EP1616041B1 - Flame covering method and corresponding device - Google Patents

Flame covering method and corresponding device Download PDF

Info

Publication number
EP1616041B1
EP1616041B1 EP04742532A EP04742532A EP1616041B1 EP 1616041 B1 EP1616041 B1 EP 1616041B1 EP 04742532 A EP04742532 A EP 04742532A EP 04742532 A EP04742532 A EP 04742532A EP 1616041 B1 EP1616041 B1 EP 1616041B1
Authority
EP
European Patent Office
Prior art keywords
flame
coating
powder
process according
coating process
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04742532A
Other languages
German (de)
French (fr)
Other versions
EP1616041A1 (en
Inventor
Alain Tournier
Denis Girardin
Michel Chezeau
Alain Secondy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain PAM SA
Original Assignee
Saint Gobain PAM SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain PAM SA filed Critical Saint Gobain PAM SA
Publication of EP1616041A1 publication Critical patent/EP1616041A1/en
Application granted granted Critical
Publication of EP1616041B1 publication Critical patent/EP1616041B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • B05B7/20Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion
    • B05B7/201Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle
    • B05B7/205Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed by flame or combustion downstream of the nozzle the material to be sprayed being originally a particulate material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/129Flame spraying

Definitions

  • the object of the present invention is to propose a method of flame coating which is economical.
  • the method according to the invention may comprise one or more of the features of the method claims dependent on claim 1.
  • the invention further relates to a coating device by means of a flame adapted for carrying out the method according to any one of the preceding claims, of the type comprising the characteristics of the independent device claim.
  • the device according to the invention may comprise one or more of the features of the device-dependent claims.
  • the installation comprises a raw powder recovery device 4, a main reservoir 6, three feed tanks 8A, 8B, 8C, and three flame coating devices 10A, 10B, 10C.
  • Such powders generally comprise low melting point metal alloy particles, located between 400 ° C and 450 °, and preferably between 425 ° C and 475 ° C.
  • the residual portion of the alloy comprises aluminum and is preferably made of aluminum.
  • the installation 2 further comprises first feed means 12 in powder coating material, adapted to feed the main tank 6.
  • These first feed means 12 comprise a first conveyor 14A whose inlet is connected to an outlet of the raw powder recovery device 4 and whose outlet opens into the main tank 6.
  • the installation 2 further comprises second powder coating material feed means 14B, adapted to supply each of the coating material powder feed tanks, from the main tank 6.
  • these second supply means 14B consist of three conveyors 16A, 16B, 16C, each of which is connected to an outlet of the main tank and to an inlet of the supply tanks 8A, 8B, 8C.
  • Third powder supply means 18 are adapted to convey powder from each of the supply tanks 8A, 8B, 8C to each of the coating devices 10A, 10B, 10C. As it happens, these third feed means 18 consist of three screw conveyors 20A, 20B, 20C.
  • the largest dimension of each of the particles is less than 1000 ⁇ m, preferably less than 800 ⁇ m, and in particular less than 500 ⁇ m.
  • the powder consists of particles whose smallest dimension is greater than 20 ⁇ m, preferably greater than 40 ⁇ m and in particular greater than 60 ⁇ m.
  • FIG. 2 is schematically represented the coating device 10A according to the invention and an object to be coated.
  • the object to be coated is a pipe 40 of generally cylindrical hollow shape having a longitudinal and horizontal axis X-X.
  • the pipe is for example metal and in particular cast iron.
  • the pipe 40 is fixed on a support (not shown) and can be rotated about its longitudinal axis X-X and in translation relative to the coating device 10 along this axis.
  • the coating device 10 comprises a burner 42 which is shown in partial section on the Figure 2 , as well as a device 46 for introducing the coating material powder into a flame 44.
  • the burner 42 is formed by a burner head 48 and means 50 for cooling and guiding the flame 44.
  • the burner head 48 is provided with an oxidizing gas inlet 52 connected to a source of oxidizing gas 54, such as oxygen, via a combustion gas pipe 56 and a first gas valve. flow and pressure setting 58.
  • the burner head 48 is provided with a fuel gas inlet 60, connected to a fuel gas source 62, such as natural gas, acetylene or propane, via a fuel gas pipe. 64 and a second control valve 66 for pressure and flow.
  • a fuel gas source 62 such as natural gas, acetylene or propane
  • the burner head 48 and a part of the device 46 for introducing the powder are represented on a larger scale on the Figure 3 , the burner head 48 being shown in longitudinal section.
  • the burner head 48 is generally of revolution about the Y-axis. It comprises, arranged successively one behind the other, and in the direction of flame F, a mixer 68, a fuel gas nozzle 70, and an oxidizing gas nozzle 72.
  • the combustion gas nozzle 72 is maintained by a nozzle holder 74.
  • the mixer 68 forms the fuel gas inlet 60 and the combustion gas inlet 52 of the burner 42.
  • the mixer 68 and the fuel gas nozzle 70 comprise a fuel gas passage 76, coaxial with the YY axis and a plurality of combustion gas passages 78 distributed regularly around the fuel gas passage 76. These components are known per se.
  • the ratio of the diameters of the passages 76 and 78 is adapted to establish a mixture of stoichiometric gas at a high rate.
  • the oxidizing gas nozzle holder 74 is a Y-Y axis revolution member, which has a stepped through bore 80 whose cross-section decreases from the rear end to the front.
  • the oxidizing gas nozzle holder 74 comprises a threaded cylindrical base 82, to which a frustoconical outer portion 84 is connected.
  • the means 50 for cooling and guiding the flame 44 comprise a cooling sleeve 86, in which the burner head 48 is arranged.
  • the sleeve 86 includes a gas inlet end 88 and a flame outlet end 90.
  • the sleeve 86 comprises, on the side of the inlet end 88, a stepped threaded bore 92, in a part of which is screwed the base 82 of the oxidizing gas nozzle holder 74, so that the frustoconical portion 84 and the remainder of the stepped bore 92 form an annular cooling chamber 94 surrounding an axial portion of the nozzle holder 74.
  • a radial bore 96 of cooling gas inlet is formed in the sleeve 86, bore 96 which opens into the cooling chamber 94, and which is connected to means 98 for supplying cooling air.
  • these cooling air supply means 98 comprise a first air compressor 100 connected to a compressed air pipe 102 which opens into the cooling chamber 94 and into which is inserted a third control valve 104.
  • the sleeve 86 further comprises bores 106 which extend axially from the cooling chamber 94 and open onto a front surface of the sleeve 86, disposed on the outlet end side 90 and formed by an annular groove 108 open in the direction of the flame F to allow a confinement of the flame without disturbance of the initial flow.
  • the sleeve 86 comprises eight bores 106.
  • Each injector 120A, 120B, 120C, 120D essentially consists of a tube having a powder outlet 124, adapted to introduce the coating material powder into the flame 44 in an insertion direction IA to ID.
  • Each of the introduction directions IA to ID is directed substantially radially to the flame axis Y-Y.
  • the two directions of introduction IA and IB of the two injectors 120A, 120B are inclined at 45 ° downwards, while the introduction directions IC and ID of the two injectors 120C, 120D extend substantially horizontally, parallel to the XX axis and are directed towards each other.
  • the directions of introduction IA to ID therefore each have a component extending along the longitudinal axis X-X of the pipe 40.
  • the particles of the powder projected towards the pipe 40 are distributed on an imaginary spot whose preferential direction extends along the axis X-X. As a result, few particles are projected over or under the pipe 40.
  • the supply device 122 of a powder / air mixture comprises a powder / air mixing chamber 126 having an inlet hopper 128 for the coating material powder and a compressed air inlet 130 which is connected to means compressed air supply, formed by a second compressor 132 and a fourth control valve 134.
  • a metering device 140 in this case a vibration conveyor, is disposed above the inlet of the inlet hopper 128.
  • the metering device 140 is adapted to be supplied with powder coating material by the screw conveyor 20A.
  • the installation according to the invention operates as follows.
  • the cast iron pipe 40 is installed on the support (not shown) and is rotated about the X-X axis.
  • the fuel gas flow rate is set to achieve a power of up to 70 kW.
  • As for the flow of the oxidizing gas it is set to generate a stoichiometric flame.
  • the power of 70kW corresponds to a flow of about 7 ⁇ nm 3 h in natural gas.
  • the first compressor 100 is started and the cooling chamber 94 is supplied with pressurized air, for example at a pressure of about 2 bar.
  • the flame 44 is initiated by the priming device 110.
  • the flame 44 which is established has a power between 30 kW and 70 kW.
  • the maximum temperature of the flame 44 is between 2000 ° C. and 3000 ° C., preferably between 2250 ° C. and 2750 ° C., and in particular between 2400 ° C. and 2600 ° C.
  • the maximum speed of the gases of the flame 44 is between 500 m / s and 2000 m / s, and preferably between 700 m / s and 900 m / s.
  • the supply device of the mixture 122 is started and conveys an air / powder mixture to the injectors 120A, 120B, 120C, 120D.
  • the powder flow rate of a single injector 120A, 120B, 120C, 120D is between 15 kg / h and 50 kg / h, and is preferably about 35 kg / h per injector.
  • the powder flow of all the injectors is between 60 kg / h and 250 kg / h.
  • the powder particles are then driven by the flame 44 in the direction F thereof. They are melted completely by the flame 44 and form droplets of molten coating material. Because the particle sizes are within the above range, the particles are melted completely without evaporating. The droplets exit the flame 44 in a sufficiently rapid manner to prevent their evaporation.
  • the droplets are projected onto the pipe 40.
  • the distance between the flame 44 and the pipe 40 is chosen so that the droplets are still in the liquid state when they meet the pipe.
  • the droplets adhere to the pipe 40 and solidify to form a coating.
  • the latter In order to coat the outer surface along the length of the pipe 40, the latter is driven in translation along the axis X-X.
  • the method according to the invention makes it possible to coat an object with a coating layer at a high flow rate in mass of powder while using powder recovered from previous coating processes.
  • the process according to the invention achieves a yield similar to that of flame coating processes using a wire-like coating material, namely of the order of 60%.
  • the device according to the invention as well as the process parameters make it possible to use a powder consisting of a low melting point alloy (about 450 ° C.), such as Zn 85 Al 15 , as a coating material.
  • a low melting point alloy about 450 ° C.
  • the powder consists of at least 50% of a metal or alloy whose melting point is between 400 ° C. and 500 ° C., preferably between 425 ° C. and 475 ° C. ° C.
  • the mixing chamber 126 may be connected to a source of gas other than air, for example a source of an inert gas.

Abstract

Coating of an object (40) with a fusible coating material consists of establishing a flame (44) directed towards the object to be coated and introducing a quantity of the fusible coating material into the flame. The flame has a temperature sufficiently elevated to at least partially melt the coating material. The flame speed is chosen such that the molten coating material is projected onto the object to be coated and at least a part of the coating material is in a molten state during its impact with the object. An independent claim is also included for a device for the flame coating of an object by this means.

Description

La présente invention concerne un procédé de revêtement d'un objet à revêtir selon le préambule de la revendication 1.The present invention relates to a method of coating an object to be coated according to the preamble of claim 1.

Elle s'applique notamment aux procédés de revêtement de tuyaux en fonte par une couche en zinc ou en alliage Zn-Al.It applies in particular to processes for coating cast iron pipes with a zinc or Zn-Al alloy layer.

On connaît des procédés de revêtement par pulvérisation à la flamme. Dans de tels procédés un matériau de revêtement est introduit sous forme de fil dans une flamme, qui fait fondre le matériau, de telle sorte que des gouttelettes de matériau de revêtement soient formées. Ces gouttelettes sont ensuite entraînées par les gaz de combustion de la flamme et projetées sur un objet devant être revêtu.Flame spray coating methods are known. In such processes a coating material is introduced as a wire into a flame, which melts the material, so that droplets of coating material are formed. These droplets are then entrained by the combustion gases of the flame and projected on an object to be coated.

Les procédés de revêtement par pulvérisation à la flamme connus ont un rendement d'environ 60%. Le rendement est défini par le rapport de la quantité de matériau qui adhère effectivement à l'objet devant être revêtu à la quantité de matériau introduit dans la flamme. Environ 10% du matériau sont perdus par évaporation. Le reste du matériau, donc environ 30% de celui-ci, n'adhère pas à l'objet devant être revêtu, et s'accumule sous forme de poudre résiduelle.The known flame spray coating methods have a yield of about 60%. The yield is defined by the ratio of the amount of material that actually adheres to the object to be coated to the amount of material introduced into the flame. About 10% of the material is lost by evaporation. The rest of the material, so about 30% of it, does not adhere to the object to be coated, and accumulates as a residual powder.

Cette poudre résiduelle dégradée est difficile à recycler et n'a qu'une faible valeur économique, notamment dans le cas de poudres impures tel que celui de mélanges de différentes matières et/ou d'alliages comme de Zn-Al.This degraded residual powder is difficult to recycle and has little economic value, especially in the case of impure powders such as mixtures of different materials and / or alloys such as Zn-Al.

La présente invention a pour but de proposer un procédé de revêtement à la flamme qui soit économique.The object of the present invention is to propose a method of flame coating which is economical.

A cet effet l'invention a pour objet un procédé selon la revendication 1.For this purpose the subject of the invention is a process according to claim 1.

Selon d'autres modes de réalisation, le procédé selon l'invention peut comporter l'une ou plusieurs des caractéristiques des revendications de procédé dépendantes de la revendication 1.According to other embodiments, the method according to the invention may comprise one or more of the features of the method claims dependent on claim 1.

L'invention a en outre pour objet un dispositif de revêtement au moyen d'une flamme adapté pour la mise en oeuvre du procédé selon l'une quelconque des revendications précédentes, du type comprenant les caractéristiques de la revendication indépendante de dispositif.The invention further relates to a coating device by means of a flame adapted for carrying out the method according to any one of the preceding claims, of the type comprising the characteristics of the independent device claim.

Selon d'autres modes de réalisation le dispositif selon l'invention peut comporter l'une ou plusieurs des caractéristiques des revendications dépendantes de dispositif.According to other embodiments, the device according to the invention may comprise one or more of the features of the device-dependent claims.

Grâce aux paramètres indiqués ci-dessus, telle que la vitesse du gaz, la température de la flamme et l'endroit d'injection, on obtient un fonctionnement satisfaisant du dispositif et un revêtement uniforme.By means of the parameters indicated above, such as the gas velocity, the flame temperature and the injection point, a satisfactory operation of the device and a uniform coating are obtained.

L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés, sur lesquels :

  • la Figure 1 représente de façon schématique une installation comprenant des dispositifs de revêtement selon l'invention;
  • la Figure 2 est une vue schématique d'un dispositif de revêtement selon l'invention;
  • la Figure 3 est une vue en coupe longitudinale d'une partie du dispositif de revêtement de la Figure 2; et
  • la Figure 4 est une vue de face de la partie du dispositif de revêtement de la Figure 3.
The invention will be better understood on reading the description which follows, given solely by way of example and with reference to the appended drawings, in which:
  • the Figure 1 schematically represents an installation comprising coating devices according to the invention;
  • the Figure 2 is a schematic view of a coating device according to the invention;
  • the Figure 3 is a longitudinal sectional view of a part of the coating device of the Figure 2 ; and
  • the Figure 4 is a front view of the part of the coating device of the Figure 3 .

Sur la Figure 1 est représentée une installation de revêtement au moyen d'une flamme selon l'invention, désignée par la référence générale 2.On the Figure 1 is shown a coating installation by means of a flame according to the invention, designated by the general reference 2.

L'installation comprend un dispositif de récupération 4 de poudre crue, un réservoir principal 6, trois réservoirs d'alimentation 8A, 8B, 8C, et trois dispositifs de revêtement à la flamme 10A, 10B, 10C.The installation comprises a raw powder recovery device 4, a main reservoir 6, three feed tanks 8A, 8B, 8C, and three flame coating devices 10A, 10B, 10C.

Le dispositif de récupération 4 de poudre crue est adapté pour récupérer directement, c'est-à-dire sans traitement, des poudres résiduelles ou de déchet produites lors de la mise en oeuvre de procédés de revêtement connus. De tels procédés utilisent un fil ou un cordon comme matériau de base et produisent des poudres de matériau de revêtement résiduel, constituées de particules dont la plus grande dimension est généralement située entre 0 µm et 2000 µm.The raw powder recovery device 4 is adapted to recover directly, that is to say without treatment, residual powders or waste produced during the implementation of known coating processes. Such processes use a wire or cord as a base material and produce powders of residual coating material, consisting of particles the most large dimension is usually between 0 μm and 2000 μm.

De telles poudres comprennent généralement des particules en alliage à base d'un métal à faible point de fusion, situé entre 400°C et 450°, et de préférence entre 425°C et 475°C.Such powders generally comprise low melting point metal alloy particles, located between 400 ° C and 450 °, and preferably between 425 ° C and 475 ° C.

L'alliage est par exemple un alliage à base de Zn, qui comprend au moins 50% en poids de Zn, mais de préférence plus de 85% en poids de Zn, et en particulier plus de 95% en poids de Zn.The alloy is for example a Zn-based alloy which comprises at least 50% by weight of Zn, but preferably more than 85% by weight of Zn, and in particular more than 95% by weight of Zn.

La partie résiduelle de l'alliage comprend de l'aluminium et est de préférence constituée d'aluminium.The residual portion of the alloy comprises aluminum and is preferably made of aluminum.

L'installation 2 comprend en outre des premiers moyens d'alimentation 12 en poudre de matériau de revêtement, adaptés pour alimenter le réservoir principal 6.The installation 2 further comprises first feed means 12 in powder coating material, adapted to feed the main tank 6.

Ces premiers moyens d'alimentation 12 comprennent un premier convoyeur 14A dont l'entrée est reliée à une sortie du dispositif de récupération 4 de poudre crue et dont la sortie débouche dans le réservoir principal 6.These first feed means 12 comprise a first conveyor 14A whose inlet is connected to an outlet of the raw powder recovery device 4 and whose outlet opens into the main tank 6.

L'installation 2 comprend en outre des seconds moyens d'alimentation 14B en poudre de matériau de revêtement, adaptés pour alimenter chacun des réservoirs d'alimentation en poudre de matériau de revêtement, à partir du réservoir principal 6.The installation 2 further comprises second powder coating material feed means 14B, adapted to supply each of the coating material powder feed tanks, from the main tank 6.

En l'occurrence, ces seconds moyens d'alimentation 14B sont constitués de trois convoyeurs 16A, 16B, 16C, dont chacun est relié à une sortie du réservoir principal et à une entrée des réservoirs d'alimentation 8A, 8B, 8C.In this case, these second supply means 14B consist of three conveyors 16A, 16B, 16C, each of which is connected to an outlet of the main tank and to an inlet of the supply tanks 8A, 8B, 8C.

Des troisièmes moyens d'alimentation 18 en poudre sont adaptés pour acheminer de la poudre à partir de chacun des réservoirs d'alimentation 8A, 8B, 8C vers chacun des dispositifs de revêtement 10A, 10B, 10C. En l'occurrence, ces troisièmes moyens d'alimentation 18 sont constitués de trois convoyeurs à vis 20A, 20B, 20C.Third powder supply means 18 are adapted to convey powder from each of the supply tanks 8A, 8B, 8C to each of the coating devices 10A, 10B, 10C. As it happens, these third feed means 18 consist of three screw conveyors 20A, 20B, 20C.

Un dispositif de traitement de poudre crue 22 est disposé dans le premier convoyeur 14A et sépare celui-ci en une partie amont 24 et une partie aval 26.A raw powder treatment device 22 is disposed in the first conveyor 14A and separates the latter into an upstream portion 24 and a downstream portion 26.

Le dispositif de traitement de poudre crue 22 est formé d'un dispositif de tamisage 28. Ce dispositif de tamisage 28 est adapté pour séparer les particules de la poudre, dont la plus grande dimension et la plus petite dimension sont situées dans une plage prédéterminée. Ce dispositif de tamisage 28 comprend deux tamis gros 29A et fin 29B. Le tamis gros 29A est disposé au-dessus du tamis fin 29B. Le dispositif de tamisage 28 comprend en outre une entrée 30 par laquelle la poudre crue venant du dispositif de récupération 4 est introduite au-dessus du tamis gros 29A au moyen de la partie amont 24. Une première sortie 32 du dispositif de tamisage, disposée entre le tamis gros 29A et le tamis fin 29B, est reliée à la partie aval 26 du premier convoyeur 14A. Le dispositif de tamisage est muni de deux autres sorties 34, 36 respectivement en amont du tamis gros 29A et en aval du tamis fin 29B. Ces sorties 34, 36 sont prévues pour les particules dont la plus grande ou la plus petite dimension est située au-dessus ou au-dessous des limites précitées.The raw powder treatment device 22 is formed of a sieving device 28. This sieving device 28 is adapted to separate the particles from the powder, the largest dimension and the smallest dimension are located in a predetermined range. This sieving device 28 comprises two large screens 29A and 29B end. The large sieve 29A is disposed above the fine sieve 29B. The sieving device 28 further comprises an inlet 30 through which the raw powder coming from the recovery device 4 is introduced over the thick sieve 29A by means of the upstream portion 24. A first outlet 32 of the sieving device, disposed between the large screen 29A and the fine screen 29B is connected to the downstream portion 26 of the first conveyor 14A. The sieving device is provided with two other outlets 34, 36 respectively upstream of the large screen 29A and downstream of the fine screen 29B. These outlets 34, 36 are provided for particles of which the largest or the smallest dimension is located above or below the aforementioned limits.

En l'occurrence, la plus grande dimension de chacune des particules est inférieure à 1000 µm, de préférence inférieure à 800 µm, et notamment inférieure à 500 µm. De plus, à la première sortie 32 du dispositif de tamisage 28, la poudre est constituée de particules dont la plus petite dimension est supérieure à 20 µm, de préférence supérieure à 40 µm et notamment supérieure à 60 µm.In this case, the largest dimension of each of the particles is less than 1000 μm, preferably less than 800 μm, and in particular less than 500 μm. In addition, at the first outlet 32 of the sieving device 28, the powder consists of particles whose smallest dimension is greater than 20 μm, preferably greater than 40 μm and in particular greater than 60 μm.

Dans ce qui suit le dispositif de revêtement 10A sera décrit à titre d'exemple. Les deux autres dispositifs de revêtement 10B, 10C sont identiques.In what follows the coating device 10A will be described by way of example. The other two coating devices 10B, 10C are identical.

Sur la Figure 2 est représenté de manière schématique le dispositif de revêtement 10A selon l'invention ainsi qu'un objet devant être revêtu.On the Figure 2 is schematically represented the coating device 10A according to the invention and an object to be coated.

L'objet devant être revêtu est un tuyau 40 de forme générale cylindrique creux ayant un axe X-X longitudinal et horizontal. Le tuyau est par exemple en métal et notamment en fonte. Le tuyau 40 est fixé sur un support (non représenté) et peut être entraîné en rotation autour de son axe longitudinal X-X ainsi qu'en translation par rapport au dispositif de revêtement 10 le long de cet axe.The object to be coated is a pipe 40 of generally cylindrical hollow shape having a longitudinal and horizontal axis X-X. The pipe is for example metal and in particular cast iron. The pipe 40 is fixed on a support (not shown) and can be rotated about its longitudinal axis X-X and in translation relative to the coating device 10 along this axis.

Le dispositif de revêtement 10 comprend un brûleur 42 qui est représenté en coupe partielle sur la Figure 2, ainsi qu'un dispositif 46 d'introduction de la poudre de matériau de revêtement dans une flamme 44.The coating device 10 comprises a burner 42 which is shown in partial section on the Figure 2 , as well as a device 46 for introducing the coating material powder into a flame 44.

Le brûleur 42 est adapté pour établir la flamme 44 suivant un sens de flamme F horizontal, qui est défini par un axe de flamme Y-Y et qui est dirigé vers le tuyau 40. L'axe de flamme Y-Y et l'axe longitudinal X-X définissent un angle différent de 0° entre eux. Ces axes définissent un plan P-P, qui s'étend perpendiculairement à l'axe X-X et qui coïncide avec l'axe Y-Y (voir Figure 4).The burner 42 is adapted to establish the flame 44 in a horizontal direction of flame F, which is defined by a flame axis YY and which is directed towards the pipe 40. The flame axis YY and the longitudinal axis XX define a angle different from 0 ° between them. These axes define a plane PP, which extends perpendicular to the axis XX and which coincides with the axis YY (see Figure 4 ).

Le brûleur 42 est formé par une tête de brûleur 48 et des moyens 50 de refroidissement et de guidage de la flamme 44.The burner 42 is formed by a burner head 48 and means 50 for cooling and guiding the flame 44.

La tête de brûleur 48 est munie d'une entrée de gaz comburant 52 reliée à une source de gaz comburant 54, tel que de l'oxygène, par l'intermédiaire d'une conduite de gaz comburant 56 et d'une première vanne de réglage 58 de débit et de pression.The burner head 48 is provided with an oxidizing gas inlet 52 connected to a source of oxidizing gas 54, such as oxygen, via a combustion gas pipe 56 and a first gas valve. flow and pressure setting 58.

La tête de brûleur 48 est munie d'une entrée de gaz combustible 60, reliée à une source de gaz combustible 62, tel que du gaz naturel, de l'acétylène ou du propane, par l'intermédiaire d'une conduite de gaz combustible 64 et d'une deuxième vanne de réglage 66 de pression et de débit.The burner head 48 is provided with a fuel gas inlet 60, connected to a fuel gas source 62, such as natural gas, acetylene or propane, via a fuel gas pipe. 64 and a second control valve 66 for pressure and flow.

La tête de brûleur 48 ainsi qu'une partie du dispositif 46 d'introduction de la poudre sont représentées à plus grande échelle sur la Figure 3, la tête de brûleur 48 étant représentée en coupe longitudinale.The burner head 48 and a part of the device 46 for introducing the powder are represented on a larger scale on the Figure 3 , the burner head 48 being shown in longitudinal section.

La tête de brûleur 48 est généralement de révolution autour de l'axe Y-Y. Elle comprend, disposés successivement les uns derrière les autres, et dans le sens de flamme F, un mélangeur 68, une buse à gaz combustible 70, ainsi qu'une buse à gaz comburant 72. La buse à gaz comburant 72 est maintenue par un support de buse 74. Le mélangeur 68 forme l'entrée de gaz combustible 60 et l'entrée de gaz comburant 52 du brûleur 42. Le mélangeur 68 et la buse à gaz combustible 70 comprennent un passage de gaz combustible 76, coaxial à l'axe Y-Y et une pluralité de passages de gaz comburant 78 répartis régulièrement autour du passage de gaz combustible 76. Ces composants sont connus en soi.The burner head 48 is generally of revolution about the Y-axis. It comprises, arranged successively one behind the other, and in the direction of flame F, a mixer 68, a fuel gas nozzle 70, and an oxidizing gas nozzle 72. The combustion gas nozzle 72 is maintained by a nozzle holder 74. The mixer 68 forms the fuel gas inlet 60 and the combustion gas inlet 52 of the burner 42. The mixer 68 and the fuel gas nozzle 70 comprise a fuel gas passage 76, coaxial with the YY axis and a plurality of combustion gas passages 78 distributed regularly around the fuel gas passage 76. These components are known per se.

Le passage de gaz combustible 76 du mélangeur 68 a un diamètre adapté à un débit de gaz important.The fuel gas passage 76 of the mixer 68 has a diameter adapted to a large gas flow.

Le rapport des diamètres des passages 76 et 78 est adapté pour établir un mélange de gaz stoechiométrique, à débit important.The ratio of the diameters of the passages 76 and 78 is adapted to establish a mixture of stoichiometric gas at a high rate.

Le support de buse à gaz comburant 74 est une pièce de révolution d'axe Y-Y, qui comporte un alésage étagé 80 traversant dont la section transversale diminue à partir de l'extrémité arrière vers l'avant. Le support de buse à gaz comburant 74 comprend une base cylindrique filetée 82, à laquelle se raccorde une partie extérieure tronconique 84.The oxidizing gas nozzle holder 74 is a Y-Y axis revolution member, which has a stepped through bore 80 whose cross-section decreases from the rear end to the front. The oxidizing gas nozzle holder 74 comprises a threaded cylindrical base 82, to which a frustoconical outer portion 84 is connected.

Les moyens 50 de refroidissement et de guidage de la flamme 44 comprennent un manchon de refroidissement 86, dans lequel est disposée la tête de brûleur 48.The means 50 for cooling and guiding the flame 44 comprise a cooling sleeve 86, in which the burner head 48 is arranged.

Le manchon 86 comprend une extrémité d'entrée de gaz 88 et une extrémité de sortie de flamme 90.The sleeve 86 includes a gas inlet end 88 and a flame outlet end 90.

Le manchon 86 comprend, du côté de l'extrémité d'entrée 88, un alésage taraudé étagé 92, dans une partie duquel est vissée la base 82 du support de buse 74 à gaz comburant, de telle sorte que la partie tronconique 84 et le reste de l'alésage étagé 92 forment une chambre annulaire de refroidissement 94 entourant une partie axiale du support de buse 74.The sleeve 86 comprises, on the side of the inlet end 88, a stepped threaded bore 92, in a part of which is screwed the base 82 of the oxidizing gas nozzle holder 74, so that the frustoconical portion 84 and the remainder of the stepped bore 92 form an annular cooling chamber 94 surrounding an axial portion of the nozzle holder 74.

Un alésage radial 96 d'entrée de gaz de refroidissement est ménagé dans le manchon 86, alésage 96 qui débouche dans la chambre de refroidissement 94, et qui est raccordé à des moyens 98 d'alimentation en air de refroidissement.A radial bore 96 of cooling gas inlet is formed in the sleeve 86, bore 96 which opens into the cooling chamber 94, and which is connected to means 98 for supplying cooling air.

Comme illustré sur la Figure 2, ces moyens 98 d'alimentation en air de refroidissement comprennent un premier compresseur d'air 100 relié à une conduite 102 d'air comprimé qui débouche dans la chambre de refroidissement 94 et dans laquelle est insérée une troisième vanne de réglage 104.As illustrated on the Figure 2 these cooling air supply means 98 comprise a first air compressor 100 connected to a compressed air pipe 102 which opens into the cooling chamber 94 and into which is inserted a third control valve 104.

Le manchon 86 comprend en outre des alésages 106 qui s'étendent axialement à partir de la chambre de refroidissement 94 et qui débouchent sur une surface frontale du manchon 86, disposée du côté de l'extrémité de sortie 90 et formée par une gorge annulaire 108 ouverte dans le sens de la flamme F afin de permettre un confinement de la flamme sans perturbation du flux initial.The sleeve 86 further comprises bores 106 which extend axially from the cooling chamber 94 and open onto a front surface of the sleeve 86, disposed on the outlet end side 90 and formed by an annular groove 108 open in the direction of the flame F to allow a confinement of the flame without disturbance of the initial flow.

Comme représenté sur la Figure 4, le manchon 86 comprend huit alésages 106.As shown on the Figure 4 the sleeve 86 comprises eight bores 106.

Le brûleur 42 est en outre muni d'un dispositif d'amorçage 110 de la flamme (voir Figure 2). Ce dispositif d'amorçage 110 comporte deux électrodes d'amorçage 112 qui se terminent à proximité de l'extrémité de sortie 90 du manchon 86. Les électrodes d'amorçage 112 sont connectées par des fils 114 à une source d'électricité 116. Un interrupteur 118 est interposé dans l'un des fils 114, et permet de commander les électrodes 112.The burner 42 is further provided with a device 110 for igniting the flame (see FIG. Figure 2 ). This priming device 110 comprises two priming electrodes 112 which terminate near the outlet end 90 of the sleeve 86. The priming electrodes 112 are connected by wires 114 to an electricity source 116. switch 118 is interposed in one of the wires 114, and makes it possible to control the electrodes 112.

Le dispositif 46 d'introduction de la poudre dans la flamme 44 comprend quatre injecteurs 120A, 120B, 120C, 120D du type connu (voir Figure 4) ainsi qu'un dispositif de fourniture 122 d'un mélange poudre/air, auquel les injecteurs 120A, 120B, 120C, 120D sont raccordés.The device 46 for introducing the powder into the flame 44 comprises four injectors 120A, 120B, 120C, 120D of the known type (see FIG. Figure 4 ) and a supply device 122 of a powder / air mixture, to which the injectors 120A, 120B, 120C, 120D are connected.

Chaque injecteur 120A, 120B, 120C, 120D est essentiellement constitué d'un tube ayant une sortie de poudre 124, adapté pour introduire de la poudre de matériau de revêtement dans la flamme 44 suivant un sens d'introduction IA à ID. Chacun des sens d'introduction IA à ID est dirigé sensiblement radialement à l'axe de flamme Y-Y. Les deux sens d'introduction IA et IB des deux injecteurs 120A, 120B sont inclinés à 45° vers le bas, tandis que les sens d'introduction IC et ID des deux injecteurs 120C, 120D s'étendent sensiblement horizontalement, parallèlement à l'axe X-X et sont dirigés l'un vers l'autre. Les sens d'introduction IA à ID ont donc chacun une composante s'étendant suivant l'axe longitudinal X-X du tuyau 40.Each injector 120A, 120B, 120C, 120D essentially consists of a tube having a powder outlet 124, adapted to introduce the coating material powder into the flame 44 in an insertion direction IA to ID. Each of the introduction directions IA to ID is directed substantially radially to the flame axis Y-Y. The two directions of introduction IA and IB of the two injectors 120A, 120B are inclined at 45 ° downwards, while the introduction directions IC and ID of the two injectors 120C, 120D extend substantially horizontally, parallel to the XX axis and are directed towards each other. The directions of introduction IA to ID therefore each have a component extending along the longitudinal axis X-X of the pipe 40.

Les sens d'introduction IA, IB et IC, ID sont disposés de manière symétrique par rapport au plan P-P.The introduction directions IA, IB and IC, ID are arranged symmetrically with respect to the plane P-P.

Grâce à cette disposition, les particules de la poudre projetées vers le tuyau 40 sont réparties sur une tache imaginaire dont la direction préférentielle s'étend le long de l'axe X-X. En conséquence, peu de particules sont projetées par-dessus ou par-dessous le tuyau 40.With this arrangement, the particles of the powder projected towards the pipe 40 are distributed on an imaginary spot whose preferential direction extends along the axis X-X. As a result, few particles are projected over or under the pipe 40.

Une position symétrique par rapport à un axe horizontal donnerait le même résultat dans le cas où le tuyau 40 est disposé de telle manière que son axe X-X s'étend verticalement.A symmetrical position with respect to a horizontal axis would give the same result in the case where the pipe 40 is arranged in such a way that its axis X-X extends vertically.

Le dispositif de fourniture 122 d'un mélange poudre/air comprend une chambre de mélange 126 de poudre/air ayant une trémie d'entrée 128 pour la poudre de matériau de revêtement et une entrée d'air comprimé 130 qui est reliée à des moyens d'alimentation en air comprimé, formés par un second compresseur 132 et une quatrième vanne de réglage 134.The supply device 122 of a powder / air mixture comprises a powder / air mixing chamber 126 having an inlet hopper 128 for the coating material powder and a compressed air inlet 130 which is connected to means compressed air supply, formed by a second compressor 132 and a fourth control valve 134.

Un dispositif de dosage 140, en l'occurrence un convoyeur à vibrations, est disposé au-dessus de l'entrée de la trémie d'entrée 128.A metering device 140, in this case a vibration conveyor, is disposed above the inlet of the inlet hopper 128.

Le dispositif de dosage 140 est adapté pour être alimenté en poudre de matériau de revêtement par le convoyeur à vis 20A.The metering device 140 is adapted to be supplied with powder coating material by the screw conveyor 20A.

L'installation selon l'invention fonctionne de la façon suivante.The installation according to the invention operates as follows.

Tout d'abord le tuyau en fonte 40 est installé sur le support (non représenté) et est entraîné en rotation autour de l'axe X-X.First, the cast iron pipe 40 is installed on the support (not shown) and is rotated about the X-X axis.

Puis les vannes 58, 66 sont ouvertes. La pression du gaz combustible est réglée à environ 3 bars dans le cas de propane en tant que gaz combustible. La pression du gaz comburant est réglée à environ 8 bars dans le cas d'oxygène en tant que gaz comburant.Then the valves 58, 66 are open. The pressure of the fuel gas is set at about 3 bar in the case of propane as a fuel gas. The pressure of the oxidizing gas is set at about 8 bar in the case of oxygen as the oxidizing gas.

Le débit de gaz combustible est réglé pour obtenir une puissance pouvant atteindre 70 kW. Quant au débit du gaz comburant, il est réglé pour générer une flamme stoechiométrique. La puissance de 70kW correspond à un débit de l'ordre de 7 Nm 3 h

Figure imgb0001
en gaz naturel.The fuel gas flow rate is set to achieve a power of up to 70 kW. As for the flow of the oxidizing gas, it is set to generate a stoichiometric flame. The power of 70kW corresponds to a flow of about 7 nm 3 h
Figure imgb0001
in natural gas.

Le premier compresseur 100 est mis en route et la chambre de refroidissement 94 est alimentée en air sous pression, par exemple sous une pression d'environ 2 bars.The first compressor 100 is started and the cooling chamber 94 is supplied with pressurized air, for example at a pressure of about 2 bar.

Ensuite, la flamme 44 est amorcée par le dispositif d'amorçage 110. La flamme 44 qui est établie a une puissance située entre 30 kW et 70 kW.Then, the flame 44 is initiated by the priming device 110. The flame 44 which is established has a power between 30 kW and 70 kW.

La température maximale de la flamme 44 est comprise entre 2000°C et 3000°C, de préférence comprise entre 2250°C et 2750°C, et notamment entre 2400°C et 2600°C.The maximum temperature of the flame 44 is between 2000 ° C. and 3000 ° C., preferably between 2250 ° C. and 2750 ° C., and in particular between 2400 ° C. and 2600 ° C.

La vitesse maximale des gaz de la flamme 44 est située entre 500 m/s et 2000 m/s, et de préférence entre 700 m/s et 900m/s.The maximum speed of the gases of the flame 44 is between 500 m / s and 2000 m / s, and preferably between 700 m / s and 900 m / s.

Puis le dispositif de fourniture du mélange 122 est mis en route et achemine un mélange air/poudre vers les injecteurs 120A, 120B, 120C, 120D. Le débit de poudre d'un seul injecteur 120A, 120B, 120C, 120D est situé entre 15 kg/h et 50 kg/h, et est de préférence d'environ 35 kg/h par injecteur. Le débit de poudre de l'ensemble des injecteurs est situé entre 60 kg/h et 250 kg/h.Then the supply device of the mixture 122 is started and conveys an air / powder mixture to the injectors 120A, 120B, 120C, 120D. The powder flow rate of a single injector 120A, 120B, 120C, 120D is between 15 kg / h and 50 kg / h, and is preferably about 35 kg / h per injector. The powder flow of all the injectors is between 60 kg / h and 250 kg / h.

Les injecteurs 120A, 120B, 120C, 120D introduisent alors le mélange air/poudre dans la flamme 44 suivant les sens d'introduction IA à ID. La vitesse d'injection de la poudre dans la flamme 44 est située entre 20 m/s et 50 m/s.The injectors 120A, 120B, 120C, 120D then introduce the air / powder mixture into the flame 44 in the directions of introduction IA to ID. The injection speed of the powder in the flame 44 is between 20 m / s and 50 m / s.

Les particules de poudre sont alors entraînées par la flamme 44 dans le sens F de celle-ci. Elles sont fondues complètement par la flamme 44 et forment des gouttelettes de matière de revêtement fondu. Grâce au fait que les dimensions des particules sont situées à l'intérieur de la plage précitée, les particules sont fondues complètement sans pour autant s'évaporer. Les gouttelettes sortent de la flamme 44 d'une manière suffisamment rapide pour éviter leur évaporation.The powder particles are then driven by the flame 44 in the direction F thereof. They are melted completely by the flame 44 and form droplets of molten coating material. Because the particle sizes are within the above range, the particles are melted completely without evaporating. The droplets exit the flame 44 in a sufficiently rapid manner to prevent their evaporation.

Les gouttelettes sont projetées sur le tuyau 40. La distance entre la flamme 44 et le tuyau 40 est choisie de telle sorte que les gouttelettes sont encore à l'état liquide lorsqu'elles rencontrent le tuyau.The droplets are projected onto the pipe 40. The distance between the flame 44 and the pipe 40 is chosen so that the droplets are still in the liquid state when they meet the pipe.

Les gouttelettes adhèrent au tuyau 40 et se solidifient en formant un revêtement.The droplets adhere to the pipe 40 and solidify to form a coating.

Afin de revêtir la surface extérieure suivant la longueur du tuyau 40, celui-ci est entraîné en translation suivant l'axe X-X.In order to coat the outer surface along the length of the pipe 40, the latter is driven in translation along the axis X-X.

Le procédé selon l'invention permet de revêtir un objet d'une couche de revêtement à un haut débit en masse de poudre tout en utilisant de la poudre récupérée de procédés de revêtements précédents. De plus, le procédé selon l'invention atteint un rendement semblable à celui des procédés de revêtement à la flamme utilisant un matériau de revêtement en forme de fil, à savoir de l'ordre de 60%.The method according to the invention makes it possible to coat an object with a coating layer at a high flow rate in mass of powder while using powder recovered from previous coating processes. In addition, the process according to the invention achieves a yield similar to that of flame coating processes using a wire-like coating material, namely of the order of 60%.

Le dispositif selon l'invention ainsi que les paramètres de procédé permettent d'utiliser une poudre constituée d'un alliage à faible point de fusion (environ 450°C), tel que du Zn85Al15, en tant que matériau de revêtement.The device according to the invention as well as the process parameters make it possible to use a powder consisting of a low melting point alloy (about 450 ° C.), such as Zn 85 Al 15 , as a coating material.

D'une manière générale, la poudre est constituée d'au moins 50% d'un métal ou d'un alliage dont le point de fusion est situé entre 400°C et 500°C, de préférence situé entre 425°C et 475°C.In general, the powder consists of at least 50% of a metal or alloy whose melting point is between 400 ° C. and 500 ° C., preferably between 425 ° C. and 475 ° C. ° C.

En variante, la chambre de mélange 126 peut être reliée à une source de gaz d'acheminement autre que de l'air, par exemple une source d'un gaz inerte.Alternatively, the mixing chamber 126 may be connected to a source of gas other than air, for example a source of an inert gas.

En variante encore, le dispositif de revêtement peut être muni d'un nombre d'injecteurs autre que quatre, par exemple de deux injecteurs ou de six injecteurs.In another variant, the coating device may be provided with a number of injectors other than four, for example two injectors or six injectors.

Par ailleurs, le dispositif de traitement de la poudre peut comporter un dispositif de séchage et/ou de désoxydation de la poudre, afin d'améliorer la faculté d'écoulement de cette dernière et/ou la qualité du revêtement.Furthermore, the powder treatment device may comprise a device for drying and / or deoxidation of the powder, in order to improve the flowability of the latter and / or the quality of the coating.

Claims (19)

  1. A process for coating an object (40) requiring coating using a fusible coating material comprising the stages of:
    - establishing a flame (44), having a maximum flame speed and flame direction (F) which coincide with a flame axis (Y-Y), which is directed towards the object (4) requiring coating,
    - adding a quantity of fusible coating material into the said flame (44),
    - selecting the maximum flame speed and the distance between the object (40) requiring coating and the flame (44) so that the fusible coating material is projected onto the object (40) requiring coating in such a way that at least part of the quantity of fusible coating material is in the fused state when it impacts against the object (40) requiring coating,
    - the quantity of usable coating material comprising powder made up of particles,
    - the flame (44) having a temperature sufficiently low for the powder particles not to be wholly evaporated and sufficiently high for the powder particles to be at least partly fused,
    characterised in that at least a portion of the powder is a waste powder originating from a spray coating process, in which the powder comprises an alloy comprising at least 50% by weight of Zn, in particular at least 85% by weight of Zn and preferably at least 95% by weight of Zn, and in that the remainder of the alloy includes aluminium, and in particular comprises aluminium.
  2. A coating process according to claim 1, characterised in that the quantity of material is in powder form.
  3. A coating process according to claim 1 or 2, characterised in that the particles have a largest dimension of less than 1000 µm, preferably less than 800 µm and in particular less than 500 µm.
  4. A coating process according to any one of claims 1 to 3, characterised in that the particles have a smallest dimension of more than 20 µm, preferably more than 40 µm, and in particular more than 60 µm.
  5. A coating process according to any one of claims 1 to 4, characterised in that the material is added to the flame (44) in at least one direction of addition (IA to ID) and in that the direction of addition (IA to ID) comprises a radial component in relation to the flame axis (Y-Y).
  6. A coating process according to claim 5, characterised in that the direction of addition (IA to ID) is directed substantially radially with respect to the flame axis (Y-Y).
  7. A coating process according to claim 5 or 6, characterised in that the object (40) requiring coating extends along a longitudinal axis (X-X) and in that the direction in which a component is added (IA to ID) extends parallel to the longitudinal axis (X-X).
  8. A coating process according to claim 7, characterised in that the direction of addition (IC, ID) is substantially parallel to the longitudinal axis (X-X) of the object (40) requiring coating.
  9. A coating process according to claim 7 or 8, characterised in that the material is added into the flame (44) in at least two directions of addition (IA, IB; IC, ID) and in that these two directions are symmetrical on either side of a plane (P-P) which includes the flame axis (Y-Y) and is perpendicular to the longitudinal axis (X-X) of the object requiring coating.
  10. A coating process according to any one of the preceding claims, characterised in that the powder is added to the flame through at least one injector (120A, 120B, 120C, 120D) and in that the flow of powder injected into the flame is between 60 kg/h and 250 kg/h.
  11. A coating process according to any one of the preceding claims, characterised in that the maximum flame speed is between 500 m/s and 2000 m/s, and preferably lies between 700 m/s and 900 m/s.
  12. A coating process according to any one of the preceding claims, characterised in that the waste powder originates from an arc-wire coating process using a wire or bead of fusible coating material as the starting material.
  13. A coating process according to any one of the preceding claims, characterised in that the said portion of the powder is obtained by screening a quantity of unprocessed waste powder.
  14. A coating process according to claim 13, characterised in that at least the said portion of powder is subjected to an operation of drying or deoxidation before addition to the flame (44).
  15. A coating process according to any one of the preceding claims, characterised in that the maximum temperature of the flame is between 2000°C and 3000°C, preferably between 2250°C and 2750°C, and in particular between 2400°C and 2600°C.
  16. A flame coating device designed to implement the process according to any one of the preceding claims, of the type comprising:
    - a burner (42) designed to be connected to a source of combustible gas (62) and designed to produce a flame (44) along a flame axis (Y-Y),
    - means (46) for adding a fusible coating material to the flame,
    - characterised in that
    the device comprises a feed container (8A, 8B, 8C) containing at least in part a waste powder originating from a spray coating process and feed means (18) for the means (46) for addition from the feed container (8A, 8B, 8C), in that the means (46) for addition of the fusible coating material are designed to add the fusible coating material to the flame (44) in powder form, and in that the powder comprises an alloy comprising at least 50% by weight of Zn, in particular at least 85% by weight of Zn, and preferably at least 95% by weight of Zn, and in that the remainder of the alloy includes aluminium, and in particular comprises aluminium.
  17. A device according to claim 16, characterised in that the means (46) of addition comprise an injector (120A, 120B, 120C, 120D) designed to add a powder mixture of coating material/delivery gas to the flame (44) in a direction of addition (IA, IB, IC, ID).
  18. A device according to claim 17, characterised in that the direction of addition (IA, IB, IC, ID) is substantially radial with respect to the flame axis (Y-Y).
  19. A device according to either of claims 17 or 18, characterised in that it also comprises a mixer (120) for coating material/delivery gas comprising a powder inlet (128), a delivery gas inlet (130) designed to be connected to a source of delivery gas (132) and an outlet for the coating material powder/delivery gas mixture, in that the mixer (120) is designed to mix the powder with a flow of delivery gas, and in that the output of the mixture of coating material powder/delivery gas is connected to at least one injector (120A, 120B, 120C, 120D).
EP04742532A 2003-04-23 2004-04-16 Flame covering method and corresponding device Expired - Lifetime EP1616041B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0304986A FR2854086B1 (en) 2003-04-23 2003-04-23 FLAME COATING METHOD AND CORRESPONDING DEVICE
PCT/FR2004/000952 WO2004097060A1 (en) 2003-04-23 2004-04-16 Flame covering method and corresponding device

Publications (2)

Publication Number Publication Date
EP1616041A1 EP1616041A1 (en) 2006-01-18
EP1616041B1 true EP1616041B1 (en) 2008-03-26

Family

ID=33104339

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04742532A Expired - Lifetime EP1616041B1 (en) 2003-04-23 2004-04-16 Flame covering method and corresponding device

Country Status (11)

Country Link
US (1) US20070026157A1 (en)
EP (1) EP1616041B1 (en)
CN (1) CN1798859B (en)
AT (1) ATE390498T1 (en)
BR (1) BRPI0410501B1 (en)
CA (1) CA2522932C (en)
DE (1) DE602004012728T2 (en)
ES (1) ES2304611T3 (en)
FR (1) FR2854086B1 (en)
RU (1) RU2353704C2 (en)
WO (1) WO2004097060A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007005306B4 (en) * 2007-02-02 2019-03-07 Gema Switzerland Gmbh Powder feed device from a powder spray coating machine
US20100009093A1 (en) * 2007-04-11 2010-01-14 Scott Coguill L Thermal spray formation of polymer coatings
DE102008028960B4 (en) * 2008-06-18 2020-02-27 Daimler Ag Process for the thermal coating of a cylinder bore using a mask
DE102008028965B4 (en) * 2008-06-18 2020-01-16 Daimler Ag Mask for the thermal coating of a cylinder bore
WO2012025627A1 (en) * 2010-08-27 2012-03-01 Ocas Onderzoekscentrum Voor Aanwending Van Staal N.V. Method for depositing a coating on a substrate by chemical vapour deposition
CA2872274C (en) * 2012-06-23 2016-11-29 Frito-Lay North America, Inc. Deposition of ultra-thin inorganic oxide coatings on packaging
DE102017220522A1 (en) * 2017-11-17 2019-05-23 Bayerische Motoren Werke Aktiengesellschaft Process for coating components
CN109023206A (en) * 2018-07-12 2018-12-18 秦小梅 A kind of ultrasound electric arc metal spraying equipment
IT201800007939A1 (en) * 2018-08-07 2020-02-07 Ibix Srl METHOD AND EQUIPMENT FOR COATING TUBULAR ELEMENTS WITH THERMOPLASTIC POWDERS
CN110201829B (en) * 2019-06-22 2020-09-25 徐州华正铸业有限公司 Cast iron pipe zinc spraying machine with function of quickly spraying zinc

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4011073A (en) * 1975-07-02 1977-03-08 Gte Sylvania Incorporated Flame spray powder of cobalt-molybdenum mixed metal agglomerates using a molybdenum salt binder and process for producing same
US4031278A (en) * 1975-08-18 1977-06-21 Eutectic Corporation High hardness flame spray nickel-base alloy coating material
US4075008A (en) * 1977-04-04 1978-02-21 United States Steel Corporation Method for the reclamation of zinc from galvanizing baths
US4604306A (en) * 1985-08-15 1986-08-05 Browning James A Abrasive blast and flame spray system with particle entry into accelerating stream at quiescent zone thereof
JPH08965B2 (en) * 1986-02-17 1996-01-10 住友金属工業株式会社 Method of supplying thermal spray material
US4696855A (en) * 1986-04-28 1987-09-29 United Technologies Corporation Multiple port plasma spray apparatus and method for providing sprayed abradable coatings
DE3625659A1 (en) * 1986-07-29 1988-02-04 Utp Schweissmaterial METHOD FOR COATING COMPONENTS, AND DEVICE FOR CARRYING OUT THE METHOD
US5271965A (en) * 1991-01-16 1993-12-21 Browning James A Thermal spray method utilizing in-transit powder particle temperatures below their melting point
DE4129120C2 (en) * 1991-09-02 1995-01-05 Haldenwanger Tech Keramik Gmbh Method and device for coating substrates with high temperature resistant plastics and use of the method
US5445514A (en) * 1993-09-22 1995-08-29 Heitz; Lance A. Refractory material coated metal surfaces adapted for continuous molding of concrete blocks
US5834066A (en) * 1996-07-17 1998-11-10 Huhne & Kunzli GmbH Oberflachentechnik Spraying material feeding means for flame spraying burner
US6017591A (en) * 1996-11-14 2000-01-25 Ford Global Technologies, Inc. Method of making adherently sprayed valve seats
CN2382477Y (en) * 1999-07-09 2000-06-14 陈加印 High speed particle flame sprayer
DE10022161C1 (en) * 2000-05-09 2002-01-03 Deutsch Zentr Luft & Raumfahrt Process for coating the surfaces of heat exchangers, evaporators and vaporizers comprises thermally coating the starting material on the carrier material and applying individual particles in a flame at a temperature to melt on the surface
US6503575B1 (en) * 2000-05-22 2003-01-07 Praxair S.T. Technology, Inc. Process for producing graded coated articles
JP4250927B2 (en) * 2002-08-23 2009-04-08 スズキ株式会社 Thermal spraying apparatus and method of using the same
US6863930B2 (en) * 2002-09-06 2005-03-08 Delphi Technologies, Inc. Refractory metal mask and methods for coating an article and forming a sensor

Also Published As

Publication number Publication date
WO2004097060A1 (en) 2004-11-11
FR2854086B1 (en) 2007-03-30
CA2522932A1 (en) 2004-11-11
BRPI0410501A (en) 2006-06-20
RU2005136352A (en) 2007-06-27
CN1798859A (en) 2006-07-05
FR2854086A1 (en) 2004-10-29
US20070026157A1 (en) 2007-02-01
CA2522932C (en) 2012-04-03
RU2353704C2 (en) 2009-04-27
BRPI0410501B1 (en) 2016-04-05
ATE390498T1 (en) 2008-04-15
DE602004012728D1 (en) 2008-05-08
ES2304611T3 (en) 2008-10-16
DE602004012728T2 (en) 2009-04-16
CN1798859B (en) 2010-11-03
EP1616041A1 (en) 2006-01-18

Similar Documents

Publication Publication Date Title
EP1616041B1 (en) Flame covering method and corresponding device
EP2346640B1 (en) Method for co2 / laser welding with a dynamic jet nozzle
FR2648068A1 (en) LASER WELDING METHOD AND APPARATUS
WO1993013871A1 (en) Coaxial nozzle for surface treatment by laser beam, with supply of materials in powder form
FR2737138A1 (en) METHOD AND DEVICE FOR SPRAYING A LIQUID PRODUCT
FR2653369A1 (en) LASER PLASMA RECOVERY DEVICE AND METHOD FOR ITS IMPLEMENTATION.
EP2802435B1 (en) Mig/tig or mag/tig hybrid welding device
EP0896853B1 (en) Process and apparatus for manufacturing welded metal pipes
EP2240294B1 (en) Method for laser welding using a nozzle capable of stabilising the keyhole
EP3033180A1 (en) Sprayer for a liquid coating product and spraying facility comprising such a sprayer
EP0965791B1 (en) Nozzle to inject fuel as a mist like spray for a fuel burner and burner comprising such a nozzle
EP0766595B1 (en) Process for spraying a dispersible liquid material
FR2571484A1 (en) METHOD AND DEVICE FOR PROGRESSIVELY MELTING BAR-SHAPED MATERIAL USING AN INDUCTION COIL
CH643159A5 (en) FLAME SPRAY GUN.
EP0634887B1 (en) Transferred arc plasma torch
FR2464780A1 (en) METHOD OF WELDING STUDS WITHOUT ENCRYPTING THE ADJACENT SURFACE AND APPARATUS FOR CARRYING OUT SAID METHOD
EP1598139A1 (en) TIG welding method
CA2423140C (en) Method for preparing nuclear metal or metal alloy particles
WO2001066298A1 (en) Double stream torch for arc welding
EP0630690B1 (en) Air assisted flat jet spraying device for spraying coating material
EP0545792A1 (en) Procedure for build-up arc weld and device therefor
BE342572A (en)
FR2540889A1 (en) Method for forming a wear-resistant coating on the surface of a metal substrate
FR2728892A1 (en) Pyrotechnic compsn. mfg. procedure
LU88519A1 (en) Lance and method for injecting a pulverulent solid fuel into a blast furnace crucible

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051017

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602004012728

Country of ref document: DE

Date of ref document: 20080508

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
LTIE Lt: invalidation of european patent or patent extension

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2304611

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: SAINT-GOBAIN PAM

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080901

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080626

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080927

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080627

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20120313

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130416

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20160317

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210310

Year of fee payment: 18

Ref country code: IT

Payment date: 20210310

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210324

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210323

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210507

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170416

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004012728

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220416

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220417