EP1628789B1 - Herstellung eines strukturierten bleches für abgasbehandlungseinrichtungen - Google Patents
Herstellung eines strukturierten bleches für abgasbehandlungseinrichtungen Download PDFInfo
- Publication number
- EP1628789B1 EP1628789B1 EP04739422A EP04739422A EP1628789B1 EP 1628789 B1 EP1628789 B1 EP 1628789B1 EP 04739422 A EP04739422 A EP 04739422A EP 04739422 A EP04739422 A EP 04739422A EP 1628789 B1 EP1628789 B1 EP 1628789B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tool
- sheet
- metal strip
- section
- sheet metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 152
- 239000002184 metal Substances 0.000 title claims description 152
- 238000004519 manufacturing process Methods 0.000 title claims description 28
- 238000000034 method Methods 0.000 claims description 31
- 238000003754 machining Methods 0.000 claims description 9
- 238000005096 rolling process Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims 1
- 238000012545 processing Methods 0.000 description 23
- 238000004080 punching Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 8
- 238000005555 metalworking Methods 0.000 description 7
- 238000002485 combustion reaction Methods 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 239000003344 environmental pollutant Substances 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 231100000719 pollutant Toxicity 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000037303 wrinkles Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- VQKWAUROYFTROF-UHFFFAOYSA-N arc-31 Chemical compound O=C1N(CCN(C)C)C2=C3C=C4OCOC4=CC3=NN=C2C2=C1C=C(OC)C(OC)=C2 VQKWAUROYFTROF-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000001914 calming effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D35/00—Combined processes according to or processes combined with methods covered by groups B21D1/00 - B21D31/00
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D13/00—Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form
- B21D13/04—Corrugating sheet metal, rods or profiles; Bending sheet metal, rods or profiles into wave form by rolling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2803—Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
- F01N3/2807—Metal other than sintered metal
- F01N3/281—Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
- F01N3/2814—Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates all sheets, plates or foils being corrugated
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
- F01N3/24—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
- F01N3/28—Construction of catalytic reactors
- F01N3/2803—Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
- F01N3/2807—Metal other than sintered metal
- F01N3/281—Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
- F01N3/2821—Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates the support being provided with means to enhance the mixing process inside the converter, e.g. sheets, plates or foils with protrusions or projections to create turbulence
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49345—Catalytic device making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/496—Multiperforated metal article making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49828—Progressively advancing of work assembly station or assembled portion of work
- Y10T29/49829—Advancing work to successive stations [i.e., assembly line]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49826—Assembling or joining
- Y10T29/49833—Punching, piercing or reaming part by surface of second part
Definitions
- the present invention relates to a method and an apparatus for producing a structure in a smooth sheet-metal strip, which is used in particular for the production of exhaust gas treatment devices of mobile internal combustion engines.
- Such components are, for example, filter elements for filtering out particles contained in the exhaust gas, adsorbers for at least temporary storage of pollutants contained in the exhaust gas (for example NO x ), catalytic converters (for example three-way catalyst, oxidation catalytic converter, reduction catalytic converter, etc.), diffusers for influencing the flow or turbulence of the exhaust gas flowing through, or also heating elements which heat the exhaust gas to a desired temperature just after the cold start of the internal combustion engine.
- the following carrier substrates have proven successful in principle: ceramic honeycomb bodies, extruded honeycomb bodies and honeycomb bodies made of metal foils. Due to the fact that these carrier substrates are always to adapt to their functions, high-temperature-resistant and corrosion-resistant metal sheets are particularly well suited starting materials for the production.
- honeycomb bodies with a plurality of at least partially structured sheets, which are subsequently introduced into a housing and thus form a carrier body which can be provided with one or more of the above-mentioned coatings.
- the at least partially structured sheets are arranged so that substantially parallel to each other arranged channels are formed.
- a part of the sheets is provided with a primary structure, which is characterized inter alia by a regular, repetitive structure, in particular a kind of sine wave structure, a sawtooth structure, a rectangular structure, a triangular structure, an omega structure od.
- These sheets provided with the structure are then stacked (possibly alternately with smooth liners), wound together and inserted into a housing.
- a honeycomb body is formed, which has substantially parallel channels.
- secondary structures which include, for example, guide surfaces, microstructures, nubs, protrusions, wings, tabs, holes or the like.
- guide surfaces for example, guide surfaces, microstructures, nubs, protrusions, wings, tabs, holes or the like.
- a honeycomb body or a catalyst wherein a smooth sheet metal strip is processed by a punching tool and a corrugated tool and subsequently wound. Holes and corrugated structure are arranged independently of each other, so that a coordination of the tools to each other is not necessary.
- a device in DE 41 30 673 A1 discloses, which structures a sheet metal strip by means of a punching tool and a corrugated tool, wherein between the two tools, a further feed is arranged, which engages in the introduced holes and feeds the sheet metal strip to the corrugated tool.
- US 1,495,637 describes a metal strip forming machine which first introduces structures and subsequently holes in a sheet metal strip, wherein drive rollers in front of and behind the tools to produce the feed.
- the technical problems mentioned at the outset are to be overcome by producing a very uniform configuration of the primary structure or secondary structure, so that errors during production can be minimized.
- the possibility should be created to reduce the influence of inhomogeneities of the sheet metal strip used as a half tool in the production of such sheets in series production.
- a particularly space-saving device should be specified.
- step c) comprises the introduction of at least one hole in the first section and step d) generates a structure in the second section of the sheet-metal strip, wherein the second section is already provided with at least one hole.
- the second tool engages during the step d) in the at least one hole.
- the sheet metal strip is clamped by means of the second tool and a, the first tool prefixed, holding device.
- the sheet metal strip consists of a high-temperature-resistant and corrosion-resistant material.
- the material is based on iron and has at least one of the components aluminum, chromium and nickel. While the sheet metal strip has a length of many meters, the width of the sheet metal strip substantially already corresponds to the desired width, as required for the exhaust system. Usually, the width is in the range of less than 15 cm.
- the sheet metal strip is usually rolled into a coil and is fed via conveyors.
- the first section of the smooth sheet-metal strip is first processed by the first tool and finally fed to the second tool.
- a step is described in which due to the spatial separation of the first tool and the second tool (edited by the first tool) first section is not directly supplied to the second tool, but this second tool processed another (second) section of the sheet metal strip.
- the second section may have already been processed by the first tool, but it is also possible that the second section still includes a smooth area of the sheet metal strip.
- the sections preferably extend over the entire width of the sheet metal strip and have a section length which is essentially oriented to the structure to be produced.
- the section length of the first section and the second section is the same.
- the section on the smooth sheet-metal strip essentially corresponds to the working area of at least one tool.
- Tool is a generic term for various devices, apparatus, etc. specified for sheet metal forming.
- step a) Due to the fact that the sheet-metal strip is continuously integrally formed, according to step a), the first section is transported to the first tool and a second section to the second tool in the desired feed direction at the same time. After step a) is thus in each case a portion of the sheet metal strip near the respective tool, which has not been processed by the first or second tool. Preferably, this first section or second section directly adjoins the section of the sheet metal strip that has just been processed in the feed direction.
- step b) If this supply of the sheet metal strip was made in the desired position, the sheet metal strip according to step b) is stopped. Thus is ensures that no relative movement of the sheet metal strip takes place to the tools, while the following step c) is performed.
- a sheet metal processing of the first portion of the sheet metal strip is performed with the first tool (step c)).
- the "sheet metal processing” includes in particular sheet metal forming and separating manufacturing processes. Sheet metal transformations are characterized in particular in that the sheet metal strip is formed into planar hollow parts or structures, wherein after the processing step a substantially uniform material thickness is present, as it has been present before the processing step. This applies, for example, to the production processes of drawing, pressing, bending, etc. Other forming manufacturing processes can be hydroforming, superplastic forming, magnetic forming, etc. Under a sheet metal processing are also subsumed here methods for sheet separation, such as cutting or fine cutting, laser beam cutting, the water-abrasive jet cutting, etc.
- step d) is carried out, in which a sheet metal processing of the second section takes place with the second tool.
- step a) is carried out again, that is to say a (new) first section is fed to the first tool and a (new) second section is fed to the second tool.
- the first machining step is carried out with the sheet metal strip resting, while the second machining step takes place simultaneously with a relative movement of the sheet metal strip to the tools.
- step d) and step a) are superimposed in time. This has the consequence that a precise and precise for the sheet metal processing with the second tool precise feeding of the sheet metal strip is made possible.
- the sheet metal processing with the second tool is such that it automatically generates a relative movement of the sheet metal strip to the second tool.
- the combination of steps d) and a) simultaneously opens up a particularly rapid processing, so that very high feed rates of the sheet-metal strip can be realized.
- feed speeds above 10 m / min meters per minute
- feed speeds above 25 m / min or even over 50 m / min can be achieved.
- step c) comprises the introduction of at least one hole in the first section and step d) creates a structure in the second section of the sheet metal strip, the second section is already provided with at least one hole.
- step d) creates a structure in the second section of the sheet metal strip, the second section is already provided with at least one hole.
- the second section which is here provided with a structure, was thus previously processed by a sheet-metal separating process.
- hole is again as a generic term for a introduced into the metal strip separating edge of any shape, in particular a slot, an opening, a slot, a rectangle, etc ..
- step d) is adapted accordingly. This can be ensured, for example, via the type of introduction of the structure or a special configuration of the second tool. Due to the fact that the at least one hole is very small compared to the entire second section, a very precise alignment of the hole is required to the second tool, which is made possible in particular by the combination of steps a) and d).
- the second tool engages during the step d) in the at least one hole.
- the intervention of the second tool is to be understood in particular as meaning that sheet metal forming takes place in the immediate vicinity of the hole, so that the area of the sheet metal strip adjacent to the hole is deformed.
- the second tool can thus rest on the hole after forming and / or penetrate it at least partially.
- This also means, inter alia, that the second tool and the section previously processed by step c) form a form fit when performing step d). Precisely with such a method or, in the case of the types of primary and / or secondary structures of very small extent described here, the precise feeding of the sections to the tools is therefore also guaranteed in the context of mass production.
- a structure in the second section of the sheet-metal strip is produced in step d), which has a primary structure and a secondary structure.
- the primary structure is preferably formed over the entire length of the sheet metal strip in a repetitive manner and advantageously also continuously in succession.
- the secondary structure overlays the primary structure or only extends over a spatially limited subarea of the primary structure.
- the secondary structure can, as already explained, include nubs, wings, edges or similar structures.
- the secondary structure is used u. a influencing a flow of fluid guided along the surface of the sheet-metal strip so that turbulence or calming zones arise in which, on the one hand, a type of turbulent flow or a reduced flow velocity with respect to the fluid can be produced.
- Concerning the implementation or design of such secondary structures is to be exemplified in WO 01/80978 A1 referenced, the content of which is fully made the subject of the disclosure
- the sheet metal strip is clamped by means of the second tool and a, the first tool prefixed, holding device.
- the holding device has the function, first of all, to relieve the upstream coil.
- the holding device ensures that the metal strip is stretched between it and the second tool as the last forming work station, so sags, compressions or the like can be avoided. This supports a particularly precise feeding of sections of the sheet metal strip to the tools.
- a holding device for example, brakes, friction linings or the like can be used.
- step c) comprises punching a plurality of holes.
- the production method stamping is assigned to the sheet metal separating production method, wherein a part or a knife of a piece of the material of the sheet metal strip is separated from other parts with a cutting edge or a knife.
- material can be removed from the sheet-metal strip (formation of a recess, an opening, etc.) or even material only be pushed aside (as in the case of a slot, for example). It is also possible that in the first section openings and slots are introduced side by side.
- the formation of the plurality of holes preferably takes place in rows and in particular over the entire width of the sheet-metal strip. For this purpose, several rows of holes at the same time or offset in time can be introduced to each other.
- step d) comprises the corrugating of the sheet metal strip.
- the sheet metal strip is passed through two rotating, intermeshing, intermeshing profile roller.
- the corrugating rolls not only serve to produce a structure in the sheet-metal strip, but at the same time constitute the transport element with which the sheet-metal strip is conveyed or fed in a defined manner. This requires in particular that the rollers realize a feed of the sheet metal strip, in particular by generating a force in the feed direction on the sheet metal strip.
- the steps a) to d) are repeated, the repetition rate being at least 5 hertz [ 1 / second].
- repetition rates above 10 Hertz or even above 20 Hertz are preferred for mass production.
- the repetition rate is a measure of the time intervals at which step a) is restarted.
- a repetition rate of 5 Hertz means that the method steps a) to d) are repeated five (5) times in one second.
- step c) it is also advantageous to bring the metal strip at least before step c) in contact with a fuel.
- a fuel Under operating materials in this sense fall in particular oils, lubricants, coolants, etc.
- the supplies are intended to support the processing or transformation of the metal strip or prevent jamming, jamming of the tools.
- an apparatus for producing a structure in a smooth sheet-metal strip comprises at least a first tool for sheet metal processing and a second tool for sheet metal processing and is characterized in that the first tool and the second tool are arranged directly behind one another and the second tool comprises means for simultaneously carrying out a sheet metal forming and a sheet metal band feed
- the device in particular suitable for carrying out the method according to the invention described above.
- the first tool and the second tool are arranged directly one behind the other, so is dispensed with a separate feed to the tools.
- the second tool represents by the machining process a Blechbandvortrieb both for itself, as well as for the upstream first tool. Accordingly, the second tool pulls the metal strip into the first tool.
- the second tool on a clocked drive, each of which allows a feed in such a way that always the desired first portion is supplied to the first tool.
- a particularly precise supply of the sheet metal strip is created because the retraction of the sheet metal strip by the second tool (regardless of other feeders), the relative distance of the first section and the second section is always kept constant.
- the sheet metal forming preferably takes place simultaneously over the entire width of the sheet metal strip.
- the first tool and the second tool form a distance in a feed direction of the sheet metal strip, which is smaller than 1000 mm [millimeters]. Preferably, this distance is even less than 500 mm or even less than 200 mm.
- the omission of separate drives for the supply of the sheet metal strip allows a spatially very close to each other positioned first and second processing station (or tool). Ie. also, that the first sheet metal working and the second sheet metal working substantially be performed in a region of the sheet metal strip, which has only very slightly different material properties. This ensures that the sheet metal work carried out with the first tool is finally formed very precisely and precisely to the final position in the second tool. Thus, a very space-saving and precise working device is specified.
- the apparatus further serves the first tool at least the production of at least one hole, in which engages the second tool, wherein the sheet metal strip by means of the second tool and a, the first tool veranographen, holding device is tensioned.
- the first tool is a punching tool. This is used in particular for the introduction of holes, etc. in the sheet-metal strip, which subsequently allow the formation of complex structures with the second tool.
- the punching tool has a stroke drive, which produces a working and an idle cycle
- a stroke drive which produces a working and an idle cycle
- the movement of the punching tool is performed only in part of this drive cycle
- eccentrics, camshafts or similar devices may be used, which temporarily cause a movement of the punching knife, on the other hand, however, have a stoppage of the punching result.
- the drives can be mechanical, hydraulic and / or electromagnetic type. This realizes the separation of steps c) and d) according to the method described above in a technically simple manner.
- the second tool comprises meshing profile rollers.
- the manufacturing process corrugating is performed.
- the meshing profile rollers have a surface contour, which roll during the rotation substantially to each other. They preferably do not touch each other, but have a gap to each other, which is essentially the Sheet thickness of the metal strip corresponds. As a result, a particularly gentle Umformuilg the sheet metal strip is effected.
- the second tool has a rotary drive, which provides a rotation clock frequency of at least 5 Hertz [ 1 / second ]. Due to the fact that the second tool at the same time determines the feed of the sheet metal strip, that acts as a kind of transport member, the rotational clock frequency of the rotary drive substantially corresponds to the repetition rate of the machining process.
- the rotary drive advantageously allows even rotation clock frequencies above 10 hertz, in particular even above 20 hertz. For example, revolutions above 3,000 rpm and more may be present.
- the device is to be designed so that at least the first tool or the second tool has a working zone that corresponds to a multiple of a width of the structure.
- both the first tool and the second tool have the same work zone, which corresponds to a multiple of the width of the structure.
- Very particularly preferred is the design of a working zone that corresponds substantially exactly to the simplicity of a width of the structure. This means that, for example, in the provision of meshing profile rollers, the working zone of a tooth of the profile roller, which ultimately determines the width of the structure, is created as the second tool
- this structured sheet for producing an exhaust gas treatment apparatus for mobile internal combustion engines.
- sheet here meant a cut to a certain length range of the sheet metal strip.
- catalyst carrier bodies, adsorbers, particle filters, flow influencers, etc. are suitable for the exhaust gas treatment apparatus.
- internal combustion engines diesel or gasoline engines of automobiles are particularly meant.
- Fig. 1 shows schematically and simplifies the structure of a device for producing a structure 1 in a smooth sheet-metal strip 2.
- the smooth sheet-metal strip 2 is supplied from a supply 20, which is shown here as a coil, the device.
- the device which is mounted here in a common housing 22, comprises a first tool 4 for sheet metal processing and a second tool 6 for sheet metal processing.
- the first tool 4 and the second tool 6 are arranged directly one behind the other.
- a first section 3 the first tool 4 and a new second section 5 the second tool 6 supplied is supplied.
- the second tool 6 which is formed here with meshing profile rollers 14, has a rotary drive 16, which thus implements the sole feed of the sheet-metal strip 2 in the device.
- the first tool 4 is designed as a punching device and has a lifting drive 14.
- the first tool 4 and the second tool 6 have a very small distance 13 to each other.
- the sheet-metal strip is clamped by means of the second tool 6 and one, the first tool 4 prefixed, holding device 11, which is designed here as a brake or frictional resistance. Between the holding device 11 and the first tool 4, a roller 21 is also provided, with which a fuel 12 is applied to the surface of the sheet-metal strip 2.
- Fig. 2 represents the movements of the tools during a work cycle.
- the movement of the first tool 4 comprising a (punching) knife 23 and a camshaft 24 is shown.
- the movement of the second tool 6 is shown greatly simplified, wherein the movement of the meshing profile rollers 15 is characterized.
- Below these sketches there is a diagram of the path (s) covered by the respective tool over time (t). The two graphs shown are labeled "A" for the movement of the first Tool 4 and "B" for the movements of the second tool 6.
- step c) of the method according to the invention in which sheet metal working of the first section of the sheet metal strip with the first tool 4 is started, is just beginning.
- the camshaft 24 sets the knife 23 of the figure downwards in motion, so that the knife 23 penetrates into the sheet metal strip.
- the knife 23 has reached its lowest point, the metal strip 2 thus completely penetrated. This is followed by an upward movement of the blade 23, until it has its original position, as already at the time (I), taken at the time (III).
- the position of the profile wheels 15 has not changed to each other.
- Fig. 3 shows schematically and in perspective a part of a metal strip 2 with a primary structure 9 and a secondary structure 10.
- the sheet metal strip 2 comprises in the partial section shown a secondary structure 10, which is partially bounded by two holes 8, which are designed here as slots, wherein these Slits extend only in an inner region of the sheet-metal strip 2.
- the secondary structure 10 projects out of the primary structure 9 of the sheet-metal strip 1.
- the primary structure 9 is designed with wave crests 25 and troughs 26.
- the Edge regions 27 of the slots are, as indicated, enlarged in the following Fig. 4.1, 4.2 and 4.3 shown.
- the sheet-metal strip 2 is shown in a section which substantially corresponds to the working zone 17 of the first tool and the second tool.
- Fig. 4.1, 4.2 and 4.3 show detailed views of a secondary structure 10, which is bounded by a hole 8.
- the hole 8 allows the secondary structure 10 to be formed from the sheet metal strip 2 so that it emerges from the primary structure 9.
- Fig. 4.1 is the edge region 27 shown as a simple slot.
- Fig. 4.2 and 4.3 are provided in the edge region 27 of the hole 8 recesses 31.
- the recesses 31 in Fig. 4.2 forms a circular arc 30 with a radius of curvature 32, which is preferably in the range of 0.2 mm to 0.4 mm.
- the recess 31 is shown as an undercut.
- the notch effect reducing, forms of the recesses 31 can also be used.
- Fig. 5 schematically shows a metal strip 2, as it may be designed after processing by the first tool.
- the sheet-metal strip 2 has a plurality of holes 8, which are arranged in rows 35 and in lines 34 to each other.
- the openings 8 are made in the edge regions 27 with recesses 31, wherein the two recesses 31 are connected to each other via a slot 28. All holes 8 are arranged in an inner region 33 of the sheet-metal strip 2.
- the holes 8 must now be aligned exactly to the second tool, since they at least partially define a secondary structure 10.
- Fig. 6 shows a finished sheet 19 with a structure 1, which was produced by the method according to the invention or the device according to the invention.
- the sheet 19 thus has a structure 1 (or primary structure), which is superimposed by a secondary structure 10.
- the secondary structure 10 is formed here with guide surfaces 29, which limit the respective hole 8 in part.
- the guide surfaces 29 are in both the Wellentälern 26 and arranged in the wave crests 25 and are each oriented opposite.
- the structure 1 can be described by a height 36 and a width 18, where by height 36 is meant the distance from wave peak 25 to wave valley 26 and with width 18 the distance between two neighboring wave peaks 25 and wave troughs 26.
- the ratio of width 18 to height 36 is preferably in a range of 2.0 to 1.3. In this way, channel densities of exhaust treatment devices can be formed ranging from 100 to 1000 cpsi ("cells per square inch", 6.45 channels / square inch equivalent to one channel / cm 2 ).
- the method described here or the device proposed here allow a particularly precise guidance of the sheet metal strip during the production of very complex structures. At the same time, a particularly space-saving arrangement of the tools can accomplish and realize a high processing speed.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Punching Or Piercing (AREA)
- Exhaust Gas After Treatment (AREA)
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Description
- Die vorliegende Erfindung betrifft ein Verfahren sowie eine Vorrichtung zur Herstellung einer Struktur in einem glatten Blechband, welches insbesondere zur Herstellung von Abgasbehandlungseinrichtungen mobiler Verbrennungskraftmaschinen eingesetzt wird.
- Bei der Abgasbehandlung von mobilen Verbrennungskraftmaschinen, wie z. B. Otto- und Dieselmotoren, ist es bekannt, Komponenten bzw. Strukturen in der Abgasleitung anzuordnen, die eine relativ große Oberfläche bereitstellen. Diese Komponenten werden üblicherweise mit einer adsorbierenden, katalytisch aktiven oder einer anderen Beschichtung versehen, wobei aufgrund der großen Oberfläche der Komponenten ein inniger Kontakt mit dem vorbeiströmenden Abgas realisiert wird. Solche Komponenten sind beispielsweise Filterelemente zum Herausfiltern von im Abgas enthaltenen Partikeln, Adsorber zum zumindest zeitlich begrenzten Speichern von im Abgas enthaltenen Schadstoffen (z. B. NOx), katalytische Konverter (z. B. Drei-Wege-Katalysator, Oxidationskatalysator, Reduktionskatalysator, etc.), Diffusoren zur Strömungsbeeinflussung bzw. Verwirbelung des hindurchströmenden Abgases, oder auch Heizelemente, die das Abgas gerade nach dem Kaltstart der Verbrennungskrafmaschine auf eine gewünschte Temperatur erwärmen. Im Hinblick auf die Einsatzbedingungen im Abgassystem eines Automobils haben sich grundsätzlich folgende Trägersubstrate bewährt: keramische Wabenkörper, extrudierte Wabenkörper und Wabenkörper aus Metallfolien. Aufgrund der Tatsache, dass diese Trägersubstrate an ihre Funktionen stets anzupassen sind, sind hochtemperaturfeste und korrosionsbeständige Bleche besonders gut geeignete Ausgangsmaterialien zur Herstellung.
- Es ist bekannt, Wabenkörper mit einer Mehrzahl von zumindest teilweise strukturierten Blechen herzustellen, die anschließend in ein Gehäuse eingebracht werden und somit einen Trägerkörper bilden, der mit einer oder mehreren der oben genannten Beschichtungen versehen werden kann. Die zumindest teilweise strukturierten Bleche werden dabei so angeordnet, dass im wesentlichen parallel zueinander angeordnete Kanäle gebildet sind. Um dies zu gewährleisten, ist beispielsweise ein Teil der Bleche mit einer Primärstruktur versehen, welche sich u. a. durch eine regelmäßige, sich wiederholende Struktur auszeichnet, insbesondere einer Art Sinus-Wellen-Struktur, eine Sägezahn-Struktur, eine Rechteck-Struktur, eine Dreiecks-struktur, eine Omega-Struktur od. dgl.. Diese mit der Struktur versehenen Bleche werden dann (ggf. abwechselnd mit glatten Zwischenlagen) aufeinander gestapelt, miteinander verwunden und in ein Gehäuse eingefügt. Somit ist ein Wabenkörper gebildet, der im wesentlichen zueinander parallele Kanäle aufweist.
- Weiter ist es bekannt, eine zweite Struktur in derartige Blechfolien einzubringen, die insbesondere verhindern sollen, dass sich unmittelbar nach Eintritt des Abgases in den Wabenkörper eine laminare Strömung bildet, wobei ein Gasaustausch von im Zentrum eines solchen Kanals liegenden Bereichen des Teilabgasstroms mit den z. B. katalytisch aktiven Kanalwandbereichen nicht stattfindet. Diese Sekundärstruktur bzw. Mikrostruktur stellt Anströmflächen bereit, die eine Verwirbelung der Teilabgasströme im Inneren eines solchen Kanals zur Folge hat. Dies führt zu einer intensiven Mischung der Teilabgasströme selbst, so dass ein inniger Kontakt der im Abgas enthaltenen Schadstoffe mit der Kanalwand gewährleistet ist. Weiterhin ist es möglich, durch derartige Sekundärstrukturen Strömungspassagen quer zum Kanal zu bilden, die einen Gasaustausch von Teilabgasströmen in benachbarten Kanälen ermöglichen. Aus diesem Grund sind Sekundärstrukturen bekannt, die beispielsweise Leitflächen, Mikrostrukturen, Noppen, Vorsprünge, Flügel, Laschen, Löcher oder ähnliches umfassen. Insofern ergibt sich eine deutlich erhöhte Variationsvielfalt bei der Herstellung solcher metallischer Wabenkörper gegenüber solchen aus keramischem Material, weil sich solche komplexe Kanalwände nicht bzw. nur mit besonders hohem technischen Aufwand realisieren lassen.
- Weiter ist es bei der Abgasbehandlung von besonderem Interesse, dass eine Umsetzung der im Abgas enthaltenen Schadstoffe nahezu unverzüglich nach dem Start des Motors erfolgt. Dabei sollte dies gemäß den gesetzlichen Bestimmungen bzw. Richtlinien mit einer besonders hohen Effektivität stattfinden. Aus diesem Grund wurden in der Vergangenheit immer dünnere Metallfolien bzw. Bleche eingesetzt. Sehr dünne Bleche stellen eine sehr geringe oberflächenspezifische Wärmekapazität dar, d. h., dass dem vorbeiströmenden Abgas relativ wenig Wärme entzogen wird bzw. die Bleche selbst relativ schnell eine Temperaturerhöhung erfahren. Das ist wichtig, weil die derzeit im Abgassystem eingesetzten katalytisch aktiven Beschichtungen erst ab einer bestimmten Anspringtemperatur mit der Umsetzung der Schadstoffe beginnen, die in etwa bei 230° C bis 270° C liegt. Mit dem Ziel, bereits nach wenigen Sekunden diese Schadstoffe mit einer mindestens 98 %igen Effektivität umzusetzen, werden Bleche eingesetzt, die eine Foliendicke beispielsweise kleiner 50 µm (0,05 mm) haben, insbesondere sogar kleiner 30 µm (0,03 mm).
- Aus den obengenannten Zielsetzungen resultieren jedoch eine Reihe fertigungstechnischer und anwendungstechnischer Probleme. Die Herstellung derartig filigraner Strukturen, insbesondere der Sekundärstrukturen bzw. Mikrostrukturen, erfordert besonders präzise arbeitende Werkzeuge, die üblicherweise sehr teuer sind und demnach lange Standzeiten verwirklichen sollten. Dabei ist zu berücksichtigen, dass einerseits umformende und andererseits ggf. auch trennende Fertigungsschritte bewerkstelligt werden müssen. Um Werkzeugkosten zu sparen, wurden möglichst viele Bearbeitungsschritte in ein Werkzeug integriert, wobei aufgrund der Gestalt der Sekundärstruktur ein zunehmender Verschleiß am Werkzeug festzustellen ist. Weiterhin besteht das Problem, dass die relativ dünnen Blechfolien mit einer geeigneten Geschwindigkeit zugeführt werden müssen, nach Möglichkeit ohne einer unerwünschten Kaltverformung ausgesetzt zu werden. Die Kaltverfestigung kann das Umformverhalten der Bleche negativ beeinflussen.
- Aufgrund des Einsatzes von relativ dünnen Blechen besteht zudem die Gefahr, dass die Blechfolien bei der Herstellung zum Knittern, zum Aufrollen und/oder zum Einreißen neigen. Diese unerwünschten Verformungen können schon bei der Herstellung, als auch beim Transport oder während des Einsatzes in einer Abgasanlage eines Automobils auftreten bzw.'sich noch verstärken. Die Knitter haben beispielsweise zur Folge, dass u. U. Kanäle verstopft werden bzw. Risse gebildet sind, die wegen der hohen thermischen und dynamischen Belastungen im Abgassystem eines Automobils sich fortpflanzen und die strukturelle Integrität des Wabenkörpers gefährden. Weiterhin ist zu berücksichtigen, dass sich derartig geknitterte oder deformierte Primär- und/oder Sekundärstrukturen in einer unerwünschten Weise dem Abgas entgegenstellen, so dass ein erhöhter Staudruck vor dem Wabenkörper zu befürchten ist, was ggf. zur Reduzierung der Motorleistung führen kann.
- Aus der
US 5,599,509 ist ein Wabenkörper bzw. ein Katalysator bekannt, wobei ein glattes Blechband durch ein Stanzwerkzeug und ein Wellwerkzeug bearbeitet und nachfolgend gewickelt wird. Löcher und Wellstruktur sind dabei unabhängig voneinander angeordnet, so dass eine Abstimmung der Werkzeuge aufeinander nicht notwendig ist. - Weiterhin ist eine Vorrichtung in
DE 41 30 673 A1 offenbart, die mittels eines Stanzwerkzeugs und eines Wellwerkzeugs ein Blechband strukturiert, wobei zwischen den beiden Werkzeugen ein weiterer Vorschub angeordnet ist, der in die eingebrachten Löcher eingreift und das Blechband dem Wellwerkzeug zuführt. -
US 1,495,637 beschreibt eine Metallstreifenumformmaschine, die zuerst Strukturen und nachfolgend Löcher in einen Blechstreifen einbringt, wobei Antriebsrollen vor und hinter den Werkzeugen den Vorschub erzeugen. - Hiervon ausgehend ist es Aufgabe der vorliegenden Erfindung, ein Verfahren und eine Vorrichtung zur Herstellung von strukturierten Blechen anzugeben, welches letztendlich dauerhaft den hohen thermischen und dynamischen Belastungen im Abgassystem eines Automobils standhalten kann. Insbesondere sollen die eingangs genannten technischen Probleme überwunden werden, indem eine sehr gleichmäßige Ausgestaltung der Primärstruktur bzw. Sekundärstruktur hergestellt wird, so dass Fehler bei der Herstellung minimiert werden können. Dabei soll gleichzeitig die Möglichkeit geschaffen werden, den Einfluss von Inhomogenitäten des als Halbwerkzeug eingesetzten Blechbandes bei der Herstellung derartiger Bleche in der Serienfertigung zu reduzieren. Außerdem soll eine besonders platzsparende Vorrichtung angegeben werden.
- Diese Aufgaben werden gelöst durch ein Verfahren zur Herstellung einer Struktur in einem glatten Blechband gemäß den Merkmalen des Patentanspruchs 1 bzw. durch eine Vorrichtung zur Herstellung einer Struktur in einem glatten Blechband mit den Merkmalen des Patentanspruchs 7. Weitere vorteilhafte Ausgestaltungen des Verfahrens bzw. der Vorrichtung sind in den jeweils abhängigen Patentansprüchen beschrieben. Ergänzend sei darauf hingewiesen, dass die in den Patentansprüchen genannten Merkmale miteinander in beliebig sinnvoller Weise kombiniert und ggf. durch Sachverhalte der Beschreibung ergänzt werden können.
- Das erfindungsgemäße Verfahren zur Herstellung einer Struktur in einem glatten Blechband umfasst zumindest folgende Schritte:
- a) Zuführen eines ersten Abschnittes eines glatten Blechbandes zu einem ersten Werkzeug und eines zweiten Abschnittes des Blechbandes zu einem zweiten Werkzeug in einer Vorschubrichtung;
- b) Anhalten des Blechbandes;
- c) Durchführen einer Blechbearbeitung des ersten Abschnittes des Blechbandes mit dem ersten Werkzeug;
- d) Durchführen einer Blechbearbeitung des zweiten Abschnittes des Blechbandes mit dem zweiten Werkzeug, wobei gleichzeitig Schritt a) ausgeführt wird.
- Dabei umfasst Schritt c) das Einbringen mindestens eines Loches in den ersten Abschnitt und Schritt d) erzeugt eine Struktur in dem zweiten Abschnitt des Blechbandes, wobei der zweite Abschnitt bereits mit mindestens einem Loch versehen ist.
- Darüber hinaus greift das zweite Werkzeug während des Schrittes d) in das mindestens eine Loch ein.
- Außerdem wird das Blechband mittels dem zweiten Werkzeug und einer, dem ersten Werkzeug vorangestellten, Haltevorrichtung gespannt.
- Üblicherweise werden die Bleche, die letztendlich in Abgasbehandlungsanlagen von Automobilen eingesetzt werden, aus einem Blechband hergestellt, wobei die Bleche gemäß der gewünschten Länge schließlich von dem Blechband abgetrennt werden. Das Blechband besteht aus einem hochtemperaturfesten und korrosionsbeständigen Material. Der Werkstoff basiert auf Eisen und weist zumindest einen der Bestandteile Aluminium, Chrom und Nickel auf. Während das Blechband eine Länge von vielen Metern hat, entspricht die Breite des Blechbandes im wesentlichen bereits der gewünschten Breite, wie sie für die Abgasanlage benötigt wird. Üblicherweise liegt die Breite im Bereich kleiner 15 cm. Das Blechband ist üblicherweise zu einem Coil zusammengerollt und wird über Fördereinrichtungen zugeführt.
- Aufgrund der Tatsache, dass hier zwei Bearbeitungsschritte hintereinander ablaufen, werden jeweils unterschiedliche Abschnitte des Blechbandes bearbeitet. Der erste Abschnitt des glatten Blechbandes wird zunächst vom ersten Werkzeug bearbeitet und schließlich auch dem zweiten Werkzeug zugeführt. Hiermit wird ein Arbeitsschritt beschrieben, bei dem aufgrund der räumlichen Trennung des ersten Werkzeuges und des zweiten Werkzeuges der (vom ersten Werkzeug bearbeitete) erste Abschnitt nicht direkt dem zweiten Werkzeug zugeführt wird, sondern dieses zweite Werkzeug einen anderen (zweiten) Abschnitt des Blechbandes bearbeitet. Der zweite Abschnitt kann dabei vom ersten Werkzeug bereits bearbeitet worden sein, es ist aber auch möglich, dass der zweite Abschnitt immer noch einen glatten Bereich des Blechbandes umfasst. Die Abschnitte erstrecken sich bevorzugt über die gesamte Breite des Blechbandes und haben eine Abschnittslänge, die sich im wesentlichen an der herzustellenden Struktur orientiert. Bevorzugt ist die Abschnittslänge des ersten Abschnittes und des zweiten Abschnittes gleich. Dabei entspricht der Abschnitt auf dem glatten Blechband im wesentlichen dem Arbeitsbereich wenigstens eines Werkzeuges. Mit Werkzeug ist ein Oberbegriff für verschiedenartige Vorrichtungen, Apparate, etc. zur Blechumformung angegeben.
- Aufgrund der Tatsache, dass das Blechband fortlaufend einstückig ausgebildet ist, wird gemäß Schritt a) gleichzeitig der erste Abschnitt zum ersten Werkzeug und ein zweiter Abschnitt zum zweiten Werkzeug in der gewünschten Vorschubrichtung transportiert bzw. zugeführt. Nach Schritt a) liegt somit jeweils ein Abschnitt des Blechbandes nahe dem jeweiligen Werkzeug, der vom ersten bzw. zweiten Werkzeug noch nicht bearbeitet wurde. Vorzugsweise grenzt dieser erste Abschnitt bzw. zweite Abschnitt an den in Vorschubrichtung gerade bearbeiteten Abschnitt des Blechbandes direkt an.
- Wenn diese Zuführung des Blechbandes in der gewünschten Position vorgenommen wurde, ist das Blechband gemäß Schritt b) anzuhalten. Somit ist sichergestellt, dass keine Relativbewegung des Blechbandes zu den Werkzeugen stattfindet, während der folgende Schritt c) durchgeführt wird.
- Nun wird eine Blechbearbeitung des ersten Abschnittes des Blechbandes mit dem ersten Werkzeug durchgeführt (Schritt c)). Die "Blechbearbeitung" umfasst insbesondere die Blechumformung und trennende Fertigungsverfahren. Blechumformungen sind insbesondere dadurch charakterisiert, dass das Blechband in flächenhafte Hohlteile bzw. Strukturen umgeformt wird, wobei nach dem Bearbeitungsschritt eine im wesentlichen gleichmäßige Materialstärke vorliegt, wie sie auch vor dem Bearbeitungsschritt vorgelegen hat. Dies trifft beispielsweise für die Fertigungsverfahren Ziehen, Drücken, Biegen, etc. zu. Weitere umformende Fertigungsverfahren können das Innenhochdruckumformen, das superplastische Umformen, das magnetische Umformen etc. sein. Unter einer Blechbearbeitung werden hier auch Verfahren zur Blechtrennung subsummiert, beispielsweise das Schneiden bzw. Feinschneiden, das Laserstrahlschneiden, das Wasser-Abrasiv-Strahlschneiden, etc.
- Nachdem die Blechbearbeitung des ersten Abschnittes im wesentlichen abgeschlossen ist, wird Schritt d) durchgeführt, bei dem eine Blechbearbeitung des zweiten Abschnittes mit dem zweiten Werkzeug erfolgt. Gleichzeitig mit der Blechbearbeitung des zweiten Abschnittes wird wieder Schritt a) ausgeführt, also ein (neuer) erster Abschnitt dem ersten Werkzeug und ein (neuer) zweiter Abschnitt dem zweiten Werkzeug zugeführt. D.h. mit anderen Worten, dass bei dieser zweistufigen Bearbeitung der erste Bearbeitungsschritt bei ruhendem Blechband durchgeführt wird, während der zweite Bearbeitungsschritt gleichzeitig mit einer Relativbewegung des Blechbandes zu den Werkzeugen stattfindet. D. h. auch, dass der Schritt d) und der Schritt a) zeitlich überlagert sind. Dies hat zur Folge, dass eine besonders exakte und für die Blechbearbeitung mit dem zweiten Werkzeug präzise Zuführung des Blechbandes ermöglicht wird. Insbesondere ist dabei die Blechbearbeitung mit dem zweiten Werkzeug derart, dass diese eine Relativbewegung des Blechbandes zum zweiten Werkzeug automatisch generiert.
- Neben der besonders präzisen Zuführung des ersten Abschnittes bzw. des zweiten Abschnittes zu dem jeweiligen Werkzeug eröffnet die Kombination der Schritte d) und a) gleichzeitig eine besonders schnelle Bearbeitung, so dass sehr hohe Vorschubgeschwindigkeiten des Blechbandes realisiert werden können. Für eine Serienfertigung derartiger strukturierter Blechbände lassen sich beispielsweise Vorschubgeschwindigkeiten oberhalb 10 m/min (Meter pro Minute) verwirklichen, insbesondere auch über 12 m/min oder sogar 15 m/min. Insbesondere bei weniger komplexen Strukturen sind sogar Vorschubgeschwindigkeiten oberhalb von 25 m/min oder sogar über 50 m/min erzielbar.
- Beim erfindungsgemäßen Verfahren umfasst Schritt c) das Einbringen mindestens eines Loches in den ersten Abschnitt und Schritt d) erzeugt eine Struktur in dem zweiten Abschnitt des Blechbandes, wobei der zweite Abschnitt bereits mit mindestens einem Loch versehen ist Das bedeutet mit anderen Worten, dass hier eine Überlagerung der beiden Blechumform-Schritte stattfindet. Der zweite Abschnitt, der hier mit einer Struktur versehen wird, wurde also zuvor mit einem Blechtrennenden Verfahren bearbeitet. In diesem Zusammenhang ist klarstellend darauf hinzuweisen, dass hier der Begriff des "Loches" wiederum als Oberbegriff für eine in das Blechband eingebrachte Trennkante jeglicher Form ist, insbesondere auch eines Schlitzes, einer Öffnung, eines Langlochs, eines Rechtecks, etc.. Dadurch, dass sich beispielsweise eine Mehrzahl bzw. Vielzahl solcher Löcher bereits in dem zweiten Abschnitt befindet, wird das Umformverhalten des Blechbandes lokal erheblich beeinflusst Deshalb ist Schritt d) entsprechend anzupassen. Dies kann beispielsweise über die Art der Einbringung der Struktur bzw. eine besondere Ausgestaltung des zweiten Werkzeuges sichergestellt sein. Aufgrund der Tatsache, dass das mindestens eine Loch sehr klein gegenüber dem gesamten zweiten Abschnitt ist, ist eine sehr präzise Ausrichtung des Loches zum zweiten Werkzeug erforderlich, was hier in besonderem Maße durch die Kombination der Schritte a) und d) ermöglicht wird.
- Darüber hinaus greift das zweite Werkzeug während des Schrittes d) in das mindestens eine Loch ein. Das Eingreifen des zweiten Werkzeuges ist insbesondere so zu verstehen, dass eine Blechumformung in unmittelbarer Nähe zu dem Loch stattfindet, der am Loch angrenzende Bereich des Blechbands also verformt wird. Das zweite Werkzeug kann nach der Umformung also an dem Loch anliegen und/oder es zumindest teilweise durchdringen. Das bedeutet unter anderem auch, dass das zweite Werkzeug und der zuvor durch Schritt c) bearbeitete Abschnitt bei der Durchführung des Schrittes d) einen Formschluss bilden. Gerade bei einem solchen Verfahren bzw, bei den hier eingangs beschriebenen Arten von Primär- und/oder Sekundärstrukturen sehr kleinen Ausmaßes ist also die präzise Zuführung der Abschnitte zu den Werkzeugen auch im Rahmen einer Serienfertigung gewährleistet.
- Gemäß einer weiteren Ausgestaltung des Verfahrens wird in Schritt d) eine Struktur in dem zweiten Abschnitt des Blechbandes erzeugt, die eine Primärstruktur und eine Sekundarstruktur aufweist Die Primärstruktur wird dabei bevorzugt über die gesamte Länge des Blechbandes in sich wiederholender Weise und vorteilhafterweise auch kontinuierlich hintereinander ausgebildet. Die Sekundärstruktur überlagert die Primärstruktur bzw. erstreckt sich nur über einen räumlich begrenzten Teilbereich der Primärstruktur. Die Sekundarstruktur kann, wie eingangs bereits erläutert, Noppen, Flügel, Kanten oder ähnliche Strukturen umfassen. Die Sekundärstruktur dient u. a der Beeinflussung einer an der Oberfläche des Blechbandes entlang geführten Fluid-Strömung, so dass Verwirbelungs- bzw. Beruhigungszonen entstehen, in denen einerseits eine Art turbulente Strömung oder eine reduzierte Strömungsgeschwindigkeit bezüglich des Fluids erzeugt werden kann. Betreffend die Verwirklichung bzw. Ausgestaltung solcher Sekundärstrukturen sei beispielhaft auf die
WO 01/80978 A1 - Gemäß des erfindungsgemäßen Verfahrens wird das Blechband mittels dem zweiten Werkzeug und einer, dem ersten Werkzeug vorangestellten, Haltevorrichtung gespannt. Die Haltevorrichtung hat die Funktion, zunächst einmal den vorgelagerten Coil zu entlasten. Außerdem stellt die Haltevorrichtung sicher, dass das Blechband zwischen ihr und dem zweiten Werkzeug als letzte umformende Bearbeitungsstation gespannt ist, also Durchhänge, Stauchungen oder ähnliches vermieden werden. Dies unterstützt eine besonders präzise Zuführung von Abschnitten des Blechbandes zu den Werkzeugen. Als Haltevorrichtung können beispielsweise Bremsen, Reibbeläge oder ähnliches zum Einsatz gelangen.
- Gemäß einer bevorzugten Ausgestaltung des Verfahrens umfasst Schritt c) das Stanzen einer Mehrzahl von Löchern. Das Fertigungsverfahren Stanzen ist den Blechtrennenden Fertigungsverfahren zuzuordnen, wobei mit einer Schneide bzw. einem Messer ein Teil des Materials des Blechbandes von anderen Teilbereichen abgetrennt wird. Dabei kann Material dem Blechband entfernt werden (Bildung einer Aussparung, einer Öffnung, etc.) oder aber auch Material nur beiseite gedrückt werden (wie z. B. bei einem Schlitz). Es ist auch möglich, dass in dem ersten Abschnitt Öffnungen und Schlitze nebeneinander eingebracht werden. Bevorzugt erfolgt die Ausbildung der Mehrzahl von Löchern reihenweise und insbesondere über die gesamte Breite des Blechbandes. Hierzu können auch mehrere Reihen mit Löchern zeitgleich oder zeitlich versetzt zueinander eingebracht werden.
- Weiter wird auch vorgeschlagen, dass Schritt d) das Wellwalzen des Blechbandes umfasst. Beim Wellwalzen wird das Blechband durch zwei rotierende, miteinander kämmende, ineinander eingreifende Profilwalze hindurchgeführt. Bei der hier explizit vorgeschlagenen Ausgestaltung des Verfahrens dienen die Wellwalzen nicht nur zur Erzeugung einer Struktur im Blechband, sondern stellen gleichzeitig das Transportorgan dar, mit dem das Blechband in einer definierten Weise weiter- bzw. zugeführt wird. Das macht insbesondere erforderlich, dass die Walzen einen Vorschub des Blechbandes verwirklichen, insbesondere indem sie eine Kraft in Vorschubrichtung auf das Blechband erzeugen.
- Gemäß einer Weiterbildung des Verfahrens werden die Schritte a) bis d) wiederholt durchgeführt, wobei die Wiederholgeschwindigkeit mindestens 5 Hertz [1/Sekunde] beträgt. Für die Serienfertigung sind insbesondere Wiederholgeschwindigkeiten oberhalb von 10 Hertz oder sogar oberhalb von 20 Hertz bevorzugt. Die Wiederholgeschwindigkeit ist ein Maß dafür, in welchen Zeitabständen jeweils mit dem Schritt a) wieder begonnen wird. Dabei bedeutet eine Wiederholgeschwindigkeit von 5 Hertz, dass die Verfahrensschritte a) bis d) in einer Sekunde fünf (5) Mal wiederholt werden. Das hier beschriebene Verfahren ermöglicht erstmalig eine sehr schnelle und präzise Herstellung von strukturierten Blechbändern, auch wenn diese sehr komplexe Strukturen aufweisen, die eine Ausrichtung einer Mehrzahl von Bearbeitungsstationen zueinander erfordern, wobei gleichzeitig auf zusätzliche Überwachungs- und Zuführeinheiten bzw. Zuführantriebe verzichtet werden kann.
- Außerdem ist es auch vorteilhaft, das Blechband zumindest vor Schritt c) mit einem Betriebsstoff in Kontakt zu bringen. Unter Betriebsstoffe in diesem Sinne fallen insbesondere Öle, Schmiermittel, Kühlmittel, etc.. Die Betriebsstoffe sollen die Bearbeitung bzw. Umformung des Blechbandes unterstützen bzw. ein Verkanten, Verklemmen der Werkzeuge verhindern.
- Gemäß einem weiteren Aspekt der Erfindung wird eine Vorrichtung zur Herstellung einer Struktur in einem glatten Blechband vorgeschlagen. Die Vorrichtung umfasst wenigstens ein erstes Werkzeug zur Blechbearbeitung und ein zweites Werkzeug zur Blechbearbeitung und ist dadurch gekennzeichnet, dass das erste Werkzeug und das zweite Werkzeug direkt hintereinander angeordnet sind und das zweite Werkzeug Mittel zur gleichzeitigen Durchführung einer Blechumformung und eines Blechbandvorschubes aufweist Die Vorrichtung ist insbesondere zur Durchführung des oben beschriebenen erfindungsgemäßen Verfahrens geeignet.
- Bekannte Vorrichtungen zur Herstellung einer Struktur in einem glatten Blechband, die zumindest zwei Bearbeitungsschritte umfassen, wiesen jeweils für die Bearbeitungsstation einen separaten ' Antrieb bzw. eine separate Zuführeinrichtung auf. Die jeweiligen Antriebe waren u. U. über eine aufwendige elektronische Steuerung miteinander gekoppelt, um einen präzise Zuführung zu der jeweiligen Arbeitsstation zu ermöglichen
- Hier wird nun vorgeschlagen, dass das erste Werkzeug und das zweite Werkzeug direkt hintereinander angeordnet sind, also auf eine separate Zuführung zu den Werkzeugen verzichtet wird. Das zweite Werkzeug stellt durch den Bearbeitungsvorgang einen Blechbandvortrieb sowohl für sich selbst, als auch für das vorgelagerte erste Werkzeug dar. Demnach zieht das zweite Werkzeug das Blechband in das erste Werkzeug hinein. Hierzu weist das zweite Werkzeug einen getakteten Antrieb auf, der jeweils einen Vorschub in der Weise ermöglicht, dass stets der gewünschte erste Abschnitt dem ersten Werkzeug zugeführt wird. Somit wird eine besonders präzise Zuführung des Blechbandes geschaffen, weil das Einziehen des Blechbandes durch das zweite Werkzeug (unabhängig von weiteren Zuführvorrichtungen) die relative Entfernung von erstem Abschnitt und zweitem Abschnitt stets konstant gehalten wird. Die Blechumformung findet vorzugsweise über die gesamte Breite des Blechbandes gleichzeitig statt.
- Dabei ist vorgesehen, dass das erste Werkzeug und das zweite Werkzeug einen Abstand in einer Vorschubrichtung des Blechbandes bilden, der kleiner als 1000 mm [Millimeter] ist. Bevorzugt ist dieser Abstand sogar kleiner 500 mm oder sogar kleiner 200 mm. Das Weglassen von separaten Antrieben für die Zuführung des Blechbandes ermöglicht eine räumlich sehr dicht zueinander positionierte erste und zweite Bearbeitungsstation (bzw. Werkzeug). D. h. auch, dass die erste Blechbearbeitung und die zweite Blechbearbeitung im wesentlichen in einem Bereich des Blechbandes durchgeführt werden, der nur sehr geringfügig voneinander abweichende Materialeigenschaften aufweist. Das gewährleistet, dass die Blechbearbeitung, die mit dem ersten Werkzeug durchgeführt wird, schließlich sehr exakt und positionsgenau zu der letztendlichen Lage im zweiten Werkzeug gebildet ist. Somit ist eine sehr platzsparende und präzise arbeitende Vorrichtung angegeben.
- Bei der erfindungsgemäßen Vorrichtung dient weiter das erste Werkzeug zumindest der Herstellung mindestens eines loches, in das das zweite Werkzeug eingreift, wobei das Blechband mittels des zweiten Werkzeugs und einer, dem ersten Werkzeug verangestellten, Haltevorrichtung gespannt wird.
- Weiter wird vorgeschlagen, dass das erste Werkzeug ein Stanzwerkzeug ist. Dieses dient insbesondere zur Einbringung von Löchern, etc. in das Blechband, welche nachfolgend die Ausbildung komplexer Strukturen mit dem zweiten Werkzeug ermöglichen.
- Dabei ist es besonders vorteilhaft, dass das Stanzwerkzeug einen Hub-Antrieb hat, welcher einen Arbeits- und einen Leerzyklus erzeugt Damit ist insbesondere gemeint, dass praktisch ein kontinuierlicher Antrieb des Stanzwerkzeuges anliegt, die Bewegung des Stanzwerkzeuges jedoch nur in einem Teil dieses Antriebszyklusses ausgeführt wird. Hierzu können beispielsweise Exzenter, Nockenwellen oder ähnliche Vorrichtungen eingesetzt werden, die zeitweilig eine Bewegung des Stanzmessers bewirken, andererseits jedoch einen Stillstand des Stanzwerkzeuges zur Folge haben. Die Antriebe können mechanischer, hydraulischer und/oder elektromagnetischer Art sein. Dadurch wird die Trennung der Schritte c) und d) gemäß dem eingangs beschriebenen Verfahren in technisch einfacher Weise realisiert.
- Gemäß einer weiteren Ausgestaltung der Vorrichtung umfasst das zweite Werkzeug miteinander kämmende Profilwalzen. Dabei wird insbesondere das Fertigungsverfahren Wellwalzen durchgeführt. Die miteinander kämmenden Profilwalzen weisen eine Oberflächenkontur auf, die während der Rotation im wesentlichen aufeinander abrollen. Dabei berühren sie einander vorzugsweise nicht, sondern weisen einen Spalt zueinander auf, der im wesentlichen der Blechdicke des Blechbandes entspricht. Dadurch wird eine besonders schonende Umformuilg des Blechbandes bewirkt.
- Bei einer solchen Vorrichtung ist es besonders vorteilhaft, dass das zweite Werkzeug einen Rotations-Antrieb hat, welcher eine Rotations-Taktfrequenz von mindestens 5 Hertz [1/Sekunde] bereitstellt. Aufgrund der Tatsache, dass das zweite Werkzeug gleichzeitig den Vorschub des Blechbandes bestimmt, also als eine Art Transportorgan wirkt, entspricht die Rotations-Taktfrequenz des Rotationsantriebes im wesentlichen der Wiederholgeschwindigkeit des Bearbeitungsverfahrens. Der Rotätions-Antrieb ermöglicht vorteilhafterweise sogar Rotations-Taktfrequenzen oberhalb von 10 Hertz, insbesondere sogar oberhalb von 20 Hertz. Dabei können beispielsweise Umdrehungen oberhalb von 3.000 1/min und mehr anliegen.
- Vorteilhafterweise ist die Vorrichtung so zu gestalten, dass zumindest das erste Werkzeug oder das zweite Werkzeug eine Arbeitszone hat, die einem Vielfachen einer Weite der Struktur entspricht. Bevorzugt ist dabei die Ausgestaltung, dass sowohl das erste Werkzeug als auch das zweite Werkzeug die gleiche Arbeitszone aufweisen, die einem Vielfachen der Weite der Struktur entspricht. Ganz besonders bevorzugt ist dabei die Ausgestaltung einer Arbeitszone, die im wesentlichen genau dem Einfachen einer Weite der Struktur entspricht. Das bedeutet, dass beispielsweise bei der Vorsehung miteinander kämmender Profilwalzen als zweites Werkzeug jeweils die -Arbeitszone eines Zahnes der Profilwalze, der letztendlich die Weite der Struktur bestimmt, geschaffen ist
- Schließlich wird noch die Verwendung eines strukturierten Bleches, das mit einem Verfahren wie oben beschrieben hergestellt wurde, vorgeschlagen, wobei dieses strukturierte Blech zur Herstellung einer Abgasbehandlungsvorrichtung für mobile Verbrennungskraftmaschinen dient. Grundsätzlich ist anzumerken, dass mit Blech hier ein auf eine bestimmte Länge abgeschnittener Bereich des Blechbandes gemeint ist. Als Abgasbehandlungsvorrichtung kommen insbesondere Katalysator-Trägerkörper, Adsorber, Partikelfilter, Strömungsbeeinflusser, etc. in Frage. Im Hinblick auf die Verbrennungskraftmaschinen sind insbesondere Diesel- oder Ottomotoren von Automobilen gemeint.
- Die Erfindung sowie das technische Umfeld werden nachfolgend, anhand der Figuren näher erläutert. Die Figuren zeigen besonders bevorzugte Ausführungsbeispiele der Erfindungen, die Erfindung ist jedoch nicht auf diese begrenzt. Es zeigen:
- Fig. 1
- schematisch den Aufbau einer Vorrichtung zur Herstellung eines strukturierten Blechs gemäß der Erfindung;
- Fig. 2
- eine Darstellung zur Veranschaulichung einer Ausführungsform des erfindungsgemäßen Verfahrens;
- Fig. 3
- schematisch und perspektivisch eine Detailansicht eines Blechbandes mit einer Struktur;
- Fig. 4.1, 4.2, 4.3
- jeweils eine Detailansicht einer Ausgestaltung des in
Fig. 3 gekennzeichneten Figurenausschnittes; - Fig. 5
- ein Ausführungsbeispiel des Blechbandes nach einer ersten Blechbearbeitung mit dem ersten Werkzeug;
- Fig. 6
- ein Ausführungsbeispiel eines Bleches nach der Herstellung mit der erfindungsgemäßen Vorrichtung bzw. Verfahren.
-
Fig. 1 zeigt schematisch und vereinfacht den Aufbau einer Vorrichtung zur Herstellung einer Struktur 1 in einem glatten Blechband 2. Das glatte Blechband 2 wird von einem Vorrat 20, der hier als Coil dargestellt ist, der Vorrichtung zugeführt. Die Vorrichtung, die hier in einem gemeinsamen Gehäuse 22 angebracht ist, umfasst ein erstes Werkzeug 4 zur Blechbearbeitung und ein zweites Werkzeug 6 zur Blechbearbeitung. Das erste Werkzeug 4 und das zweite Werkzeug 6 sind direkt hintereinander angeordnet. Das zweite Werkzeug 6 hat gleichzeitig Mittel zur Durchführung eines Blechbandvorschubes in Vorschubrichtung 7. Somit werden gleichzeitig (mit dem Umformen eines zweiten Abschnittes 5 des Blechbandes 2 mit dem zweiten Werkzeug 6) ein erster Abschnitt 3 dem ersten Werkzeug 4 und ein neuer zweiter Abschnitt 5 dem zweiten Werkzeug 6 zugeführt. Das zweite Werkzeug 6, das hier mit kämmenden Profilwalzen 14 gebildet ist, weist einen Rotations-Antrieb 16 auf, der somit den alleinigen Vorschub des Blechbandes 2 in der Vorrichtung realisiert. Das erste Werkzeug 4 ist als Stanzvorrichtung ausgebildet und weist einen Hub-Antrieb 14 auf. Das erste Werkzeug 4 und das zweite Werkzeug 6 weisen einen sehr geringen Abstand 13 zueinander auf. - Das Blechband wird mittels dem zweiten Werkzeug 6 und einer, dem ersten Werkzeug 4 vorangestellten, Haltevorrichtung 11 gespannt, welche hier als Bremse bzw. Reibwiderstand ausgebildet ist. Zwischen der Haltevorrichtung 11 und dem ersten Werkzeug 4 ist zudem eine Rolle 21 vorgesehen, mit der ein Betriebsstoff 12 auf die Oberfläche des Blechbandes 2 aufgebracht wird.
-
Fig. 2 stellt die Bewegungen der Werkzeuge während eines Arbeitszyklusses dar. In der oben dargestellten Reihe ist die Bewegung des ersten Werkzeuges 4 umfassend ein (Stanz-)Messer 23 und eine Nockenwelle 24 dargestellt. Darunter ist die Bewegung des zweiten Werkzeuges 6 stark vereinfacht dargestellt, wobei die Bewegung der miteinander kämmenden Profilwalzen 15 charakterisiert wird. Unterhalb dieser Skizzen befindet sich in einem Diagramm eine Darstellung des mit dem jeweiligen Werkzeug zurückgelegten Weg (s) über die Zeit (t). Die beiden dargestellten Graphen sind mit "A" für die Bewegung des ersten Werkzeuges 4 und "B" für die Bewegungen des zweiten Werkzeuges 6 gekennzeichnet. - Zum Zeitpunkt (I) beginnt gerade der Schritt c) des erfindungsgemäßen Verfahrens, bei dem eine Blechbearbeitung des ersten Abschnittes des Blechbandes mit dem ersten Werkzeug 4 durchgeführt wird. Die Nockenwelle 24 setzt das Messer 23 der Figur nach unten in Bewegung, so dass das Messer 23 in das Blechband eindringt. Zum Zeitpunkt (II) hat das Messer 23 seinen tiefsten Punkt erreicht, das Blechband 2 also vollständig durchdrungen. Daran schließt sich eine Aufwärtsbewegung des Messers 23 an, bis es wieder seine ursprüngliche Position, wie auch schon zum Zeitpunkt (I), zum Zeitpunkt (III) eingenommen hat. Während des gesamten Stanzvorganges vom Zeitpunkt (I) bis (III) hat sich die Lage der Profilräder 15 zueinander nicht verändert. Erst jetzt, zum Zeitpunkt (III) bewegen sich die Profilräder 15 zueinander und bilden dazu eine neue Struktur aus und bewegen das Blechband in Vorschubrichtung. Zu diesem Zeitpunkt dreht sich zwar die Nockenwelle weiter, das Messer 23 vollführt jedoch keinen Arbeitshieb. Wenn die Nockenwelle 24 wieder in der Position ist, dass das Messer 23 gleich mit der Hubbewegung beginnt (vgl. Zeitpunkt (IV)), haben die Profilwalzen 15 wieder angehalten, was mit dem Schritt b) des erfindungsgemäßen Verfahrens gleichzusetzen ist. Nun wiederholt sich dieses Verfahren zur Herstellung einer Struktur in einem Blechband von neuem. Dabei wird eine Wiederholgeschwindigkeit von mindestens 5 Hertz realisiert, wobei hier zwischen (I) und (I'), also eine Fünftel Sekunde vergangen ist.
-
Fig. 3 zeigt schematisch und perspektivisch einen Teil eines Blechbandes 2 mit einer Primärstruktur 9 und einer Sekundärstruktur 10. Das Blechband 2 umfasst in dem dargestellten Teilausschnitt eine Sekundärstruktur 10, die von zwei Löchern 8, die hier als Schlitze ausgeführt sind, teilweise begrenzt ist, wobei sich diese Schlitze nur in einem Innenbereich des Blechbandes 2 erstrecken. Die Sekundärstruktur 10 ragt aus der Primärstruktur 9 des Blechbandes 1 heraus. Die Primärstrulctur 9 ist mit Wellenbergen 25 und Wellentälern 26 ausgeführt. Die Randbereiche 27 der Schlitze sind, wie angedeutet, vergrößert in den nachfolgendenFig. 4.1, 4.2 und 4.3 dargestellt. Das Blechband 2 ist dabei in einem Abschnitt dargestellt, der im wesentlichen der Arbeitszone 17 des ersten Werkzeuges und des zweiten Werkzeuges entspricht. -
Fig. 4.1, 4.2 und 4.3 zeigen Detailansichten einer Sekundärstruktur 10, die durch ein Loch 8 begrenzt ist. Das Loch 8 ermöglicht es, dass die Sekundärstruktur 10 so aus dem Blechband 2 geformt ist, dass diese aus der Primärstruktur 9 heraustritt. InFig. 4.1 ist dabei der Randbereich 27 als einfacher Schlitz dargestellt. In denFig. 4.2 und 4.3 sind im Randbereich 27 des Loches 8 Ausnehmungen 31 vorgesehen. Die Ausnehmungen 31 inFig. 4.2 bildet einen Kreisbogen 30 mit einem Krümmungsradius 32, der bevorzugt im Bereich von 0,2 mm bis 0,4 mm liegt. InFig. 4.3 ist die Ausnehmung 31 als Freistich dargestellt. Andere, beispielsweise die Kerbwirkung reduzierende, Formen der Ausnehmungen 31 können ebenfalls zum Einsatz gelangen. -
Fig. 5 zeigt schematisch ein Blechband 2, wie es nach der Bearbeitung durch das erste Werkzeug gestaltet sein kann. Das Blechband 2 weist eine Vielzahl von Löchern 8 auf, die in Reihen 35 bzw. in Linien 34 zueinander angeordnet sind. Die Öffnungen 8 sind in den Randbereichen 27 mit Ausnehmungen 31 ausgeführt, wobei die beiden Ausnehmungen 31 über einen Schlitz 28 miteinander verbunden sind. Alle Löcher 8 sind in einem Innenbereich 33 des Blechbandes 2 angeordnet. Die Löcher 8 müssen nun exakt zum zweiten Werkzeug hin ausgerichtet werden, da diese zumindest teilweise eine Sekundärstruktur 10 begrenzen. -
Fig. 6 zeigt ein fertiges Blech 19 mit einer Struktur 1, welches mit dem erfindungsgemäßen Verfahren bzw. der erfindungsgemäßen Vorrichtung hergestellt wurde. Das Blech 19 weist also eine Struktur 1 (bzw. Primärstruktur) auf, welche von einer Sekundärstruktur 10 überlagert wird. Die Sekundärstruktur 10 ist hier mit Leitflächen 29 gebildet, die zum Teil das jeweilige Loch 8 begrenzen. Die Leitflächen 29 sind sowohl in den Wellentälern 26 als auch in den Wellenbergen 25 angeordnet und sind jeweils entgegengesetzt orientiert. Die Struktur 1 lässt sich durch eine Höhe 36 und eine Weite 18 beschreiben, wobei mit Höhe 36 der Abstand von Wellenberg 25 zu Wellental 26 und mit Weite 18 der Abstand zweier benachbarter Wellenberge 25 bzw. Wellentäler 26 gemeint ist. Das Verhältnis von Weite 18 zu Höhe 36 liegt dabei bevorzugt in einem Bereich von 2,0 bis 1,3. Auf diese Weise lassen sich Kanaldichten von Abgasbehandlungseinrichtungen bilden, die im Bereich von 100 bis 1000 cpsi ("cells per square inch"; 6,45 Kanäle/Quadratzoll entspricht einem Kanal/cm2) liegen. - Das hier beschriebene Verfahren bzw. die hier vorgeschlagene Vorrichtung erlauben eine besonders präzise Führung des Blechbandes während der Herstellung sehr komplexer Strukturen. Gleichzeitig lässt sich eine besonders Platz sparende Anordnung der Werkzeuge bewerkstelligen und eine hohe Bearbeitungsgeschwindigkeit realisieren.
-
- 1
- Struktur
- 2
- Blechband
- 3
- Erster Abschnitt
- 4
- Erstes Werkzeug
- 5
- Zweiter Abschnitt
- 6
- Zweites Werkzeug
- 7
- Vorschubrichtung
- 8
- Loch
- 9
- Primärstruktur
- 10
- Sekundärstruktur
- 11
- Haltevorrichtung
- 12
- Betriebsstoff
- 13
- Abstand
- 14
- Hub-Antrieb
- 15
- Profilwalze
- 16
- Rotations-Antrieb
- 17
- Arbeitszone
- 18
- Weite
- 19
- Blech
- 20
- Vorrat
- 21
- Rolle
- 22
- Gehäuse
- 23
- Messer
- 24
- Nockenwelle
- 25
- Wellenberg
- 26
- Wellental
- 27
- Randbereich
- 28
- Schlitz
- 29
- Leitfläche
- 30
- Kreisbogen
- 31
- Ausdehnung
- 32
- Krümmungsradius
- 33
- Innenbereich
- 34
- Linie
- 35
- Reihe
- 36
- Höhe
Claims (12)
- Verfahren zur Herstellung einer Struktur (1) in einem glatten Blechband (2) umfassend zumindest folgende Schritte:a) Zuführen eines ersten Abschnittes (3) eines glatten Blechbandes (2) zu einem ersten Werkzeug (4) und eines zweiten Abschnittes (5) des Blechbandes (2) zu einem zweiten Werkzeug (6) in einer Vorschubrichtung (7);b) Anhalten des Blechbandes (2);c) Durchführen einer Blechbearbeitung des ersten Abschnittes (3) des Blechbandes (2) mit dem ersten Werkzeug (4), wobei mindestens ein Loch (8) in den ersten Abschnitt (3) eingebracht wird;d) Durchführen einer Blechbearbeitung des zweiten Abschnittes (5) des Blechbandes (2) mit dem zweiten Werkzeug (6), wobei gleichzeitig Schritt a) ausgerührt wird, und weiter eine Struktur (1) in dem zweiten Abschnitt (5) des Blechbandes (2) erzeugt wird, wobei der zweite Abschnitt (5) bereits mit mindestens einem Loch (8) versehen ist und weiter das zweite Werkzeug (6) in das mindestens eine Loch (8) eingreift,und wobei das Blechband (2) mittels des zweiten Werkzeugs (6) und einer, dem ersten Werkzeug (4) vorangestellten, Haltevorrichtung (11) gespannt wird.
- Verfahren nach Anspruch 1, bei dem Schritt d) eine Struktur (1) in dem zweiten Abschnitt (5) des Blechbandes (2) erzeugt, die eine Primärstruktur (9) und eine Sekundärstruktur (10) aufweist.
- Verfahren nach einem der vorhergehenden Ansprüche, bei dem Schritt c) das Stanzen einer Mehrzahl von Löchern (8) umfasst.
- Verfahren nach einem der vorhergehenden Ansprüche, bei dem Schritt d) das Wellwalzen des Blechbandes (2) umfasst.
- Verfahren nach einem der vorhergehenden Ansprüche, bei dem die Schritte a) bis d) wiederholt durchgeführt werden, wobei die Wiederholgeschwindigkeit mindestens 5 Hertz [1/Sekunde] beträgt.
- Verfahren nach einem der vorhergehenden Ansprüche, bei dem das Blechband (2) zumindest vor Schritt c) mit einem Betriebsstoff (12) in Kontakt gebracht wird.
- Vorrichtung zur Herstellung einer Struktur (1) in einem glatten Blechband (2) umfassend wenigstens ein erstes Werkzeug (4) zur Blechbearbeitung und ein zweites Werkzeug (6) zur Blechbearbeitung, dadurch gekennzeichnet, dass das erste Werkzeug (4) und das zweite Werkzeug (6) direkt hintereinander in einem Abstand (13) kleiner 1000 Millimeter [mm] zueinander angeordnet sind und das zweite Werkzeug (6) Mittel zur gleichzeitigen Durchführung einer Blechumformung und eines Blechbandvorschubes aufweist und weiter das erste Werkzeug (4) zumindest der Herstellung mindestens eines Loches (8) dient, in das das zweite Werkzeug (6) eingreift, wobei das Blechband (2) mittels des zweiten Werkzeugs (6) und einer, dem ersten Werkzeug (4) vorangestellten, Haltevorrichtung (11) gespannt wird.
- Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass das erste Werkzeug (4) ein Stanzwerkzeug ist.
- Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, dass das Stanzwerkzeug einen Hub-Antrieb (14) hat, welcher einen Arbeits- und einen Leerzyklus erzeugt.
- Vorrichtung nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass das zweite Werkzeug (6) miteinander kämmende Profilwalzen (15) umfasst.
- Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, dass das zweite Werkzeug (6) einen Rotations-Antrieb (16) hat, welcher eine Rotations-Taktfrequenz von mindestens 5 Hertz [1/Sekunde] bereitstellt.
- Vorrichtung nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass zumindest das erste Werkzeug (4) oder das zweite Werkzeug (6) eine Arbeitszone (17) hat, die einem Vielfachen einer Weite (18) der Struktur (1) entspricht.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10324889 | 2003-05-30 | ||
DE10327455A DE10327455A1 (de) | 2003-06-18 | 2003-06-18 | Verfahren und Vorrichtung zur Herstellung eines strukturierten Blechbandes |
DE200410001419 DE102004001419A1 (de) | 2003-05-30 | 2004-01-09 | Herstellung eines strukturierten Bleches für Abgasbehandlungseinrichtungen |
PCT/EP2004/005765 WO2004105978A1 (de) | 2003-05-30 | 2004-05-28 | Herstellung eines strukturierten bleches für abgasbehandlungseinrichtungen |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1628789A1 EP1628789A1 (de) | 2006-03-01 |
EP1628789B1 true EP1628789B1 (de) | 2008-07-16 |
Family
ID=33493747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04739422A Expired - Lifetime EP1628789B1 (de) | 2003-05-30 | 2004-05-28 | Herstellung eines strukturierten bleches für abgasbehandlungseinrichtungen |
Country Status (5)
Country | Link |
---|---|
US (2) | US7637011B2 (de) |
EP (1) | EP1628789B1 (de) |
DE (1) | DE502004007616D1 (de) |
ES (1) | ES2310290T3 (de) |
WO (1) | WO2004105978A1 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102004001419A1 (de) * | 2003-05-30 | 2004-12-16 | Emitec Gesellschaft Für Emissionstechnologie Mbh | Herstellung eines strukturierten Bleches für Abgasbehandlungseinrichtungen |
EP2454437B1 (de) * | 2009-07-14 | 2017-05-10 | Guardian IG, LLC | Gedehnte streifen für distanzstück und abgedichtete einheit |
US10046379B1 (en) * | 2010-01-25 | 2018-08-14 | Robert Greenwood | Heat exchanger fin forming machine |
DE102010000551A1 (de) * | 2010-02-25 | 2011-08-25 | Unimet GmbH, 87669 | Stanz- und Biegeverfahren |
FI128306B (en) * | 2015-04-17 | 2020-03-13 | Vahterus Oy | Process for producing plate parts for a heat exchanger |
CN106001113A (zh) * | 2016-06-22 | 2016-10-12 | 成都飞机工业(集团)有限责任公司 | 一种耐高温蜂窝芯用瓦楞板成形系统及成形方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19724289A1 (de) * | 1997-06-09 | 1998-12-10 | Emitec Emissionstechnologie | Katalysator zur Reinigung eines Abgasstromes, insbesondere von einem Kleinmotor |
US20010033812A1 (en) * | 1997-06-24 | 2001-10-25 | Haruhiko Nagura | Catalyst converter |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1298172A (en) * | 1917-08-16 | 1919-03-25 | Philip M Bush | Jig-filling mechanism. |
US1495637A (en) * | 1922-05-18 | 1924-05-27 | Fedders Mfg Co Inc | Sheet-metal-strip-forming machine |
DE1008692B (de) | 1953-03-12 | 1957-05-23 | Conrad Zschokke Zweigniederlas | Vorrichtung zur Bildung von Rippen in Blechtafeln |
US3298081A (en) * | 1964-03-19 | 1967-01-17 | Penn Metal Company Inc | Method of and apparatus for cold working and expanding a metal member such as a channel stud |
US3318128A (en) * | 1964-04-15 | 1967-05-09 | Ford Motor Co | Plaiting |
DE10020170C1 (de) | 2000-04-25 | 2001-09-06 | Emitec Emissionstechnologie | Verfahren zum Entfernen von Rußpartikeln aus einem Abgas und zugehöriges Auffangelement |
US3736787A (en) * | 1972-02-14 | 1973-06-05 | Grotnes Machine Works Inc | Method and apparatus for forming convoluted metal annulus |
SU508302A1 (ru) | 1972-11-21 | 1976-03-30 | Горьковский Проектно-Конструкторскийтехнологический Институт | Устройство дл гофрировани ленты |
US3850018A (en) * | 1973-09-24 | 1974-11-26 | S Drosnin | Radiator fin-tube construction and method |
US4092842A (en) * | 1975-10-16 | 1978-06-06 | Johns-Manville Corporation | Deeply embossed sheet product and method and apparatus for the production thereof |
SU1022765A1 (ru) * | 1980-12-10 | 1983-06-15 | Предприятие П/Я А-1697 | Устройство дл изготовлени ленты с гофрами,расположенными в шахматном пор дке |
KR870000844B1 (ko) * | 1981-03-10 | 1987-04-25 | 후꾸다 이꾸마사 | 질소산화물 제거용 판상촉매의 제조방법 및 그 장치 |
US4471641A (en) * | 1982-11-15 | 1984-09-18 | Mitchell James L | Method and means of continuously punching, shearing and forming sheet material |
US4711009A (en) * | 1986-02-18 | 1987-12-08 | W. R. Grace & Co. | Process for making metal substrate catalytic converter cores |
JPH0818082B2 (ja) | 1986-10-17 | 1996-02-28 | カルソニック株式会社 | コルゲ−トフインの製造装置 |
US4753096A (en) * | 1986-12-04 | 1988-06-28 | Wallis Bernard J | Apparatus for controlling height of corrugations formed in a continuous length of strip stock |
DE3738537A1 (de) * | 1987-11-13 | 1989-06-01 | Sueddeutsche Kuehler Behr | Verfahren und vorrichtung zur herstellung eines traegerkoerpers fuer einen katalytischen reaktor |
JP3107807B2 (ja) * | 1990-06-01 | 2000-11-13 | 日本石油化学株式会社 | シート積み上げ装置 |
DE4130673A1 (de) * | 1991-09-14 | 1993-03-18 | Schuler Gmbh L | Einrichtung zum lochen und zum wellen eines streifenmaterials |
US5599509A (en) * | 1993-03-17 | 1997-02-04 | Nippondenso Co., Ltd. | Honeycomb body and catalyst converter having catalyst carrier configured of this honeycomb |
JPH08103664A (ja) | 1994-10-04 | 1996-04-23 | Nippondenso Co Ltd | ハニカム体およびこのハニカム体よりなる触媒担体を有する触媒コンバータ |
JPH08261678A (ja) | 1995-03-22 | 1996-10-11 | Nippondenso Co Ltd | コルゲートフィンとその製造方法 |
JP3289584B2 (ja) | 1995-11-30 | 2002-06-10 | 株式会社デンソー | 板材のプレス加工方法およびプレス加工装置 |
JPH09220483A (ja) | 1996-02-13 | 1997-08-26 | Usui Internatl Ind Co Ltd | メタルハニカム体用波箔の製造方法 |
JP3644121B2 (ja) * | 1996-04-01 | 2005-04-27 | 株式会社デンソー | コルゲートフィンの成形装置および成形方法 |
DE19643934A1 (de) * | 1996-10-30 | 1998-05-07 | Emitec Emissionstechnologie | Verfahren und Vorrichtung zum Herstellen strukturierter Metallbleche |
JPH11148793A (ja) | 1997-11-14 | 1999-06-02 | Zexel:Kk | 一体型熱交換器に用いられるフィンの成形方法及び成形装置 |
US5937682A (en) * | 1998-08-28 | 1999-08-17 | Ford Motor Company | Fail-safe fin mill machine wrap-up detector |
LU90540B1 (de) * | 2000-03-09 | 2001-09-10 | Trefilarbed Bissen Sa | Device for producing metal fibers |
FR2811248B1 (fr) * | 2000-07-04 | 2002-10-11 | Nordon Cryogenie Snc | Procede de fabrication d'une ailette ondulee pour echangeur de chaleur a plaques et dispositif pour la mise en oeuvre d'un tel procede |
JP4558960B2 (ja) | 2001-02-05 | 2010-10-06 | 株式会社キャタラー | 触媒サポート用波板の製造方法、波板及び触媒サポート |
DE10112678C2 (de) * | 2001-03-16 | 2003-04-17 | Emitec Emissionstechnologie | Verfahren zur Herstellung eines metallischen Wabenkörpers mit Aufnahme für einen Sensor |
DE10208871A1 (de) | 2001-03-16 | 2003-09-18 | Emitec Emissionstechnologie | Verfahren und Vorrichtung zur Herstellung eines Wabenkörpers sowie Wabenkörper |
ITMI20021096A1 (it) * | 2002-05-21 | 2003-11-21 | Produtech S R L | Macchina atta ad eseguire il taglio e la roditura di una lamiera in coils |
US6834525B2 (en) * | 2002-11-18 | 2004-12-28 | The Boeing Company | Adjustable corrugation apparatus and method |
US6772617B1 (en) * | 2003-01-24 | 2004-08-10 | Gencell Corporation | Method and apparatus for in-situ leveling of progressively formed sheet metal |
JP4345578B2 (ja) * | 2004-05-31 | 2009-10-14 | 株式会社デンソー | 板材のプレス加工装置 |
US20080131654A1 (en) * | 2006-12-05 | 2008-06-05 | Bradford Company | Folded Product Made From Extruded Profile and Method of Making Same |
-
2004
- 2004-05-28 ES ES04739422T patent/ES2310290T3/es not_active Expired - Lifetime
- 2004-05-28 EP EP04739422A patent/EP1628789B1/de not_active Expired - Lifetime
- 2004-05-28 DE DE502004007616T patent/DE502004007616D1/de not_active Expired - Lifetime
- 2004-05-28 WO PCT/EP2004/005765 patent/WO2004105978A1/de active IP Right Grant
-
2005
- 2005-11-30 US US11/291,003 patent/US7637011B2/en not_active Expired - Fee Related
-
2009
- 2009-11-04 US US12/612,423 patent/US8661670B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19724289A1 (de) * | 1997-06-09 | 1998-12-10 | Emitec Emissionstechnologie | Katalysator zur Reinigung eines Abgasstromes, insbesondere von einem Kleinmotor |
US20010033812A1 (en) * | 1997-06-24 | 2001-10-25 | Haruhiko Nagura | Catalyst converter |
Also Published As
Publication number | Publication date |
---|---|
ES2310290T3 (es) | 2009-01-01 |
EP1628789A1 (de) | 2006-03-01 |
DE502004007616D1 (de) | 2008-08-28 |
WO2004105978A1 (de) | 2004-12-09 |
US20100043516A1 (en) | 2010-02-25 |
US20060143919A1 (en) | 2006-07-06 |
US8661670B2 (en) | 2014-03-04 |
US7637011B2 (en) | 2009-12-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102004001419A1 (de) | Herstellung eines strukturierten Bleches für Abgasbehandlungseinrichtungen | |
EP1590557B1 (de) | Verfahren und werkzeug zur herstellung von strukturierten blechlagen; katalysator-trägerkörper | |
EP1879708B1 (de) | Geregelte metallfolienherstellung | |
EP2040880B1 (de) | Verfahren zur erzeugung von öffnungen in einer metallfolie | |
EP1934011B1 (de) | Verfahren und vorrichtung zur hartlot-applikation | |
EP2823165B1 (de) | Wabenkörper zur abgasnachbehandlung | |
WO2006136240A1 (de) | Verfahren und vorrichtung zum verschweissen metallischer fasern zu einem vlies durch mehrmalige durchführungen eines schweissprozess ; vlies unfassend geschweisste metallische fasern | |
EP1628789B1 (de) | Herstellung eines strukturierten bleches für abgasbehandlungseinrichtungen | |
EP1633506B1 (de) | Verfahren und vorrichtung zur herstellung eines strukturierten blechbandes | |
DE4306052A1 (en) | Catalytic exhaust cleaning system for vehicle - uses soldered joints to connect honeycombed core to outer housing | |
DE3515681A1 (de) | Metalltraeger in einfolienausfuehrung | |
DE60212908T2 (de) | Wellrohr aus schraubenförmig gewickeltem Band | |
EP2864604B1 (de) | Konischer wabenkörper mit schräg radial nach aussen verlaufenden kanälen | |
DE10015212A1 (de) | Verfahren zur Herstellung eines für einen Abgasreinigungskatalysator verwendbaren Metallträgers | |
EP1793947B1 (de) | Folgeverbundwerkzeug zur herstellung strukturierter folien | |
EP1706230B1 (de) | Fluid-umformung von metallblechen | |
EP2604341A1 (de) | Matrix und Verfahren zu ihrer Herstellung | |
WO2018050597A1 (de) | Verfahren zur herstellung eines wabenkörpers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20051216 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE ES FR GB IT |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE ES FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20061227 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE ES FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 502004007616 Country of ref document: DE Date of ref document: 20080828 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2310290 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090417 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004007616 Country of ref document: DE Owner name: VITESCO TECHNOLOGIES GMBH, DE Free format text: FORMER OWNER: EMITEC GESELLSCHAFT FUER EMISSIONSTECHNOLOGIE MBH, 53797 LOHMAR, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502004007616 Country of ref document: DE Ref country code: DE Ref legal event code: R081 Ref document number: 502004007616 Country of ref document: DE Owner name: CONTINENTAL AUTOMOTIVE GMBH, DE Free format text: FORMER OWNER: EMITEC GESELLSCHAFT FUER EMISSIONSTECHNOLOGIE MBH, 53797 LOHMAR, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004007616 Country of ref document: DE Owner name: VITESCO TECHNOLOGIES GMBH, DE Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502004007616 Country of ref document: DE Ref country code: DE Ref legal event code: R081 Ref document number: 502004007616 Country of ref document: DE Owner name: CONTINENTAL AUTOMOTIVE GMBH, DE Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20160331 AND 20160406 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20170523 Year of fee payment: 14 Ref country code: GB Payment date: 20170519 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20170526 Year of fee payment: 14 Ref country code: ES Payment date: 20170628 Year of fee payment: 14 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180528 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180531 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180528 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180528 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190531 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20190913 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180529 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004007616 Country of ref document: DE Owner name: VITESCO TECHNOLOGIES GMBH, DE Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502004007616 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201201 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502004007616 Country of ref document: DE Owner name: VITESCO TECHNOLOGIES GMBH, DE Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE |