EP1622503A1 - Procede et dispositif de determination de composants sanguins par spectroscopie d'impulsions absolue ratiometrique - Google Patents

Procede et dispositif de determination de composants sanguins par spectroscopie d'impulsions absolue ratiometrique

Info

Publication number
EP1622503A1
EP1622503A1 EP04720580A EP04720580A EP1622503A1 EP 1622503 A1 EP1622503 A1 EP 1622503A1 EP 04720580 A EP04720580 A EP 04720580A EP 04720580 A EP04720580 A EP 04720580A EP 1622503 A1 EP1622503 A1 EP 1622503A1
Authority
EP
European Patent Office
Prior art keywords
light
concentration
evaluation unit
wavelength
blood
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04720580A
Other languages
German (de)
English (en)
Inventor
Klaus Forstner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mcc Gesellschaft fur Diagnosesysteme In Medizin und Technik Mbh & Co KG
Original Assignee
Mcc Gesellschaft fur Diagnosesysteme In Medizin und Technik Mbh & Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mcc Gesellschaft fur Diagnosesysteme In Medizin und Technik Mbh & Co KG filed Critical Mcc Gesellschaft fur Diagnosesysteme In Medizin und Technik Mbh & Co KG
Publication of EP1622503A1 publication Critical patent/EP1622503A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Definitions

  • the invention further relates to a device for the measurement of blood components by measurement, which has at least one light source, at least one photo receiver and at least one evaluation unit which is connected to the photo receiver.
  • a device for the measurement of blood components by measurement which has at least one light source, at least one photo receiver and at least one evaluation unit which is connected to the photo receiver.
  • Such methods and devices are used in order to be able to carry out blood tests in the field of medical technology without having to take blood from a patient.
  • such devices are arranged, for example, on a patient's fingers, toes, ears or on the nose.
  • Hemoglobin derivatives can be divided into
  • Functional components are the 0 ⁇ - hemoglobin and the deoxygenated hemoglobin fraction, while the dysfunctional 11 hemoglobin fractions mainly include carboxymonoxide hemoglobin, methemoglobin and sulfhemoglobin.
  • Native components are those that are present within the blood space in a physiologically or pathologically modified manner.
  • Iatrogenic substances are substances applied by the doctor, eg dyes for marking certain clinical parameters.
  • a diagnostic method that uses spectrophotometry to refer to the pulsating blood compartment in biological tissues is called PULSE SPECTROSCOPY.
  • a well-known example of relative pulse spectroscopy is the determination of arterial oxygen saturation by means of the pulse oximetry method. The percentage of hemoglobin that accumulates with oxygen is determined. In this case, hemoglobin is the reference substance, but its absolute concentration cannot be determined in relative pulse spectroscopy.
  • Absolute pulse spectroscopy determines substance concentrations that are present within the pulsating arterial or venous blood space. These can be both corpuscularly bound (i.e. Be part of blood cells or be dissolved within the blood plasma.
  • the determinable substances are not necessarily substances associated with hemoglobin. They can exist independently of this molecule.
  • This object is achieved in that light signals of a first wavelength are generated at two successive times T-_ and T 2 , that light signals of a second wavelength are generated at two successive times T 3 and T 4 , that at two successive times T s and T 6 light signals of a third wavelength are generated and this for n pairs of times at n wavelengths applies.
  • the times T x ... T n + 1 are in a well-defined temporal relationship to each other. Time differences between the times can be small and can be neglected in the evaluation in individual cases.
  • the evaluation unit takes into account the received signals of the photoreceiver for all n wavelengths according to a predetermined calculation scheme to determine a concentration of the blood component.
  • Another object of the present invention is to provide a device of the type mentioned in the introduction in such a way that improved measurement accuracy is achieved.
  • This object is achieved according to the invention in that at least three light sources are used which generate light of different wavelengths relative to one another and in that the evaluation unit has a computing module for performing logarithmizations as well as for divisions, multiplications, additions and subtractions.
  • a signal processing step for eliminating unknown parameters consists in that the evaluation unit takes into account a quotient of parameters resulting from measurement signals ("ratiometric method")
  • a transformation of a division into a subtraction that occurs during logarithization is exploited by taking into account a quotient from the logarithmized measured values.
  • a simple device structure is supported in that the light is generated by light-emitting semiconductor diodes. These classic emission diodes (or laser diodes) can be used as photometric emission elements without further spectral filtering.
  • 3 shows a schematic representation of the formation of the measured value variables Omega 1,2 and Omega 1,3 from two sampling times t x and t 2 three plethysmograms of different wavelengths
  • Fig. 6 absorption spectrum whole blood at sa02 approx. 98% and absorption spectrum water. Please note the spectral absorption curve H20 between 1000 [nm] and 1600 [nm],
  • Fig. 8 absorption spectrum of the clinical marker substance Evans-Blue (aqueous solution 70 [ ⁇ mol / 1])
  • the device for determining a concentration of blood components by measurement consists, for example, of consists of three light sources (1, 2, 3) and a number of photo receivers (4).
  • the light sources (1, 2, 3) are designed as light-emitting diodes, selected by a multiplexer and connected to a control unit (5).
  • the photo receivers are designed as light-emitting diodes, selected by a multiplexer and connected to a control unit (5).
  • the evaluation unit (6) has a computing module (7) which contains the measurement signals of the photo receiver
  • the determined concentrations of the blood components can be shown on a display (8) and / or passed on or saved via an output device (9).
  • the control unit (5) is connected to the evaluation unit (6) for function coordination.
  • Figure 2 shows a typical layer model to illustrate the basics of pulse spectroscopy. Shown is the weakening of the light intensity due to the absorption on the one hand in the non-pulsating tissue part (layer 1) and the weakening within the pulsating tissue part (layer 2), which causes the pulsating fluctuation in the emerging light intensity.
  • the measured light intensities are arithmetically linked at different times and with respect to different light wavelengths in such a way that certain unknown measurement parameters drop out.
  • the arithmetic logic of the measured values takes advantage of the fact that a division is transformed into a subtraction during logarithmization. If the quotient of two measured variables is thus formed at different points in time, the respective measured variable influencing but constant in time and unnecessary parameters drop out.
  • e are the molar extinctions on which the respective substances are based, c the respective concentrations.
  • D ⁇ is the total thickness of the constant tissue.
  • d A (t) is the pulse-cyclic, time-dependent thickness of the pulsating blood vessels.
  • hemoglobin derivatives are given, for example, with O 2 Hb and HbR. Then we get:
  • a blood component X can be determined non-invasively and continuously if the hemoglobin concentration c Hb is known (measured, for example, by reference method) (I).
  • the hemoglobin concentration c ⁇ itself can be determined if another pulsating absorber is known regarding its concentration (II). In principle, both determination methods can be implemented independently of one another.
  • Epsilon X and c x are the molar extinction and the concentration of a blood component that must not be hemoglobin-associated.
  • Relationships (6) and (6a) can be used to determine the substance concentration X, which may not be associated with hemoglobin.
  • This can be, for example, bilirubin or other native blood substances, and furthermore this substance X can be an iatrogenically applied substance, such as e.g. represent a dye marker substance.
  • iatrogenically administered substances can also be applied in order to dope native or pharmacologically active substances.
  • the measurement variable mentioned ⁇ 12 does not necessarily have to be the measurement variable on which the pulse oximetric determination of arterial oxygen saturation is based.
  • This determination equation of sa ⁇ 2 depends on the as yet unknown substance concentration CJJJ-, if A x ( ⁇ ) and S ( ⁇ 2 / Sl) are known. This concentration tion can now be determined that a further wavelength ⁇ 3 is introduced, and this is also used according to the given arrangement for determining sa ⁇ 2 .
  • a x ( ⁇ 3 ) c x ⁇ x ( ⁇ ] _) is the known absorption of a substance X.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Pathology (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Biochemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

L'invention concerne un procédé et un dispositif de détermination, par mesure non invasive, de concentrations de composants sanguins. De la lumière est produite par au moins une source lumineuse par photométrie spectrale et guidée vers au moins un photorécepteur au travers d'un tissu perforé de façon pulsatile, situé sur le point d'application. Au moins le signal de mesure du photorécepteur est guidé vers une unité d'évaluation. A des paires d'instants consécutifs (T1 et T2, T3 et T4, T5 et T6, , Tn et Tn+1), des signaux lumineux d'une première, deuxième, troisième jusqu'à n+1ème longueurs d'ondes sont produits. L'unité d'évaluation fait intervenir les signaux de réception du photorécepteur pour toutes les longueurs d'ondes, selon un schéma de calcul prédéfini, afin de déterminer une concentration des composants sanguins. Ledit dispositif comporte au moins trois sources lumineuses produisant de la lumière à des longueurs d'ondes différentes. L'unité d'évaluation est pourvue d'un module de calcul destiné à la mise en oeuvre de logarithmes, ainsi que de divisions, multiplications, additions et soustractions. Ledit procédé peut notamment servir à la détermination de la concentration totale en hémoglobine CHb, et à la détermination de substances physiologiques, appliquées de façon iatrogène, du volume sanguin pulsé.
EP04720580A 2003-05-13 2004-03-15 Procede et dispositif de determination de composants sanguins par spectroscopie d'impulsions absolue ratiometrique Withdrawn EP1622503A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10321338A DE10321338A1 (de) 2003-05-13 2003-05-13 Verfahren und Vorrichtung zur Bestimmung von Blutkomponenten mittels der Methode der ratiometrischen absoluten Pulsspektroskopie
PCT/DE2004/000515 WO2004100780A1 (fr) 2003-05-13 2004-03-15 Procede et dispositif de determination de composants sanguins par spectroscopie d'impulsions absolue ratiometrique

Publications (1)

Publication Number Publication Date
EP1622503A1 true EP1622503A1 (fr) 2006-02-08

Family

ID=33394512

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04720580A Withdrawn EP1622503A1 (fr) 2003-05-13 2004-03-15 Procede et dispositif de determination de composants sanguins par spectroscopie d'impulsions absolue ratiometrique

Country Status (5)

Country Link
US (1) US20080214911A1 (fr)
EP (1) EP1622503A1 (fr)
JP (1) JP2007502681A (fr)
DE (1) DE10321338A1 (fr)
WO (1) WO2004100780A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT501698B1 (de) * 2005-03-18 2007-04-15 Felix Dipl Ing Dr Himmelstoss Vorrichtung zur mehrpulserfassung
US7904130B2 (en) 2005-09-29 2011-03-08 Nellcor Puritan Bennett Llc Medical sensor and technique for using the same
DE112006003694A5 (de) * 2005-11-15 2008-10-23 Weinmann Geräte für Medizin GmbH + Co. KG Vorrichtung zur Bestimmung physiologischer Variablen
DE102007063934B3 (de) 2006-04-07 2019-07-11 Löwenstein Medical Technology S.A. Vorrichtung zur Ermittlung von Biosignalen
US8175667B2 (en) 2006-09-29 2012-05-08 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8068891B2 (en) 2006-09-29 2011-11-29 Nellcor Puritan Bennett Llc Symmetric LED array for pulse oximetry
US8649838B2 (en) 2010-09-22 2014-02-11 Covidien Lp Wavelength switching for pulse oximetry
DE102012111105A1 (de) 2012-11-19 2014-05-22 Uwe Gräßel Verfahren zur Rückgewinnung von säurehaltigen Beizlösungen
US11154224B2 (en) 2018-01-09 2021-10-26 Medtronic Monitoring, Inc. System and method for non-invasive monitoring of hematocrit concentration
US11051727B2 (en) 2018-01-09 2021-07-06 Medtronic Monitoring, Inc. System and method for non-invasive monitoring of advanced glycation end-products (AGE)
US11039768B2 (en) 2018-01-09 2021-06-22 Medtronic Monitoring, Inc. System and method for non-invasive monitoring of hemoglobin

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911167A (en) * 1985-06-07 1990-03-27 Nellcor Incorporated Method and apparatus for detecting optical pulses
US5564417A (en) * 1991-01-24 1996-10-15 Non-Invasive Technology, Inc. Pathlength corrected oximeter and the like
US5058588A (en) * 1989-09-19 1991-10-22 Hewlett-Packard Company Oximeter and medical sensor therefor
US5337745A (en) * 1992-03-10 1994-08-16 Benaron David A Device and method for in vivo qualitative or quantative measurement of blood chromophore concentration using blood pulse spectrophotometry
US5377674A (en) * 1992-05-08 1995-01-03 Kuestner; J. Todd Method for non-invasive and in-vitro hemoglobin concentration measurement
JP3364819B2 (ja) * 1994-04-28 2003-01-08 日本光電工業株式会社 血中吸光物質濃度測定装置
DE19512478C2 (de) * 1994-08-10 2001-05-31 Bernreuter Peter Verfahren zur Bestimmung der arteriellen Sauerstoffsättigung
WO1997049330A1 (fr) * 1996-06-27 1997-12-31 Falcon Medical, Inc. Oxymetre resistant aux artefacts dus aux mouvements utilisant trois longueurs d'ondes
US6163715A (en) * 1996-07-17 2000-12-19 Criticare Systems, Inc. Direct to digital oximeter and method for calculating oxygenation levels
WO1998017174A1 (fr) * 1996-10-23 1998-04-30 Cardiac Crc Nominees Pty. Limited Determination non invasive de la saturation en oxygene dans le sang des tissus profonds
GB2328279B (en) * 1997-08-12 2001-10-10 Abbott Lab Optical glucose detector
JPH11244267A (ja) * 1998-03-03 1999-09-14 Fuji Photo Film Co Ltd 血中成分濃度測定装置
JP2002516689A (ja) * 1998-06-03 2002-06-11 マシモ・コーポレイション ステレオパルスオキシメータ
JP2000083933A (ja) * 1998-07-17 2000-03-28 Nippon Koden Corp 生体組織中吸光物質濃度測定装置
JP2961608B1 (ja) * 1998-10-02 1999-10-12 建夫 斎藤 酸素飽和度測定装置
US6622095B2 (en) * 1999-11-30 2003-09-16 Nihon Kohden Corporation Apparatus for determining concentrations of hemoglobins
JP2002315739A (ja) * 2001-02-15 2002-10-29 Nippon Koden Corp ヘモグロビン濃度測定装置
JP3811850B2 (ja) * 2001-11-06 2006-08-23 日本光電工業株式会社 生体内水分量関連値測定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004100780A1 *

Also Published As

Publication number Publication date
JP2007502681A (ja) 2007-02-15
DE10321338A1 (de) 2004-12-02
WO2004100780A1 (fr) 2004-11-25
US20080214911A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
DE69727776T2 (de) Verfahren zum bestimmen der fraktionellen sauerstoffsaturation
DE69333456T2 (de) System verfahren zur nichtinvasiven überwachung des hämatocrit-wertes
EP0777854B1 (fr) Procede de validation et/ou d'etalonnage de dispositifs servant a la photometrie de tissus vivants et dispositif permettant d'appliquer ledit procede
DE102004005086B4 (de) Vorrichtung zum Messen der Konzentration einer lichtabsorbierenden Substanz in Blut
DE60031427T2 (de) Verfahren zum kalibrieren einer spektroskopievorrichtung
DE10213692B4 (de) Verfahren zur Steuerung einer Vorrichtung und Vorrichtung zur Messung von Inhaltsstoffen im Blut
DE60113105T2 (de) Vorrichtung zur messung der konzentration von glukose oder anderer substanzen in blut
DE10333075B4 (de) Verfahren und Vorrichtung zur Trainingseinstellung im Sport, insbesondere im Laufsport
EP0914601B1 (fr) Procede de determination non invasive de la saturation en oxygene de tissus vascularises
EP0093927B1 (fr) Dispositif de mesure spectrale dans les vaisseaux sanguins
DE2049716C3 (de) Verfahren und Vorrichtung zur Absorptionsmessung im Blut
EP0928156B1 (fr) Dispositif pour la determination non invasive du flux sanguin cerebral par spectroscopie dans l'infrarouge proche
DE69934888T2 (de) Nichtinvasive optische messung eines blutbestandteiles
DE69727243T2 (de) Sensor zur an die bewegung angepasste nicht-invasiven optischen blutanalyse
DE19840452A1 (de) Verfahren und Vorrichtung zur nicht-invasiven Messung von Konzentrationen von Blutkomponenten
DE102006054556A1 (de) Vorrichtung und Verfahren zum nicht-invasiven, optischen Erfassen von chemischen und physikalischen Blutwerten und Körperinhaltsstoffen
EP2584956A1 (fr) Dispositif et procédé de détection et de surveillance de constituants ou de propriétés d'un milieu de mesure, en particulier de paramètres sanguins physiologiques
DE602004001794T2 (de) Verfahren und Vorrichtung zur in vitro oder in vivo Messung der Konzentration einer Substanz
WO1995031928A1 (fr) Determination transcutanee, non sanglante, de la concentration de substances dans le sang
EP0505918B1 (fr) Dispositif et procédé pour déterminer les volumes éjectés par minute de coeur
EP1622503A1 (fr) Procede et dispositif de determination de composants sanguins par spectroscopie d'impulsions absolue ratiometrique
DE112012005449T5 (de) Verfahren, Anordnung, Sensor und Computerprogrammprodukt für nicht-invasive Messung von Hämoglobinkonzentrationen in Blut
EP2218395A2 (fr) Appareil et procédé pour déterminer au moins un paramètre vital d'une personne; système de détermination d'un paramètre vital
DE4242083C2 (de) Sensorvorrichtung zur reproduzierbaren, nichtinvasiven Messung der Blutglucose
EP3399914B1 (fr) Dispositif et procédé de détermination continue et non-invasive de paramètres physiologiques d'un sujet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080110

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101109