JPH08965B2 - Method of supplying thermal spray material - Google Patents

Method of supplying thermal spray material

Info

Publication number
JPH08965B2
JPH08965B2 JP61032559A JP3255986A JPH08965B2 JP H08965 B2 JPH08965 B2 JP H08965B2 JP 61032559 A JP61032559 A JP 61032559A JP 3255986 A JP3255986 A JP 3255986A JP H08965 B2 JPH08965 B2 JP H08965B2
Authority
JP
Japan
Prior art keywords
plasma
powder
amount
supply
supply pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61032559A
Other languages
Japanese (ja)
Other versions
JPS62192572A (en
Inventor
雄司 成田
隆夫 鈴木
篤盛 水口
征弘 木谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP61032559A priority Critical patent/JPH08965B2/en
Publication of JPS62192572A publication Critical patent/JPS62192572A/en
Publication of JPH08965B2 publication Critical patent/JPH08965B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Coating By Spraying Or Casting (AREA)

Description

【発明の詳細な説明】 利用産業分野 この発明は、各種材料をコーティングするためのプラ
ズマ溶射装置に、溶射材料粉末を外部より供給する溶射
材料の供給方法の改良に係り、溶射量の増大、皮膜付着
率の向上、溶射皮膜の緻密性及び密着性の向上を図った
溶射材料の供給方法に関する。
Description: FIELD OF THE INVENTION The present invention relates to an improvement in a method of supplying a thermal spraying material for externally supplying a thermal spraying material powder to a plasma spraying apparatus for coating various materials. The present invention relates to a method for supplying a thermal spray material, which has an improved adhesion rate and improved denseness and adhesion of the thermal spray coating.

背景技術 溶射は、20世紀初頭に、低融点金属を溶融吹き付けし
た技術に端を発し、金属の溶射を主体に発達してきた。
近年では、プラズマを熱源として、高温材料の皮膜形成
が行なわれてきた。
Background Art In the early 20th century, thermal spraying originated from the technology of melt-spraying low-melting-point metals, and developed mainly for thermal spraying of metals.
In recent years, a film of a high temperature material has been formed using plasma as a heat source.

プラズマ溶射の特徴として、次の点が上げられる。 The characteristics of plasma spraying are as follows.

10000゜K〜20000゜Kの高温のフレームを用いるため、
高融点のセラミックスや金属の溶射が可能である。
Since a high temperature frame of 10000 ° K to 20000 ° K is used,
High melting point ceramics and metals can be sprayed.

亜音速から超音速の高速度フレームを用いるため、
溶射材料粒子の飛行速度が高速で皮膜の密着強度が高
い。
Since we use high speed frames from subsonic to supersonic,
The spray speed of particles of thermal spray material is high and the adhesion strength of coating is high.

溶射出力制御が容易かつ正確にできる。 The spray output can be controlled easily and accurately.

ガス種類の選択によって雰囲気を設定できるため、
溶射に適した種々の雰囲気中で皮膜形成が可能である。
Since the atmosphere can be set by selecting the gas type,
A film can be formed in various atmospheres suitable for thermal spraying.

プラズマ溶射は、かかる特徴を生かし、耐食性,耐摩
耗性,耐熱性等の各種機能を付与できる皮膜を容易に形
成できるため、多方面に利用され、発達してきた。
Plasma spraying has been utilized and developed in various fields because it can easily form a coating film that can impart various functions such as corrosion resistance, abrasion resistance, and heat resistance by taking advantage of such characteristics.

プラズマ溶射のプラズマ溶射ガンは、高温になる電極
の水冷保持や外気の巻込み等の影響から、実際に溶射に
利用できる熱量と運動量の変換効率が低いという特徴も
ある。
The plasma spraying gun of plasma spraying is also characterized in that the efficiency of conversion of heat and momentum that can actually be used for spraying is low due to the effects of maintaining the electrode to be cooled with water and entraining outside air.

従って、プラズマ溶射は、特に供給される粉末の溶射
材料の性状によって、溶融状態が変化し、被着後の皮膜
重量を供給溶射材料重量で除した付着率、あるいは皮膜
中に生成する気孔の発生量(以下気孔量という)が変動
し易く、また、皮膜の基材への密着強度も安定し難い問
題があった。
Therefore, in plasma spraying, the molten state changes depending on the properties of the powdered spray material to be supplied, and the deposition rate obtained by dividing the weight of the coating after deposition by the weight of the sprayed material supplied or the generation of pores generated in the coating There is a problem that the amount (hereinafter referred to as the amount of pores) is likely to fluctuate, and the adhesion strength of the coating to the substrate is difficult to stabilize.

このため、従来は、ガス種の選定、溶射材料粉末粒度
の微細化、外気巻込みの軽減などの種々の技術が開発さ
れ、前記付着率や気孔量及び密着強度の改善が図られて
きた。
Therefore, conventionally, various techniques have been developed such as selection of gas type, finer particle size of thermal spraying material powder, reduction of entrainment of outside air, etc. to improve the adhesion rate, the amount of pores and the adhesion strength.

また、溶射材料粉末(以下粉体という)の供給方法
も、種々の方法が実施されている。
In addition, various methods have been implemented as a method for supplying the thermal spray material powder (hereinafter referred to as powder).

溶射材料の供給方法は、プラズマ溶射ガンのトーチ部
分と粉末供給管との位置関係により、内部供給方式と外
部供給方式に大別される。
The method of supplying the thermal spray material is roughly classified into an internal supply method and an external supply method depending on the positional relationship between the torch portion of the plasma spray gun and the powder supply pipe.

内部供給方式は、第6図に示す如く、トーチ(11)の
ノズル(12)近くに粉体の供給管(14)が内蔵配置さ
れ、粉体をプラズマフレームの高温域に供給でき材料の
溶融が完全になるため、付着率と皮膜密着強度が向上す
るが、溶融粒子がノズル(12)内面に付着し易くなるた
め、供給量が制限される問題があり、また、トーチ電極
の冷却管と共に供給管を内蔵するため、ノズル構造が複
雑になる問題もある。
As shown in FIG. 6, the internal supply system has a powder supply pipe (14) built-in near the nozzle (12) of the torch (11), which can supply the powder to the high temperature region of the plasma flame and melt the material. The adhesion rate and the film adhesion strength are improved because the heat treatment is completed, but there is a problem that the supply amount is limited because the molten particles easily adhere to the inner surface of the nozzle (12). Since the supply pipe is built in, there is also a problem that the nozzle structure becomes complicated.

これに対して、外部供給方式は第5図に示す如く、ノ
ズル(12)の噴射口(13)近傍に供給管(14)を配置し
ているので、粉体の供給量を容易に増大させることがで
きるが、プラズマフレーム(8)の高温域に材料粉末が
到達できず(第5図の粉体軌跡10参照)、溶融が不完全
になり易く、付着率が低下するため、供給量に制約が生
じる問題がある。
On the other hand, in the external supply method, as shown in FIG. 5, since the supply pipe (14) is arranged in the vicinity of the injection port (13) of the nozzle (12), the powder supply amount can be easily increased. However, the material powder cannot reach the high temperature region of the plasma flame (8) (see powder locus 10 in Fig. 5), melting tends to be incomplete, and the adhesion rate decreases, so the supply amount There is a problem of constraints.

また、粉体の搬送ガス量を増やすことも考えられる
が、電力調整とは異なり、粉体種や溶射条件に応じたガ
ス量の微調整は困難で、その応答性にも欠け、粉体がプ
ラズマフレーム(8)を突き抜け(第5図の粉体軌跡10
a参照)、外気の巻込みの増大からプラズマフレーム
(8)のゆらぎを生じる問題があった。
It is also possible to increase the amount of powder carrier gas, but unlike power adjustment, it is difficult to finely adjust the amount of gas according to the type of powder and spraying conditions, and its responsiveness is lacking. Penetrate through the plasma flame (8).
(See a), there is a problem that fluctuations of the plasma flame (8) occur due to an increase in the inclusion of outside air.

この外部供給方式で、プラズマフレームの高温域に粉
体を到達させるため、第7図に示す如く、粉体供給管
(14)をノズル(12)の噴射口(13)方向に傾斜させる
方法があるが、供給管(14)口を損傷し易い問題があっ
た。
In order to make the powder reach the high temperature region of the plasma flame with this external supply method, there is a method of inclining the powder supply pipe (14) toward the injection port (13) of the nozzle (12) as shown in FIG. However, there was a problem that the mouth of the supply pipe (14) was easily damaged.

発明の目的 この発明は、かかる現状に鑑み、各種材料をコーティ
ングするためのプラズマ溶射装置に、粉体を外部より供
給する溶射材料の供給方法の改良を目的とし、溶射量の
増大、皮膜付着率の向上、溶射皮膜の緻密性及び密着性
の向上を図った溶射材料の供給方法を目的としている。
SUMMARY OF THE INVENTION In view of the present circumstances, the present invention aims to improve the method of supplying a thermal spray material for externally supplying powder to a plasma spray apparatus for coating various materials, increasing the thermal spray amount, and coating deposition rate. It is an object of the present invention to provide a method for supplying a thermal spraying material, which is intended to improve the thermal conductivity, the denseness of the thermal spray coating, and the adhesion.

発明の構成と効果 この発明は、溶射量の増大、皮膜付着率の向上、溶射
皮膜の緻密性及び密着性の向上を目的に種々検討した結
果、複数の粉体供給管をノズル中心軸に直交する同一平
面上に、中心軸に対して等角度配置することにより、初
期の目的を達成できることを知見したものである。
Structure and effect of the present invention The present invention has variously studied for the purpose of increasing the amount of thermal spraying, improving the coating deposition rate, and improving the denseness and adhesion of the thermal spray coating. As a result, a plurality of powder supply pipes are orthogonal to the central axis of the nozzle. It was discovered that the initial purpose can be achieved by arranging the same angle on the same plane with respect to the central axis.

すなわち、この発明は、プラズマ溶射装置のプラズマ
フレームに、粉体からなる溶射材料を外部に配置した粉
体供給管にてガス搬送供給する溶射材料の供給方法にお
いて、プラズマジェットトーチの1つのプラズマフレー
ムに対し、2本以上,5本以下の粉体供給管を、該トーチ
のプラズマフレーム中心軸に直交する1平面上で、各供
給管軸をプラズマフレーム中心軸の1点で交差させ、か
つプラズマフレーム中心軸回りに等角度で配置し、各供
給管よりガス搬送した粉体をプラズマフレーム中心軸の
直交方向に噴射し、プラズマフレーム中で相互に衝突さ
せることを特徴とする溶射材料の供給方法である。
That is, according to the present invention, in a method for supplying a thermal spray material to a plasma flame of a plasma thermal spraying apparatus, in which a thermal spray material made of powder is gas-conveyed and supplied by a powder supply pipe disposed outside, one plasma flame of a plasma jet torch. On the other hand, two or more and five or less powder supply pipes are made to intersect each other at one point of the plasma frame center axis on one plane orthogonal to the plasma frame center axis of the torch, and plasma A method for supplying a thermal spraying material, characterized in that the powder is carried from each supply pipe at equal angles around the frame central axis, and the powder is jetted in a direction orthogonal to the central axis of the plasma frame and collides with each other in the plasma frame. Is.

さらに詳述すれば、トーチ(1)の噴射口(3)から
でるプラズマフレーム(8)の中心軸(4)に、直交す
る1平面上の粉体供給管の配置は、例えば、2本の粉体
供給管(5)(6)は、第1図と第2図に示す如く、プ
ラズマフレーム(8)の中心軸(4)回りに、等角度の
180°、すなわち、該トーチ(1)のプラズマフレーム
中心軸(4)の0点で直交する1軸上に、供給管軸
(7)を一致させて対向配置し、3本の場合は、第3図
に示す如く、各供給管軸(7)をプラズマフレーム中心
軸(7)の1点(0)で交差させ、かつプラズマフレー
ム中心軸(4)回りに等角度の120°で配置し、4本,5
本の場合は、同様にそれぞれプラズマフレーム中心軸
(4)回りに等角度90°,72°間隔で配置するものであ
る。
More specifically, the powder supply pipes on one plane orthogonal to the central axis (4) of the plasma flame (8) coming out from the injection port (3) of the torch (1) are arranged, for example, in two pieces. The powder supply pipes (5) and (6) are equiangular around the central axis (4) of the plasma flame (8) as shown in FIGS. 1 and 2.
180 °, that is, the feed tube axis (7) is aligned on one axis orthogonal to the plasma flame center axis (4) of the torch (1) at a point 0, and in the case of three, As shown in FIG. 3, each supply pipe axis (7) intersects at one point (0) of the plasma frame center axis (7) and is arranged at an equal angle of 120 ° around the plasma frame center axis (4). Four, five
In the case of the book, they are similarly arranged around the central axis (4) of the plasma flame at equal angles of 90 ° and 72 °.

上記の供給管配置を取り、各供給管よりガス搬送した
粉体をプラズマフレーム中心軸に直交方向に噴射し、プ
ラズマフレームに衝突させることにより、粉体のプラズ
マフレーム内での飛行距離が長く、充分に溶融し、皮膜
付着率の向上が得られ、溶射量が増大可能となり、さら
に溶射皮膜の緻密性及び密着性が向上する効果が得られ
る。
Taking the above-mentioned supply pipe arrangement, by injecting the powder carrying the gas from each supply pipe in the direction orthogonal to the central axis of the plasma frame and colliding with the plasma frame, the flight distance of the powder in the plasma frame is long, It sufficiently melts, the coating deposition rate is improved, the amount of thermal spraying can be increased, and the effect of improving the denseness and adhesion of the thermal sprayed coating can be obtained.

この発明において、供給管は、トーチのプラズマフレ
ーム中心軸に直交する1平面上で、各供給軸をプラズマ
フレーム中心軸の1点で交差させ、かつプラズマフレー
ム中心軸回りに等角度で配置することを特徴とする。従
って、第4図に示す所謂グレデット溶射の際に行なわれ
る供給管配置の如く、2本の供給管(5)(6)を用い
ても、両供給管(5)(6)間隔がプラズマフレーム中
心軸(4)回りに不等角度、すなわち対向配置でない
と、後述の実施例で明らかなように、種々粉体や用途の
溶射における上記のこの発明の効果が得られない。この
場合、ある軸(例えば鉛直軸)に等角度(180°未満)
に配置され、粉体の受ける重力の影響を考慮したもの
で、この発明の趣旨とは異なる。
In the present invention, the supply pipes are arranged on one plane orthogonal to the plasma flame central axis of the torch, the supply axes intersecting at one point of the plasma frame central axis, and arranged at equal angles around the plasma frame central axis. Is characterized by. Therefore, even if two supply pipes (5) and (6) are used as in the arrangement of supply pipes performed in so-called graded spraying shown in FIG. Unless it is arranged at an unequal angle around the central axis (4), that is, facing each other, the effects of the present invention in thermal spraying of various powders and applications cannot be obtained, as will be apparent from the examples described later. In this case, an angle (less than 180 °) to a certain axis (eg vertical axis)
The present invention is arranged in consideration of the influence of gravity on the powder, which is different from the gist of the present invention.

また、粉体供給管が5本を越えると、供給管の配置に
寸法上の制約が生じ、また、搬送ガスによる粉体の吐出
量に大きな脈動を生じて好ましくなく、付着率の向上効
果は得られるが、粉体表面のみが溶融するなどの溶融低
下を生じ、皮膜の緻密度の低下や密着性の低下を招来し
好ましくない。
Further, when the number of powder supply pipes exceeds 5, dimensional restrictions are placed on the arrangement of the supply pipes, and a large pulsation occurs in the discharge amount of powder by the carrier gas, which is not preferable, and the effect of improving the adhesion rate is not achieved. Although it can be obtained, it is not preferable because it causes a decrease in melting such as melting only on the surface of the powder, resulting in a decrease in film density and a decrease in adhesion.

発明の好ましい実施態様 以下にこの発明による粉体の供給機構における好まし
い条件を説明する。
Preferred Embodiments of the Invention Preferred conditions in the powder supply mechanism according to the present invention will be described below.

この発明において、2〜5本の複数の粉体供給管は、
各供給管軸がプラズマフレーム中心軸に直交し、かつ1
点で交差することが必要である。これは、各供給管よ
り、同一量の搬送ガスにて、同一重量の粉体を供給した
際に、各供給管からの粉体を、プラズマフレームの高温
域に効率よく衝突させるために不可欠な条件であり、ま
た、供給管軸とプラズマフレーム中心軸の交点は、ノズ
ルに近い程、高融点材料の溶射には有利となる。
In the present invention, the plurality of powder supply pipes of 2 to 5 are
Each supply pipe axis is orthogonal to the plasma frame center axis, and 1
It is necessary to cross at points. This is indispensable for efficiently colliding the powder from each supply pipe with the high temperature region of the plasma flame when the same weight of powder is supplied from each supply pipe with the same amount of carrier gas. This is a condition, and the closer the intersection of the supply tube axis and the plasma flame center axis is to the nozzle, the more advantageous it is for thermal spraying of the high melting point material.

さらに、プラズマフレーム中心軸に直交する1平面上
に配置された供給管は、プラズマフレーム中心軸回りに
等角度で配置されることにより、各供給管からの粉体が
プラズマフレームの高温域に効率よく供給され、かつ粉
体が均一に溶融する。
Further, the supply pipes arranged on one plane orthogonal to the plasma frame center axis are arranged at equal angles around the plasma frame center axis, so that the powder from each supply pipe can be efficiently used in the high temperature region of the plasma frame. It is well supplied and the powder melts uniformly.

一般に、高速のプラズマフレームに粉体に確実に衝突
させるためには、搬送ガスの運動エネルギーを増大させ
る必要があるが、逆にプラズマフレームを冷却すること
にもなり、搬送ガス量の選定が良好な溶射を行なう上で
不可欠である。
Generally, it is necessary to increase the kinetic energy of the carrier gas in order to surely collide the powder with the high-speed plasma frame, but it also cools the plasma frame, and the amount of carrier gas is well selected. It is indispensable for performing proper thermal spraying.

この発明において、供給管1本当たりの搬送ガス量は
作動ガスに対して、体積比で7〜10の量比が好ましい。
該体積比が7未満では、粉体の搬送エネルギーが低下し
て送給困難となり易く、10を越えると粉体相互の衝突は
円滑に進むが、フレーム温度を低下させて溶融状態が悪
化するため好ましくない。また、高融点の酸化物系セラ
ミックス材料などを溶射する場合は、搬送ガス量を多く
し、低融点で化学変化し易い金属などを溶射する場合
は、搬送ガス量を少なくするなど、粉体種類と所要用途
の溶射条件に応じて、適宜選定する必要がある。
In the present invention, the amount of carrier gas per supply pipe is preferably 7 to 10 in volume ratio with respect to the working gas.
When the volume ratio is less than 7, the powder transport energy is lowered and it becomes difficult to feed the powder. When the volume ratio is more than 10, the collision of the powder particles proceeds smoothly, but the flame temperature is lowered and the molten state is deteriorated. Not preferable. Also, when spraying a high melting point oxide-based ceramic material, etc., increase the carrier gas amount, and when spraying a metal with a low melting point that is susceptible to chemical changes, reduce the carrier gas amount. Therefore, it is necessary to select it appropriately according to the thermal spraying conditions of the required application.

この発明において、異なる供給管からの粉体のプラズ
マフレーム(8)中の衝突(第1図の粉体軌跡10参照)
は、実際には、プラズマが高速のために、第1図に示す
如く、中心軸(4)と供給管軸(7)との交点(0)よ
り、基材(9)側へずれた点(0′)で起るが、前記の
搬送ガス量を維持することにより、該(0′)点を、プ
ラズマフレームの10000゜K以上の領域内に設定できるた
め、粉体の高温域での溶融が可能で良好な溶射ができ
る。
In the present invention, collision of powder from different supply pipes in the plasma flame (8) (see powder locus 10 in FIG. 1)
In fact, because of the high speed of the plasma, as shown in FIG. 1, the point deviated from the intersection (0) of the central axis (4) and the supply tube axis (7) to the substrate (9) side. It occurs at (0 '), but by maintaining the above-mentioned carrier gas amount, the (0') point can be set within the region of 10,000 ° K or higher of the plasma flame, so that the Can be melted and sprayed well.

また、この発明において、複数本の粉体供給管の使用
に伴なうプラズマフレーム温度の低下に対応するには、
作動ガスの混合比、溶射距離の適宜選定により達成でき
る。
Further, in the present invention, in order to cope with the decrease in plasma flame temperature due to the use of a plurality of powder supply pipes,
This can be achieved by appropriately selecting the mixing ratio of the working gas and the spraying distance.

例えば、作動ガスに、Ar-N2,Ar-H2プラズマジェット
を用い、混合ガス量比率を100/0〜70/30の範囲で作動さ
せる。このように、N2またはH2の2次ガス添加により、
プラズマフレームの熱量増加を図るとよい。
For example, the working gas, with Ar-N 2, Ar-H 2 plasma jet, the mixed gas quantity ratio to operate in the range of 100 / 0-70 / 30. In this way, by adding the secondary gas of N 2 or H 2 ,
It is advisable to increase the heat quantity of the plasma flame.

一般に、溶射距離は、基材に熱歪を与えたり、溶融さ
せない等の熱的影響を考慮して、50mm〜200mmの範囲に
設定している。この発明方法における溶射距離は、同一
の作動条件及び粉末における従来の設定溶射距離lに対
して、0.75l〜0.90lに設定するのが好ましい。すなわ
ち、上記混合ガス量比を変換するものの、粉体量と搬送
ガス量が増加するので、距離設定は短くなる。
Generally, the thermal spraying distance is set within a range of 50 mm to 200 mm in consideration of thermal influences such as heat distortion or melting of the base material. The spraying distance in the method of the present invention is preferably set to 0.75 l to 0.90 l with respect to the conventional set spraying distance 1 under the same operating conditions and powder. That is, although the mixed gas amount ratio is converted, the amount of powder and the amount of carrier gas increase, so the distance setting becomes short.

このように、この発明において、溶射量を増大させる
ためには、熱源のプラズマジェットを高熱化し、溶融し
た粉体の保熱のために溶射距離を短縮してプラズマの幅
射熱を利用するなどの諸条件を勘案して、作動条件を適
宜選定するとよい。
As described above, in the present invention, in order to increase the amount of thermal spray, the plasma jet of the heat source is highly heated, and the thermal spray distance is shortened to retain the heat of the molten powder, and the radiant heat of plasma is used. It is advisable to select the operating conditions as appropriate in consideration of the various conditions.

この発明による粉体の供給方法において、以上の諸条
件を満足するよう適宜選定することにより、粉体量と搬
送ガス量の増加、すなわち冷材増加の欠点を補うが、特
に、複数の供給管より均一にかつ確実に供給された粉体
は、プラズマフレーム中心軸上で衝突して受熱,溶融,
飛行するが、この時、衝突後に放射状に発散しようとす
る粉体は、プラズマフレームで基材方向に押し返される
ため、飛行距離が長くなり受熱時間が長くなるので、全
体の溶融効率が向上し、皮膜付着率が向上する。また、
溶融が十分かつ良好なため、さらに緻密度が向上し、基
材への密着度も向上する。従って、良好な皮膜形成を維
持しながら、粉体の供給量を増し、溶射量を大きく増大
させることができる。
In the method of supplying powder according to the present invention, by appropriately selecting so as to satisfy the above-mentioned various conditions, the defect of increase of powder amount and carrier gas amount, that is, increase of cooling material is compensated. The more evenly and reliably supplied powder collides with the central axis of the plasma flame to receive heat, melt,
While flying, at this time, the powder that tends to radiate radially after the collision is pushed back toward the base material by the plasma flame, which increases the flight distance and heat receiving time, improving the overall melting efficiency. The coating rate is improved. Also,
Since the melting is sufficient and good, the density is further improved and the adhesion to the substrate is also improved. Therefore, while maintaining good film formation, the powder supply amount can be increased and the thermal spray amount can be greatly increased.

実施例 実施例1 シャモット煉瓦(耐火度;SK-32、見掛気孔率25.0%)
の焼成面を溶射基材面とし、Al2O3 90%,残部TiO2及び
SiO2からなる粉体を、Ar-N2プラズマジェットを用い、
第1図に示した2本の供給管を使用したこの発明による
粉体供給方法にて、第1表に示す条件で溶射し、高さ7.
5mm,長さ100mmのビート状の溶射施工体を作製した。
Examples Example 1 Chamotte brick (fire resistance; SK-32, apparent porosity 25.0%)
The burning surface of is the sprayed substrate surface, Al 2 O 3 90%, balance TiO 2 and
Using a powder made of SiO 2 , Ar-N 2 plasma jet,
In the powder supply method according to the present invention using the two supply pipes shown in FIG. 1, thermal spraying was performed under the conditions shown in Table 1 to obtain a height of 7.
A beat-shaped sprayed work piece having a length of 5 mm and a length of 100 mm was prepared.

得られた各施工体の付着重量を測定し、また、ポロシ
メータにて、施工体の気孔量を測定した。測定結果は実
施条件と共に第1表に示す。
The adhered weight of each obtained construction body was measured, and the porosity of the construction body was measured with a porosimeter. The measurement results are shown in Table 1 together with the implementation conditions.

また、比較のため、第5図に示す1本の供給管を用い
る従来の供給方法による溶射(従来例11)と、第4図に
示す、2本の供給管を近接側間隔角度120°に設定した
従来のグレテッド溶射と同配置の溶射(従来例12)を、
第1表に示す作動条件で実施し、得られた各施工体の付
着重量を測定し、また、ポロシメータにて、施工体の気
孔量を測定した。測定結果は実施条件と共に第1表に示
す。なお、付着重量と気孔量は、従来の供給管1本によ
る溶射の施工体の場合を100とした指数で表示した。搬
送ガス量(V/本)と作動電流は一定とした。
For comparison, the thermal spraying (conventional example 11) by the conventional supply method using one supply pipe shown in FIG. 5 and the two supply pipes shown in FIG. The same spraying as the set conventional grided spraying (conventional example 12)
It carried out on the operating condition shown in Table 1, the adhesion weight of each obtained construction body was measured, and the porosity of the construction body was measured with the porosimeter. The measurement results are shown in Table 1 together with the implementation conditions. In addition, the adhesion weight and the amount of pores are shown as indices with 100 being the case of the conventional thermal spraying work using one supply pipe. The carrier gas volume (V / line) and operating current were constant.

第1表から明らかなように、この発明による粉体の供
給方法で溶射すると、従来方法に比べて付着量が20%以
上向上し、気孔量も大幅に抑制できた。また、従来の2
本の供給管を用いる溶射では、付着率に若干の向上が見
られるが、溶射施工体は多孔質化して実用に供し得ない
状態であった。
As is clear from Table 1, when the powder supply method according to the present invention was used for thermal spraying, the adhesion amount was improved by 20% or more as compared with the conventional method, and the porosity was also significantly suppressed. In addition, the conventional 2
In the thermal spraying using the supply pipe of the present invention, although the adhesion rate was slightly improved, the thermal sprayed product was porous and could not be put to practical use.

実施例2 ♯60アルミナグリットにてブラスト処理した普通鋼
(SS-41)の表面を溶射基材面とし、Ni-9Cr-6Al合金粉
体を、Ar-H2プラズマにて、第2表に示す条件で溶射
し、50mm×100mmの基材面に厚み0.5mmの皮膜を形成し
た。また、出力電流を一定とした。
Example 2 The surface of plain steel (SS-41) blasted with # 60 alumina grit was used as the surface of the sprayed base material, and Ni-9Cr-6Al alloy powder was subjected to Ar-H 2 plasma treatment in Table 2. Thermal spraying was performed under the conditions shown below to form a 0.5 mm-thick coating on the surface of a 50 mm × 100 mm substrate. Also, the output current was kept constant.

得られた各施工体の付着重量を測定し、また、付着強
度測定し、その後、ポロシメータにて、施工体の気孔量
を測定した。
The adhered weight of each obtained construction body was measured, and the adhesion strength was measured, and then the porosity of the construction body was measured with a porosimeter.

付着強度は、断面が2cm2のボトル(SS-41製)をエポ
キシ樹脂で皮膜上に固定し、トルクレンチでねじり強さ
を測定した時のトルクでもって評価し、気孔量は、付着
強度測定後のボルトを300℃にて熱処理して樹脂を焼却
して回収された皮膜について測定した。
The adhesive strength is evaluated by the torque when a bottle (made of SS-41) with a cross section of 2 cm 2 is fixed on the film with epoxy resin and the torsional strength is measured with a torque wrench, and the pore volume is measured by the adhesive strength. The subsequent bolt was heat-treated at 300 ° C. to incinerate the resin, and the film recovered was measured.

また、比較のため、供給管を6本用いた粉体供給方法
による溶射(比較例15)と、第5図に示す1本の供給管
を用いる従来の供給方法による溶射(従来例13,14)
を、第2表に示す作動条件で実施し、得られた各施工体
の付着重量を測定し、また、前記付着強度及び施工体の
気孔量を測定した。なお、付着重量と気孔量は、従来の
供給管1本による溶射の施工体の場合を100とした指数
で表示し、粉体の送給量(g/min)との関係として第8
図と第9図に示す。
Further, for comparison, thermal spraying by a powder supply method using six supply pipes (Comparative Example 15) and thermal spraying by a conventional supply method using one supply pipe shown in FIG. 5 (Conventional Examples 13, 14). )
Was carried out under the operating conditions shown in Table 2, and the adhesion weight of each of the obtained constructions was measured, and the adhesion strength and the porosity of the construction were measured. Note that the adhered weight and the amount of pores are expressed as an index with 100 in the case of a conventional sprayed work piece with a single supply pipe, and as a relationship with the powder feed rate (g / min)
Shown in Figures and 9.

第2表及び第8図と第9図の結果から明らかなよう
に、この発明による供給方法の溶射は、付着量が著しく
増大しており、また、粉体の供給を2倍にしても従来の
気孔量と同等以下に気孔の発生を抑制でき、さらには、
皮膜の密着性が大きく向上し、きわめて良好な溶射が可
能なことがわかる。
As is clear from Table 2 and the results of FIG. 8 and FIG. 9, the thermal spraying of the supply method according to the present invention has a significantly increased amount of adhesion, and even if the powder supply is doubled, The generation of pores can be suppressed to be equal to or less than the pore volume of
It can be seen that the adhesion of the coating is greatly improved and extremely good thermal spraying is possible.

実施例3 電気炉で予熱した珪石煉瓦を基材とし、SiO280wt%‐
Al2O3 15wt%のSiO2‐Al2O3系耐火骨材を、水冷箱に密
封したプラズマガンにより熱間にて、作動出力一定のAr
-N2プラズマで第3表に示す条件で溶射を実施した。
Example 3 Using a silica stone brick preheated in an electric furnace as a base material, SiO 2 80 wt%-
Al 2 O 3 15 wt% SiO 2 -Al 2 O 3 series refractory aggregates were heated by a plasma gun sealed in a water-cooled box to produce an Ar with a constant working output.
Thermal spraying was performed with -N 2 plasma under the conditions shown in Table 3.

基材形状は、230mm×114mm×65mm寸法で、幅20mm×深
さ10mmの三角形溝を設けてあり、該溝部に肉盛する如く
溶射を行なった。
The shape of the base material was 230 mm × 114 mm × 65 mm, and a triangular groove having a width of 20 mm and a depth of 10 mm was provided, and thermal spraying was performed so that the groove portion was overlaid.

炉冷したのち、得られた各施工体の付着重量を測定
し、また、ポロシメータにて、施工体の気孔量を測定し
た。測定結果は実施条件と共に第3表に示す。
After furnace cooling, the weight of each of the obtained constructions was measured, and the porosity of the constructions was measured with a porosimeter. The measurement results are shown in Table 3 together with the implementation conditions.

また、比較のため、第5図に示す1本の供給管を用い
る従来の供給方法による常温時(従来例16)と熱間時
(従来例17)の溶射と、2本の供給管を用いる方法によ
る常温時の溶射(比較例18)を、第3表に示す作動条件
で実施し、得られた各施工体の付着重量を測定し、ま
た、ポロシメータにて、施工体の気孔量を測定した。測
定結果は実施条件と共に第3表に示す。この結果、付着
率が向上し、さらに熱間施工によっても気孔量が軽減で
きることを見出した。
Further, for comparison, thermal spraying at room temperature (conventional example 16) and hot time (conventional example 17) by the conventional supply method using one supply pipe shown in FIG. 5 and two supply pipes are used. Thermal spraying at room temperature by the method (Comparative Example 18) was carried out under the operating conditions shown in Table 3, the adhesion weight of each obtained construction body was measured, and the porosity amount of the construction body was measured with a porosimeter. did. The measurement results are shown in Table 3 together with the implementation conditions. As a result, it was found that the adhesion rate was improved, and the porosity could be reduced even by hot working.

なお、測定した付着重量は、単位時間当たりの付着重
量と送給量との重量比である付着率で評価し、気孔量
は、従来の供給管1本による溶射の施工体の場合を100
とした指数で表示した。
The measured adhesion weight is evaluated by the adhesion ratio, which is the weight ratio of the adhesion weight per unit time and the feed amount, and the porosity is 100 in the case of the conventional sprayed construction body with one supply pipe.
Was displayed as an index.

第3表から明らかなように、この発明による粉体の供
給方法で溶射すると、従来方法に比べて付着率が10〜15
%程度向上し、気孔量も約10%程度抑制でき、性状のす
ぐれた皮膜を効率よく溶射形成できることが明らかであ
る。従って、粉体供給量を2倍にして、施工効率を高め
ることができる。
As is clear from Table 3, when the powder supply method according to the present invention is used for thermal spraying, the adhesion rate is 10 to 15 compared with the conventional method.
%, The porosity can be suppressed by about 10%, and it is clear that a film with excellent properties can be efficiently formed by thermal spraying. Therefore, the powder supply amount can be doubled to improve the construction efficiency.

【図面の簡単な説明】[Brief description of drawings]

第1図は発明による供給方法を示すトーチの縦断正面説
明図である。第2図と第3図はこの発明による供給管配
置を示すトーチノズル部の説明図である。第4図は従来
の供給管配置を示すトーチの側面説明図である。第5図
から第7図は、従来の供給方法を示すトーチの縦断正面
説明図である。第8図は粉体の送給量と付着量比との関
係を示すグラフであり、第9図は送給量と気孔量比との
関係を示すグラフである。 1……トーチ、1……ノズル、3……噴射口、4……プ
ラズマフレーム中心軸、5,6……供給管、7……供給管
軸、8……プラズマフレーム、9……基材、10,10a……
粉体軌跡。
FIG. 1 is a vertical sectional front view of a torch showing a supply method according to the invention. 2 and 3 are explanatory views of the torch nozzle portion showing the arrangement of the supply pipe according to the present invention. FIG. 4 is a side view of a torch showing a conventional supply pipe arrangement. 5 to 7 are longitudinal sectional front explanatory views of a torch showing a conventional supply method. FIG. 8 is a graph showing the relationship between the powder feed amount and the adhesion amount ratio, and FIG. 9 is a graph showing the relationship between the powder feed amount and the pore amount ratio. 1 ... Torch, 1 ... Nozzle, 3 ... Jet port, 4 ... Plasma frame central axis, 5,6 ... Supply tube, 7 ... Supply tube axis, 8 ... Plasma frame, 9 ... Substrate , 10,10a ……
Powder locus.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 木谷 征弘 大阪府大阪市東区北浜5丁目15番地 住友 金属工業株式会社内 (56)参考文献 特開 昭55−111874(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masahiro Kitani 5-15 Kitahama, Higashi-ku, Osaka City, Osaka Prefecture Sumitomo Metal Industries, Ltd. (56) References JP-A-55-111874 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】プラズマ溶射装置のプラズマフレームに、
粉体からなる溶射材料を外部に配置した粉体供給管にて
ガス搬送供給する溶射材料の供給方法において、プラズ
マジェットトーチの1つのプラズマフレームに対し、2
本以上、5本以下の粉体供給管を、該トーチのプラズマ
フレーム中心軸に直交する1平面上で、各供給管の中心
軸がプラズマフレーム中心軸の1点で交差しかつプラズ
マフレーム中心軸回りに等角度となるように配置し、各
供給管よりガス搬送した粉体をプラズマフレーム中心軸
の直交方向に噴射し、プラズマフレーム中で相互に衝突
させることを特徴とする溶射材料の供給方法。
1. A plasma flame of a plasma spraying apparatus,
In a method of supplying a thermal spray material, which is made of a powder by a powder supply pipe having a powder supply pipe disposed outside, in one plasma flame of a plasma jet torch, 2
The number of the powder supply pipes is not less than 5 and not more than 5, and the center axis of each supply pipe intersects at one point of the plasma frame center axis on one plane orthogonal to the plasma frame center axis of the torch and the plasma frame center axis A method for supplying a thermal spray material, which is characterized in that the powders, which are gas-conveyed from respective supply pipes, are arranged at equal angles around each other and are jetted in a direction orthogonal to the central axis of the plasma frame, and collide with each other in the plasma frame. .
JP61032559A 1986-02-17 1986-02-17 Method of supplying thermal spray material Expired - Lifetime JPH08965B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61032559A JPH08965B2 (en) 1986-02-17 1986-02-17 Method of supplying thermal spray material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61032559A JPH08965B2 (en) 1986-02-17 1986-02-17 Method of supplying thermal spray material

Publications (2)

Publication Number Publication Date
JPS62192572A JPS62192572A (en) 1987-08-24
JPH08965B2 true JPH08965B2 (en) 1996-01-10

Family

ID=12362265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61032559A Expired - Lifetime JPH08965B2 (en) 1986-02-17 1986-02-17 Method of supplying thermal spray material

Country Status (1)

Country Link
JP (1) JPH08965B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5847357A (en) * 1997-08-25 1998-12-08 General Electric Company Laser-assisted material spray processing
FR2854086B1 (en) * 2003-04-23 2007-03-30 Saint Gobain Pont A Mousson FLAME COATING METHOD AND CORRESPONDING DEVICE
JP5983450B2 (en) * 2013-02-07 2016-08-31 株式会社デンソー Molten metal coating equipment
JP6125888B2 (en) * 2013-04-30 2017-05-10 トーカロ株式会社 Method for forming sprayed coating by plasma spraying method and method for manufacturing member for heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111874A (en) * 1979-02-21 1980-08-28 Hitachi Ltd Melt injecting method

Also Published As

Publication number Publication date
JPS62192572A (en) 1987-08-24

Similar Documents

Publication Publication Date Title
US4232056A (en) Thermospray method for production of aluminum porous boiling surfaces
JPH07258819A (en) Powder for thermal spray and production of carbide coating
KR100830245B1 (en) An apparatus and process for solid-state deposition and consolidation of high velocity powder particles using thermal plastic deformation
EP0459114B1 (en) Aluminium and boron nitride thermal spray powder
US3016447A (en) Collimated electric arc-powder deposition process
US5043548A (en) Axial flow laser plasma spraying
EP0344781B1 (en) Tungsten carbide for flame spraying
CN204449311U (en) For the preparation of the device of fine grain hypoxemia spherical titanium and titanium alloy powder
CN110039061B (en) Wire low-pressure plasma atomization device and preparation method for 3D printing high-strength aluminum alloy powder
HU211412B (en) Method and apparatus for producing fireproof layer
JP5073851B2 (en) Fine powder ceramics impact sintering coating method
CN111470481A (en) Method for preparing high-purity aluminum nitride spherical powder by plasma reaction atomization
JPH08965B2 (en) Method of supplying thermal spray material
CN100540511C (en) A kind of compound carbon resisting coating material and on matrix the preparation compound carbon resisting coating method
JPH05320860A (en) Zirconia powder for thermal spraying
JP5576540B2 (en) Fine powder ceramics impact sintering coating method
US20120251885A1 (en) High power, wide-temperature range electrode materials, electrodes, related devices and methods of manufacture
JPH0551724A (en) Formation of porous sprayed layer
US4161555A (en) Flame spraying process for materials requiring fusion
Scott et al. Gel-processed powders for plasma spraying
JPS6357755A (en) Ni-base alloy powder for thermal spraying and its production
KR101160297B1 (en) Hybrid Spray Coating Apparatus
JPH0139993B2 (en)
US5380563A (en) Ceramic welding
CN106521482A (en) Ceramic coating utilizing laminar flow plasma and preparing method of ceramic coating