EP1622706B1 - Mixing device, and mixing method using that device - Google Patents

Mixing device, and mixing method using that device Download PDF

Info

Publication number
EP1622706B1
EP1622706B1 EP04725681A EP04725681A EP1622706B1 EP 1622706 B1 EP1622706 B1 EP 1622706B1 EP 04725681 A EP04725681 A EP 04725681A EP 04725681 A EP04725681 A EP 04725681A EP 1622706 B1 EP1622706 B1 EP 1622706B1
Authority
EP
European Patent Office
Prior art keywords
shaft
angle
blades
incidence
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04725681A
Other languages
German (de)
French (fr)
Other versions
EP1622706A1 (en
Inventor
Hans-Jürgen WEISS
Udo Zentner
Burghard Neumann
Jörg SCHMALFELD
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lurgi Lentjes AG
Original Assignee
Lurgi Lentjes AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lurgi Lentjes AG filed Critical Lurgi Lentjes AG
Publication of EP1622706A1 publication Critical patent/EP1622706A1/en
Application granted granted Critical
Publication of EP1622706B1 publication Critical patent/EP1622706B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • B01F27/701Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms comprising two or more shafts, e.g. in consecutive mixing chambers
    • B01F27/702Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms comprising two or more shafts, e.g. in consecutive mixing chambers with intermeshing paddles

Definitions

  • the invention relates to a mixing device and an associated mixing method for use as a continuously operating reactor.
  • mixing devices of this type consist of at least two horizontally intermeshing screws which are built according to the requirements of different length and diameter.
  • the mixing apparatus is varied in terms of solids residence time, reactor temperature, or system pressure.
  • DE-B-1189368 describes a conching machine with a single or double-cylinder trough arranged horizontally, in which main shafts provided in the cylinder axis (s) with axial thrust vanes are mounted.
  • main shafts provided in the cylinder axis (s) with axial thrust vanes are mounted.
  • at least two cylindrical protrusions are provided on the two longitudinal sides of the trough on the trough length parallel to the trough axis, in the axis of which one with the axial thrust vanes offset by 90 ° radial lifting blades provided side shaft is mounted, which on the one hand reaching up to the inner wall of the bulge, and on the other engaging in the rotation of the lifting blades of the main shaft, arranged between the radial lifting blades and the side shaft wing sets.
  • the side shaft is driven at a higher speed than the main shaft and in opposite directions to this.
  • DE-B-1255098 describes an apparatus for the thermal isomerization or disproportionation of alkali metal salts of benzene carboxylic acids, which consists of a reactor vessel provided with an inlet and outlet in the form of at least two parallel, intersecting cylinders, the cylinders each with a are provided concentrically extending shaft and these waves are provided with a variety of helical staircase axially separated by spacers stirring blades, wherein the wings are in the form of elongated, mutually offset by 30 ° plates whose tip circles those of the stirring blades of adjacent waves. overlap.
  • DE-A-19724074 and DE-A-19959587 describe a process for working up residual oil, in which the residue oil to be processed is introduced into the mixing plant of hot heat transfer coke and through a further conduit.
  • the heat transfer coke has temperatures in the range of 500 ° to 700 ° C and is mixed with the residual oil by at least two horizontal intermeshing screws so that a uniformly thick oil film is formed on the coke particles. This is then heated very rapidly to reaction temperature and reacts to form gases, oil vapors and coke. Gases and vapors leave the mixer after a short dwell time of 1 to 10 seconds through a vent channel upwards.
  • the coke-containing solid mixture which has passed through the mixer and has arrived at the outlet is withdrawn for further processing down into a buffer tank for post-degassing.
  • mixers of this type is trying to achieve the same residence time as possible of all solid particles, ie plug flow. That is, the particles that are near the shaft are transported at the same axial velocity as the particles that are on the outer circumference of the screw. At the same time, an attempt is made to adjust the residence time so that the liquid feed at the end of the mixer is completely converted into gases, vapors and coke. Due to the speed profile between conventional shafts and housing wall and the associated undesired axial mixing, the particles in these mixers have different residence times in the mixing section.
  • the residence time can be varied by adjusting the reactor length, the shaft speed or the pitch of the screws.
  • the present invention seeks to improve the previous mixing device such that at a given reactor length, the residence time is increased and that the material to be processed is transported regardless of its radial distance from the axis of rotation with the same speed as possible.
  • each shaft at least two opposite rows of blades are arranged and each row of blades from 2 to 20 individual blades and that the blades at an angle ⁇ to the longitudinal axis of the shaft on the Shaft are fastened, wherein the blades are curved in itself, so that the blades at the attachment point on the shaft have the angle of attack ⁇ and the outer diameter of the angle of attack ⁇ .
  • the axial velocity of the particles to be mixed over the entire reactor cross-section can be made uniform.
  • the angle of attack ⁇ at the outer diameter D A of the blades is kept smaller than the hitherto customary value of approximately 2 ⁇ ⁇ , the axial flow velocity becomes more uniform and, in the ideal case, approaches a plug flow. This results in a narrower residence time distribution.
  • the axial velocity of the particles to be mixed at the outer diameter D A decreases in relation to the axial velocity at the diameter D W of the shaft.
  • the same axial velocity is achieved over the entire reactor cross-section, if the angle of attack ⁇ on the outer diameter D A is half as large , as the angle of attack ⁇ at the diameter D W of the shaft.
  • the mixer (1) of Figure 1 is passed through the line (2), e.g. hot heat transfer coke and through the line (3) to be processed residue oil.
  • the mixer (1) has in the present case at least two horizontal, intermeshing screws, which mixes the introduced materials and transported to the outlet channel (8). Gases and vapors can leave the mixing device via the discharge channel (4) for condensation (5). Separate gases from the condensation (5) through the line (6) and product oil from the line (7).
  • the coke-containing solid mixture, which has passed through the mixing device (1) is passed through the outlet channel (8) to a container (9). From this container (9), the dried coke can be withdrawn via line (10) and recycled to the process.
  • the mixing device can of course also be used for the treatment of e.g. Bitumen, plastics, coal, peat or biomass, which may change the overall plant configuration.
  • Fig. 2 shows a sectional view of a mixing device (1) according to the prior art.
  • two intermeshing shafts (11, 14) are designed as hollow shafts which rotate in the same direction.
  • Each shaft (11, 14) has two screws (12, 13, 15, 16) which extends uninterrupted over the entire length of the shaft.
  • the two screws of a shaft are arranged offset by 180 °.
  • Fig. 3 shows one of at least two used shafts according to the invention.
  • a plurality of individual blades (12a, 12b, 12c, ... 12m) arranged in a helical line one behind the other.
  • a first Row of individual blades (12a, 12b, 12c, ... 12m) is on the shaft (11) associated with a second row of individual blades (13a, 13b, 13c, ... 13m) offset by 180 °.
  • each row of blades consists of 12 individual blades.
  • any uniform or uneven arrangement of the blades is possible, in which the blades (12a to 12m, 13a to 13m) lined up around the shaft (11) can be arranged and in which a smooth rolling of the waves ( 11, 14) to each other is possible.
  • the number of blades can be varied depending on the reactor length, the diameter ratios of shaft to blade and the associated blade curvatures.
  • the viscosity or the particle size of the media to be mixed has an influence, since the distance of the blades from one another can influence the mixing-in time.
  • a single row or a multi-row arrangement of the blades is possible.
  • Fig. 4 is a plan view of the left end side of the shaft of Fig. 3 is shown.
  • the diameter D W is the diameter of the shaft (11) at the attachment point of the blades and the diameter D A is the outer diameter of the shaft (11) on the blades.
  • FIG. 5 shows the enlarged detail "A" from FIG. 3 with the angles of attack of a single blade (12a).
  • the angle ⁇ denotes the angle of attack of the blade on the shaft.
  • the angle ⁇ is the diameter D W , Fig. 4 assigned.
  • the axial velocity at the outer diameter D A decreases to approximately half the original value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Abstract

The aim of the invention is to improve an existing mixing device in such a manner that for a predetermined reactor length, retention time is increased and the material which is to be processed is transported at essentially the same speed irrespective of the radial distance thereof from the rotational axis. As a result, at least one row of blades is arranged on each shaft and each row of blades comprises at least two individual blades and the blades are fixed to the shaft at an incidence angle α in relation to the longitudinal axis of the shaft. The blades are curved in themselves, such that the blades form an angle of incidence α at the fixing point on the shaft and an angle of incidence β on the outer diameter DA. By virtue of the fact that a row of individual blades is used instead of a continuous screw, efficient mixing of charging material and coke can be achieved, the angle of incidence is reduced from the inside to the outside and the axial speed of the particles which are to be mixed is evened out on the total cross section of the reactor, thereby enabling a stop-type flow to be obtained.

Description

Die Erfindung betrifft eine Mischvorrichtung sowie ein zugehöriges Mischverfahren zur Verwendung als kontinuierlich arbeitender Reaktor.The invention relates to a mixing device and an associated mixing method for use as a continuously operating reactor.

Diese kontinuierlich arbeitenden Reaktoren werden verwendete zur Aufarbeitung von z. B. Erdöl-Vakuumrückstand, Raffinerie Rückständen, Bitumen oder Kunststoffen, indem sie mit einem heißen kömigen Wärmeträger gemischt und auf die gewünschte Temperatur erhitzt werden.These continuous reactors are used for the processing of z. As petroleum vacuum residue, refinery residues, bitumen or plastics, by being mixed with a hot kömigen heat transfer medium and heated to the desired temperature.

Üblicherweise bestehen Mischvorrichtungen dieser Art aus mindestens zwei horizontal ineinandergreifenden Schnecken, die entsprechend den Anforderungen mit unterschiedlicher Länge und Durchmesser gebaut werden. Zur Erzielung bestimmter Eigenschaften, wie die Erhöhung der Umsetzungs- oder Reaktionsgeschwindigkeit oder die Maximierung von Produktausbeute und Produktqualität variiert man die Mischvorrichtung hinsichtlich der Feststoff-Verweilzeit, der Temperatur im Reaktor, oder des Systemdrucks.Typically, mixing devices of this type consist of at least two horizontally intermeshing screws which are built according to the requirements of different length and diameter. To achieve certain properties, such as increasing the reaction or reaction rate or maximizing product yield and product quality, the mixing apparatus is varied in terms of solids residence time, reactor temperature, or system pressure.

In der DE-B-1189368 wird eine Conchiermaschine mit liegend angeordnetem Einfach- oder Doppeltzylindertrog beschrieben, bei der in der bzw. den Zylinderachsen mit Axial-Schubschaufeln versehene Hauptwellen gelagert sind. Weiter sind an den beiden Längsseiten des Troges über die Troglänge parallel zur Trogachse verlaufende, mindestens halbzylindrische Ausbuchtungen vorgesehen, in deren Achse eine mit zu den Axial-Schubschaufeln um 90° versetzte Radial-Hubschaufeln versehene Seitenwelle gelagert ist, welche zum einen bis an die Innenwandung der Ausbuchtung heranreichenden, und die zum anderen in den Drehkreis der Hubschaufeln der Hauptwelle eingreifende, zwischen den Radial-Hubschaufeln und der Seitenwelle angeordnete Flügelsätze aufweist. Die Seitenwelle wird mit einer größeren Drehzahl als die Hauptwelle und gegensinnig zu dieser angetrieben. Durch diese Anordnung wird eine wirksame Durchlüftung und ein besserer Versalbungseffekt hervorgerufen.DE-B-1189368 describes a conching machine with a single or double-cylinder trough arranged horizontally, in which main shafts provided in the cylinder axis (s) with axial thrust vanes are mounted. Next, at least two cylindrical protrusions are provided on the two longitudinal sides of the trough on the trough length parallel to the trough axis, in the axis of which one with the axial thrust vanes offset by 90 ° radial lifting blades provided side shaft is mounted, which on the one hand reaching up to the inner wall of the bulge, and on the other engaging in the rotation of the lifting blades of the main shaft, arranged between the radial lifting blades and the side shaft wing sets. The side shaft is driven at a higher speed than the main shaft and in opposite directions to this. By this arrangement, an effective ventilation and a better Veralbungseffekt caused.

In der DE-B-1255098 wird eine Vorrichtung zur thermischen Isomerisierung oder Disproportionierung von Alkalisalzen von Benzolcarbonsäuren beschrieben, die aus einem mit einem Ein- und Auslass versehenen Reaktorgefäß in Form von mindestens zwei Parallelen, einander überschneidenden Zylindern besteht, wobei die Zylinder je mit einer konzentrisch verlaufenden Welle versehen sind und diese Wellen mit einer Vielzahl von wendeltreppenartig axial durch Distanzringe voneinander getrennte Rührflügel ausgestattet sind, wobei die Flügel die Form langgestreckter, gegeneinander um 30° versetzte Platten aufweisen, deren Spitzenkreise diejenigen der Rührflügel benachbarter Wellen. überschneiden.DE-B-1255098 describes an apparatus for the thermal isomerization or disproportionation of alkali metal salts of benzene carboxylic acids, which consists of a reactor vessel provided with an inlet and outlet in the form of at least two parallel, intersecting cylinders, the cylinders each with a are provided concentrically extending shaft and these waves are provided with a variety of helical staircase axially separated by spacers stirring blades, wherein the wings are in the form of elongated, mutually offset by 30 ° plates whose tip circles those of the stirring blades of adjacent waves. overlap.

In der DE-A-19724074 und in der DE-A-19959587 wird ein Verfahren zur Aufarbeitung von Rückstandsöl beschrieben, bei dem in das Mischwerk heißer Wärmeträger-Koks und durch eine weitere Leitung das zu verarbeiten Rückstandsöl eingeführt wird. Der Wärmeträger-Koks weist Temperaturen im Bereich von 500° bis 700° C auf und wird mit dem Rückstandsöl durch mindestens zwei horizontale ineinandergreifende Schnecken so durchmischt, dass ein gleichmäßig dicker Ölfilm auf den Kokspartikeln entsteht. Dieser wird dann sehr schnell auf Reaktionstemperatur erhitzt und reagiert unter Bildung von Gasen, Öldämpfen und Koks. Gase und Dämpfe verlassen das Mischwerk nach einer kurzen Verweilzeit von 1 bis 10 Sekunden durch einen Abzugskanal nach oben.DE-A-19724074 and DE-A-19959587 describe a process for working up residual oil, in which the residue oil to be processed is introduced into the mixing plant of hot heat transfer coke and through a further conduit. The heat transfer coke has temperatures in the range of 500 ° to 700 ° C and is mixed with the residual oil by at least two horizontal intermeshing screws so that a uniformly thick oil film is formed on the coke particles. This is then heated very rapidly to reaction temperature and reacts to form gases, oil vapors and coke. Gases and vapors leave the mixer after a short dwell time of 1 to 10 seconds through a vent channel upwards.

Das kokshaltige Feststoffgemisch, welches das Mischwerk durchlaufen hat und am Austritt angekommen ist, wird zur weiteren Verarbeitung nach unten in einen Pufferbehälter zur Nachentgasung abgezogen.The coke-containing solid mixture, which has passed through the mixer and has arrived at the outlet is withdrawn for further processing down into a buffer tank for post-degassing.

Bei Mischern dieser Bauart wird versucht, eine möglichst gleiche Verweilzeit aller Feststoffpartikel, d.h. Pfropfenströmung zu erreichen. Das heißt, dass die Teilchen, die sich in der Nähe der Welle befinden, mit gleicher axialer Geschwindigkeit transportiert werden, wie die Teilchen, die sich am äußeren Umfang der Schnecke befinden. Gleichzeitig wird versucht, die Verweilzeit so einzustellen, dass der flüssige Einsatzstoff am Ende des Mischers vollständig in Gase, Dämpfe und Koks umgewandelt ist.
Aufgrund des Geschwindigkeitsprofils zwischen herkömmlichen Wellen und Gehäusewand und der damit verbundenen unerwünschten axialen Durchmischung haben die Partikel in diesen Mischern unterschiedliche Verweilzeiten in der Mischstrecke.
Die Verweilzeit kann durch eine Anpassung der Reaktorlänge, der Wellendrehzahl oder auch der Steigung der Schnecken variiert werden. Um einen möglichst großen Teil der Verweilzeit für die Reaktion zu nutzen, wird versucht, die Einmischzeit zu reduzieren, also die Zeit, die benötigt wird, um Wärmeträger und flüssigen Einsatzstoff vollständig zu vermischen. Idealerweise findet eine vollständige Vermischung bereits bei der Einleitung der Medien am Beginn der Mischstrecke statt. Dies ist aber bisher nicht zu erreichen. Nach dem bekannten Stand der Technik ist die vollständige Vermischung eines flüssigen Einsatzes erst nach dem Durchlaufen der halben Reaktorlänge erfolgt. Um die Verweilzeit zu erhöhen, wäre als Lösung ein längerer Reaktor eine extrem teure Lösung, da die Wellen und Schnecken aus hoch-warmfestem Stahl bestehen und einen Außendurchmesser von 0,8 bis 3 m sowie eine Länge von 6 bis 15 m haben.
Zur Beeinflussung der mittleren Verweilzeit und der Verweilzeitverteilung kann die Steigung und die geometrische Anordnung der Mischwendeln variiert werden. Die Geschwindigkeit
des Feststoffes im Mischer ist abhängig von der Steigung und der Form der Mischwendel. Mit zunehmender Steigung der Mischwendel nimmt ganz allgemein die axiale Geschwindigkeit der Feststoffpartikel ab und die Verweilzeit zu.
In mixers of this type is trying to achieve the same residence time as possible of all solid particles, ie plug flow. That is, the particles that are near the shaft are transported at the same axial velocity as the particles that are on the outer circumference of the screw. At the same time, an attempt is made to adjust the residence time so that the liquid feed at the end of the mixer is completely converted into gases, vapors and coke.
Due to the speed profile between conventional shafts and housing wall and the associated undesired axial mixing, the particles in these mixers have different residence times in the mixing section.
The residence time can be varied by adjusting the reactor length, the shaft speed or the pitch of the screws. In order to use as much of the residence time as possible for the reaction, an attempt is made to reduce the mixing time, ie the time required to completely mix the heat carrier and the liquid feedstock. Ideally, a complete mixing takes place already at the beginning of the media at the beginning of the mixing section. This is not yet possible. According to the known state of the art, complete mixing of a liquid feed has taken place only after passing through half the reactor length. To increase the residence time, a longer reactor would be an extremely expensive solution as the solution, since the shafts and screws are made of high heat-resistant steel and have an outer diameter of 0.8 to 3 m and a length of 6 to 15 m.
To influence the mean residence time and the residence time distribution, the pitch and the geometric arrangement of the mixing helixes can be varied. The speed
of the solid in the mixer depends on the pitch and shape of the mixing helix. With increasing slope of the mixing spiral generally decreases the axial velocity of the solid particles and the residence time.

Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, die bisherige Mischvorrichtung derart zu verbessern, dass bei vorgegebener Reaktorlänge die Verweilzeit vergrößert wird und dass das zu verarbeitende Material unabhängig von seiner radialen Entfernung von der Drehachse mit möglichst gleicher Geschwindigkeit transportiert wird.Based on this prior art, the present invention seeks to improve the previous mixing device such that at a given reactor length, the residence time is increased and that the material to be processed is transported regardless of its radial distance from the axis of rotation with the same speed as possible.

Erfindungsgemäß wird die Aufgabe bei der eingangs genannten Mischvorrichtung dadurch gelöst, dass auf jeder Welle mindestens zwei gegenüberliegende Reihen von Schaufeln angeordnet sind und jede Reihe von Schaufeln aus 2 bis 20 einzelnen Schaufeln besteht und dass die Schaufeln in einem Anstellwinkel α zur Längsachse der Welle auf der Welle befestigt sind, wobei die Schaufeln in sich gekrümmt sind, so dass die Schaufeln am Befestigungspunkt an der Welle den Anstellwinkel α und am Außendurchmesser den Anstellwinkel β aufweisen. Dadurch, dass statt einer durchgehenden Schnecke eine Reihe von einzelnen Schaufeln verwendet werden, wird eine besonders effiziente Vermischung erreicht. Durch eine Krümmung der Schaufeln, wodurch sich mit zunehmendem Durchmesser ein unterschiedlicher Anstellwinkel zur Längsachse der Welle ergibt, kann die axiale Geschwindigkeit der zu mischenden Teilchen über den gesamten Reaktorquerschnitt vergleichmäßigt werden.
Dadurch dass der Anstellwinkel β am Außendurchmesser DA der Schaufeln kleiner gehalten wird als der bisher übliche Wert von ca. 2 · α, wird die axiale Strömungsgeschwindigkeit gleichmäßiger und nähert sich im Idealfall einer Pfropfströmung. Dadurch ergibt sich eine engere Verweilzeitverteilung.
Nimmt der Anstellwinkel der Schaufeln vom Fußpunkt auf der Welle DW bis zum Außendurchmesser DA kontinuierlich ab, reduziert sich die axiale Geschwindigkeit der zu mischenden Teilchen am Außendurchmesser DA im Verhältnis zur axialen Geschwindigkeit am Durchmesser DW der Welle. Unter der Voraussetzung, dass der Außendurchmesser DA doppelt so groß ist wie der Durchmesser DW (DA = 2 DW), wird über den gesamten Reaktorquerschnitt die gleiche axiale Geschwindigkeit erreicht, wenn der Anstellwinkel β am Außendurchmesser DA halb so groß ist, wie der Anstellwinkel α am Durchmesser DW der Welle. Durch eine vielfache Unterbrechung der Wendel erhöht sich die Scherwirkung beim Transport des Feststoffes durch den Mischer. Die Mischintensität wird gesteigert und damit erfolgt die vollständige Vermischung nicht erst bei der halben Reaktorlänge, sondern bereits deutlich früher. Bei gleicher Reaktorlänge wird eine größere Verweilzeit für die chemische Reaktion erreicht, wodurch bei neuen Anlagen die Reaktorlänge entweder verkleinert oder alternativ die Reaktionszeit erhöht und damit die Reaktionstemperatur.gesenkt werden kann.
According to the invention in the above-mentioned mixing device is achieved in that on each shaft at least two opposite rows of blades are arranged and each row of blades from 2 to 20 individual blades and that the blades at an angle α to the longitudinal axis of the shaft on the Shaft are fastened, wherein the blades are curved in itself, so that the blades at the attachment point on the shaft have the angle of attack α and the outer diameter of the angle of attack β. By using a series of individual blades instead of a continuous screw, a particularly efficient mixing is achieved. By a curvature of the blades, which results in a different angle of incidence to the longitudinal axis of the shaft with increasing diameter, the axial velocity of the particles to be mixed over the entire reactor cross-section can be made uniform.
As a result of the fact that the angle of attack β at the outer diameter D A of the blades is kept smaller than the hitherto customary value of approximately 2 · α, the axial flow velocity becomes more uniform and, in the ideal case, approaches a plug flow. This results in a narrower residence time distribution.
If the angle of attack of the blades decreases continuously from the base point on the shaft D W to the outer diameter D A , the axial velocity of the particles to be mixed at the outer diameter D A decreases in relation to the axial velocity at the diameter D W of the shaft. Assuming that the outer diameter D A is twice as large as the diameter D W (D A = 2 D W ), the same axial velocity is achieved over the entire reactor cross-section, if the angle of attack β on the outer diameter D A is half as large , as the angle of attack α at the diameter D W of the shaft. By a multiple interruption of the coil increases the shear effect during transport of the solid through the mixer. The mixing intensity is increased and thus the complete mixing does not take place until half the reactor length, but already much earlier. With the same reactor length, a longer residence time for the chemical reaction is achieved, whereby in new plants, the reactor length either reduced or alternatively increases the reaction time and thus the Reaktionstemperatur.gesenkt can be lowered.

Ausgestaltungsmöglichkeiten der Mischwellen werden mit Hilfe der Zeichnungen beispielhaft erläutert.Design possibilities of the mixing shafts are exemplified with the aid of the drawings.

Dabei zeigt

Fig. 1
ein Fließschema des Verfahrens
Fig. 2
einen Schnitt durch eine Mischvorrichtung nach dem Stand der Technik
Fig. 3
eine einzelne Welle einer Mischvorrichtung nach der Erfindung
Fig. 4
eine Draufsicht auf die linke Stirnseite der Welle nach Fig. 3
Fig. 5
eine Detailansicht aus Fig. 3
Fig. 6
eine Darstellung der an einer Schaufel wirkenden radialen und axialen Geschwindigkeiten
It shows
Fig. 1
a flow chart of the process
Fig. 2
a section through a mixing device according to the prior art
Fig. 3
a single shaft of a mixing device according to the invention
Fig. 4
a plan view of the left end side of the shaft of FIG .. 3
Fig. 5
a detailed view of Fig. 3rd
Fig. 6
a representation of acting on a blade radial and axial velocities

In das Mischwerk (1) der Fig.1 führt man durch die Leitung (2) z.B. heißen Wärmeträger-Koks und durch die Leitung (3) das zu verarbeitende Rückstandsöl ein. Das Mischwerk (1) weist im vorliegenden Fall mindestens zwei horizontale, ineinander greifende Schnecken auf, welches die eingeleiteten Materialien vermischt und zum Auslasskanal (8) transportiert. Gase und Dämpfe können die Mischvorrichtung über den Abzugskanal (4) zur Kondensation (5) verlassen. Aus der Kondensation (5) zieht man getrennt Gase durch die Leitung (6) und Produktöl aus der Leitung (7) ab. Das kokshaltige Feststoffgemisch, welches die Mischvorrichtung (1) durchlaufen hat, wird durch den Auslasskanal (8) zu einem Behälter (9) geleitet. Aus diesem Behälter (9) kann der getrocknete Koks über Leitung (10) abgezogen und dem Verfahren wieder zugeführt werden. Statt der Weiterverarbeitung von Rückstandsöl mit Wärmeträgerkoks kann die Mischvorrichtung auch selbstverständlich zur Aufbereitung von z.B. Bitumen, Kunststoffen, Kohle, Torf oder Biomasse eingesetzt werden, wodurch sich die gesamte Anlagenkonfiguration ändern kann.In the mixer (1) of Figure 1 is passed through the line (2), e.g. hot heat transfer coke and through the line (3) to be processed residue oil. The mixer (1) has in the present case at least two horizontal, intermeshing screws, which mixes the introduced materials and transported to the outlet channel (8). Gases and vapors can leave the mixing device via the discharge channel (4) for condensation (5). Separate gases from the condensation (5) through the line (6) and product oil from the line (7). The coke-containing solid mixture, which has passed through the mixing device (1) is passed through the outlet channel (8) to a container (9). From this container (9), the dried coke can be withdrawn via line (10) and recycled to the process. Instead of the further processing of residual oil with heat transfer coke, the mixing device can of course also be used for the treatment of e.g. Bitumen, plastics, coal, peat or biomass, which may change the overall plant configuration.

Fig. 2 zeigt eine Schnittdarstellung einer Mischvorrichtung (1) nach dem Stand der Technik. In dieser Mischvorrichtung (1) sind zwei ineinander greifende Wellen (11, 14) als Hohlwellen ausgebildet, die gleichsinnig drehen. Jede Welle (11, 14) weist zwei Schnecken (12, 13, 15, 16) auf, die sich ohne Unterbrechung über die gesamte Länge der Welle erstreckt. Die zwei Schnecken einer Welle sind um 180° versetzt angeordnet.Fig. 2 shows a sectional view of a mixing device (1) according to the prior art. In this mixing device (1), two intermeshing shafts (11, 14) are designed as hollow shafts which rotate in the same direction. Each shaft (11, 14) has two screws (12, 13, 15, 16) which extends uninterrupted over the entire length of the shaft. The two screws of a shaft are arranged offset by 180 °.

Fig. 3 zeigt eine von mindestens zwei verwendeten Wellen nach der Erfindung. Auf der Welle (11) ist, statt einer durchgehenden Schnecke, eine Vielzahl von einzelnen Schaufeln (12a, 12b, 12c, ... 12m) in einer Schraubenlinie hintereinander angeordnet. Einer ersten Reihe von einzelnen Schaufeln (12a, 12b, 12c, ... 12m) ist auf der Welle (11) eine zweite Reihe von einzelnen Schaufeln (13a, 13b, 13c, ... 13m) um 180 ° versetzt zugeordnet. In dieser Darstellung besteht jede Reihe von Schaufeln aus 12 einzelnen Schaufeln. Mit der Beschreibung schrauben- oder schneckenförmige Anordnung ist jede gleichmäßige oder ungleichmäßige Anordnung der Schaufeln möglich, bei der sich die Schaufeln (12a bis 12m, 13a bis 13m) aneinandergereiht um die Welle (11) anordnen lassen und bei der ein problemloses Abwälzen der Wellen (11, 14) zueinander möglich ist. Die Anzahl der Schaufeln lässt sich variieren in Abhängigkeit von der Reaktorlänge, den Durchmesserverhältnissen von Welle zu Schaufel und den damit verbundenen Schaufelkrümmungen. Ebenfalls hat die Viskosität bzw. die Teilchengröße der zu mischenden Medien einen Einfluss, da der Abstand der Schaufeln zueinander die Einmischzeit beeinflussen kann. Wie bei Gewinden ist eine einreihige oder eine mehrreihige Anordnung der Schaufeln möglich.Fig. 3 shows one of at least two used shafts according to the invention. On the shaft (11), instead of a continuous screw, a plurality of individual blades (12a, 12b, 12c, ... 12m) arranged in a helical line one behind the other. A first Row of individual blades (12a, 12b, 12c, ... 12m) is on the shaft (11) associated with a second row of individual blades (13a, 13b, 13c, ... 13m) offset by 180 °. In this illustration, each row of blades consists of 12 individual blades. With the description screw or helical arrangement, any uniform or uneven arrangement of the blades is possible, in which the blades (12a to 12m, 13a to 13m) lined up around the shaft (11) can be arranged and in which a smooth rolling of the waves ( 11, 14) to each other is possible. The number of blades can be varied depending on the reactor length, the diameter ratios of shaft to blade and the associated blade curvatures. Likewise, the viscosity or the particle size of the media to be mixed has an influence, since the distance of the blades from one another can influence the mixing-in time. As with threads, a single row or a multi-row arrangement of the blades is possible.

In Fig. 4 ist eine Draufsicht auf die linke Stirnseite der Welle von Fig. 3 dargestellt. Aus Gründen der Vereinfachung sind hier nur jeweils sechs Schaufeln (12a, 12b, 12c, ... 12f) und (13a, 13b, 13c, ... 13f) aus einer Reihe von Schaufeln dargestellt. Als Durchmesser DW wird der Durchmesser der Welle (11) am Befestigungspunkt der Schaufeln bezeichnet und als Durchmesser DA der Außendurchmesser der Welle (11) an den Schaufeln.In Fig. 4 is a plan view of the left end side of the shaft of Fig. 3 is shown. For reasons of simplicity, only six blades (12a, 12b, 12c,... 12f) and (13a, 13b, 13c,... 13f) of a row of blades are shown here. The diameter D W is the diameter of the shaft (11) at the attachment point of the blades and the diameter D A is the outer diameter of the shaft (11) on the blades.

Fig. 5 zeigt den vergrößerten Ausschnitt "A" aus Fig.3 mit den Anstellwinkeln einer einzelnen Schaufel (12a). Mit dem Winkel α wird der Anstellwinkel der Schaufel an der Welle bezeichnet. Dem Winkel α ist der Durchmesser DW aus, Fig. 4 zugeordnet. Der Winkel β ist der Anstellwinkel der Schaufel (12a) am äußersten Durchmesser DA. Es ist damit möglich, durch unterschiedliche Anstellwinkel der Schaufeln die axiale Geschwindigkeit der Medien über den Querschnitt der Mischvorrichtung zu beeinflussen. Unter der Voraussetzung, dass der Außendurchmesser DA doppelt so groß ist wie der Durchmesser DW, ist bei gleich großem Anstellwinkel (α = β) die axiale Geschwindigkeit der zu mischenden Medien am Außendurchmesser DA doppelt so groß wie am Durchmesser DW der Welle (11). Wird der Anstellwinkel β der Schaufel am äußeren Umfang kleiner als der Anstellwinkel α am Befestigungspunkt der Schaufel, dann sinkt die axiale Geschwindigkeit am Außendurchmesser DA auf ca. die Hälfte des ursprünglichen Wertes. Durch die Variation der Anstellwinkel α und β in Relation zu den Durchmessern DW und DA kann die axiale Geschwindigkeit der Teilchen über den Querschnitt des Mischwerkes vergleichmäßigt werden, wodurch sich eine engere Verteilung der Verweilzeit ergibt. Die axiale Strömung nähert sich damit der erwünschten Pfropfenströmung.FIG. 5 shows the enlarged detail "A" from FIG. 3 with the angles of attack of a single blade (12a). The angle α denotes the angle of attack of the blade on the shaft. The angle α is the diameter D W , Fig. 4 assigned. The angle β is the angle of attack of the blade (12a) at the outermost diameter D A. It is thus possible to influence the axial speed of the media over the cross-section of the mixing device by different angles of attack of the blades. Assuming that the outer diameter D A is twice as large as the diameter D W , at the same large angle of attack (α = β), the axial velocity of the media to be mixed at the outer diameter D A is twice as large as the diameter D W of the shaft (11). If the angle of incidence β of the blade at the outer circumference is smaller than the angle of attack α at the attachment point of the blade, then the axial velocity at the outer diameter D A decreases to approximately half the original value. By varying the angles of attack α and β in relation to the diameters D W and D A , the axial velocity of the particles can be made uniform over the cross section of the mixing plant which results in a narrower residence time distribution. The axial flow thus approaches the desired plug flow.

Dies wird in Fig. 6 noch einmal verdeutlicht. Zur Vereinfachung wird wieder unterstellt, dass der Außendurchmesser DA der Welle (11) an den Schaufeln doppelt so groß ist, wie der Durchmesser DW der Welle (11) am Befestigungspunkt der Schaufeln → DA = 2 DW.This is clarified once again in FIG. For simplicity, it is again assumed that the outer diameter D A of the shaft (11) on the blades is twice as large as the diameter D W of the shaft (11) at the attachment point of the blades → D A = 2 D W.

Mit DW = 1.0 m und einer konstanten Drehzahl von 20 Umdrehungen pro Minute beträgt die Umfangsgeschwindigkeit der Teilchen am Befestigungspunkt der Schaufeln VW = 1,05 m/s. Dies ist damit auch die radiale Geschwindigkeit VWr = 1,05 m/s. Bei einem Anstellwinkel α = 16° der Schaufel am Befestigungspunkt an der Welle ergibt sich eine axiale Geschwindigkeit der Teilchen von VWa = 0,3 m/s.
Mit DA = 2,0 m und gleicher Drehzahl von 20 Umdrehungen pro Minute beträgt die Umfangsgeschwindigkeit der Teilchen am Außendurchmesser der Schaufeln VA = 2,09 m/s. Dies ist damit auch die radiale Geschwindigkeit VAr = 2,09 m/s. Bei einem Anstellwinkel β = 8° der Schaufel am Außendurchmesser DA der Welle ergibt sich die gleiche axiale Geschwindigkeit der Teilchen von VAa = 0,3 m/s. Selbstverständlich lässt sich die gleiche axiale Geschwindigkeit der Teilchen über den Querschnitt des Mischwerkes auch bei anderen Durchmesserverhältnissen und anderen Anstellwinkeln realisieren.
With D W = 1.0 m and a constant speed of 20 revolutions per minute, the peripheral speed of the particles at the fixing point of the blades V W = 1.05 m / s. This is also the radial velocity V Wr = 1.05 m / s. At an angle of attack α = 16 ° of the blade at the attachment point on the shaft results in an axial velocity of the particles of V Wa = 0.3 m / s.
With D A = 2.0 m and the same speed of 20 revolutions per minute, the peripheral speed of the particles at the outer diameter of the blades V A = 2.09 m / s. This is also the radial velocity V Ar = 2.09 m / s. At an angle β = 8 ° of the blade on the outer diameter D A of the shaft results in the same axial velocity of the particles of V Aa = 0.3 m / s. Of course, the same axial velocity of the particles over the cross section of the mixing plant can be realized even with other diameter ratios and other angles of attack.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

11
Mischwerkmixer
22
Leitungmanagement
33
Leitungmanagement
44
Abzugskanalculvert
55
Kondensationcondensation
66
Leitungmanagement
77
Leitungmanagement
88th
Auslasskanalexhaust port
99
Behältercontainer
1010
Leitungmanagement
1111
Wellewave
1212
Schneckeslug
12a bis 12m12a to 12m
Schaufelnshovel
1313
Schneckeslug
13a bis 13m13a to 13m
Schaufelnshovel
1414
Wellewave
1515
Schneckeslug
1616
Schneckeslug

Claims (3)

  1. Mixing device, in particular for use as a continuously working reactor, consisting of at least two rotating shafts (11, 14), wherein at least two opposite rows of paddles (12a, ..., 13a, ..., 13m) are disposed on each shaft (11, 14) and each row of paddles (12a, ..., 13a, ..., 13m) consists of at least two individual paddles, and that the paddles are fastened to the shaft (11, 14) at an angle of incidence α to the longitudinal axis of the shaft (11, 14),
    characterised in that the paddles themselves are curved, so that the paddles (12a, ..., 13a, ..., 13m) exhibit the angle of incidence α at the fastening point on the shaft (11, 14) and the angle of incidence β at the outside diameter DA,
    that the angle of incidence β at the outside diameter DA is at most as large as the angle of incidence α at the diameter DW at the shaft,
    that the angle of incidence α continuously decreases from the diameter DW at the shaft (11, 14) as the diameter increases and reaches the smaller angle β at the outside diameter DA.
  2. Mixing device according to Claim 1, characterised in that, given a paddle outside diameter DA which is twice as large as the shaft diameter DW at the fastening point of the paddles (12a, ..., 13a, ..., 13m), the angle of incidence β at the outside diameter DA is approximately half as large as the angle of incidence α at the diameter DW at the shaft (11, 14).
  3. Method for continuously mixing and reacting liquid or solid feed materials with a solid granular heat transfer medium such as, for example, coke or another suitable solid in a mixing device according to Claims 1 and 2, characterised in that the axial speed of the media at the diameter DW at the shaft (11, 14) is equal to that at the outside diameter DA.
EP04725681A 2003-05-13 2004-04-05 Mixing device, and mixing method using that device Expired - Lifetime EP1622706B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10321350A DE10321350B4 (en) 2003-05-13 2003-05-13 mixing device
PCT/EP2004/003578 WO2004101126A1 (en) 2003-05-13 2004-04-05 Mixing device

Publications (2)

Publication Number Publication Date
EP1622706A1 EP1622706A1 (en) 2006-02-08
EP1622706B1 true EP1622706B1 (en) 2007-01-24

Family

ID=33440750

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04725681A Expired - Lifetime EP1622706B1 (en) 2003-05-13 2004-04-05 Mixing device, and mixing method using that device

Country Status (10)

Country Link
US (1) US7677788B2 (en)
EP (1) EP1622706B1 (en)
JP (1) JP4708348B2 (en)
AT (1) ATE352369T1 (en)
AU (1) AU2004238009B2 (en)
CA (1) CA2529581C (en)
DE (2) DE10321350B4 (en)
ES (1) ES2281792T3 (en)
MX (1) MXPA05012173A (en)
WO (1) WO2004101126A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2545328T3 (en) 2003-03-14 2015-09-10 Depuy Spine, Inc. Bone cement hydraulic injection device in percutaneous vertebroplasty
US8066713B2 (en) 2003-03-31 2011-11-29 Depuy Spine, Inc. Remotely-activated vertebroplasty injection device
DE10321350B4 (en) * 2003-05-13 2005-04-21 Lurgi Ag mixing device
US8415407B2 (en) 2004-03-21 2013-04-09 Depuy Spine, Inc. Methods, materials, and apparatus for treating bone and other tissue
WO2005030034A2 (en) 2003-09-26 2005-04-07 Depuy Spine, Inc. Device for delivering viscous material
CN106963464B (en) 2004-07-30 2019-11-05 德普伊新特斯产品有限责任公司 Surgical set
US9381024B2 (en) 2005-07-31 2016-07-05 DePuy Synthes Products, Inc. Marked tools
US9918767B2 (en) 2005-08-01 2018-03-20 DePuy Synthes Products, Inc. Temperature control system
US8360629B2 (en) 2005-11-22 2013-01-29 Depuy Spine, Inc. Mixing apparatus having central and planetary mixing elements
AU2007297097A1 (en) 2006-09-14 2008-03-20 Depuy Spine, Inc. Bone cement and methods of use thereof
CA2747850C (en) 2006-10-19 2013-05-14 Depuy Spine, Inc. Fluid delivery system
GB0808739D0 (en) 2008-05-14 2008-06-18 Univ Aston Thermal treatment of biomass
US9073019B2 (en) * 2010-04-19 2015-07-07 Cheese & Whey Systems, Inc. Blade arrangement for a food processing vat
US20190002324A1 (en) * 2016-03-01 2019-01-03 Wh Systems Method and Apparatus for the Treatment of Waste from Sewage Digestor
US10605143B2 (en) 2017-07-14 2020-03-31 Ford Global Technologies, Llc Exhaust gas mixer
PL444900A1 (en) * 2023-05-15 2023-10-09 Prorys Spółka Z Ograniczoną Odpowiedzialnością Flow-through mixer of peat materials

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29394C (en) * B. WEIBEZAHL in Magdeburg Mixing machine for powdery materials
US43227A (en) * 1864-06-21 Improvement in churns
US1590021A (en) * 1921-12-02 1926-06-22 Stevens Aylsworth Company Mixing machine
US2017116A (en) * 1932-04-02 1935-10-15 Harold D Bonnell Agitating apparatus
DE1118959B (en) * 1955-07-12 1961-12-07 Draiswerke Ges Mit Beschraenkt Method and device for the preparation of thermoplastics or thermosets
US3090606A (en) * 1959-09-11 1963-05-21 Strong Scott Mfg Company Rotary mixing device
DE1255098B (en) * 1962-04-17 1967-11-30 Inst Chemii Ogolnej Device for the thermal isomerization or disproportionation of alkali salts of benzene carboxylic acids
DE1189368B (en) * 1963-04-24 1965-03-18 Richard Frisse Maschinenfabrik Conching machine for chocolate masses or the like.
US3734469A (en) * 1970-12-31 1973-05-22 Exxon Research Engineering Co Reactor vessel and up-down mixer
US4344692A (en) * 1979-03-15 1982-08-17 Tokyo Shibaura Denki Kabushiki Kaisha Developer transportation device for electrostatic copying machine
US4364667A (en) * 1981-02-06 1982-12-21 Reiner Ralph Mixing and transport conveyor
US4627735A (en) * 1985-02-07 1986-12-09 Standard Oil Company (Indiana) Double reverse helix agitator
DE3543745A1 (en) 1985-12-11 1987-06-19 Bhs Bayerische Berg DOUBLE SHAFT MIXER FOR CONTINUOUS AND DISCONTINUOUS OPERATION
JPS63151341A (en) * 1986-12-16 1988-06-23 Obara Yasunori Dual-screw mixing feed apparatus
EP0397894A1 (en) * 1989-05-13 1990-11-22 Ulrich Krause Method for continuously bringing together solid powdery or granular materials, and device for carrying out the method
US5431860A (en) 1991-02-01 1995-07-11 Richter Gedeon Vegyeszeti Gyar Rt. Complex mixing device for dispersion of gases in liquid
CH682619A5 (en) * 1991-06-18 1993-10-29 Buehler Ag Method and apparatus for producing a shaped product nodules.
DE4339628C2 (en) * 1993-11-20 2003-04-10 Ismar Maschinen Gmbh kneading
DE4401596A1 (en) * 1994-01-20 1995-07-27 Ekato Ruehr Mischtechnik Stirrer
US5519470A (en) * 1994-03-04 1996-05-21 Xerox Corporation Cross mixing paddle wheel
US5791779A (en) * 1996-07-09 1998-08-11 Sandmold Systems, Inc. Mixing assembly for continuous mixer
DE19706364C2 (en) * 1997-02-19 1999-06-17 Loedige Maschbau Gmbh Geb Mixing tool
DE19817518A1 (en) * 1997-05-09 1999-10-14 Georg Gebhard Production of storage mineral components
DE19724074C2 (en) * 1997-06-07 2000-01-13 Metallgesellschaft Ag Process for high-temperature short-term distillation of residual oils
JPH1158369A (en) * 1997-08-22 1999-03-02 Kobe Steel Ltd Twin-screw continuous kneader
US6735530B1 (en) 1998-09-23 2004-05-11 Sarnoff Corporation Computational protein probing to identify binding sites
JP2000246731A (en) * 1999-03-02 2000-09-12 Kobe Steel Ltd Kneading rotor and kneading machine employing this
DE19959587B4 (en) * 1999-12-10 2006-08-24 Lurgi Lentjes Ag Process for the gentle short-term distillation of residual oils
JP2003019425A (en) * 2001-07-09 2003-01-21 Tookemi:Kk Remover for adhesion matter on filter sand
JP2003205229A (en) * 2002-01-16 2003-07-22 Aidekku Kk Stirring method and apparatus
DE10321350B4 (en) * 2003-05-13 2005-04-21 Lurgi Ag mixing device
FR2858250B1 (en) * 2003-07-30 2005-09-09 Syndicat Intercommunal Pour La MIXER DEVICE FOR DIVIDED SOLID WASTE

Also Published As

Publication number Publication date
DE10321350B4 (en) 2005-04-21
ATE352369T1 (en) 2007-02-15
DE502004002777D1 (en) 2007-03-15
DE10321350A1 (en) 2005-01-13
ES2281792T3 (en) 2007-10-01
AU2004238009A1 (en) 2004-11-25
CA2529581C (en) 2009-11-24
EP1622706A1 (en) 2006-02-08
WO2004101126A1 (en) 2004-11-25
AU2004238009B2 (en) 2009-11-12
MXPA05012173A (en) 2006-08-18
US7677788B2 (en) 2010-03-16
CA2529581A1 (en) 2004-11-25
JP2007502207A (en) 2007-02-08
US20060181959A1 (en) 2006-08-17
JP4708348B2 (en) 2011-06-22

Similar Documents

Publication Publication Date Title
EP1622706B1 (en) Mixing device, and mixing method using that device
DE69810067T2 (en) Device and method for liquid ejection
DE3743051A1 (en) DEVICE FOR TREATING HIGH VISCOSITY SUBSTANCES
EP3318311B1 (en) Thin film treatment device
EP1841524B1 (en) Reactor for the continuous and simultaneous production of different polyester products having adjustable variable viscosity, the progress of the process being regulated via the hydraulic drive system/s
EP1631371A1 (en) Device for the treatment of solid substances
CH687526A5 (en) Fermentation device.
DE60000698T2 (en) Device and method for ejecting a liquid
DE1642984A1 (en) Improved reactors for viscous reactants
EP1792643A1 (en) High volume reactor and/or thin film evaporator employing a premixing device
EP3103538A1 (en) Thin-film vaporiser
EP2011563B1 (en) Mixing-drying unit and/or reactor
EP0019244B1 (en) Apparatus and process for pyrolyzing waste products
DE1959139C3 (en) Device for the continuous production of polymers with a high degree of polymerization
CH548003A (en) Lathes.
EP2796189B1 (en) Two-shaft reactor/mixer
DE102012103749A1 (en) Reactor comprises heatable housing, whose upper region has heating surface and is transversed through rotor, where wiper elements are provided for distribution of liquid product on heating surface which has collection and discharge area
DE19648875A1 (en) Fermentation vat paddle shaft consists of two parallel pipe profiles joined to each other in sections
DE3017611A1 (en) GARAGE SYSTEM FOR WASTEWATER FROM LIVESTOCK
EP0930141A1 (en) Mixer
DE10215806A1 (en) Flow smoothing mixer
CH689444A5 (en) Reactor for thermal processing of viscous materials, esp. thermoplastic elastomers
DE10310327A1 (en) Vertical mixing vessel with rotary agitator, for solids, high viscosity materials, powders, bulk materials and granules, includes stirrer blades curved in plane transverse to drive shaft
DE4119798A1 (en) METHOD FOR THE PRODUCTION OF BIOGAS AND USE OF A MIXER AS A BIOGAS PLANT
CH444739A (en) Device for mixing liquids from powdery to granular materials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE ES FR GB NL

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): AT DE ES FR GB NL

RTI1 Title (correction)

Free format text: MIXING DEVICE, AND MIXING METHOD USING THAT DEVICE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070214

REF Corresponds to:

Ref document number: 502004002777

Country of ref document: DE

Date of ref document: 20070315

Kind code of ref document: P

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2281792

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071025

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120525

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120511

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130419

Year of fee payment: 10

Ref country code: GB

Payment date: 20130418

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130515

Year of fee payment: 10

Ref country code: NL

Payment date: 20130418

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004002777

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20141101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 352369

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140405

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140405

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004002777

Country of ref document: DE

Effective date: 20141101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140405

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140430

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141101

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140406