EP1614859B1 - Filmgekühlte Turbinenschaufel - Google Patents

Filmgekühlte Turbinenschaufel Download PDF

Info

Publication number
EP1614859B1
EP1614859B1 EP04015805A EP04015805A EP1614859B1 EP 1614859 B1 EP1614859 B1 EP 1614859B1 EP 04015805 A EP04015805 A EP 04015805A EP 04015805 A EP04015805 A EP 04015805A EP 1614859 B1 EP1614859 B1 EP 1614859B1
Authority
EP
European Patent Office
Prior art keywords
turbine blade
blade
coolant
rows
leading edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04015805A
Other languages
English (en)
French (fr)
Other versions
EP1614859A1 (de
Inventor
Hans-Thomas Dr. Bolms
Ralf Müsgen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to ES04015805T priority Critical patent/ES2282763T3/es
Priority to EP04015805A priority patent/EP1614859B1/de
Priority to DE502004003477T priority patent/DE502004003477D1/de
Priority to US11/174,275 priority patent/US7500823B2/en
Priority to CNB2005100820514A priority patent/CN100350132C/zh
Publication of EP1614859A1 publication Critical patent/EP1614859A1/de
Application granted granted Critical
Publication of EP1614859B1 publication Critical patent/EP1614859B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/314Arrangement of components according to the direction of their main axis or their axis of rotation the axes being inclined in relation to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/34Arrangement of components translated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling

Definitions

  • the invention relates to a turbine blade for use in a gas turbine with an airfoil, which is provided with a number of coolant channels through which a coolant can pass, wherein a substantially longitudinally extending in the longitudinal direction of the turbine blade, the leading edge spaced coolant channel in the leading edge region of the airfoil in outlet openings Branch outgoing exit channels.
  • Gas turbines are used in many areas to drive generators or work machines.
  • the energy content of a fuel is used to generate a rotational movement of a turbine shaft.
  • the fuel is burned in a combustion chamber, compressed air being supplied by an air compressor.
  • the working medium produced in the combustion chamber by the combustion of the fuel, under high pressure and at high temperature, is guided via a turbine unit arranged downstream of the combustion chamber, where it relaxes to perform work.
  • a number of rotor blades which are usually combined into blade groups or rows of blades, are arranged thereon and drive the turbine shaft via a momentum transfer from the flow medium.
  • To guide the flow medium in the turbine unit also commonly associated guide blade rows are arranged between adjacent blade rows with the turbine housing.
  • the turbine blades in particular the guide vanes, usually have an airfoil extending along a blade axis for suitable guidance of the working medium, at the end for attachment of the turbine blade to the respective support body extending transversely to the blade axis Platform can be formed. But also on the other, free end, a platform or a platform-like shape may be appropriate.
  • cooling of the affected components in particular of rotor blades and / or guide vanes of the turbine unit, is usually provided.
  • the turbine blades are usually formed coolable, in particular, an effective and reliable cooling of the particular thermally loaded front edge of the respective turbine blade should be ensured.
  • Coolant is usually used as coolant. This is typically supplied to the respective turbine blade in the manner of open cooling via a number of coolant channels integrated into the airfoil or blade profile. Starting from these, the cooling air flows through the respectively provided regions of the turbine blade into outlet channels branching off from it, as a result of which convective cooling of the blade interior and of the blade wall is achieved. On the exit side, these channels are left open, so that the cooling air after flowing through the turbine blade from the exit openings, also referred to as film cooling holes, and forms a cooling air film on the surface of the airfoil. Due to this cooling air film, the material on the surface is largely protected against direct and overly intensive contact with the hot working medium flowing past at high speed.
  • the outlet openings there are usually arranged uniformly along at least two rows aligned parallel to the front edge.
  • the exit channels are also generally oriented obliquely to the longitudinal direction of the turbine blade, which supports the formation of the protective, flowing on the surface cooling air film. Since the outlet channels are usually introduced in the manufacture of the turbine blade for cost reasons only at the end from the outside, z. B. by laser drilling or other drilling methods, and in particular in the leading edge region of the airfoil access of the drilling instruments through the end molded platforms or platform-like formations may be hindered, it comes.
  • the exit channels often at an approximately mid-foot section and tip section of the respective Blade lying transition point for a change of orientation. This takes place in such a way that the coolant flowing out in a foot-side section of each row has a speed component pointing to the tip section in the region of the outlet openings, whereas the cooling medium flowing out in an adjoining tip-side section of each row has a speed component facing the foot section.
  • the outlet channels are inclined in the extension direction of the turbine blade, whereas they are inclined in the tip-side section opposite to the extension direction.
  • Such a turbine blade is known from EP-A-0 894 946.
  • the invention is therefore an object of the invention to provide a turbine blade of the type mentioned above, for the simple means a particularly reliable and uniform cooling of the leading edge region while maintaining a particularly low demand for cooling air can be achieved.
  • transition points in which the orientation of the exit channels changes, are arranged offset from one another for each two adjacent rows in the longitudinal direction.
  • the invention is based on the consideration that the cooling medium emerging from the outlet openings in the leading edge region of the airfoil in order to form an effective cooling film has the largest possible velocity component in parallel should have to the surface. For this reason, the proven, oblique to the longitudinal direction alignment of the outlet channels should be maintained. With regard to the restrictions imposed on the manufacture of the airfoil and the restrictions on the access and orientation of the production tools, a change of orientation of the type described will continue to be desirable for the exit channels opening in the exit openings along each of the rows in which the exit openings are located. On the other hand, areas with a comparatively greatly reduced frequency density of the outlet channels in the blade wall should be avoided. For this purpose, it is to be ruled out that the gaps or interspaces belonging to adjacent rows come to lie next to one another in the otherwise comparatively regular distribution pattern of the exit channels.
  • the associated transition points for each two adjacent rows are arranged offset from one another in the longitudinal direction.
  • the offset causes just a local entanglement of the outlet channels belonging to two adjacent rows and thus with respect to the totality of all rows a comparatively homogeneous distribution of the outlet channels over the entire leading edge region of the blade. Therefore, a relatively good and effective convective cooling of the blade interior is ensured in this area, so that a local overuse of the material is avoided by overheating.
  • the need for cooling medium can be kept comparatively low, which has a performance-enhancing effect for a equipped with such turbine blades gas turbine.
  • a flow behavior of the exiting cooling medium in the vicinity of the leading edge which is particularly favorable for effective film cooling, combined with good convective cooling of the adjacent blade wall, can be achieved by using the Outlets in the entire leading edge region are approximately evenly distributed in an advantageous embodiment of the invention, such that they lie on the vertices of an imaginary, curved to the leading edge of the airfoil, regular grid network. This causes a particularly homogeneous wetting of the blade surface with coolant.
  • angles of incidence of the outlet channels with respect to the longitudinal direction are preferably approximately equal for the foot-side and tip-side sections of all rows of outlet openings.
  • an optimized for the effect of the film cooling value which is known from experiments or calculations, can be adjusted.
  • the transition point belonging to the middle row in this case is displaced by three outlet openings in relation to the two outer rows.
  • the mutual offset is still low enough, so that the air currents exiting in Verschränkungs Scheme in the opposite direction only slightly irritate each other.
  • the turbine blade 2 is designed as a guide blade for a gas turbine not shown here. It comprises a foot section 4 and a tip section 6 with associated platforms 8, 10 and an intermediate airfoil 12 extending in the longitudinal direction L.
  • the profiled airfoil 12 has a leading edge 14 also extending substantially in the longitudinal direction L and a trailing edge 16 with side walls therebetween 18 on.
  • the turbine blade 2 is fixed via the foot section 4 on the inner casing of the turbine, wherein the associated platform 8 forms a wall element bounding the flow path of the working medium in the gas turbine.
  • the turbine shaft opposite the tip-side platform 10 forms another limit to the flowing working fluid.
  • the turbine blade 2 could also be designed as a moving blade, which is fastened in an analogous manner to the turbine shaft via a foot-side platform 8, also referred to as a blade root.
  • a coolant K is introduced into the blade interior via a number of inlet openings 20 arranged at the lower end of the foot section 4.
  • the coolant K is cooling air.
  • the coolant K After the coolant K has flowed through one or more coolant channels 22 adjoining the inlet openings 20 in the interior of the turbine blade 2, it emerges from a number of outlet openings 24, also referred to as film cooling holes, corresponding to the coolant channels 22 in the area of the blade 12.
  • Different areas of the airfoil 12 provide in view of the various thermal and mechanical stress and the respective space conditions In Schaufelinneren to the arrangement and the design of the film cooling holes very different requirements.
  • the comparatively strongly curved leading edge region 28, which adjoins the leading edge 14 of the blade 12 immediately, requires effective cooling due to a relatively high load.
  • FIG. 2 shows the front region of the profiled airfoil 12 with the relatively strongly curved front edge region 28, which includes the leading edge 14 and adjoins the pressure side 30 and suction side 32.
  • coolant channel 22 From a substantially in the longitudinal direction L of the turbine blade 2 extending, spaced from the front edge 14 coolant channel 22 branch off outlet channels 34 of smaller cross section, which penetrate the blade wall 36 and open in the leading edge region 28 in outlet openings 24 or film cooling holes.
  • coolant K cooling of the adjacent areas of the blade wall 36 is achieved.
  • the effect of film cooling on the surface of the blade 12 caused by the cooling air flowing out of the outlet openings 24 occurs.
  • an air cushion or a protective film which prevents direct contact of the blade surface with the working medium having a high flow velocity, thus effectively forms on the surface through the cooling air flowing along it at a relatively low velocity.
  • the outlet openings 24 are arranged in the embodiment along three parallel to the leading edge 14 aligned rows, such that they form a regular grid pattern.
  • the outlet channels 34 are inclined relative to the longitudinal direction L of the turbine blade 2, so that in the region of their Outlet openings 24 for the outflowing coolant K a flat exit angle with respect.
  • the blade surface results. This also has a favorable effect on the formation of a protective cooling air film.
  • the inclination of the outlet channels 34 exists with regard to two different sections.
  • a foot-side section 38 of the illustrated row they are inclined so that the effluent from the outlet openings 24 coolant K has a pointing to the tip portion 6 of the turbine blade 2 speed component.
  • the orientation of the outlet channels 34 changes so that the coolant K flowing out of the tip-side section 42 of the row has a velocity component directed toward the foot section 4.
  • This change in orientation is due to the limited access of the drilling tools in the manufacture of the turbine blade 2 due to the platforms 8, 10 and the presence of a comparatively large gap 44 in the blade wall 36, which is otherwise uniformly traversed by outlet channels 34.
  • the turbine blade 2 is designed specifically for a particularly reliable cooling of the leading edge region 28 at the same time kept particularly low demand for coolant K.
  • the aforementioned transition points 40 are positioned offset from each other in the manner of a sectionally entangled arrangement of adjacent film cooling rows.
  • the partially cutaway perspective view of the leading edge 14 in FIG. 4 shows that the transition point 40 belonging to the middle row, in which the orientation of the exit channels 34 changes, is displaced in the longitudinal direction L with respect to the two outer rows.
  • the shift here in the exemplary embodiment three grid points.

Description

  • Die Erfindung bezieht sich auf eine Turbinenschaufel zur Verwendung in einer Gasturbine mit einem Schaufelblatt, das mit einer Anzahl von von einem Kühlmittel durchströmbaren Kühlmittelkanälen versehen ist, wobei von einem im Wesentlichen in Längsrichtung der Turbinenschaufel verlaufenden, zur Vorderkante beabstandeten Kühlmittelkanal im Vorderkantenbereich des Schaufelblatts in Austrittsöffnungen mündende Austrittskanäle abzweigen.
  • Gasturbinen werden in vielen Bereichen zum Antrieb von Generatoren oder von Arbeitsmaschinen eingesetzt. Dabei wird der Energieinhalt eines Brennstoffs zur Erzeugung einer Rotationsbewegung einer Turbinenwelle benutzt. Der Brennstoff wird dazu in einer Brennkammer verbrannt, wobei von einem Luftverdichter verdichtete Luft zugeführt wird. Das in der Brennkammer durch die Verbrennung des Brennstoffs erzeugte, unter hohem Druck und unter hoher Temperatur stehende Arbeitsmedium wird dabei über eine der Brennkammer nachgeschaltete Turbineneinheit geführt, wo es sich arbeitsleistend entspannt.
  • Zur Erzeugung der Rotationsbewegung der Turbinenwelle sind dabei an dieser eine Anzahl von üblicherweise in Schaufelgruppen oder Schaufelreihen zusammengefassten Laufschaufeln angeordnet, die über einen Impulsübertrag aus dem Strömungsmedium die Turbinenwelle antreiben. Zur Führung des Strömungsmediums in der Turbineneinheit sind zudem üblicherweise zwischen benachbarten Laufschaufelreihen mit dem Turbinengehäuse verbundene Leitschaufelreihen angeordnet. Die Turbinenschaufeln, insbesondere die Leitschaufeln, weisen dabei üblicherweise zur geeigneten Führung des Arbeitsmediums ein entlang einer Schaufelachse erstrecktes Schaufelblatt auf, an das endseitig zur Befestigung der Turbinenschaufel am jeweiligen Trägerkörper eine sich quer zur Schaufelachse erstreckende Plattform angeformt sein kann. Aber auch am anderen, freien Ende kann eine Plattform oder eine plattformähnliche Ausformung angebracht sein.
  • Bei der Auslegung derartiger Gasturbinen ist zusätzlich zur erreichbaren Leistung üblicherweise ein besonders hoher Wirkungsgrad ein Auslegungsziel. Eine Erhöhung des Wirkungsgrades lässt sich dabei aus thermodynamischen Gründen grundsätzlich durch eine Erhöhung der Austrittstemperatur erreichen, mit dem das Arbeitsmedium aus der Brennkammer ab- und in die Turbineneinheit einströmt. Daher werden Temperaturen von etwa 1200 °C bis 1300 °C für derartige Gasturbinen angestrebt und auch erreicht.
  • Bei derartig hohen Temperaturen des Arbeitsmediums sind jedoch die diesem ausgesetzten Komponenten und Bauteile hohen thermischen Belastungen ausgesetzt. Um dennoch bei hoher Zuverlässigkeit eine vergleichsweise lange Lebensdauer der betroffenen Komponenten zu gewährleisten, ist üblicherweise eine Kühlung der betroffenen Komponenten, insbesondere von Lauf- und/oder Leitschaufeln der Turbineneinheit, vorgesehen. Die Turbinenschaufeln sind dabei üblicherweise kühlbar ausgebildet, wobei insbesondere eine wirksame und zuverlässige Kühlung der im besonderen Maße thermisch belasteten Vorderkante der jeweiligen Turbinenschaufel sichergestellt sein soll.
  • Als Kühlmittel kommt dabei üblicherweise Kühlluft zum Einsatz. Diese wird der jeweiligen Turbinenschaufel üblicherweise in der Art einer offenen Kühlung über eine Anzahl von in das Schaufelblatt oder das Schaufelprofil integrierten Kühlmittelkanälen zugeführt. Von diesen ausgehend durchströmt die Kühlluft in davon abzweigenden Austrittskanälen die jeweils vorgesehenen Bereiche der Turbinenschaufel, wodurch eine konvektive Kühlung des Schaufelinneren und der Schaufelwand erreicht wird. Austrittsseitig sind diese Kanäle offen gelassen, so dass die Kühlluft nach dem Durchströmen der Turbinenschaufel aus den auch als Filmkühllöcher bezeichneten Austrittsöffnungen austritt und einen Kühlluftfilm auf der Oberfläche des Schaufelblattes ausbildet. Durch diesen Kühlluftfilm ist das Material an der Oberfläche vor einem direkten und allzu intensiven Kontakt mit dem mit hoher Geschwindigkeit vorbeiströmenden heißen Arbeitsmedium weitgehend geschützt.
  • Um im Vorderkantenbereich des Schaufelblatts eine besonders gleichmäßige und effektive Filmkühlung zu ermöglichen, sind die Austrittsöffnungen dort üblicherweise gleichmäßig entlang von mindestens zwei parallel zur Vorderkante ausgerichteten Reihen angeordnet. Die Austrittskanäle sind zudem in der Regel schräg zur Längsrichtung der Turbinenschaufel ausgerichtet, was die Ausbildung des schützenden, an der Oberfläche entlangströmenden Kühlluftfilms unterstützt. Da die Austrittskanäle bei der Herstellung der Turbinenschaufel aus Kostengründen normalerweise erst zum Schluss von außen eingebracht werden, z. B. durch Laserbohrung oder andere Bohrverfahren, und insbesondere im Vorderkantenbereich des Schaufelblattes der Zugang der Bohrinstrumente durch die endseitig angeformten Plattformen oder plattformähnlichen Ausformungen möglicherweise behindert ist, kommt es bzgl. der schrägen Anstellung der Austrittskanäle oftmals an einer etwa mittig zwischen Fußabschnitt und Spitzenabschnitt des jeweiligen Schaufelblatts liegenden Übergangsstelle zu einem Orientierungswechsel. Dies geschieht in der Weise, dass das in einem fußseitigen Teilabschnitt jeder Reihe ausströmende Kühlmittel im Bereich der Austrittsöffnungen eine zum Spitzenabschnitt weisende Geschwindigkeitskomponente besitzt, das in einem daran angrenzenden spitzenseitigen Teilabschnitt jeder Reihe ausströmende Kühlmedium hingegen eine zum Fußabschnitt weisende Geschwindigkeitskomponente aufweist. Mit anderen Worten: Im fußseitigen Teilabschnitt sind die Austrittskanäle in Erstreckungsrichtung der Turbinenschaufel geneigt, wohingegen sie im spitzenseitigen Teilabschnitt entgegen der Erstreckungsrichtung geneigt sind. Eine solche Turbinenschaufel ist aus EP-A-0 894 946 bekannt.
  • Eine derartige Anordnung der Austrittskanäle kann jedoch auch Nachteile nach sich ziehen. Erfolgt der Wechsel ihrer Orientierung und die damit verbundene Änderung des Abzweigungswinkels gegenüber dem in Längsrichtung verlaufenden, zur Vorderkante korrespondierenden Kühlmittelkanal in einer örtlich gesehen abrupten Weise, so sind an der Übergangsstelle möglicherweise verhältnismäßig große Bereiche zwischen der Vorderkante und dem Kühlmittelkanal nicht von Austrittskanälen durchzogen und daher auch nicht konvektiv gekühlt. Dieser Mangel muss dann gegebenenfalls durch den gezielt vermehrten Einsatz von Kühlluft ausgeglichen werden. Erfolgt die Orientierungsänderung der Austrittskanäle stattdessen vergleichsweise kontinuierlich, so wird im Übergangsbereich die Ausbildung eines an der Oberfläche des Schaufelblatts entlangströmenden Films aus Kühlluft erschwert, da die Kühlluft dort beinahe senkrecht zur Oberfläche aus den Filmkühllöchern austritt und somit die Tendenz besitzt, sich von ihr abzulösen. Auch in diesem Fall muss vermehrt Kühlluft zugeführt werden, was wiederum Verluste im verfügbaren Verdichtermassenstrom bedeutet und den Wirkungsgrad der Gasturbine vermindert.
  • Der Erfindung liegt daher die Aufgabe zugrunde, eine Turbinenschaufel der oben genannten Art anzugeben, für die mit einfachen Mitteln eine besonders zuverlässige und gleichmäßige Kühlung des Vorderkantenbereiches bei gleichzeitig besonders gering gehaltenem Bedarf an Kühlluft erreichbar ist.
  • Diese Aufgabe wird erfindungsgemäß gelöst, indem die Übergangsstellen, in denen sich die Orientierung der Austrittskanäle ändert, für je zwei benachbarte Reihen in Längsrichtung gegeneinander versetzt angeordnet sind.
  • Die Erfindung geht dabei von der Überlegung aus, dass das aus den Austrittsöffnungen im Vorderkantenbereich des Schaufelblatts austretende Kühlmedium zur Bildung eines effektiven Kühlfilms eine möglichst große Geschwindigkeitskomponente parallel zur Oberfläche aufweisen sollte. Aus diesem Grunde sollte die bewährte, schräg zur Längsrichtung verlaufende Ausrichtung der Austrittskanäle beibehalten werden. Im Hinblick auf die bei der Herstellung des Schaufelblatts gegebenen, den Zugang und die Orientierung der Produktionswerkzeuge betreffenden Beschränkungen ist auch weiterhin ein Orientierungswechsel der beschriebenen Art für die in den Austrittsöffnungen mündenden Austrittskanäle entlang jeder der Reihen, in denen die Austrittsöffnungen angeordnet sind, wünschenswert. Andererseits sollten Bereiche mit vergleichsweise stark verminderter Häufigkeitsdichte der Austrittskanäle in der Schaufelwand vermieden werden. Dazu ist auszuschließen, dass die zu benachbarten Reihen gehörigen Lücken oder Zwischenräume im ansonsten vergleichsweise regelmäßigen Verteilungsmuster der Austrittskanäle direkt nebeneinander zu liegen kommen.
  • Dies wird dadurch erreicht, dass die zugehörigen Übergangsstellen für je zwei benachbarte Reihen in Längsrichtung gegeneinander versetzt angeordnet sind. Die Versetzung bewirkt nämlich gerade eine lokale Verschränkung der zu je zwei benachbarten Reihen gehörigen Austrittskanäle und somit im Hinblick auf die Gesamtheit aller Reihen eine vergleichsweise homogene Verteilung der Austrittskanäle über den gesamten Vorderkantenbereich des Schaufelblatts. Daher ist in diesem Bereich auch eine vergleichsweise gute und effektive konvektive Kühlung des Schaufelinneren gewährleistet, so dass eine örtliche Überbeanspruchung des Materials durch Überhitzung vermieden wird. Gegenüber bekannten Ausführungen kann der Bedarf an Kühlmedium vergleichsweise gering gehalten werden, was sich leistungsförderlich für eine mit derartigen Turbinenschaufeln ausgestattete Gasturbine auswirkt.
  • Ein für eine effektive Filmkühlung besonders günstiges Strömungsverhalten des austretenden Kühlmediums in der Nähe der Vorderkante in Kombination mit einer guten konvektiven Kühlung der angrenzenden Schaufelwand ist erreichbar, indem die Austrittsöffnungen im gesamten Vorderkantenbereich in einer vorteilhaften Weiterbildung der Erfindung ungefähr gleichmäßig verteilt sind, derart, dass sie auf den Eckpunkten eines gedachten, um die Vorderkante des Schaufelblatts gebogenen, regelmäßigen Gitternetzes liegen. Dies bewirkt eine besonders homogene Benetzung der Schaufeloberfläche mit Kühlmittel.
  • Die Anstellwinkel der Austrittskanäle gegenüber der Längsrichtung sind für die fußseitigen und spitzenseitigen Teilabschnitte aller Reihen von Austrittsöffnungen vorzugsweise jeweils ungefähr gleich groß. Dabei kann ein für den Effekt der Filmkühlung optimierter Wert, der aus Versuchen oder Berechnungen bekannt ist, eingestellt werden.
  • Das Konzept der abschnittsweisen Verschränkung benachbarter Filmkühlreihen lässt sich bei beliebig vielen nebeneinander liegenden Reihen anwenden. Da allerdings der Krümmungsradius eines Schaufelblatts in der Umgebung der Vorderkante häufig verhältnismäßig klein ist, können dann nur wenige Reihen von Austrittsöffnungen im Vorderkantenbereich untergebracht werden. Eine gleichmäßige und hinsichtlich des Kühlmittelverbrauchs besonders sparsame Kühlung der Vorderkante lässt sich jedoch bereits in einer bevorzugten Ausgestaltung mit drei Reihen erreichen. Bei dieser Variante sind die zu den beiden äußeren Reihen gehörigen Übergangsstellen in Bezug auf die Längsrichtung zweckmäßigerweise gleich und damit symmetrisch zur mittleren Reihe angeordnet.
  • Vorteilhafterweise ist die zur mittleren Reihe gehörige Übergangsstelle in diesem Fall gegenüber den beiden äußeren Reihen um drei Austrittsöffnungen verschoben. Bei dieser Wahl liegt einerseits eine verhältnismäßig gute Durchdringung der Schaufelwand im Vorderkantenbereich mit Austrittskanälen vor, andererseits ist der gegenseitige Versatz noch gering genug, so dass sich die im Verschränkungsbereich in gegenläufiger Richtung austretenden Luftströme nur unwesentlich gegenseitig irritieren.
  • Besonders vorteilhaft ist diese optimierte Anordnung von Filmkühlbohrungen im Fall einer für eine Verwendung in einer Gasturbine vorgesehenen Leitschaufel, die sowohl am fußseitigen als auch am spitzenseitigen Ende von möglicherweise voluminösen und massiven Plattformen abgeschlossen ist, welche den Zugang von Bohrwerkzeugen zur Herstellung der Austrittskanäle in besonderem Maße behindern.
  • Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die Versetzung der Übergangsstellen, in denen sich die Orientierung der Austrittskanäle in Bezug auf die Längsrichtung ändert, eine mit geringem Aufwand herzustellende Turbinenschaufel angegeben ist, die im Bereich der besonders beanspruchten Vorderkante sowohl auf der Oberfläche durch einen gleichmäßigen Kühlluftfilm als auch im Innenbereich durch Konvektion von Kühlluft in den annähernd homogen und ohne Lücken von größerer Ausdehnung verteilten Austrittskanälen vor übermäßiger Beanspruchung durch Erhitzung während des Betriebs in einer Gasturbine geschützt ist. Dadurch kann Kühlluft eingespart werden, was den Wirkungsgrad der Gasturbine erhöht.
  • Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:
  • FIG 1
    eine teilgeschnittene Seitenansicht einer Turbinenschaufel,
    FIG 2
    einen Teil-Querschnitt durch die Turbinenschaufel nach FIG 1,
    FIG 3
    einen Teil-Längsschnitt durch die Turbinenschaufel nach FIG 1 und
    FIG 4
    eine teilgeschnittene Ansicht der Vorderkante der Turbinenschaufel nach FIG 1.
  • Gleiche Teile sind in allen Figuren mit denselben Bezugszeichen versehen.
  • Die Turbinenschaufel 2 nach FIG 1 ist als Leitschaufel für eine hier nicht weiter dargestellte Gasturbine ausgebildet. Sie umfasst einen Fußabschnitt 4 und einen Spitzenabschnitt 6 mit dazugehörigen Plattformen 8, 10 und einem dazwischenliegenden, sich in Längsrichtung L erstreckenden Schaufelblatt 12. Das profilierte Schaufelblatt 12 weist eine sich ebenfalls im Wesentlichen in Längsrichtung L erstreckende Vorderkante 14 und eine Hinterkante 16 mit dazwischenliegenden Seitenwänden 18 auf. Die Turbinenschaufel 2 wird über den Fußabschnitt 4 am Innengehäuse der Turbine fixiert, wobei die zugehörige Plattform 8 ein den Strömungsweg des Arbeitsmediums in der Gasturbine begrenzendes Wandelement bildet. Die der Turbinenwelle gegenüberliegende spitzenseitige Plattform 10 bildet eine weitere Begrenzung für das strömende Arbeitsmedium. Die Turbinenschaufel 2 könnte alternativ auch als Laufschaufel ausgebildet sein, die in analoger Weise über eine auch als Schaufelfuß bezeichnete fußseitige Plattform 8 an der Turbinenwelle befestigt ist.
  • Über eine Anzahl von am unteren Ende des Fußabschnitts 4 angeordneten Einlassöffnungen 20 wird ein Kühlmittel K ins Schaufelinnere eingebracht. Es sind jedoch auch Konzepte bekannt, bei denen die Zuleitung des Kühlmittels K über die spitzenseitige Plattform 10 erfolgt. Üblicherweise handelt es sich beim Kühlmittel K um Kühlluft. Nachdem das Kühlmittel K einen oder mehrere sich an die Einlassöffnungen 20 anschließende Kühlmittelkanäle 22 im Inneren der Turbinenschaufel 2 durchströmt hat, tritt es aus einer Anzahl von auch als Filmkühllöcher bezeichneten, mit den Kühlmittelkanälen 22 korrespondierenden Austrittsöffnungen 24 im Bereich des Schaufelblatts 12 aus. Unterschiedliche Bereiche des Schaufelblattes 12 stellen dabei im Hinblick auf die verschiedenartige thermische und mechanische Belastung sowie die jeweiligen Platzverhältnisse im Schaufelinneren an die Anordnung und die Gestaltung der Filmkühllöcher ganz unterschiedliche Anforderungen. Insbesondere der sich an die Vorderkante 14 des Schaufelblatts 12 unmittelbar anschließende, vergleichsweise stark gekrümmte Vorderkantenbereich 28 bedarf aufgrund einer relativ hohen Belastung einer wirkungsvollen Kühlung.
  • FIG 2 zeigt den vorderen Bereich des profilierten Schaufelblatts 12 mit dem die Vorderkante 14 umfassenden, verhältnismäßig stark gekrümmten Vorderkantenbereich 28, an den sich Druckseite 30 und Saugseite 32 anschließen. Von einem im Wesentlichen in Längsrichtung L der Turbinenschaufel 2 verlaufenden, zur Vorderkante 14 beabstandeten Kühlmittelkanal 22 zweigen Austrittskanäle 34 von kleinerem Querschnitt ab, welche die Schaufelwand 36 durchdringen und im Vorderkantenbereich 28 in Austrittsöffnungen 24 oder Filmkühllöchern münden. Durch die Durchströmung der Austrittskanäle 34 mit Kühlmittel K wird eine Kühlung der angrenzenden Gebiete der Schaufelwand 36 erreicht. Zu dieser konvektiven Kühlung des Schaufelinneren tritt der durch die aus den Austrittsöffnungen 24 ausströmende Kühlluft verursachte Effekt der Filmkühlung auf der Oberfläche des Schaufelblatts 12 auf. Dabei bildet sich auf der Oberfläche durch die mit verhältnismäßig geringer Geschwindigkeit an ihr entlangströmende Kühlluft gewissermaßen ein Luftpolster bzw. ein Schutzfilm aus, der einen direkten Kontakt der Schaufeloberfläche mit dem eine hohe Strömungsgeschwindigkeit aufweisenden Arbeitsmedium verhindert.
  • Um einerseits eine gleichmäßige konvektive Kühlung der Schaufelwand 36 zu ermöglichen und andererseits die Ausbildung eines kontinuierlichen Kühlluftfilms zu begünstigen, sind die Austrittsöffnungen 24 im Ausführungsbeispiel entlang von drei parallel zur Vorderkante 14 ausgerichteten Reihen angeordnet, derart, dass sie ein regelmäßiges Gittermuster bilden. Außerdem sind die Austrittskanäle 34 gegenüber der Längsrichtung L der Turbinenschaufel 2 geneigt, so dass sich im Bereich ihrer Austrittsöffnungen 24 für das ausströmende Kühlmittel K ein flacher Austrittswinkel bzgl. der Schaufeloberfläche ergibt. Dies wirkt sich ebenfalls günstig auf die Entstehung eines schützenden Kühlluftfilms aus. Wie man dem Längsschnitt entlang der mittleren Reihe von Austrittsöffnungen 24 gemäß FIG 3 entnehmen kann, existieren die Neigung der Austrittskanäle 34 betreffend zwei unterschiedliche Teilabschnitte. In einem fußseitigen Teilabschnitt 38 der dargestellten Reihe sind sie derart geneigt, dass das aus den Austrittsöffnungen 24 ausströmende Kühlmittel K eine zum Spitzenabschnitt 6 der Turbinenschaufel 2 weisende Geschwindigkeitskomponente besitzt. An einer angrenzenden Übergangsstelle 40 ändert sich die Orientierung der Austrittskanäle 34, so dass das aus dem spitzenseitigen Teilabschnitt 42 der Reihe ausströmende Kühlmittel K eine zum Fußabschnitt 4 gerichtete Geschwindigkeitskomponente aufweist. Dieser Orientierungswechsel ist durch den aufgrund der Plattformen 8, 10 beschränkten Zugang der Bohrwerkzeuge bei der Herstellung der Turbinenschaufel 2 bedingt und zieht das Vorhandensein einer vergleichsweise großen Lücke 44 in der ansonsten gleichmäßig von Austrittskanälen 34 durchzogenen Schaufelwand 36 nach sich. Das eben gesagte gilt sinngemäß für jede der drei im Vorderkantenbereich 28 des Schaufelblatts 12 angeordneten Reihen von Austrittsöffnungen 24.
  • Die Turbinenschaufel 2 ist für eine besonders zuverlässige Kühlung des Vorderkantenbereiches 28 bei gleichzeitig besonders gering gehaltenem Bedarf an Kühlmittel K spezifisch ausgelegt. Dazu sind die genannten Übergangsstellen 40 in der Art einer abschnittsweise verschränkten Anordnung benachbarter Filmkühlreihen zueinander versetzt positioniert. Die teilgeschnittene perspektivische Ansicht der Vorderkante 14 in FIG 4 zeigt nämlich, dass die zur mittleren Reihe gehörige Übergangsstelle 40, in der sich die Orientierung der Austrittskanäle 34 ändert, gegenüber den beiden äußeren Reihen in Längsrichtung L verschoben ist. Die Verschiebung beträgt hier im Ausführungsbeispiel drei Gitterpunkte. Dadurch sind auch die zu jeweils zwei benachbarten Reihen gehörigen Lücken 44 bezüglich der Austrittskanäle 34 soweit gegeneinander versetzt angeordnet, dass im gesamten Verschränkungsgebiet 46 insgesamt eine vergleichsweise gute Durchdringung der Schaufelwand 36 mit Austrittskanälen 34 und somit auch eine vergleichsweise gute konvektive Kühlung sichergestellt ist. Da auf der anderen Seite die gegenseitige Verschiebung der Übergangsstellen 40 nicht wesentlich größer als das zu diesem Zweck notwendige Mindestmaß gewählt ist, wird auch die Verwirbelung des auf der Oberfläche strömenden Kühlluftfilms aufgrund der in diesem Abschnitt gegeneinander gerichteten Luftströme auf ein notwendiges Minimum beschränkt.
  • Damit ist eine sowohl hinsichtlich der konvektiven Kühlung der Schaufelwand 36 als auch hinsichtlich der Filmkühlung auf der Oberfläche optimierte Anordnung von Austrittskanälen 34 und zugehörigen Austrittsöffnungen 24 geschaffen, die sich gegenüber den bekannten Lösungen durch einen verringerten Verbrauch von Kühlmittel K auszeichnet und somit den Wirkungsgrad einer mit derartigen Turbinenschaufeln 2 ausgestatteten Gasturbine erhöht.

Claims (7)

  1. Turbinenschaufel (2) mit einem Fußabschnitt (4), einem Spitzenabschnitt (6) und einem Schaufelblatt (12), das mit einer Anzahl von von einem Kühlmittel (K) durchströmbaren Kühlmittelkanälen (22) versehen ist, wobei von einem im Wesentlichen in Längsrichtung (L) der Turbinenschaufel (2) verlaufenden, zur Vorderkante (14) beabstandeten Kühlmittelkanal (22) im Vorderkantenbereich (28) des Schaufelblatts (12) in Austrittsöffnungen (24) mündende Austrittskanäle (34) abzweigen, wobei die Austrittsöffnungen (24) entlang von mindestens zwei im Wesentlichen parallel zur Vorderkante (14) ausgerichteten Reihen angeordnet sind, und wobei die Austrittskanäle (34) im Bereich ihrer jeweiligen Austrittsöffnung (24) schräg zur Längsrichtung (L) der Turbinenschaufel (2) ausgerichtet sind, derart, dass das in einem fußseitigen Teilabschnitt (38) jeder Reihe ausströmende Kühlmittel (K) im Bereich der Austrittsöffnungen (24) eine zum Spitzenabschnitt (6) der Turbinenschaufel (2) weisende Geschwindigkeitskomponente besitzt, und das in einem daran angrenzenden spitzenseitigen Teilabschnitt (42) jeder Reihe ausströmende Kühlmittel (K) eine zum Fußabschnitt (4) weisende Geschwindigkeitskomponente aufweist,
    dadurch gekennzeichnet, dass
    die Übergangsstellen (40), in denen sich die Orientierung der Austrittskanäle (34) ändert, für je zwei benachbarte Reihen in Längsrichtung (L) gegeneinander versetzt angeordnet sind.
  2. Turbinenschaufel (2) nach Anspruch 1,
    dadurch gekennzeichnet, dass
    die Austrittsöffnungen (24) im Vorderkantenbereich (28) ungefähr auf den Gitterpunkten eines regelmäßigen Gitternetzes liegen.
  3. Turbinenschaufel (2) nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    die Anstellwinkel der Austrittskanäle (34) gegenüber der Längsrichtung (L) für die fußseitigen und die spitzenseitigen Teilabschnitte (38, 42) aller Reihen von Austrittsöffnungen (24) jeweils ungefähr gleich groß sind.
  4. Turbinenschaufel (2) nach Anspruch 3,
    mit zumindest drei Reihen von Austrittsöffnungen (24),
    dadurch gekennzeichnet, dass
    die zu den beiden äußeren Reihen gehörigen Übergangsstellen (40) in Bezug auf die Längsrichtung (L) gleich angeordnet sind.
  5. Turbinenschaufel (2) nach Anspruch 4,
    dadurch gekennzeichnet, dass
    die zur mittleren Reihe gehörige Übergangsstelle (40) gegenüber den beiden äußeren Reihen um drei Austrittsöffnungen (24) verschoben ist.
  6. Turbinenschaufel (2) nach einem der Ansprüche 1 bis 5,
    dadurch gekennzeichnet, dass
    sie als Leitschaufel ausgeführt ist.
  7. Gasturbine,
    dadurch gekennzeichnet, dass
    mindestens eine der Turbinenschaufeln (2) nach einem der Ansprüche 1 bis 6 ausgeführt ist.
EP04015805A 2004-07-05 2004-07-05 Filmgekühlte Turbinenschaufel Active EP1614859B1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES04015805T ES2282763T3 (es) 2004-07-05 2004-07-05 Alabe de turbina refrigerrada por pelicula.
EP04015805A EP1614859B1 (de) 2004-07-05 2004-07-05 Filmgekühlte Turbinenschaufel
DE502004003477T DE502004003477D1 (de) 2004-07-05 2004-07-05 Filmgekühlte Turbinenschaufel
US11/174,275 US7500823B2 (en) 2004-07-05 2005-07-01 Turbine blade
CNB2005100820514A CN100350132C (zh) 2004-07-05 2005-07-05 透平叶片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04015805A EP1614859B1 (de) 2004-07-05 2004-07-05 Filmgekühlte Turbinenschaufel

Publications (2)

Publication Number Publication Date
EP1614859A1 EP1614859A1 (de) 2006-01-11
EP1614859B1 true EP1614859B1 (de) 2007-04-11

Family

ID=34925626

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04015805A Active EP1614859B1 (de) 2004-07-05 2004-07-05 Filmgekühlte Turbinenschaufel

Country Status (5)

Country Link
US (1) US7500823B2 (de)
EP (1) EP1614859B1 (de)
CN (1) CN100350132C (de)
DE (1) DE502004003477D1 (de)
ES (1) ES2282763T3 (de)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7597540B1 (en) * 2006-10-06 2009-10-06 Florida Turbine Technologies, Inc. Turbine blade with showerhead film cooling holes
GB2444266B (en) 2006-11-30 2008-10-15 Rolls Royce Plc An air-cooled component
US7878761B1 (en) * 2007-09-07 2011-02-01 Florida Turbine Technologies, Inc. Turbine blade with a showerhead film cooling hole arrangement
US8317473B1 (en) * 2009-09-23 2012-11-27 Florida Turbine Technologies, Inc. Turbine blade with leading edge edge cooling
US8568085B2 (en) 2010-07-19 2013-10-29 Pratt & Whitney Canada Corp High pressure turbine vane cooling hole distrubution
US8545180B1 (en) * 2011-02-23 2013-10-01 Florida Turbine Technologies, Inc. Turbine blade with showerhead film cooling holes
JP5923936B2 (ja) * 2011-11-09 2016-05-25 株式会社Ihi フィルム冷却構造及びタービン翼
US20130156602A1 (en) 2011-12-16 2013-06-20 United Technologies Corporation Film cooled turbine component
US8944750B2 (en) 2011-12-22 2015-02-03 Pratt & Whitney Canada Corp. High pressure turbine vane cooling hole distribution
US9109453B2 (en) * 2012-07-02 2015-08-18 United Technologies Corporation Airfoil cooling arrangement
US9322279B2 (en) * 2012-07-02 2016-04-26 United Technologies Corporation Airfoil cooling arrangement
US9062556B2 (en) 2012-09-28 2015-06-23 Pratt & Whitney Canada Corp. High pressure turbine blade cooling hole distribution
US9121289B2 (en) 2012-09-28 2015-09-01 Pratt & Whitney Canada Corp. High pressure turbine blade cooling hole distribution
US9228440B2 (en) 2012-12-03 2016-01-05 Honeywell International Inc. Turbine blade airfoils including showerhead film cooling systems, and methods for forming an improved showerhead film cooled airfoil of a turbine blade
US9562437B2 (en) 2013-04-26 2017-02-07 Honeywell International Inc. Turbine blade airfoils including film cooling systems, and methods for forming an improved film cooled airfoil of a turbine blade
US9464528B2 (en) 2013-06-14 2016-10-11 Solar Turbines Incorporated Cooled turbine blade with double compound angled holes and slots
US9708915B2 (en) * 2014-01-30 2017-07-18 General Electric Company Hot gas components with compound angled cooling features and methods of manufacture
US10041356B2 (en) * 2014-08-15 2018-08-07 United Technologies Corporation Showerhead hole scheme apparatus and system
US9581029B2 (en) 2014-09-24 2017-02-28 Pratt & Whitney Canada Corp. High pressure turbine blade cooling hole distribution
US20160237850A1 (en) * 2015-02-16 2016-08-18 United Technologies Corporation Systems and methods for vane cooling
US20160298464A1 (en) * 2015-04-13 2016-10-13 United Technologies Corporation Cooling hole patterned airfoil
CN104832218A (zh) * 2015-04-20 2015-08-12 西北工业大学 一种用于涡轮叶片前缘气膜冷却的错位对冲气膜孔排结构
CN106555617B (zh) * 2017-01-05 2018-07-10 西北工业大学 一种有斜下吹式气膜冷却孔的涡轮叶片
CN109030012B (zh) * 2018-08-24 2024-01-23 哈尔滨电气股份有限公司 一种带有冷却通道的透平叶根疲劳试验模拟件及试验方法
CN109110125A (zh) * 2018-09-03 2019-01-01 南京航空航天大学 一种旋翼桨叶结构设计方法
CN109736898A (zh) * 2019-01-11 2019-05-10 哈尔滨工程大学 一种交错复合角的叶片前缘气膜冷却孔结构
CN113404546A (zh) * 2021-07-09 2021-09-17 中国联合重型燃气轮机技术有限公司 叶片、透平和燃气轮机
US11959396B2 (en) * 2021-10-22 2024-04-16 Rtx Corporation Gas turbine engine article with cooling holes for mitigating recession

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3527543A (en) * 1965-08-26 1970-09-08 Gen Electric Cooling of structural members particularly for gas turbine engines
JPS5851202A (ja) * 1981-09-24 1983-03-25 Hitachi Ltd ガスタ−ビンのタ−ビン翼前縁部の冷却装置
US4474532A (en) * 1981-12-28 1984-10-02 United Technologies Corporation Coolable airfoil for a rotary machine
US4738588A (en) * 1985-12-23 1988-04-19 Field Robert E Film cooling passages with step diffuser
US5486093A (en) * 1993-09-08 1996-01-23 United Technologies Corporation Leading edge cooling of turbine airfoils
FR2715693B1 (fr) * 1994-02-03 1996-03-01 Snecma Aube fixe ou mobile refroidie de turbine.
GB2310896A (en) * 1996-03-05 1997-09-10 Rolls Royce Plc Air cooled wall
US6092982A (en) * 1996-05-28 2000-07-25 Kabushiki Kaisha Toshiba Cooling system for a main body used in a gas stream
US5779437A (en) * 1996-10-31 1998-07-14 Pratt & Whitney Canada Inc. Cooling passages for airfoil leading edge
JP3316405B2 (ja) * 1997-02-04 2002-08-19 三菱重工業株式会社 ガスタービン冷却静翼
US6287075B1 (en) * 1997-10-22 2001-09-11 General Electric Company Spanwise fan diffusion hole airfoil
US6270317B1 (en) * 1999-12-18 2001-08-07 General Electric Company Turbine nozzle with sloped film cooling
US6331098B1 (en) * 1999-12-18 2001-12-18 General Electric Company Coriolis turbulator blade
CN1497128A (zh) * 2002-10-08 2004-05-19 通用电气公司 在翼型叶片上形成冷却孔的方法

Also Published As

Publication number Publication date
EP1614859A1 (de) 2006-01-11
CN1724849A (zh) 2006-01-25
ES2282763T3 (es) 2007-10-16
DE502004003477D1 (de) 2007-05-24
CN100350132C (zh) 2007-11-21
US7500823B2 (en) 2009-03-10
US20060002796A1 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
EP1614859B1 (de) Filmgekühlte Turbinenschaufel
DE60018817T2 (de) Gekühlte Gasturbinenschaufel
DE69924953T2 (de) Schaufel eines Gasturbinentriebwerks
EP1789654B1 (de) Strömungsmaschinenschaufel mit fluidisch gekühltem deckband
EP1834066A1 (de) Turbinenschaufel für eine gasturbine, verwendung einer turbinenschaufel sowie verfahren zum kühlen einer turbinenschaufel
DE60016058T2 (de) Gekühlter Turbinen-Mantelring
DE60224339T2 (de) Kühleinsatz mit tangentialer Ausströmung
DE3248163C2 (de)
DE60220875T2 (de) Gekühlte Rotorschaufel für industrielle Gasturbinen
EP1320661B1 (de) Gasturbinenschaufel
EP1173664B1 (de) Kühlluftsystem
EP1512489B1 (de) Schaufel einer Turbine
EP1907670B1 (de) Gekühlte turbinenschaufel für eine gasturbine und verwendung einer solchen turbinenschaufel
DE2320581C2 (de) Gasturbine mit luftgekühlten Turbinenlaufschaufeln
EP1283326B1 (de) Kühlung einer Turbinenschaufel
EP2828484B1 (de) Turbinenschaufel
DE10001109A1 (de) Gekühlte Schaufel für eine Gasturbine
EP1283338B1 (de) Gasturbine und Verfahren zum Betreiben einer Gasturbine
EP1245806B1 (de) Gekühlte Gasturbinenschaufel
EP1008723B1 (de) Plattformkühlung in Turbomaschinen
DE60220556T2 (de) Kühlung der Übergangsradien einer Statorschaufel
EP2084368B1 (de) Turbinenschaufel
EP1249578B1 (de) Kühlung einer Gasturbine
EP1510653B1 (de) Gekühlte Turbinenschaufel
EP1306521A1 (de) Laufschaufel für eine Gasturbine und Gasturbine mit einer Anzahl von Laufschaufeln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20060711

AKX Designation fees paid

Designated state(s): CH DE ES GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004003477

Country of ref document: DE

Date of ref document: 20070524

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070620

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2282763

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080114

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SIEMENS SCHWEIZ AG;INTELLECTUAL PROPERTY FREILAGERSTRASSE 40;8047 ZUERICH (CH)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004003477

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20220811 AND 20220817

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230721

Year of fee payment: 20

Ref country code: GB

Payment date: 20230725

Year of fee payment: 20

Ref country code: ES

Payment date: 20230816

Year of fee payment: 20

Ref country code: CH

Payment date: 20230802

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230726

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20231222

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG

Effective date: 20240409