methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-(2-methyl-allyl)-thiohamstoff
1-(3-Naphthalin-2-yl-pyrido[2,3-b]pyrazin-6-yl)-3-(4-nitro-phenyl)-thioharnstoff
1-[3-(4-Methoxy-phenyl)-pyrido[2,3-b]pyrazin-6-yl]-3-(4-nitro-phenyl)-thioharnstoff
1- erf-Butyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
1-Cyclopropyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff
1-Methyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff
1-Benzyl-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thiohamstoff
1-(4-Fluoro-phenyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-thioharnstoff
1-(3-Phenyl-pyrido[2,3-b]pyrazin-6-yl)-3-p-tolyl-hamstoff
1-(4-Chloro-3-trifluoromethyl-phenyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-harnstoff
1-(2-Morpholin-4-yl-ethyl)-3-(3-phenyl-pyrido[2,3-b]pyrazin-6-yl)-hamstoff
9. Verwendung der Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach einem der Ansprüche 1 bis 8 als therapeutische Wirkstoffe zur Herstellung von Arzneimitteln zur Behandlung von malignen Erkrankungen.
10. Verwendung der Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach einem der Ansprüche 1 bis 8 als therapeutische Wirkstoffe zur Herstellung von Arzneimitteln zur Behandlung von auf pathologischen Zellproliferationen beruhenden Erkrankungen.
11. Verwendung der Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach einem der Ansprüche 1 bis 8 und 10 als therapeutische Wirkstoffe zur Herstellung von Arzneimitteln zur Behandlung von Erkrankungen wie Restenose, Psoriasis, Arteriosklerose und Leberzirrhose.
12. Verwendung der Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach einem der Ansprüche 1 bis 8 als therapeutische Wirkstoffe zur Herstellung von Arzneimitteln zur Behandlung von Tumoren im Menschen und in Säugetieren.
13. Verwendung der Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach einem der Ansprüche 1 bis 8 als therapeutische Wirkstoffe zur Herstellung von Arzneimitteln zur Modulation von fehlgeleiteten zellulären Signaltransduktionsprozessen, insbesondere zur Beeinflussung der Aktivität von Tyrosin- und Se- rin/Threoninkinasen.
14. Verwendung der Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach einem der Ansprüche 1 bis 8 und 13 als therapeutische Wirkstoffe zur Herstellung von Arzneimitteln zur Modulation von fehlgeleiteten zellulären Signaltransduktionsprozessen, insbesondere zur Beeinflussung der Aktivität von Kinasen, wie c-Raf, B-Raf, Mek, PDGFRbeta, Flt-3, IGF1R, PKB/Akt1 , c-Kit, c-Abl, FGFR1 und KDR.
15. Arzneimittel zur Verwendung bei der Behandlung von malignen Erkrankungen, enthaltend mindestens eine Verbindung der allgemeinen Formel I gemäß den Ansprüchen 1 bis 8, vorzugsweise zusammen mit gebräuchlichen pharmazeutischen Trägerstoffen und/oder Verdünnungsmitteln beziehungsweise sonstigen Hilfsstoffen.
16. Arzneimittel zur Verwendung bei der Behandlung von auf pathologischen Zellproliferationen beruhenden Erkrankungen, enthaltend mindestens eine Verbindung der allgemeinen Formel I gemäß den Ansprüchen 1 bis 8, vorzugsweise zusammen mit gebräuchlichen pharmazeutischen Trägerstoffen und/oder Verdünnungsmitteln beziehungsweise sonstigen Hilfsstoffen.
17. Arzneimittel zur Verwendung bei der Behandlung von Tumoren im Menschen und in Säugetieren, enthaltend mindestens eine Verbindung der allgemeinen Formel I gemäß den Ansprüchen 1 bis 8, vorzugsweise zusammen mit gebräuchlichen pharmazeutischen Trägerstoffen und/oder Verdünnungsmitteln beziehungsweise sonstigen Hilfsstoffen.
18. Arzneimittel zur Verwendung bei der Modulation von fehlgeleiteten zellulären Signaltransduktionsprozessen, insbesondere zur Beeinflussung der Aktivität von Tyrosin- und Serin/Threoninkinasen, enthaltend mindestens eine Verbindung der allgemeinen Formel I gemäß den Ansprüchen 1 bis 8, vorzugsweise zusammen mit gebräuchlichen pharmazeutischen Trägerstoffen und/oder Verdünnungsmitteln beziehungsweise sonstigen Hilfsstoffen.
19. Arzneimittel, enthaltend eine oder mehrere Verbindungen der allgemeinen Formel I nach einem der Ansprüche 1 bis 8 neben üblichen physiologisch verträglichen Hilfs-, Zusatz- und Trägerstoffen.
20. Verfahren zur Herstellung eines Arzneimittels nach Anspruch 19, dadurch gekennzeichnet, daß ein oder mehrere Pyrido[2,3-b]pyrazin-Derivate der allgemeinen Formel I nach einem der Ansprüche 1 bis 8 mit gebräuchlichen pharmazeutischen Trägerstoffen und/oder Verdünnungsmitteln beziehungsweise sonstigen Hilfsstoffen zu pharmazeutischen Zubereitungen verarbeitet, beziehungsweise in eine therapeutisch anwendbare Form gebracht werden.
21. Verfahren zur Behandlung von Tumoren beim Menschen und in Säugetieren, dadurch gekennzeichnet, daß mindestens eine Verbindung der allgemeinen Formel I nach einem der Ansprüche 1 bis 8 dem Menschen oder einem Säugetier in einer für die Tumorbehandlung wirksamen Menge verabreicht wird.
EP04733782A 2003-05-23 2004-05-19 Neue pyridopyrazine und deren verwendung als kinase-inhibitoren Withdrawn EP1628976A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10323345A DE10323345A1 (de) 2003-05-23 2003-05-23 Neue Pyridopyrazine und deren Verwendung als Kinase-Inhibitoren
PCT/EP2004/005379 WO2004104002A1 (de) 2003-05-23 2004-05-19 Neue pyridopyrazine und deren verwendung als kinase-inhibitoren

Publications (1)

Publication Number Publication Date
EP1628976A1 true EP1628976A1 (de) 2006-03-01

Family

ID=33441206

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04733782A Withdrawn EP1628976A1 (de) 2003-05-23 2004-05-19 Neue pyridopyrazine und deren verwendung als kinase-inhibitoren

Country Status (17)

Country Link
US (3) US7323468B2 (de)
EP (1) EP1628976A1 (de)
JP (1) JP2007500195A (de)
KR (1) KR20060015283A (de)
CN (2) CN1795195B (de)
AR (1) AR045685A1 (de)
AU (1) AU2004240746B2 (de)
BR (1) BRPI0410632A (de)
CA (1) CA2524948A1 (de)
DE (1) DE10323345A1 (de)
MX (1) MXPA05012592A (de)
NO (1) NO20056030L (de)
RS (2) RS51906B (de)
RU (1) RU2005140378A (de)
TW (1) TW200504062A (de)
WO (1) WO2004104002A1 (de)
ZA (2) ZA200508872B (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MXPA05012645A (es) * 2003-05-23 2006-02-08 Zentaris Gmbh Piridopirazinas novedosas y su uso como moduladores de cinasa.
DE102004022383A1 (de) * 2004-05-06 2005-12-01 Zentaris Gmbh Neue Pyridopyrazine und deren Verwendung als Modulatoren von Kinasen
DE10323345A1 (de) * 2003-05-23 2004-12-16 Zentaris Gmbh Neue Pyridopyrazine und deren Verwendung als Kinase-Inhibitoren
US20100132790A1 (en) * 2005-05-09 2010-06-03 Solaris Nanosciences, Inc. Rechargeable Dye Sensitized Solar Cell
US8217042B2 (en) 2005-11-11 2012-07-10 Zentaris Gmbh Pyridopyrazines and their use as modulators of kinases
CN101356173B (zh) * 2005-11-11 2012-10-31 阿特纳赞塔里斯有限公司 新的吡啶并吡嗪和它们作为激酶调节剂的用途
AU2006313701B2 (en) * 2005-11-11 2012-05-31 Aeterna Zentaris Gmbh Novel pyridopyrazines and their use as modulators of kinases
EP1790342A1 (de) * 2005-11-11 2007-05-30 Zentaris GmbH Pyridopyrazin-Derivate und deren Verwendung als Modulatoren der Signaltransduktionswege
EP1785423A1 (de) * 2005-11-11 2007-05-16 Zentaris GmbH Neue Pyridopyrazine und deren Verwendung als Modulatoren von Kinasen
EP1990342A1 (de) 2007-05-10 2008-11-12 AEterna Zentaris GmbH Pyridopyrazin-Derivate sowie Herstellungs- und Verwendungsverfahren dafür
GB201007286D0 (en) 2010-04-30 2010-06-16 Astex Therapeutics Ltd New compounds
GB201020179D0 (en) 2010-11-29 2011-01-12 Astex Therapeutics Ltd New compounds
EP2508184A1 (de) * 2011-04-06 2012-10-10 Æterna Zentaris GmbH Pyridopyrazinderivate und ihre Verwendungen
WO2012167423A1 (en) * 2011-06-08 2012-12-13 Hutchison Medipharma Limited Substituted pyridopyrazines as novel syk inhibitors
GB201118652D0 (en) 2011-10-28 2011-12-07 Astex Therapeutics Ltd New compounds
GB201118656D0 (en) 2011-10-28 2011-12-07 Astex Therapeutics Ltd New compounds
GB201118675D0 (en) 2011-10-28 2011-12-14 Astex Therapeutics Ltd New compounds
GB201118654D0 (en) 2011-10-28 2011-12-07 Astex Therapeutics Ltd New compounds
GB201209613D0 (en) 2012-05-30 2012-07-11 Astex Therapeutics Ltd New compounds
GB201209609D0 (en) 2012-05-30 2012-07-11 Astex Therapeutics Ltd New compounds
GB201307577D0 (en) 2013-04-26 2013-06-12 Astex Therapeutics Ltd New compounds
JO3512B1 (ar) 2014-03-26 2020-07-05 Astex Therapeutics Ltd مشتقات كينوكسالين مفيدة كمعدلات لإنزيم fgfr كيناز
HUE053654T2 (hu) 2014-03-26 2021-07-28 Astex Therapeutics Ltd FGFR- és CMET-inhibitorok kombinációi a rák kezelésére
RU2715893C2 (ru) 2014-03-26 2020-03-04 Астекс Терапьютикс Лтд Комбинации ингибитора fgfr и ингибитора igf1r
JOP20200201A1 (ar) 2015-02-10 2017-06-16 Astex Therapeutics Ltd تركيبات صيدلانية تشتمل على n-(3.5- ثنائي ميثوكسي فينيل)-n'-(1-ميثيل إيثيل)-n-[3-(ميثيل-1h-بيرازول-4-يل) كينوكسالين-6-يل]إيثان-1.2-ثنائي الأمين
US10478494B2 (en) 2015-04-03 2019-11-19 Astex Therapeutics Ltd FGFR/PD-1 combination therapy for the treatment of cancer
SI3353177T1 (sl) 2015-09-23 2020-08-31 Janssen Pharmaceutica Nv Triciklični heterocikli za zdravljenje raka
EP3353164B1 (de) 2015-09-23 2021-11-03 Janssen Pharmaceutica, N.V. Bi-heteroaryl-substituierte 1,4-benzodiazepine und ihre anwendung in der krebsbehandlung

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5053394A (de) 1973-09-20 1975-05-12
GB9413975D0 (en) * 1994-07-11 1994-08-31 Fujisawa Pharmaceutical Co New heterobicyclic derivatives
TW274550B (de) * 1992-09-26 1996-04-21 Hoechst Ag
US5700823A (en) 1994-01-07 1997-12-23 Sugen, Inc. Treatment of platelet derived growth factor related disorders such as cancers
UA71555C2 (en) * 1997-10-06 2004-12-15 Zentaris Gmbh Methods for modulating function of serine/threonine protein kinases by 5-azaquinoline derivatives
KR20040048411A (ko) * 2001-09-14 2004-06-09 메틸진, 인크. 히스톤 데아세틸라아제의 억제제
WO2003084473A2 (en) 2002-04-08 2003-10-16 Merck & Co., Inc. Method of treating cancer
US20050130977A1 (en) 2002-04-08 2005-06-16 Lindsley Craig W. Inhibitors of akt activity
JP4394960B2 (ja) 2002-04-08 2010-01-06 メルク エンド カムパニー インコーポレーテッド Akt活性阻害薬
EP1538907A4 (de) 2002-07-02 2008-12-24 Southern Res Inst Ftsz-hemmer und ihre verwendung
JP4560483B2 (ja) 2002-10-03 2010-10-13 ターゲジェン インコーポレーティッド 血管静態化物質およびそれらの使用法
US20050282814A1 (en) * 2002-10-03 2005-12-22 Targegen, Inc. Vasculostatic agents and methods of use thereof
EP1556053A4 (de) * 2002-10-31 2006-04-19 Amgen Inc Entzündungshemmende mittel
DE10323345A1 (de) * 2003-05-23 2004-12-16 Zentaris Gmbh Neue Pyridopyrazine und deren Verwendung als Kinase-Inhibitoren
WO2006074147A2 (en) 2005-01-03 2006-07-13 Myriad Genetics, Inc. Nitrogen containing bicyclic compounds and therapeutical use thereof
US20060160811A1 (en) 2003-07-18 2006-07-20 Oliver Wagner Aryl-condensed 3-arylpridine compounds and use thereof for controlling pathogenic fungi
WO2005056825A1 (en) 2003-12-05 2005-06-23 Board Of Regents, The University Of Texas System Screening for modulators of mekk2 and mekk3
WO2005061519A1 (en) 2003-12-19 2005-07-07 Takeda San Diego, Inc. Kinase inhibitors
DE102004017932A1 (de) 2004-04-14 2005-11-03 Boehringer Ingelheim Pharma Gmbh & Co. Kg Neue Alkin-Verbindungen mit MCH-antagonistischer Wirkung und diese Verbindungen enthaltende Arzneimittel
AU2005325267B2 (en) 2004-04-30 2010-11-04 Curis Inc. Quinoxaline inhibitors of the hedgehog signalling pathway
GB0413953D0 (en) 2004-06-22 2004-07-28 Syngenta Participations Ag Chemical compounds
GB0413955D0 (en) 2004-06-22 2004-07-28 Syngenta Participations Ag Chemical compounds
TW200621251A (en) 2004-10-12 2006-07-01 Neurogen Corp Substituted biaryl quinolin-4-ylamine analogues
US7776869B2 (en) 2004-10-18 2010-08-17 Amgen Inc. Heteroaryl-substituted alkyne compounds and method of use
JP2006137723A (ja) 2004-11-15 2006-06-01 Kyowa Hakko Kogyo Co Ltd スルホンアミド誘導体
EP1824828A2 (de) 2004-12-03 2007-08-29 Peakdale Molecular Limited Verbindungen auf pyridinbasis, die sich als zwischenprodukte für pharmazeutika oder landwirtschaftliche endprodukte eignen
WO2006073938A2 (en) 2004-12-30 2006-07-13 East Carolina University Method for the synthesis of 3-substituted indolizine and benzoindolizine compounds
US20080085901A1 (en) 2005-01-14 2008-04-10 Neurogen Corporation Heteroaryl Substituted Quinolin-4-Ylamine Analogues
US7592334B2 (en) 2005-01-25 2009-09-22 Glaxo Group Limited Antibacterial agents
CA2594998A1 (en) 2005-01-25 2006-08-03 Neurogen Corporation Substituted pyridazinyl-and pyrimidinyl-quinolin-4-ylamine analogues
JP2008528587A (ja) 2005-01-25 2008-07-31 グラクソ グループ リミテッド 抗菌剤
US7605169B2 (en) 2005-01-25 2009-10-20 Glaxo Group Limited Antibacterial agents
EP1846416A4 (de) 2005-01-25 2009-07-01 Glaxo Group Ltd Antibakterielle wirkstoffe
WO2006128129A2 (en) 2005-05-26 2006-11-30 Synta Pharmaceuticals Corp. Method for treating cancer
WO2006128172A2 (en) 2005-05-26 2006-11-30 Synta Pharmaceuticals Corp. Method for treating b cell regulated autoimmune disorders

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004104002A1 *

Also Published As

Publication number Publication date
ZA200508633B (en) 2006-07-26
AR045685A1 (es) 2005-11-09
CA2524948A1 (en) 2004-12-02
KR20060015283A (ko) 2006-02-16
US8193186B2 (en) 2012-06-05
ZA200508872B (en) 2006-07-26
AU2004240746B2 (en) 2007-05-31
RS51906B (sr) 2012-02-29
RS20050864A (en) 2008-04-04
US20080113991A1 (en) 2008-05-15
TW200504062A (en) 2005-02-01
RU2005140378A (ru) 2007-06-27
US7323468B2 (en) 2008-01-29
NO20056030L (no) 2006-02-15
CN1795195A (zh) 2006-06-28
CN1795194A (zh) 2006-06-28
BRPI0410632A (pt) 2006-06-13
JP2007500195A (ja) 2007-01-11
AU2004240746A1 (en) 2004-12-02
MXPA05012592A (es) 2006-02-08
RS20050876A (en) 2008-04-04
CN1795195B (zh) 2010-04-21
US20050032803A1 (en) 2005-02-10
WO2004104002A1 (de) 2004-12-02
US20070275972A1 (en) 2007-11-29
DE10323345A1 (de) 2004-12-16

Similar Documents

Publication Publication Date Title
EP1636228B1 (de) Neue pyridopyrazine und deren verwendung als modulatoren von kinasen
EP1628976A1 (de) Neue pyridopyrazine und deren verwendung als kinase-inhibitoren
JP5726202B2 (ja) 新規なナフチリジン誘導体及びそのキナーゼ阻害剤としての使用
DE69826841T2 (de) Phthalazines mit angiogenesis-hemmender wirkung
DE60124577T2 (de) Aza- und polyaza-naphthalenylcarbonsäureamide als hiv-integrase-hemmer
CA2905993C (en) Substituted 4-amino-pyrimidinyl-2-amino-phenyl derivatives and pharmaceutical compositions thereof for use as jak2 and alk2 inhibitors
EP1962854B1 (de) Pyridopyrazin-derivate und deren verwendung als modulatoren der signaltransduktionswege
DE10057754A1 (de) Neue Sulfonamid-substituierte Pyrazolopyridinderivate
EP1517898A1 (de) Aryl- und heteroarylcarbonylpiperazine und deren verwendung zur behandlung gutartiger und b sartiger tumorerkrankungen
EP2241557A1 (de) Chinoxalin-Derivate und deren Anwendung zur Behandlung gutartiger und bösartiger Tumorerkrankungen
DE10331500A1 (de) Neue Acridin-Derivate und deren Verwendung als Arzneimittel
DE602004009097T2 (de) 1.3.4-triaza-phenalen- und 1,3,4,6-tetraazaphenalen-derivate
DE102004022383A1 (de) Neue Pyridopyrazine und deren Verwendung als Modulatoren von Kinasen
WO2005014542A2 (de) Neue n-substituierte indolyl-3-glyoxylsäureamide, deren verwendung als arzneimittel gegen krebs und verfahren zu deren herstellung
EP1785423A1 (de) Neue Pyridopyrazine und deren Verwendung als Modulatoren von Kinasen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051024

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WIXLER, LUDMILLA

Inventor name: RAPP, ULF-R.

Inventor name: SEIPELT, IRENE

Inventor name: CLAUS, ECKHARD

Inventor name: GUENTHER, ECKHARD

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ZENTARIS GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AETERNA ZENTARIS GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17Q First examination report despatched

Effective date: 20080213

18W Application withdrawn

Effective date: 20080220