EP1621762B1 - Zumesseinrichtung - Google Patents

Zumesseinrichtung Download PDF

Info

Publication number
EP1621762B1
EP1621762B1 EP04254617A EP04254617A EP1621762B1 EP 1621762 B1 EP1621762 B1 EP 1621762B1 EP 04254617 A EP04254617 A EP 04254617A EP 04254617 A EP04254617 A EP 04254617A EP 1621762 B1 EP1621762 B1 EP 1621762B1
Authority
EP
European Patent Office
Prior art keywords
metering
fuel
metering valve
metering device
valve member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04254617A
Other languages
English (en)
French (fr)
Other versions
EP1621762A1 (de
Inventor
Paul Buckley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Technologies Inc
Original Assignee
Delphi Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Technologies Inc filed Critical Delphi Technologies Inc
Priority to DE602004003141T priority Critical patent/DE602004003141T2/de
Priority to AT04254617T priority patent/ATE344882T1/de
Priority to EP04254617A priority patent/EP1621762B1/de
Publication of EP1621762A1 publication Critical patent/EP1621762A1/de
Application granted granted Critical
Publication of EP1621762B1 publication Critical patent/EP1621762B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0017Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/34Varying fuel delivery in quantity or timing by throttling of passages to pumping elements or of overflow passages, e.g. throttling by means of a pressure-controlled sliding valve having liquid stop or abutment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/462Delivery valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/004Sliding valves, e.g. spool valves, i.e. whereby the closing member has a sliding movement along a seat for opening and closing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0045Three-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails

Definitions

  • the invention relates to a metering device for use in a common rail fuel system.
  • the invention relates to a metering device for use in regulating the supply of relatively low pressure fuel to a high pressure fuel pump of the type intended to supply fuel to a common rail.
  • the invention also relates to a high pressure fuel pump incorporating a metering device and, in addition, to a common rail fuel system incorporating the metering device.
  • Such a device is known from DE-C-19714489.
  • FIG. 1 illustrates a part of a common rail fuel system of the type including a supply pump 10 for delivering fuel to a high pressure common rail fuel pump (not shown).
  • the high pressure pump is arranged to supply a common rail or other fuel accumulator volume with highly pressurised fuel.
  • the supply pump 10 takes the form of a vane pump, often referred to as the 'transfer pump', having a pump inlet 12 and a pump outlet 14 across which a pressure regulating device 16 (the pressure regulator) is located to regulate fuel pressure at the pump outlet 14.
  • the pressure regulator 16 takes the form of a hydraulically operable device having a spring-biased piston 18 which co-operates with a port 20 provided in a piston bore 22 so as to vary that quantity of fuel at the pump outlet 14 which is returned or recirculated to a low pressure drain (not shown), thus controlling the pressure of fuel at the pump outlet 14.
  • Fuel at the regulated output pressure is supplied from the transfer pump 10, through a separate metering valve device 24 to the inlet of the common rail fuel pump so as to regulate the quantity of fuel that is delivered to the pump for pressurisation.
  • the metering valve device 24 is a variable-orifice device and has an associated actuator (not shown), typically in the form of an electromagnetic actuator, which is arranged to control movement of a metering valve member.
  • the metering valve member co-operates with the orifice of the device to control the degree to which it is obscured, thereby varying the restriction to fuel flow presented by the orifice and, hence, varying the flow rate of fuel to the high pressure pump.
  • the transfer pump 10 is operable to provide an output pressure at the pump outlet 14 which is dependent upon engine speed.
  • transfer pressure is high, so that pressure at the inlet of the metering valve device 24 is high, the sensitivity of the metering valve device 24 may be undesirably high as any slight change in the position of the metering valve member will have a relatively large effect on the flow rate through the device 24. Therefore, a particular problem occurs when low fuelling levels are required at high engine speed.
  • transfer pressure is low there may be a lack of sensitivity of fuelling as the metering valve member must be moved through a much greater amount in order to have any significant effect on the flow rate through the device 24. Setting the metering valve device 24 and the regulator 16 so as to cope satisfactorily with the full range of engine speed and load conditions can therefore be problematic.
  • a metering device for controlling the flow of fuel to a fuel pump, the metering device including:
  • the metering actuator and the regulator actuator are one and the same actuator.
  • the metering valve means and the regulator valve means share a common actuator which controls both (i) co-operation between the metering valve means and the metering valve outlet and (ii) operation of the regulator valve means.
  • the metering device has application in a common rail fuel system in which the metering device is situated between a low pressure (e.g. transfer pressure) pump and a high pressure (e.g. common rail type) pump.
  • a low pressure e.g. transfer pressure
  • a high pressure e.g. common rail type
  • the regulator valve means which provides the pressure regulating function of the device, is positively actuated rather than being a hydraulically-operable device as in conventional systems.
  • the pressure regulator of the arrangement can therefore be actuated to 'open', to reduce fuel pressure at the metering valve inlet, in circumstances in which only a low rate of flow of fuel through the metering valve outlet is required. This improves the sensitivity of fuel control when low pump filling rates are required for the high pressure pump.
  • the invention differs from known systems, such as that shown in Figure 1, as the pressure regulating function is positively controlled through the regulator actuator, rather than relying on a hydraulically-operable pressure regulator.
  • the regulator valve means and the metering valve means are formed in a single, common unit.
  • the metering valve means includes a metering valve member which co-operates with the metering valve outlet to control the rate of flow of fuel to the high pressure pump, and wherein the regulator valve means is provided by the metering valve member co-operating with a pressure regulator outlet to a low pressure drain.
  • the metering valve means includes a metering valve member which is axially movable within a guide or bore provided in a valve housing, wherein the bore is provided with a filling port to define the metering valve outlet so that axial movement of the metering valve member within the bore serves to control the degree of opening of the filling port, thereby to control the rate of flow of fuel through the filling port to the high pressure pump.
  • the bore is provided with a return port to define the pressure regulator outlet, whereby axial movement of the metering valve member within the bore serves to control the degree of opening of the return port, thereby to control the rate of flow of fuel through the return port to the low pressure drain.
  • a preferred embodiment of the invention therefore includes a metering valve member which is co-operable with a filling port to control the flow of fuel to the high pressure pump and which is further co-operable with a return port to control the pressure of fuel at the metering valve inlet.
  • This embodiment is particularly convenient as not only does it provide the aforementioned advantageous operating characteristic for low pump filling rates, but only a single valve member is needed to provide both the metering and pressure regulating functions, thus reducing the total part count.
  • the pressure regulator device is actuated to open (i.e. to reduce the pressure of fuel supplied to the metering valve inlet) in circumstances in which a low rate of flow of fuel through the metering valve outlet is required.
  • the device is thus configured so that movement of the valve member to open the filling port causes the return port to close, and vice versa.
  • the device can be actuated so as to open the return port to the low pressure drain, resulting in the filling port being closed to reduce the rate of flow of fuel to the high pressure pump.
  • the device can be actuated so as to close the return port to the low pressure drain, resulting in the filling port being opened further to increase the flow rate to the high pressure pump.
  • the operations of the regulator valve means and the metering valve means therefore complement one another.
  • the metering device further includes control means for controlling the actuator in response to a pressure signal representative of fuel pressure within the common rail.
  • the return port and the filling port may be dimensioned so that each is of the same diameter and, thus, presents the same, maximum cross sectional flow area (i.e. the cross sectional flow area in circumstances in which it is fully opened).
  • the return port and the filling port may be of different diameter.
  • a set of at least two return ports may be provided, each of which communicates with the low pressure drain.
  • a set of at least two filling ports may be provided, each of which communicates with the high pressure pump.
  • Each of the return ports of the set may be shaped so as to present a different cross sectional flow area in circumstances in which it is fully open.
  • each of the filling ports of the set may be shaped so as to present a different cross sectional flow area in circumstances in which it is fully open.
  • additional ports may be provided in the bore, for example to communicate with an engine cam box or other fuel chamber.
  • the metering valve member may be operable to vary the degree of opening of the additional ports, depending upon its position.
  • the provision of an additional port or ports to the engine cam box facilitates lubrication of bearings, for example.
  • the bore defines an inlet at one end of the bore.
  • the inlet is defined in a wall of the bore, along the bore length, rather than at the end of the bore.
  • the metering valve member may be of the type which is axially movable within the bore or, alternatively, may be of the type which is angularly movable within the bore.
  • a high pressure (common rail) fuel pump including a metering device for controlling the rate of flow of fuel to the high pressure fuel pump, wherein the metering device is of the type defined in accordance with the first aspect of the invention.
  • a high pressure fuel pump typically fuel is pressurised to a level in excess of around 1000 bar, or even 2000 bar.
  • a common rail fuel system having a common rail fuel pump which is supplied with fuel by a transfer pump and a metering device for controlling the rate of flow of fuel supplied between the transfer pump and the common rail fuel pump, wherein the metering device is of the type defined in accordance with the first aspect of the invention.
  • a metering device referred to generally as 30, of a first embodiment of the invention which is suitable for use in a fuel system, such as a common rail fuel system, of an internal combustion engine.
  • the fuel system includes a high pressure fuel pump (not shown), to which fuel is delivered from a low pressure transfer pump, via the metering device 30, as described previously.
  • the pump delivers fuel to a common rail or accumulator volume of the system, from where fuel is delivered to a plurality of injectors.
  • the metering device 30 includes a valve housing 32 and an actuator housing 34.
  • a valve member 36 is movable within a bore 38 provided in the valve housing 32 under the control of an actuator, referred to generally as 40, located within the actuator housing 34.
  • the actuator 40 may take one of many forms, but that in the embodiment shown is in the form of an electro-magnetic actuator.
  • the electromagnetic actuator 40 is of conventional type and so will not be described in great detail.
  • the actuator 40 includes a winding 42 which is energisable to cause movement of an armature 44 coupled, through a press fit, with an actuator stem 46.
  • the actuator stem 46 co-operates with an upper end of the valve member 36 such that movement of the armature 44, and hence of the stem 46, results in axial movement of the valve member 36 within the valve housing bore 38.
  • a spring 48 serves to bias the actuator stem 46 against the valve member 36 so that the two parts remain coupled together at all times.
  • the device 30 is also provided with a control means (not shown) for controlling operation of the actuator 40 in response to a pressure signal indicative of fuel pressure within the common rail.
  • a lower end of the valve housing bore 38 defines an inlet 50 for the device 30 which communicates with a low pressure pump of the system, for example the transfer pump.
  • the inlet 50 houses a valve spring 52 which serves to urge the valve member 36 in an upwards direction, against any actuation force provided by the actuator 40.
  • a force is generated on the armature 44 causing the actuator stem 46 and the valve member 36 to be urged downwards, against the force of the valve spring 52. If the winding 42 is de-energised, the actuation force is removed and so the valve member 36 is urged in an upwards direction by means of the spring 52.
  • the valve member 36 is provided with an axially extending drilling or bore which defines an axial flow passage 54 for fuel through the valve member 36.
  • One end of the axial flow passage 54 communicates with the inlet 50 so that fuel delivered to the device 30 from the transfer pump is able to flow into the axial flow passage 54 via the inlet 50.
  • Radially extending drillings or bores are also provided in the valve member 36.
  • the metering valve member 36 is provided with a first radial bore 56 which communicates, in a mid-region thereof, with the axial flow passage 54. Outer ends of the first radial bore 56 communicate with an annular chamber 58 defined by an annular groove or recess provided in the outer surface of the valve member 36.
  • the metering valve member 36 is also provided with a second radial bore 60, which is located at the end of the axial flow passage 54 remote from the inlet 50.
  • the arrangement of the axial flow passage 54 and the first and second radial bores 56, 60 ensures the valve member 36 is hydraulically pressure balanced at all times. In this way the actuator 40 therefore only has to overcome the force of the inlet spring 52 in order to move the valve member 36 downwards within the valve bore 38, as described in further detail below.
  • Movement of the valve member 36 controls the degree of opening of various ports provided in the valve bore 38.
  • the ports in the valve housing 32 are formed in two sets: a first set of ports 62 which open into a return path 64 to a low pressure drain and a second set of ports 68 which open into a filling path 70 to the high pressure pump (i.e. filling ports).
  • the first set of ports 62 define 'regulator' outlets of the device 30, or return ports
  • the second set of ports 68 define 'metering' outlets of the device 30, or filling ports.
  • the axial position of the metering valve member 36 within the bore 38 will determine the extent to which the return and filling ports 62, 68 are open.
  • a first annular seal 72 is provided on the actuator housing 34 to seal against fuel leakage from the filling ports 68 and the filling path 70
  • a second annular seal 74 is provided on the valve housing 32 to seal against fuel leakage between the filling ports 68 and/or the filling path 70 and the return path 64 to drain
  • a third annular seal 76 is provided on the valve housing 32 to seal against fuel leakage between supply pressure (transfer pressure) and the return path 64.
  • fuel is delivered by the transfer pump to the inlet 50 of the device 30 and thus is allowed to flow into the axial flow passage 54 in the valve member 36 and into the annular chamber 58.
  • the metering valve member 36 is in the 'full filling' position, in which the filling ports 68 are fully open (i.e. fully uncovered) and the actuator 40 is de-energised. When the metering valve member 36 is in this position, the flow rate through the filling ports 68 is thus at its maximum value.
  • the actuator 40 receives a control signal from the controller to energise the winding 42.
  • the actuator stem 46 and hence the valve member 36, will be urged in a downwards direction, against the force of the valve spring 52.
  • the filling ports 68 will be partially covered by the outer surface of the metering valve member 36, thereby decreasing the flow rate through the filling ports 68 to the high pressure pump.
  • the controller supplies a signal to the actuator 40 causing it to be de-energised.
  • the valve member 36 is urged upwards by means of the valve spring 52 causing the return ports 62 to close and the filling ports 68 to open.
  • Fuel pressure at the inlet 50 is therefore increased, as the return flow of fuel through the return ports 62 is reduced or ceases altogether. This is accompanied by an increased flow rate through the open filling ports 68.
  • the co-operable operations of the filling and return ports 68, 62 are illustrated in the representation shown in Figure 3, in which the stroke, S, of the metering valve member 36, represents the travel of the metering valve member 36 between a position in which the filling ports 68 are partially open (arbitrary position), to one in which the filling ports 68 are fully closed.
  • Distance L1 represents the separation between the 'lower' control edge of a filling port 68 (referring to the orientation of Figure 2) and the 'upper' control edge of a return port 62.
  • the filling ports 68 and the return ports 62 are of equal size (i.e. they have equal cross sectional flow areas) so that the opening of one set of ports by a certain amount is always accompanied by the closing of the other set of ports by the same amount, in a differential manner.
  • the relationship between fuel delivery quantity through the filling ports 68 and engine speed (transfer pressure) will be independent of fuel demand.
  • Reference to the cross sectional flow areas being different refers to the cross sectional flow area presented by the port in circumstances in which the port is fully open.
  • each set of outlets 62, 68 may include several axially staggered ports formed in the wall of the valve housing bore 38, with each port in a set having a different diameter (i.e. cross sectional flow area) to other ports in the same set.
  • FIG. 4 illustrates an alternative embodiment of the invention.
  • the metering device 30 includes a single metering valve member 36 which is axially movable within a bore 38 provided in a valve housing 32 to open and close, in a corresponding manner, filling and return ports 168, 162 spaced axially along a valve housing bore 38.
  • the regulator outlet of the device is defined by a single return port 162 which communicates with the low pressure drain and the metering outlet is defined by a single filling port 168.
  • the inlet to the device 30 is defined by an inlet port 150 provided on the opposite side of the valve housing bore 38 to the filling and return ports 162, 168, rather than at the end of the bore 38 as in the previous embodiment.
  • valve member 36 may also be provided with first and second balancing passages 80, 82 which serve to prevent the occurrence of a hydraulic lock. It will be appreciated to the skilled person the feature of the balancing passages is optional, rather than being essential.
  • the inlet port 150 delivers fuel at supply pressure (transfer pressure) to the annular chamber 58. If it is determined that rail pressure is too high, an actuator (not shown) for the valve member 36 is energised to cause the valve member 36 to move to the right in the illustration shown so that the filling port 168 starts to close and the return port starts to open. As a proportion of fuel delivered through the inlet 50 is thus able to flow to low pressure, the pressure of fuel at the inlet to the filling port 168 is reduced at the same time as the filling port is closed to reduce the flow rate through the port 168.
  • the actuator for the valve member 36 is de-energised so that the valve member 36 is urged back to the left into a position in which the filling port 168 is fully opened (corresponding to maximum filling) and the return port 162 to low pressure is closed.
  • valve housing bore 38 for example to communicate with the cam box so as to ensure there is lubrication for the bearings.
  • the cambox port may be positioned so that it is open for all positions of the metering valve member 36 through its stroke.
  • the cambox port may be positioned relative to the filling and return ports so that it can be shut-off altogether if necessary in certain circumstances.
  • a pressure regulator device may be provided having a pressure regulator valve member which co-operates with pressure regulator ports, wherein the pressure regulator valve member is separate and distinct from the metering valve member 36 and its co-operation with the filling ports 68.
  • Another embodiment of the device may include an appropriately recessed valve member which is angularly movable within a metering valve bore so as to co-operate with return and filling ports provided in the bore.
  • An actuator for the metering valve member controls the angular position of the metering valve member, with the return and filling ports sized and positioned so that an increase in flow through the filling port is accompanied by a reduction in flow through the return port to the low pressure drain, and vice versa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Lifting Devices For Agricultural Implements (AREA)
  • Massaging Devices (AREA)

Claims (17)

  1. Dosiervorrichtung (30) zum Steuern des Kraftstoffstroms zu einer Kraftstoffpumpe, wobei die Dosiervorrichtung (30) umfasst:
    ein Dosierventil-Mittel (36, 68) zum Steuern der Strömungsrate des Kraftstoffs zu der Kraftstoffpumpe, worin das Dosierventil-Mittel einen Dosierventil-Einlass (50; 150) und einen Dosierventil-Auslass (68; 168) besitzt,
    ein Mittel zum Druckregeln (36, 62), das betätigbar ist, um den Kraftstoffdruck am Dosierventil-Einlass (50) zu regulieren,
    ein Betätigungsorgan (40) für die Dosierung, das betätigbar ist, um das Dosierventil-Mittel (36, 68) zu steuern, und
    ein Regelungs-Betätigungsorgan (40), das betätigbar ist, um das Mittel zum Druckregeln (36, 62) zu steuern, dadurch gekennzeichnet, dass sich
    das Dosierventil-Mittel (36, 68) und das Mittel zum Druckregeln (36, 62) ein ihnen beiden gemeinsames Betätigungsorgan (40) teilen.
  2. Dosiervorrichtung (30) wie in Anspruch 1 beansprucht, worin das Dosierventil-Mittel ein Dosierventil-Element (36) umfasst, das mit dem Dosierventil-Auslass (68) zusammen wirkt, um die Strömungsrate des Kraftstoffs zu der Kraftstoffpumpe zu steuern, und worin das Mittel zum Druckregeln durch das Dosierventil-Element (36) in Zusammenwirken mit einem Druckregler-Auslass (62) zu einem Niederdruck-Abfluss bereitgestellt wird.
  3. Dosiervorrichtung (30) wie in Anspruch 2 beansprucht, worin das Dosierventil-Element (36) auf hydraulischem Wege durch Druckausgleich entlastet wird.
  4. Dosiervorrichtung (30) wie in Anspruch 2 oder Anspruch 3 beansprucht, worin das Dosierventil-Element (36) innerhalb einer in einem Ventilgehäuse (32) vorhandenen Bohrung (38) bewegbar ist, worin der Dosierventil-Auslass durch eine in der Bohrung (38) ausgebildete Einfüllöffnung (68; 168) gebildet wird, so dass die Bewegung des Dosierventil-Elementes (36) innerhalb der Bohrung (38) dazu dient, den Öffnungsgrad der Einfüllöffnung (68; 168) zu steuern.
  5. Dosiervorrichtung (30) wie in Anspruch 4 beansprucht, worin der Druckregler-Auslass durch eine in der Bohrung (38) ausgebildete Rückführungsöffnung (62; 162) gebildet ist, so dass die Bewegung des Dosierventil-Elements (36) innerhalb der Bohrung (38) dazu dient, den Öffnungsgrad der Rückführungsöffnung (62; 162) zu steuern.
  6. Dosiervorrichtung (30) wie in Anspruch 4 oder Anspruch 5 beansprucht, worin die Bohrung (38) an einem ihrer Enden einen Einlass (50) bildet.
  7. Dosiervorrichtung (30) wie in Anspruch 4 oder Anspruch 5 beansprucht, worin der Einlass (150) in einer Wand der Bohrung (38) ausgebildet ist.
  8. Dosiervorrichtung (30) wie in einem der Ansprüche 4 bis 7 beansprucht, worin die Einfüllöffnung (68; 168) einen maximalen Durchflussbereichsquerschnitt begrenzt, der im wesentlichen identisch ist mit einem maximalen Durchflussbereichsquerschnitt, der von der Rückführungsöffnung (62; 162) begrenzt wird.
  9. Dosiervorrichtung (30) wie in einem der Ansprüche 4 bis 7 beansprucht, worin die Einfüllöffnung (68; 168) einen maximalen Durchflussbereichsquerschnitt aufweist, der sich von einem maximalen Durchflussbereichsquerschnitt unterscheidet, der von der Rückführungsöffnung (62; 162) gebildet wird.
  10. Dosiervorrichtung (30) wie in einem der Ansprüche 4 bis 9 beansprucht, worin die Bohrung (38) mit einem Satz von mindestens zwei Einfüllöffnungen (68; 168) und einem Satz von mindestens zwei Rückführungsöffnungen (62; 162) ausgestattet ist.
  11. Dosiervorrichtung (30) wie in Anspruch 10 beansprucht, worin jede der Einfüllöffnungen (68; 168) eines der Sätze einen anderen Durchflussbereichsquerschnitt als der oder jeder der anderen Einfüllöffnungen des Satzes besitzt.
  12. Dosiervorrichtung (30) wie in Anspruch 10 oder Anspruch 11 beansprucht, worin jeder der Rückführungsöffnungen (62; 162) eines der Sätze einen anderen Durchflussbereichsquerschnitt besitzt als der oder jeder der anderen Rückführungsöffnungen des Satzes.
  13. Dosiervorrichtung (30) wie in Anspruch 12 beansprucht, weiterhin umfassend zusätzliche, in der Bohrung (38) ausgebildete Öffnungen, die mit einem Motor-Nockengehäuse oder einer anderen Kraftstoffkammer in Verbindung stehen, wobei das Dosierventil-Element (36) betätigt werden kann, um den Öffnungsgrad der zusätzlichen Öffnungen zu variieren.
  14. Dosiervorrichtung (30) wie in einem der Ansprüche 4 bis 13 beansprucht, worin das Dosierventil-Element (36) innerhalb der Bohrung (38) axial bewegbar ist.
  15. Dosiervorrichtung (30) wie in einem der Ansprüche 1 bis 14 beansprucht, weiterhin umfassend ein Steuerungsmittel zum Steuern der Betätigung des Betätigungsorgans (40) für die Dosierung, und des Regelungsbetätigungsorgans (40) in Reaktion auf ein Drucksignal, das den Kraftstoffdruck stromabwärts des Dosierventil-Auslasses (68) wiedergibt.
  16. Kraftstoffpumpe mit gemeinsamer Druckleitung ("common rail") umfassend eine Dosiervorrichtung (30) zum Steuern der Strömungsrate von Kraftstoff zu der "common rail"-Kraftstoffpumpe, worin die Dosiervorrichtung (30) eine solche wie in einem der Ansprüche 1 bis 15 beansprucht ist.
  17. Kraftstoffsystem mit gemeinsamer Druckleitung, das eine "common rail"-Pumpe aufweist, die Kraftstoff mit Hilfe einer Transferpumpe erhält, wobei das Kraftstoffsystem weiterhin eine Dosiervorrichtung (30), wie in einem der Ansprüche 1 bis 15 beansprucht, zum Steuern der Strömungsrate des Kraftstoffs aufweist, den die Transferpumpe der "common rail"-Pumpe zuführt.
EP04254617A 2004-07-30 2004-07-30 Zumesseinrichtung Not-in-force EP1621762B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602004003141T DE602004003141T2 (de) 2004-07-30 2004-07-30 Zumesseinrichtung
AT04254617T ATE344882T1 (de) 2004-07-30 2004-07-30 Zumesseinrichtung
EP04254617A EP1621762B1 (de) 2004-07-30 2004-07-30 Zumesseinrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04254617A EP1621762B1 (de) 2004-07-30 2004-07-30 Zumesseinrichtung

Publications (2)

Publication Number Publication Date
EP1621762A1 EP1621762A1 (de) 2006-02-01
EP1621762B1 true EP1621762B1 (de) 2006-11-08

Family

ID=34930533

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04254617A Not-in-force EP1621762B1 (de) 2004-07-30 2004-07-30 Zumesseinrichtung

Country Status (3)

Country Link
EP (1) EP1621762B1 (de)
AT (1) ATE344882T1 (de)
DE (1) DE602004003141T2 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007026834A1 (de) * 2007-06-06 2008-12-11 Hydraulik-Ring Gmbh Elektromagnetisches Regelventil und Einspritzanlage für eine Brennkraftmaschine
IT1398734B1 (it) * 2010-03-04 2013-03-18 Bosch Gmbh Robert Impianto per l'alimentazione di carburante ad un motore a combustione interna

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4313110A1 (de) * 1993-04-03 1994-10-06 Rexroth Mannesmann Gmbh Pumpvorrichtung zur Brennstoffeinspritzung, insbesondere zur Dieselkraftstoffeinspritzung bei Kraftfahrzeugen
DE19714489C1 (de) * 1997-04-08 1998-10-01 Siemens Ag Einspritzsystem, Druckventil und Volumenstromregelventil und Verfahren zum Regeln eines Kraftstoffdruckes
JP2002004977A (ja) * 2000-06-26 2002-01-09 Denso Corp 流量制御装置
DE10154133C1 (de) * 2001-11-03 2003-02-13 Bosch Gmbh Robert Kraftstoffsystem
DE10205811A1 (de) * 2002-02-13 2003-08-21 Bosch Gmbh Robert Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine

Also Published As

Publication number Publication date
ATE344882T1 (de) 2006-11-15
DE602004003141D1 (de) 2006-12-21
EP1621762A1 (de) 2006-02-01
DE602004003141T2 (de) 2007-10-18

Similar Documents

Publication Publication Date Title
US7341236B2 (en) Pilot operated valve with a pressure balanced poppet
EP2417383B1 (de) Sperrventil zur flusserfassung
US6619183B2 (en) Electrohydraulic valve assembly
EP2778419B1 (de) Systeme und verfahren zur regulierung des ausgangsdrucks einer flüssigkeitspumpe
EP1429035B1 (de) Umschaltbares Steuerventilsystem für Fluide
US5524826A (en) Fuel injection device for internal combustion engines
US9334978B2 (en) Valve device for a hydraulic circuit, and oil-pump regulating arrangement
GB1603237A (en) Fuel-injection nozzle pump for internal combustion engines
US5996556A (en) Quantity control valve
CA1186972A (en) Pressure compensated flow control system
US20040099316A1 (en) Hydraulic control device
US4458713A (en) Bypass-type differential pressure regulator
EP1604104A1 (de) Steuerventilanordnung
US4428400A (en) Electrically and hydraulically actuated flow-distributing valve unit
EP1621762B1 (de) Zumesseinrichtung
JPH04312202A (ja) 比例分配装置及びそれを含む油圧制御装置
US20060043787A1 (en) Regulator device and a valve unit for a hydraulic pump
JPS60212633A (ja) 内燃機関のための燃料噴射ポンプ
US20140203204A1 (en) Valve assembly
US8464692B2 (en) Device for supplying an internal combustion engine with fuel
US3941513A (en) Variable displacement pump control assembly
US5876184A (en) Electrohydraulic pressure regulating valve
US6170466B1 (en) Quantity control valve for a fuel injection system
US6390066B1 (en) Fuel injection system for an internal combustion engine
US11808287B2 (en) Constant flow regulator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050303

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602004003141

Country of ref document: DE

Date of ref document: 20061221

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070208

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070208

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070219

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070409

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070209

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070730

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20081001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070730

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070509

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061108

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A, LU

Effective date: 20140516

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004003141

Country of ref document: DE

Representative=s name: MANITZ, FINSTERWALD & PARTNER GBR, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602004003141

Country of ref document: DE

Owner name: DELPHI INTERNATIONAL OPERATIONS LUXEMBOURG S.A, LU

Free format text: FORMER OWNER: DELPHI TECHNOLOGIES HOLDING S.A.R.L., BASCHARAGE, LU

Effective date: 20140702

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004003141

Country of ref document: DE

Representative=s name: MANITZ, FINSTERWALD & PARTNER GBR, DE

Effective date: 20140702

Ref country code: DE

Ref legal event code: R082

Ref document number: 602004003141

Country of ref document: DE

Representative=s name: MANITZ FINSTERWALD PATENTANWAELTE PARTMBB, DE

Effective date: 20140702

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160726

Year of fee payment: 13

Ref country code: IT

Payment date: 20160722

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160726

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004003141

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170730