EP1622106B1 - Gefahrenmelder insbesondere Brand- oder Einbruchmelder - Google Patents

Gefahrenmelder insbesondere Brand- oder Einbruchmelder Download PDF

Info

Publication number
EP1622106B1
EP1622106B1 EP05015932A EP05015932A EP1622106B1 EP 1622106 B1 EP1622106 B1 EP 1622106B1 EP 05015932 A EP05015932 A EP 05015932A EP 05015932 A EP05015932 A EP 05015932A EP 1622106 B1 EP1622106 B1 EP 1622106B1
Authority
EP
European Patent Office
Prior art keywords
alarm system
danger
semi
current
conductor switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05015932A
Other languages
English (en)
French (fr)
Other versions
EP1622106A1 (de
Inventor
Heiner Politze
Tido Krippendorf
Mike Barson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novar GmbH
Original Assignee
Novar GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novar GmbH filed Critical Novar GmbH
Priority to PL05015932T priority Critical patent/PL1622106T3/pl
Publication of EP1622106A1 publication Critical patent/EP1622106A1/de
Application granted granted Critical
Publication of EP1622106B1 publication Critical patent/EP1622106B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B5/00Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied
    • G08B5/22Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied using electric transmission; using electromagnetic transmission
    • G08B5/36Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied using electric transmission; using electromagnetic transmission using visible light sources
    • G08B5/38Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied using electric transmission; using electromagnetic transmission using visible light sources using flashing light

Definitions

  • the invention relates to a hazard detector, in particular fire or intrusion detector, which receives its supply voltage via a at least two-core cable from a central office or from a built-in battery and at least one sensitive to a physical size sensor and a signal processing circuit which u.a. in the alarm state of the detector, sends a corresponding data telegram to the control center.
  • a hazard detector in particular fire or intrusion detector, which receives its supply voltage via a at least two-core cable from a central office or from a built-in battery and at least one sensitive to a physical size sensor and a signal processing circuit which u.a. in the alarm state of the detector, sends a corresponding data telegram to the control center.
  • Typical hazard detectors are ceiling-mounted fire detectors, intrusion detectors, especially motion detectors, and manually-triggered wall-mounted hazard detectors, especially fire detectors and panic buttons.
  • the detectors communicate either via a cable with at least two wires or wirelessly with a control panel.
  • Line-bound detectors draw their supply voltage via the line from the control center.
  • Wireless detectors usually draw their supply voltage from a built-in battery.
  • only a limited amount of electrical power is available for the detector electronics.
  • the available electrical power per detector is limited by the fact that a large number of detectors, often more than 100 detectors, are supplied by the control center via a common line, which can accordingly be several hundred meters long.
  • the power is limited in the interest of a long battery life.
  • a switching element is connected to the connection point between the semiconductor switch and the inductance, which keeps the semiconductor switch in the off state until the current in the inductor, the LED and the free-wheeling diode has decayed.
  • This solution has the particular advantage that can be omitted in a so-called object area often additionally mounted or mounted alarm lights or optical escape route markings equipped with such detectors alarm system.
  • the saving of material and installation time is considerable.
  • existing alarm systems can be retrofitted to detectors according to the invention without the basic installation, ie in particular the wiring of the detectors and / or the central power supply, must be changed or renewed.
  • the invention makes it possible to equip the detectors with LEDs high Lichtabstrahl antique that were previously unusable due to their high power requirements of up to 1 A and more in conventional flashing mode for lack of sufficient electrical power of the detector, especially in conventional LED flashers of the vast majority of Supply power is converted because of compared to the supply voltage low forward voltage of the LED in a series resistor into heat.
  • the proposed circuit requires only about 10 to 20% of electrical power.
  • the control signal can be generated as a composite control signal from the message-own signal processing circuit become.
  • the pulse duration of the short pulses is selected so that the semiconductor switch switches to the blocking state as soon as the current through the current slew rate when the semiconductor switch is turned on inductance limiting and the LED has reached a specified by the characteristics of the latter, permissible maximum value. Subsequently, the freewheeling diode ensures that the current continues to flow through the LED until the energy stored in the inductance is consumed. In this way, during the "ON” time, a rapid succession of flashes of light is produced, but the human eye, due to its inertia, perceives it as a single blink of light, followed by the "OFF" time of the slow blinking beat. The sum of "ON" time and "OFF” time is therefore equal to the period of the flashing frequency, which is usually between 0.5 Hz and 3 Hz.
  • the flashing clock can, as usual, have a frequency in the range of 1 Hz and an "ON" time in the range of 30 ms.
  • the pulse duration between 5 ⁇ s and 50 ⁇ s and the pulse / pause ratio between about 1: 4 and about 1:10 are.
  • the pulses depending on the value of the inductance, may be in accordance with the substantially linear increase and the exponential decay of the current through the LED with a pulse period of e.g. 200 ⁇ s consecutive, with the maximum of the light intensity lasts only about 20 ⁇ s.
  • the LED During the "ON" time of e.g. 30 ms, the LED emits about 150 individual flashes. This is followed by a pause of 970 ms at a flashing frequency of 1 Hz.
  • the control signal may switch the semiconductor switch via a control transistor, and the switching element holding the semiconductor switch in the off state during the decay of the current in the circuit comprising the inductor, the LED and the freewheeling diode may consist of a diode acting as a clamping diode between the base the control transistor and the connection point between the semiconductor switch and the inductance is connected.
  • the LED and the freewheeling diode may consist of a diode acting as a clamping diode between the base the control transistor and the connection point between the semiconductor switch and the inductance is connected.
  • a current sensing circuit periodically disables the semiconductor switch during the "ON" period in time with the short pulses as soon as the current passes through the LED has reached a predetermined maximum value and switches after the decay of the current, the semiconductor switch again permeable.
  • the current measuring circuit thus determines the pulse duration of the short pulses, which switch the semiconductor switch in rapid succession permeable and lock again, whereby the short flashes of light of the LED are generated.
  • the current measuring circuit can be realized very simply by a current measuring resistor in series with the LED and a comparator, at the first input of which a reference voltage is applied and at the second input of which the current measuring resistor tapped, current-proportional voltage is applied and whose output signal produces the sequence of short pulses which cause the Switch semiconductor switch.
  • the signal processing circuit need only supply the flashing clock, which is used as the operating voltage of the comparator, so that the latter operates only during the "ON" time.
  • the output of the comparator may be connected via a positive feedback resistor to its first input to produce a switching hysteresis, so that the comparator switches the semiconductor switch again permeable only when the current has largely subsided by the LED.
  • the circuit thus operates self-oscillating with respect to the sequence of short pulses.
  • the already existing signal processing circuitry which typically includes an application programmable microprocessor, may also provide a composite control signal of a sequence of short pulses during the "on" time of a slow blinking clock.
  • the current measuring circuit is unnecessary. If the advantage of the aforementioned embodiment, in which the subjective brightness of the flash is independent of the supply voltage, is to be retained, the signal processing circuit must be designed so that it varies the pulse duration of the short pulses as a function of the supply voltage.
  • the semiconductor switch may consist of at least two parallel and driven in parallel bipolar switching transistors, because two switching transistors require because of their smaller currents higher current gain together less control power and have a lower saturation voltage than a single bipolar transistor, which switches the same power.
  • a freewheeling diode is particularly suitable because of their low forward voltage a Schottky diode.
  • a storage capacitor is connected upstream, which is connected via a series resistor to the supply voltage terminal.
  • the circuit according to Fig. 1 is intended for installation in a hazard detector of any kind, known and therefore not shown, which contains in its housing a sensor signal processing and communication circuit comprising a microprocessor.
  • the DC supply voltage or line voltage of the detector This can vary between 42V and 8V.
  • an inductance L1 and a bright, eg red LED D1 which is installed in a suitable orientation of its main beam axis in the detector or possibly in its base.
  • Parallel to the series connection of L1 and D1 is a freewheeling diode D4.
  • a control signal whose time-dependent Course closer in Fig. 2 , upper diagram is shown.
  • the control signal is supplied via a voltage divider R21, R22 to the base of a control transistor Q3.
  • the base of Q3 is connected to the collector of Q1 via a clamp diode D2.
  • a current limiting resistor R23 In the emitter branch of Q3 is a current limiting resistor R23.
  • the collector of Q3 is connected to the base of Q1.
  • a resistor R24 between the base and the emitter of Q1 keeps it locked in the de-energized state of Q3.
  • a sieve member of a low-resistance series resistor and a storage capacitor, analog R1, C1 in Fig. 3 lie.
  • a control signal with this illustrated curve can be generated with one of the usual and well-known timing generator circuits, which are therefore not described.
  • the control signal can be generated with the course shown by appropriate wiring and programming of the message's own microprocessor.
  • the pulse pause t3 is so dimensioned that the current has decayed to about zero before the rising edge of the next pulse switches the switching transistor Q1 again permeable. This is shown in the lower diagram in Fig. 2 , If the current has not sufficiently decayed at the end of t3, the clamping diode D2 keeps the base of the control transistor Q3 at a negative potential close to that of the terminal 2, so that the control transistor Q3 not already with the rising edge of the next pulse Decay of the current in the circuit L1, D1, D4 can turn permeable.
  • the LED D1 radiates during each "on" time T2 of e.g. 20 to 40 ms of the slow flashing rate about 100 to 200 individual flashes. However, the sum of these individual flashes looks like a single blink to the human eye.
  • this (apparent) flashing signal has subjectively the same intensity to the human eye and thus the same warning function as an uninterrupted flashing signal with the slow flashing.
  • the high efficiency and accordingly the low power consumption of this circuit is further based on the fact that the power loss of the circuit because of the low on resistances of Q1, D1 and D4 and the low ohmic resistance of L1 very small and the Consumption of control power is low, unlike circuits in which the LED is operated via a series resistor, which converts most of the electrical power to dissipated heat.
  • Fig. 3 shows the complete circuit diagram of an improved embodiment of the circuit.
  • the line voltage is applied to the emitters of two parallel switching transistors T1, T2 with common emitter / base resistor R2.
  • the terminal 3 is connected to a port of a microprocessor which supplies a clock signal with the slow flashing rate of about 1 Hz and an "ON" time of about 30 ms an operational amplifier OP1 as its operating voltage of 3.3 V, for example.
  • Whose first, non-inverting input is connected to the tap of a voltage divider R3, R4 between the operating voltage of the OP1 and the reference potential and via a positive feedback resistor R5 to the output of OP1.
  • the output signal of OP1 is fed via R6 to the base of a transistor T3, which plays the role of the control transistor Q3 in FIG Fig. 1 plays.
  • a transistor T3 which plays the role of the control transistor Q3 in FIG Fig. 1 plays.
  • the emitter branch is accordingly a current limiting resistor R7, while its collector is connected to the bases of the two parallel switching transistors T1 and T2, the role of the switching transistor Q1 in Fig. 1 play.
  • the common collector branch is accordingly the series connection of the inductor L1 and the LED D1, the cathode but deviating from Fig. 1 not directly but via a very low-impedance current measuring resistor R8 to the reference potential and to the second, inverting input of the OP1 is connected.
  • terminal 3 When terminal 3 is supplied with the slow clock signal which provides the operating voltage for OP1 in the "ON" time, its inverting input is at the reference potential of zero volts of terminal 2, and the non-inverting input through R3 is at a positive voltage such that the output of OP1 provides a signal close to the operating or clocked voltage that turns T3 transparent across R6, which in turn causes T1 and T2 to pass.
  • a reference voltage of approximately 100 mV is established at the non-inverting input of OP1.
  • the current in the series circuit L1, D1, R8 begins to increase linearly until the voltage drop across R8 reaches a positive value equal to or slightly greater than the reference voltage at the noninverting input of OP1.
  • the output signal of OP1 tilts to zero volts, thereby blocking T3, and thus also T1 and T2.
  • the reference voltage at the non-inverting input of OP1 changes to the much smaller value corresponding to the now-divisional ratio of R3 to (R5 parallel to R4), i. to about 10 mV.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)
  • Fire Alarms (AREA)
  • Emergency Alarm Devices (AREA)

Description

  • Die Erfindung betrifft einen Gefahrenmelder, insbesondere Brand- oder Einbruchmelder, der seine Versorgungsspannung über eine mindestens zweiadrige Leitung von einer Zentrale oder aus einer eingebauten Batterie bezieht und mindestens einen für eine physikalische Größe empfindlichen Sensor und eine Signalverarbeitungsschaltung umfasst, die u.a. im Alarmzustand des Melders ein entsprechendes Datentelegramm an die Zentrale sendet.
  • Typische Gefahrenmelder sind deckenmontierte Branddetektoren, Einbruchmelder, insbesondere Bewegungsmelder und von Hand auslösbare wandmontierte Gefahrenmelder, insbesondere Feuermelder und Paniktaster. Die Melder kommunizieren entweder über eine mindestens zweiadrige Leitung oder drahtlos mit einer Zentrale. Leitungsgebundene Melder beziehen ihre Versorgungsspannung über die Leitung von der Zentrale. Funkmelder beziehen ihre Versorgungsspannung gewöhnlich aus einer eingebauten Batterie. In beiden Fällen steht nur eine begrenzte elektrische Speiseleistung für die Melderelektronik zur Verfügung. Bei leitungsgebundenen Meldern ist die verfügbare elektrische Speiseleistung je Melder dadurch beschränkt, dass eine große Anzahl von Meldern, häufig weit mehr als 100 Melder, über eine gemeinsame Leitung, die dementsprechend mehrere hunder Meter lang sein kann, von der Zentrale versorgt werden. Bei batteriegespeisten Meldern ist die Speiseleistung im Interesse einer langen Lebensdauer der Batterie beschränkt.
  • Ein solcher Gefahrenmelder ist aus der US-A-5 019 805 bekannt.
  • US 2004/041 702 A1 offenbart eine Warnleuchte zur Kennzeichnung von Kraftfahrzeugen oder anderen Objekten.
  • Der Erfindung liegt die Aufgabe zugrunde, einen Gefahrenmelder der einleitend angegebenen Gattung trotz der nur beschränkt verfügbaren elektrischen Speiseleistung mit der zusätzlichen Funktion eines leuchtstarken optischen Gefahrenwarnsignals auszustatten, das auch in einer akuten Gefahrensituation, z.B. in verrauchten Räumen oder in anderen Stresssituationen wie etwa nach einem Einbruch sicher wahrgenommen werden kann.
  • Diese Aufgabe ist erfindungsgemäß durch einen Melder mit den im Anspruch 1 angegebenen Merkmalen gelöst.
  • Erfindungsgemäß ist an den Verbindungspunkt zwischen dem Halbleiterschalter und der Induktivität kann ein Schaltelement angeschlossen, das den Halbleiterschalter im Sperrzustand hält, bis der Strom in dem die Induktivität, die LED und die Freilaufdiode umfassenden Stromkreis abgeklungen ist Auf diese Weise wird bei rasch aufeinanderfolgenden Strompulsen durch die LED vermieden, dass die LED durch einen zu frühzeitig einsetzenden neuen Strompuls, also eine zu kurze Pulspause, überlastet wird.
  • Diese Lösung hat insbesondere den Vorteil,dass bei einer mit solchen Meldern ausgestatteten Gefahrenmeldeanlage die im sogenannten Objektbereich häufig zusätzlich montierten bzw. zu montierenden Alarmleuchten oder optischen Fluchtwegkennzeichnungen entfallen können. Die Einsparung an Material und Installationszeit ist beträchtlich. Zudem können bestehende Gefahrenmeldeanlagen nachträglich auf Melder nach der Erfindung umgerüstet werden ohne dass die Grundinstallation, also insbesondere die Verkabelung der Melder und/oder die zentrale Stromversorgung, geändert oder erneuert werden muss.
  • Die Erfindung ermöglich es, die Melder mit LEDs hoher Lichtabstrahlleistung auszurüsten, die bisher wegen ihres hohen Strombedarfes von bis zu 1 A und mehr im konventionellen Blinkmodus mangels hierfür ausreichender elektrischer Speiseleistung der Melder nicht verwendbar waren, zumal in konventionellen LED-Blinkschaltungen der überwiegende Teil der Speiseleistung wegen der im Vergleich zu der Speisespannung niedrigen Durchlassspannung der LED in einem Vorwiderstand in Wärme umgewandelt wird. Im Vergleich zu einer konventionellen Blinkschaltung für eine LED gleicher Lichtabstrahlleistung benötigt die vorgeschlagene Schaltung nur etwa 10 bis 20 % an elektrischer Speiseleistung.
  • Das Steuersignal kann als zusammengesetztes Steuersignal von der meldereigenen Signalverarbeitungsschaltung erzeugt werden. Die Pulsdauer der kurzen Pulse ist so gewählt, dass der Halbleiterschalter in den Sperrzustand schaltet, sobald der Strom durch die die Stromanstiegsgeschwindigkeit beim durchlässig schalten des Halbleiterschalters begrenzende Induktivität und die LED einen durch die Kenndaten letzterer festgelegten, zulässigen Höchstwert erreicht hat. Anschließend sorgt die Freilaufdiode dafür, dass der Strom durch die LED weiterfließt, bis die in der Induktivität gespeicherte Energie verbraucht ist. Auf diese Weise wird während der "EIN"-Zeit eine rasche Folge von Lichtblitzen erzeugt, die das menschliche Auge jedoch aufgrund seiner Trägheit als einen einzigen Lichtblink wahrnimmt, auf den die "AUS"-Zeit des langsamen Blinktaktes folgt. Die Summe aus "EIN"-Zeit und "AUS"-Zeit ist also gleich der Periodendauer der Blinkfrequenz, die in der Regel zwischen 0,5 Hz und 3 Hz liegt.
  • Der Blinktakt kann wie üblich eine Frequenz im Bereich von 1 Hz und eine "EIN"-Zeit im Bereich von 30 ms haben.
  • Innerhalb der Folge kurzer Pulse kann die Pulsdauer zwischen 5 µs und 50 µs und das Puls/Pausen-Verhältnis zwischen ca. 1:4 und ca. 1:10 liegen. Die Pulse können, abhängig vom Wert der Induktivität, entsprechend dem im Wesentlichen linearen Anstieg und dem exponentiellen Abfall des Stroms durch die LED mit einer Pulsperiode von z.B. 200 µs aufeinanderfolgen, wobei das Maximum der Lichtintensität nur etwa 20 µs dauert. Während der "EIN"-Zeit von z.B. 30 ms strahlt die LED also ca. 150 Einzelblitze ab. Daran schließt sich bei einer Blinkfrequenz von 1 Hz eine Pause von 970 ms an.
  • Die angegebenen Zeiten sind beispielhaft zu verstehen. Es hat sich jedoch in Versuchen gezeigt, dass eine Verlängerung der "EIN"-Zeit über etwa 30 bis 50 ms hinaus die subjektiv empfundene Helligkeit des Blinksignals nicht mehr vergrößert, also lediglich zu einem unnötigen Mehrverbrauch an elektrischer Leistung führt. Umgekehrt nimmt bei einer deutlichen Unterschreitung des genannten Wertes von 30 ms der subjektive Helligkeitseindruck des Blinks ab. Ebenso wurde festgestellt, dass eine Erhöhung der Zahl der Einzelblitze innerhalb der "EIN"-Zeit die subjektiv wahrgenommene Helligkeit nicht mehr steigert, während umgekehrt eine erhebliche Verringerung der Zahl der Einzelblitze als Intensitätsverminderung wahrgenommen wird.
  • Das Steuersignal kann den Halbleiterschalter über einen Steuertransistor schalten, und das Schaltelement, das den Halbleiterschalter während des Abklingens des Stromes in dem die Induktivität, die LED und die Freilaufdiode umfassenden Stromkreis im Sperrzustand hält, kann aus einer Diode bestehen, die als Klemmdiode zwischen die Basis des Steuertransistors und den Verbindungspunkt zwischen dem Halbleiterschalter und der Induktivität geschaltet ist. Insbesondere in einer selbstschwingenden Ausführungsform wird dadurch die in der Induktivität gespeicherte Energie noch besser ausgenutzt.
  • Bei einer bevorzugten Ausführungsform sperrt eine Strommeßschaltung den Halbleiterschalter während der "EIN"-Zeit periodisch im Takt der kurzen Pulse, sobald der Strom durch die LED einen vorgegebenen Höchstwert erreicht hat und schaltet nach dem Abklingen des Stroms den Halbleiterschalter wieder durchlässig. Die Strommeßschaltung bestimmt also die Pulsdauer der kurzen Pulse, die den Halbleiterschalter in rascher Folge durchlässig schalten und wieder sperren, wodurch die kurzen Lichtblitze der LED erzeugt werden. Diese Ausführungsform hat den großen Vorteil, dass der Energieinhalt pro Einzelblitz im Wesentlichen unabhängig von der Speisespannung ist, also insbesondere auch bei sinkender Speisespannung etwa konstant bleibt, weil der Halbleiterschalter nicht nach einer fest vorgegebenen Pulsdauer sondern bei Erreichen eines vorgegebenen Stromwertes, also bei hoher Speisespannung früher, bei niedriger Speisespannung später, in den Sperrzustand geschaltet wird. Insbesondere wenn zahlreiche derartige Melder parallel an eine gemeinsame Leitung angeschlossen sind und eine Meldelinie bilden, ist diese Unabhängigkeit von der Speisespannung ein wesentlicher Vorteil, denn während die Speisespannung am Anfang der Meldelinie z.B. 42 V betragen kann, kann sie am Ende der Linie, d.h. am letzten Melder, auf z.B. 8 V abfallen, abhängig von den Betriebszuständen der davorliegenden Melder.
  • Die Strommessschaltung kann sehr einfach durch einen Strommesswiderstand in Serie zu der LED und einen Vergleicher realisiert werden, an dessen erstem Eingang eine Referenzspannung und an dessen zweitem Eingang die an dem Strommesswiderstand abgegriffene, stromproportionale Spannung anliegt und dessen Ausgangssignal die Folge kurzer Pulse liefert, die den Halbleiterschalter schalten.
  • In einer Weiterbildung dieser Ausführungsform braucht die Signalverarbeitungsschaltung nur den Blinktakt zu liefern, der als Betriebsspannung des Vergleichers verwendet wird, so dass letzterer lediglich während der "EIN"-Zeit arbeitet.
  • Der Ausgang des Vergleichers kann über einen Mitkopplungswiderstand mit dessen ersten Eingang verbunden sein, um eine Schalthysterese zu erzeugen, so dass der Vergleicher den Halbleiterschalter erst dann wieder durchlässig schaltet, wenn der Strom durch die LED weitgehend abgeklungen ist. Die Schaltung arbeitet somit bezüglich der Folge kurzer Pulse selbstschwingend.
  • Stattdessen kann, wie oben erwähnt, die ohnehin vorhandene Signalverarbeitungsschaltung, die in der Regel einen anwendungsspezifisch programmierbaren Mikroprozessor enthält, auch ein zusammengesetztes Steuersignal aus einer Folge kurzer Pulse während der "EIN"-Zeit eines langsamen Blinktaktes liefern. In dieser Ausführungsform erübrigt sich die Strommessschaltung. Sofern der Vorteil der zuvor genannten Ausführungsform, bei der die subjektive Helligkeit des Blinks unabhängig von der Speisespannung ist, erhalten bleiben soll, muss die Signalverarbeitungsschaltung so ausgelegt sein, dass sie die Pulsdauer der kurzen Pulse in Abhängigkeit von der Speisespannung variiert.
  • Zur Verbesserung des Wirkungsgrades kann der Halbleiterschalter aus mindestens zwei parallel geschalteten und parallel angesteuerten bipolaren Schalttransistoren bestehen, denn zwei Schalttransistoren benötigen wegen ihrer bei kleineren Strömen höheren Stromverstärkung gemeinsam weniger Steuerleistung und haben eine niedrigere Sättigungsspannung als ein einziger bipolarer Transistor, der die gleiche Leistung schaltet.
  • Als Freilaufdiode eignet sich wegen ihrer niedrigen Durchlassspannung insbesondere eine Schottkydiode.
  • Zur Vermeidung von Rückwirkungen der kurzen, hohen Strompulse auf die Speise- oder Linienspannung und von Belastungen der Speiseleitungen, d.h. der Meldelinie, durch starke Stromspitzen ist zweckmäßig dem Halbleiterschalter ein Speicherkondensator vorgeschaltet ist, der über einen Serienwiderstand mit dem Speisespannungsanschluss verbunden ist.
  • Der langsame Blinktakt und, bei einem zusammengesetzten Steuersignal, auch die Folge kurzer Pulse entsprechend einer Serie von Einzelblitzen können mit geringem Aufwand aus dem internen Arbeitstakt des üblichen Mikroprozessors der Signalverarbeitungsschaltung abgeleitet werden.
  • Die Erfindung wird nachfolgend anhand der Zeichnung erläutert. Es zeigt:
  • Fig. 1
    eine Prinzipschaltbild
    Fig. 2
    ein Spannungs-/Zeitdiagramm des Steuersignals in Fig. 1 und
    Fig. 3
    ein Schaltbild einer beispielhaften Ausführungsform.
  • Die Schaltung gemäß Fig. 1 ist zum Einbau in einen Gefahrenmelder beliebiger, bekannter und deshalb nicht dargestellter Art bestimmt, der in seinem Gehäuse eine Sensorsignalverarbeitungs- und Kommunikationsschaltung enthält, die einen Mikroprozessor umfasst. An den Anschlüssen 1 und 2 der Schaltung liegt die Speisegleichspannung oder Linienspannung des Melders. Diese kann zwischen 42 V und 8 V schwanken. In Serie mit einem Schalttransistor Q1 liegen eine Induktivität L1 und eine leuchtstarke, z.B. rot leuchtende LED D1, die in geeigneter Orientierung ihrer Hauptstrahlachse in den Melder oder ggf. in dessen Sockel eingebaut ist. Parallel zu der Serienschaltung aus L1 und D1 liegt eine Freilaufdiode D4. An einem Anschluss 3 der Schaltung liegt ein Steuersignal an, dessen zeitabhängiger Verlauf genauer in Fig. 2, oberes Diagramm dargestellt ist. Das Steuersignal wird über einen Spannungsteiler R21, R22 der Basis eines Steuertransistors Q3 zugeführt. Die Basis von Q3 ist über eine Klemmdiode D2 mit dem Kollektor von Q1 verbunden. Im Emitterzweig von Q3 liegt ein Strombegrenzungswiderstand R23. Der Kollektor von Q3 ist mit der Basis von Q1 verbunden. Ein Widerstand R24 zwischen der Basis und dem Emitter von Q1 hält diesen im stromlosen Zustand von Q3 gesperrt. Zwischen den Anschlüssen 1 und 2 kann ein Siebglied aus einem niederohmigen Serienwiderstand und einem Speicherkondensator, analog R1, C1 in Fig. 3, liegen.
  • Gemäß dem oberen Diagramm in Fig. 2 besteht das Steuersignal am Anschluss 3 in Fig. 1 aus einer raschen Folge von Rechteckpulsen innerhalb eines langsamen Grundtaktes T1 entsprechend dem gewünschten Blinktakt der Warnleuchte von z.B. 1 Hz. Jeder Grundtakt umfasst eine (kurze) "EIN"-Zeit T2 von z.B. 30 ms und eine (lange) "AUS"-Zeit T3 von dementsprechend 970 ms. Die rasche Folge von Rechteckpulsen innerhalb der "EIN"-Zeit T2 hat eine Periodendauer t1 von etwa 200 µs, eine Pulsdauer von t2 von beispielsweise 20 µs und dementsprechend eine Pulspause t3 von 180 µs. Ein Steuersignal mit diesem dargestellten Verlauf kann mit einer der üblichen und dem Fachmann bekannten Taktgeneratorschaltungen erzeugt werden, die daher nicht beschrieben werden. Insbesondere wenn die Melderspeisespannung keinen sehr großen Schwankungen unterliegt, kann das Steuersignal mit dem dargestellten Verlauf durch entsprechende Beschaltung und Programmierung des meldereigenen Microprozessors erzeugt werden.
  • Mit der ansteigenden Flanke jedes Pulses des Steuersignales schaltet Q1 durchlässig, so dass die Speisespannung (abzüglich der Sättigungsspannung von Q1) an L1, D1 anliegt. Durch L1 und D1 fließt ein Strom I, der bis zu der fallenden Flanke des Pulses etwa linear ansteigt. Die Pulsdauer t2 ist deshalb in Abhängigkeit von den Kennwerten von L1 und D1 so bemessen, dass die fallende Flanke des Pulses den Schalttransistor Q1 in den Sperrzustand schaltet, wenn der Strom durch D1 den zulässigen Maximalwert erreicht hat. Infolge der Freilaufdiode D4 klingt der Strom in dem aus L1, D1 und D4 bestehenden Stromkreis exponentiell ab. Die Pulspause t3 ist so bemessen, dass der Strom etwa auf Null abgeklungen ist, bevor die ansteigende Flanke des nächsten Pulses den Schalttransistor Q1 wieder durchlässig schaltet. Dies zeigt das untere Diagramm in Fig. 2. Sollte der Strom am Ende von t3 nicht hinreichend abgeklungen sein, so hält die Klemmdiode D2 die Basis des Steuertransistors Q3 auf einem negativen Potential nahe demjenigen des Anschlusses 2, so dass der Steuertransistor Q3 nicht bereits mit der ansteigenden Flanke des nächsten Pulses sondern erst nach dem Abklingen des Stromes in dem Kreis L1, D1, D4 durchlässig schalten kann.
  • Die LED D1 strahlt während jeder "EIN"-Zeit T2 von z.B. 20 bis 40 ms des langsamen Blinktaktes etwa 100 bis 200 Einzelblitze ab. Die Summe dieser Einzelblitze wirkt für das menschliche Auge jedoch wie ein einziger Blink. Bei Verwendung einer LED mit einem zulässigen Spitzenstrom von etwa 450 mA und einer Induktivität von 1 mH bei einem möglichst niedrigen Ohm'schen Widerstand von z.B. 1 Ω (womit die genannten Werte der schnellen Pulsfolge kompatibel sind), hat dieses (scheinbare) Blinksignal für das menschliche Auge subjektiv die gleiche Intensität und damit die gleiche Warnfunktion wie ein ununterbrochenes Blinksignal mit dem langsamen Blinktakt.
  • Der hohe Wirkungsgrad und dementsprechend der geringe Leistungsverbrauch dieser Schaltung beruht des Weiteren darauf, dass die Verlustleistung der Schaltung wegen der niedrigen Durchlasswiderstände von Q1, D1 und D4 sowie des geringen Ohm'schen Widerstandes von L1 sehr klein und der Verbrauch an Steuerleistung gering ist, im Gegensatz zu Schaltungen, bei denen die LED über einen Vorwiderstand betrieben wird, der den größten Teil der elektrischen Speiseleistung in Verlustwärme umwandelt.
  • Fig. 3 zeigt das vollständige Schaltbild einer verbesserten Ausführungsform der Schaltung. Über den Anschluss 1 und ein Siebglied, bestehend aus einem niederohmigen Widerstand R1 und einem Speicherkondensator C1, liegt die Linienspannung an den Emittern von zwei parallelgeschalteten Schalttransistoren T1, T2 mit gemeinsamem Emitter/Basis-Widerstand R2 an. Der Anschluss 3 ist mit einem Port eines Microprozessors verbunden, der ein Taktsignal mit dem langsamen Blinktakt von ca. 1 Hz und einer "EIN"-Zeit von ca. 30 ms einem Operationsverstärker OP1 als dessen Betriebsspannung von z.B. 3,3 V zuführt. Dessen erster, nichtinvertierender Eingang ist mit dem Abgriff eines Spannungsteilers R3, R4 zwischen der Betriebsspannung des OP1 und dem Bezugspotential und über einen Mitkopplungswiderstand R5 mit dem Ausgang von OP1 verbunden. Das Ausgangssignal von OP1 wird über R6 der Basis eines Transistors T3 zugeführt, der die Rolle des Steuertransistors Q3 in Fig. 1 spielt. In seinem Emitterzweig liegt dementsprechend ein Strombegrenzungswiderstand R7, während sein Kollektor mit den Basen der zwei parallelgeschalteten Schalttransistoren T1 und T2 verbunden ist, die die Rolle des Schalttransistors Q1 in Fig. 1 spielen. In deren gemeinsamen Kollektorzweig liegt dementsprechend die Serienschaltung der Drossel L1 und der LED D1, deren Kathode jedoch abweichend von Fig. 1 nicht unmittelbar sondern über einen sehr niederohmigen Strommesswiderstand R8 mit dem Bezugspotential und mit dem zweiten, invertierenden Eingang des OP1 verbunden ist. Parallel zu der Serienschaltung aus L1, D1 und R8 liegt die Freilaufdiode D4, hier in Form einer Schottky-Diode mit einer entsprechend niedrigen Durchlassspannung von etwa 0,4 V. Zwischen der Basis von T3 und den Kollektoren von T1, T2 liegt analog Fig. 1 die Klemmdiode D2.
  • Wenn am Anschluss 3 das langsame Taktsignal anliegt, das in der "EIN"-Zeit die Betriebsspannung für OP1 liefert, liegt dessen invertierender Eingang auf dem Bezugspotential von Null Volt des Anschlusses 2, und der nichtinvertierende Eingang über R3 auf einer positiven Spannung, so dass der Ausgang von OP1 ein nahe der Betriebs- oder Taktspannung liegendes Signal liefert, das T3 über R6 durchlässig schaltet, wodurch wiederum T1 und T2 durchlässig schalten. Entsprechend dem Spannungsteilerverhältnis von R4 zu (R5 näherungsweise parallel R3) stellt sich an dem nichtinvertierenden Eingang von OP1 eine Referenzspannung von ca. 100 mV ein. Gleichzeitig beginnt der Strom in der Serienschaltung L1, D1, R8 linear zu steigen, bis der Spannungsabfall über R8 einen positiven Wert erreicht, der gleich oder etwas größer als die Referenzspannung an dem nichtinvertierenden Eingang von OP1 ist. Infolgedessen kippt das Ausgangssignal von OP1 auf Null Volt, wodurch T3 und damit auch T1 und T2 sperren. Gleichzeitig ändert sich die Referenzspannung am nichtinvertierenden Eingang von OP1 auf den viel kleineren Wert entsprechend dem nunmehrigen Teilverhältnis von R3 zu (R5 parallel R4), d.h. auf ca. 10 mV. Infolge dieser Hysterese erzeugt OP1 den nächsten Puls erst dann wenn der Strom durch R8 soweit abgeklungen ist, dass die Spannung am invertierenden Eingang von OP1 kleiner als dieser niedrige Referenzwert am nichtinvertierenden Eingang geworden ist. Die Diode D2 sperrt T3 jedoch noch solange bis auch D4 sperrt, d.h. bis die in L1 gespeicherte Energie (fast) vollständig verbraucht ist.
  • Die Schaltung benötigt deshalb zur Erzeugung des schnellen Taktes mit der kurzen Periodendauer t1 keinen eigenen Taktgenerator, sondern ist selbstschwingend.
  • Mit den gewählten Werten, nämlich einer Linienspannung von 42 V, einer Induktivität von L1 von 1 mH bei einem Widerstand von 1,12 Ω und 0,22 Ω für R8 erreicht der Strom durch L1, D1, R8 nach t2 gleich etwa 17 µs seinen durch R8 und die Referenzspannung am nichtinvertierenden Eingang von OP1 festgelegten Maximalwert von 450 mA, bei dem T1 und T2 in den Sperrzustand geschaltet werden.

Claims (11)

  1. Gefahrenmelder, insbesondere Brand- oder Einbruchmelder, der seine Versorgungsspannung über eine mindestens zweiadrige Leitung von einer Zentrale oder aus einer eingebauten Batterie bezieht und mindestens einen für eine physikalische Größe empfindlichen Sensor und eine Signalverarbeitungsschaltung umfasst, die u.a. im Alarmzustand des Melders ein entsprechendes Datentelegramm an die Zentrale sendet, wobei der Melder eine Serienschaltung aus einem Halbleitschalter (Q1), einer Induktivität (L1) und einer leuchtstarken LED (D1) Umfasst, parallel zu der Induktivität (L1) und der LED (D1) eine Freilaufdiode (D4) liegt, an den Anschlüssen der Serienschaltung die Versorgungsspannung des Melders anliegt, die Signalverarbeitungsschaltung im Alarmzustand des Melders ein Steuersignal erzeugt, das den Halbleiterschalter während einer einem langsamen Blinktakt entsprechenden "EIN"-Zeit in einer Folge kurzer Pulse durchlässig schaltet und sperrt, dadurch gekennzeichnet dass an den Verbindungspunkt zwischen dem Halbleiterschalter (Q1; T1, T2) und der Induktivität (L1) ein Schaltelement (D2) angeschlossen ist, das den Halbleiterschalter (Q1; T1, T2) im Sperrzustand hält, bis der Strom in dem die Induktivität (L1), die LED (D1) und die Freilaufdiode (D4) umfassenden Stromkreis abgeklungen ist.
  2. Gefahrenmelder nach Anspruch 1, dadurch gekennzeichnet, dass der Blinktakt eine Frequenz im Bereich von 0,5 bis 3 Hz und eine "EIN"-Zeit im Bereich von 30 ms hat.
  3. Gefahrenmelder nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass innerhalb der Folge kurzer Pulse die Pulsdauer zwischen 5 µs und 50 µs und das Puls/Pausen-Verhältnis zwischen ca. 1:4 und ca. 1:10 liegen.
  4. Gefahrenmelder nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Steuersignal den Halbleiterschalter (Q1; T1, T2) über einen Steuertransistor (Q3; T3) schaltet und dass das Schaltelement, das den Halbleiterschalter während des Abklingen des Stromes in dem die Induktivität, die LED und die Freilaufdiode umfassenden Stromkreis im Sperrzustand hält, aus einer Diode (D2) besteht, die als Klemmdiode zwischen die Basis des Steuertransistors (Q3; T3) und den Verbindungspunkt zwischen dem Halbleiterschalter (Q1; T1, T2) und der Induktivität (L1) geschaltet ist.
  5. Gefahrenmelder nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass eine Strommeßschaltung (OP1, R8) den durchlässig geschalteten Halbleiterschalter (T1, T2) jeweils sperrt, sobald der Strom durch die LED (D1) einen vorgegebenen Höchstwert erreicht hat.
  6. Gefahrenmelder nach Anspruch 5, dadurch gekennzeichnet, dass die Strommeßschaltung einen Messwiderstand (R8) in Serie zu der LED (D1) und einen Vergleicher (OP1) umfasst, dass an dem ersten Eingang des Vergleichers eine Referenzspannung und an dem zweiten Eingang die an dem Messwiderstand (R8) abgegriffene, stromproportionale Spannung anliegt, und dass das Ausgangssignal des Vergleichers die Folge kurzer Pulse liefert, die den Halbleiterschalter (T1, T2) schalten.
  7. Gefahrenmelder nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Signalverarbeitungsschaltung als Steuersignal nur den Blinktakt liefert und dieser an dem Betriebsspannungsanschluss des Vergleichers (OP1) anliegt.
  8. Gefahrenmelder nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Ausgang des Vergleichers (OP1) über einen Mitkopplungswiderstand (R5) mit dessen ersten Eingang verbunden ist.
  9. Gefahrenmelder nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Halbleiterschalter aus mindestens zwei parallel geschalteten und parallel angesteuerten Schalttransistoren (T1, T2) besteht
  10. Gefahrenmelder nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Freilaufdiode eine Schottky-Diode (D4) ist.
  11. Gefahrenmelder nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass dem Halbleiterschalter ein Speicherkondensator (C1) vorgeschaltet ist, der über einen Serienwiderstand (R1) mit dem Speisespannungsanschluss (1) verbunden ist.
EP05015932A 2004-07-29 2005-07-21 Gefahrenmelder insbesondere Brand- oder Einbruchmelder Active EP1622106B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05015932T PL1622106T3 (pl) 2004-07-29 2005-07-21 Sygnalizator alarmowy, zwłaszcza sygnalizator pożaru lub włamania

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004036743A DE102004036743B4 (de) 2004-07-29 2004-07-29 Gefahrenmelder mit optischer Anzeige

Publications (2)

Publication Number Publication Date
EP1622106A1 EP1622106A1 (de) 2006-02-01
EP1622106B1 true EP1622106B1 (de) 2008-05-14

Family

ID=35134201

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05015932A Active EP1622106B1 (de) 2004-07-29 2005-07-21 Gefahrenmelder insbesondere Brand- oder Einbruchmelder

Country Status (5)

Country Link
EP (1) EP1622106B1 (de)
AT (1) ATE395675T1 (de)
DE (2) DE102004036743B4 (de)
ES (1) ES2305957T3 (de)
PL (1) PL1622106T3 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006043867B4 (de) * 2006-09-19 2009-07-09 Novar Gmbh Verfahren und Anlage zur Identifizierung eines Gefahrenmelders
DE102007020769B4 (de) * 2007-05-03 2010-08-05 Novar Gmbh Gefahrenmelder mit LED
DE102009042419B4 (de) * 2009-09-21 2011-12-15 Osram Gesellschaft mit beschränkter Haftung Schaltungsanordnung zum Betreiben mindestens einer LED
US9466186B2 (en) 2011-06-14 2016-10-11 Tyco Fire & Security Gmbh Conditionally variable strobe notification appliance
US8773276B2 (en) * 2011-06-14 2014-07-08 Tyco Fire & Security Gmbh Dual mode LED strobe
CN102682539B (zh) * 2012-05-07 2014-10-01 奇瑞汽车股份有限公司 一种三态报警灯电路
US9225249B2 (en) 2014-01-28 2015-12-29 Honeywell International Inc. Power management alarm devices
CN104443409B (zh) * 2014-12-05 2016-07-06 贵州华阳电工有限公司 危险警告控制电路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5019805A (en) * 1989-02-03 1991-05-28 Flash-Alert Inc. Smoke detector with strobed visual alarm and remote alarm coupling
US5313187A (en) * 1989-10-11 1994-05-17 Bell Sports, Inc. Battery-powered flashing superluminescent light emitting diode safety warning light
IT9004965U1 (it) * 1990-12-07 1992-06-08 G P B Beghelli S R L Ora Begnelli S R L Perfezionamento nei sistemi di illuminazione autonoma di emergenza con segnalatori di incendio, di gas nocivi, di inquinamento aria ambienta le e simili
DE10025821A1 (de) * 2000-05-25 2002-07-25 Sickinger Monika Led-Lichtquelle
JP2002184588A (ja) * 2000-12-18 2002-06-28 Sony Corp 発光ダイオード点灯回路
JP2003151784A (ja) * 2001-11-09 2003-05-23 Nec Access Technica Ltd 発光ダイオード駆動回路、及びその制御方法、並びに該発光ダイオード駆動回路を備えた電子機器
US6667583B2 (en) * 2002-05-07 2003-12-23 Supertex, Inc. Method and apparatus for efficiently driving a low-voltage device from a wide-range input supply
CA2391681A1 (en) * 2002-06-26 2003-12-26 Star Headlight & Lantern Co. Of Canada Ltd. Solid-state warning light with microprocessor controlled excitation circuit

Also Published As

Publication number Publication date
DE102004036743A1 (de) 2006-03-23
DE102004036743B4 (de) 2007-08-02
ATE395675T1 (de) 2008-05-15
PL1622106T3 (pl) 2008-09-30
EP1622106A1 (de) 2006-02-01
DE502005004087D1 (de) 2008-06-26
ES2305957T3 (es) 2008-11-01

Similar Documents

Publication Publication Date Title
EP1622106B1 (de) Gefahrenmelder insbesondere Brand- oder Einbruchmelder
EP1988517B1 (de) Gefahrenmelder mit LED
DE3503451A1 (de) Einrichtung zur automatischen beleuchtungssteuerung fuer fahrzeuge
DE3418622A1 (de) Feueralarmanlage
DE102016226260A1 (de) Beleuchtungsschaltung und Fahrzeug-Abbiegesignallampe
DE2328872C3 (de) Ionisationsfeuermelder
DE1017207B (de) Temperaturunabhaengige Halbleiter-Kipp- bzw. Blinkschaltung
DE2705320C2 (de) Fahrzeugscheinwerfer-Steuerschaltung
DE602005004167T2 (de) Elektrische Schaltung für LED Signallampen mit einer Schaltschwelle zum Umschalten zwischen Tages- und Nachtbetrieb
EP3748599B1 (de) Verfahren zum betrieb und tests eines gefahrenmeldesystems mit einem bussystem, melder zum anschluss an ein bussystem und gefahrenmeldesystem mit einem bussystem.
DE4403025A1 (de) Helligkeitssteuerung für Lampen
DE3536925C2 (de)
DE69034065T2 (de) Schaltungsanordnungen
EP1622428B1 (de) Blinkschaltung, insbesondere für eine gleichspannungsgespeiste Warnleuchte
EP3420349B1 (de) Verfahren und schaltungsanordnung zum signalisieren eines zustands eines wachstumssubstrats für eine pflanze
WO2013076069A1 (de) Leuchte, steuergerät dafür und anordnung aus leuchte und steuergerät, mit temperatur- und typ - feststellung durch thermistor
EP2849541A2 (de) Verfahren zum Bereitstellen von Leuchtenparametern an einer Schnittstelle einer Leuchte, Leuchte mit einer Schnittstelle zum Auslesen von Leuchtenparametern und Vorrichtung zum Auslesen der Leuchtenparameter
DE10226793A1 (de) Spannungsversorgungsschaltung für KFZ-Lampen
EP1719090B1 (de) Einrichtung zur detektion von stromgeprägten signalen in sicherheitstechnischen systemen
DE2155841A1 (de) Elektrische Anlage für Fahrzeuge
DE2216471C3 (de) Elektronisch gesteuerter zweipoliger Blinkgeber
DE1810236C3 (de) Blinkeinrichtung zur Fahrtrichtungsanzeige bei Fahrzeugen mit einer Kontrollschaltung
DE2442017C3 (de) Branddetektor
DE102011100003A1 (de) Elektronisches Vorschaltgerät für ein Beleuchtungsgerät
DE2713280B2 (de) Feuermeldeanlage mit mindestens einer zweidrähtigen Meldelinie für gleichspannungsversorgte Ionisationsfeuermelder

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060119

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502005004087

Country of ref document: DE

Date of ref document: 20080626

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2305957

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080914

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080814

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081014

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

26N No opposition filed

Effective date: 20090217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080814

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080721

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080721

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080731

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081115

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005004087

Country of ref document: DE

Representative=s name: PATENTANWAELTE HENKEL, BREUER & PARTNER, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502005004087

Country of ref document: DE

Representative=s name: PATENTANWAELTE HENKEL, BREUER & PARTNER MBB, DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20180718

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200807

Year of fee payment: 16

Ref country code: FR

Payment date: 20200728

Year of fee payment: 16

Ref country code: DE

Payment date: 20200729

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190721

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005004087

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210731

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210722

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230725

Year of fee payment: 19