EP1610008B1 - Bielle pour un moteur à combustion interne et méthode de réalisation d'une compression variable - Google Patents

Bielle pour un moteur à combustion interne et méthode de réalisation d'une compression variable Download PDF

Info

Publication number
EP1610008B1
EP1610008B1 EP20040102913 EP04102913A EP1610008B1 EP 1610008 B1 EP1610008 B1 EP 1610008B1 EP 20040102913 EP20040102913 EP 20040102913 EP 04102913 A EP04102913 A EP 04102913A EP 1610008 B1 EP1610008 B1 EP 1610008B1
Authority
EP
European Patent Office
Prior art keywords
connecting rod
artificial muscle
internal combustion
combustion engine
compression ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20040102913
Other languages
German (de)
English (en)
Other versions
EP1610008A1 (fr
Inventor
Dr.Torsten Kluge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Global Technologies LLC
Original Assignee
Ford Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Global Technologies LLC filed Critical Ford Global Technologies LLC
Priority to DE200450009965 priority Critical patent/DE502004009965D1/de
Priority to EP20040102913 priority patent/EP1610008B1/fr
Publication of EP1610008A1 publication Critical patent/EP1610008A1/fr
Application granted granted Critical
Publication of EP1610008B1 publication Critical patent/EP1610008B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/04Engines with variable distances between pistons at top dead-centre positions and cylinder heads
    • F02B75/045Engines with variable distances between pistons at top dead-centre positions and cylinder heads by means of a variable connecting rod length

Definitions

  • the invention relates to a connecting rod for an internal combustion engine for realizing a variable compression ratio ⁇ , which is pivotally connected at one end to a piston of the internal combustion engine and is pivotally connectable to the coupling of the piston and crankshaft with its other end to the crankshaft of the internal combustion engine, wherein the Connecting rod along an imaginary line L, which connects the two ends of the connecting rod, the length is variable.
  • the invention relates to a method for realizing a variable compression ratio E in an internal combustion engine using such a connecting rod.
  • the connecting rod of an internal combustion engine is usually provided with a small connecting rod eye at one end and a large connecting rod at its other end, wherein the connecting rod is articulated via a arranged in the small connecting rod piston pin to the piston.
  • the connecting rod is rotatably mounted on a crank pin of the crankshaft.
  • the piston serves to transmit the gas forces generated by the combustion to the crankshaft.
  • the gas forces that are applied to the piston are transmitted in this way via the piston pin on the connecting rod and from there to the crankshaft.
  • the gas forces push the piston downwards in the direction of the cylinder tube axis, whereby an accelerated movement is imposed on the piston by the gas forces starting from top dead center (TDC).
  • the piston which tries to avoid the gas forces with its downward movement, must take with him the pivotally connected connecting rod in this downward movement.
  • the piston directs the gas forces acting on it via the piston pin on the connecting rod and tries to accelerate it down.
  • UT bottom dead center
  • BDC bottom dead center
  • the distance traveled by the piston on its path between top dead center (TDC) and bottom dead center (TDC) in the cylinder tube is referred to as piston stroke s.
  • V H z ⁇ A K ⁇ s respectively.
  • the cylinder volume V Z, OT corresponds to the so-called compression volume V C when the piston is at top dead center (TDC). Consequently, the cylinder volume V Z, UT at the bottom dead center of the piston (UT) results from the sum of the stroke volume V h and the compression volume V C.
  • FIG. 1 shows the achievable efficiency potentials by means of a variable compression using the example of a naturally aspirated engine.
  • connecting rod As a two-piece connecting rod.
  • a connecting rod of the type mentioned is from the US Pat. No. 6,499,446 known.
  • the connecting rod comprises an upper connecting rod, which is articulated to the piston, and a lower connecting rod, which is articulated to the crankshaft, wherein the upper connecting rod and the lower connecting rod are also hingedly connected to each other, in this way against each other to be pivoted can.
  • this connecting rod is a connecting rod of the generic type, namely a connecting rod, which is along an imaginary line L, which connects the two ends of the connecting rod, in length is variable.
  • the imaginary line L runs on the one hand through the bearing, in which the upper connecting rod is rotatably connected to the piston, and on the other hand through the bearing, in which the lower connecting rod is received on the crankshaft. If the distance of these two bearings along their Verbünungsline L understood as the length of the connecting rod, this length can be achieved by pivoting the upper and lower connecting rod against each other. be changed by a more or less strong buckling of the two-piece connecting rod.
  • the setting of the compression ratio ⁇ takes place by means of a connecting rod, which is pivotally connected to the upper connecting rod and is rotatably received on a mounted in the motor housing eccentric shaft.
  • Another way to realize a variable compression ratio ⁇ is to construct the connecting rod of several connecting rod pieces, which are arranged telescopically in one another.
  • This connecting rod is also a connecting rod of the generic type.
  • a variation of the length of the connecting rod is achieved by pushing together or pulling the connecting rod pieces.
  • a mechanical adjustment is required, the principle - like the adjusting device already described in detail above - must be coupled to the connecting rod, whereby a part of this adjustment takes part in the oscillating and rotating movement of the crank mechanism.
  • the disadvantages are those already mentioned above.
  • Another object of the present invention is to provide a method of realizing a variable compression ratio E using a connecting rod of the generic type.
  • the first sub-task is solved by a connecting rod for an internal combustion engine to realize a variable compression ratio ⁇ , which is pivotally connected at one end to a piston of the internal combustion engine and for coupling of the piston and crankshaft with its other end to the crankshaft of the internal combustion engine is pivotally connected , where the Connecting rod along an imaginary line L, which connects the two ends of the connecting rod with each other, is variable in length, and which is characterized in that the connecting rod comprises an artificial muscle which changes by activation its geometric shape, whereby a change in length of the connecting rod and so that a variable compression ratio ⁇ can be realized.
  • Artificial muscles are actuators whose properties are similar or similar to those of the natural musculature. Characteristic of artificial muscles is in particular a volume occurring force generation due to atomic or molecular interactions. Often, artificial muscles - like natural muscles - are made of a soft, shape-changing material.
  • the power generation in known artificial muscles can be, for. As based on electrostatic forces of attraction, on the piezoelectric effect, on an ultrasonic generation, on a shape memory of materials, on an ion exchange, on an extension of carbon nanotubes and / or on the incorporation of hydrogen into metal hydrides.
  • artificial muscles may be made of polymers, in particular polymer gels, of ferroelectric substances, of silicon, of alloys having a shape memory or the like.
  • a detailed description of various types of artificial muscles is known, for example, from: B. in the EP 0 924 033 A2 , of the US 2002/0026794 A1 , of the US Pat. No. 6,109,852 and related patent literature.
  • examples of artificial muscles are described in publications of the relevant research institutes (eg Max Planck Institute for Solid State Research in Stuttgart, Department of Artificial Intelligence of MIT, Massachusetts, USA).
  • the connecting rod according to the invention comprises an artificial muscle
  • a mechanical adjusting device as it is known from the prior art, because an artificial muscle is inherently an adjustment already immanent.
  • the artificial muscle only has to be activated be, with an activation already possible by means of an electrical signal, as will be explained in more detail below.
  • the mechanical adjustment also eliminates the disadvantages associated with it, in particular an unwanted increase in the oscillating and rotating masses of the crank mechanism is avoided.
  • the material of which artificial muscles are formed is also of a lower specific gravity than conventional connecting rod manufacturing materials, so that the connecting rod of the present invention formed using an artificial muscle is even lighter than a conventional connecting rod. This further reduces the oscillating masses of the crank mechanism and the dynamic mass forces caused by these masses.
  • the first object of the invention is solved, namely to provide a variable in length connecting rod, with which the disadvantages known in the prior art are overcome, and in particular has a lower weight ,
  • Embodiments of the connecting rod in which the artificial muscle expands upon activation and in this way brings about the change in length of the connecting rod are advantageous.
  • This embodiment allows the design of the connecting rod to full load, i. in its deactivated state, which could also be referred to as rest position, the connecting rod formed using an artificial muscle has a length with which the maximum compression ratio E, which is maximum permissible under full load, with regard to the knock limit, is realized. As the load decreases, the artificial muscle is activated, increasing the length of the connecting rod and increasing the compression ratio E.
  • the connecting rod in which the artificial muscle contracted upon activation and in this way causes the change in length of the connecting rod.
  • the connecting rod is designed for the partial load operation, ie the usual operating range of an internal combustion engine, the compression ratios of ⁇ ⁇ 14 .. 15 permits.
  • the connecting rod With increasing load, the connecting rod must be shortened in order to lower the compression ratio ⁇ and to avoid autoignition in the fuel-air mixture.
  • the arranged in the connecting rod artificial muscle is activated so that it contracts and contracts on the connecting rod.
  • connecting rod in which the artificial muscle changes its outer shape when activated and in this way brings about the change in length of the connecting rod.
  • This embodiment will be described in more detail in connection with the description of FIGS. 3a and 3b explained.
  • the formation of a corresponding connecting rod can be done using shape memory materials that change when activated, for example, from a straight line shape into a curved or kinked shape or vice versa and thereby lead to a change in length of the connecting rod.
  • Embodiments of the connecting rod in which the artificial muscle comprises carbon nanotubes are advantageous.
  • Such artificial muscle elements are characterized by their high heat resistance up to 1000 ° C, which is why they are extremely suitable for use in an internal combustion engine which is exposed to high thermal loads.
  • muscle elements can be controlled by electrical energy (see. Science from 21.05.1999 ), which can be done in a simple manner by the on-board battery.
  • electrical energy see. Science from 21.05.1999
  • Carbon nanotubes can be bundled in paper-like multi-layer structures and allow significant curvature of the entire muscle structure. They are also characterized by a low ratio of expansion to contraction, which is considered to be advantageous.
  • embodiments of the connecting rod in which the artificial muscle comprises at least one polymer gel are also advantageous.
  • Artificial muscles based on polymer hydrogels can be controlled by electrical signals and contract upon activation (cf. Low, LW; Madou, MJ “Microactuators Towards Microvalves for Controlled Drug Delivery", Sensors and Actuators B: Chemical, 67 (1-2) (2000) pp. 149-160 ). For the reasons mentioned above, they are therefore suitable for the design of the connecting rod to full load operation.
  • Embodiments of the connecting rod in which the artificial muscle comprises at least one shape memory material are advantageous.
  • Shape memory materials per se - so-called shape memory materials or shape memory alloys - have been known for more than fifty years. They have the ability to change their outer shape depending on the temperature, the magnetic field strength or the hydraulic pressure to which they are exposed, or the like.
  • the shape memory materials include all materials which have a shape memory, in particular the shape memory alloys such as NiTi (nitinol), Fe-Pt, Cu-Al-Ni, Fe-Pd, Fe-Ni, Cu-Zn. Al, CuAlMn, but also ceramics with shape memory, such as Ce-TZP ceramic.
  • a paper clip formed from an elongate wire can change shape such that the paper clip - placed in a pot of hot water - changes to its original shape with increasing temperature and upon reaching a so-called transition temperature T ', ie the shape of an elongate wire accepts. It changes its external shape or, in other words, its structural configuration.
  • the shape memory material is a so-called two-way shape memory material, otherwise a one-way shape memory material.
  • connecting rod The formation of a connecting rod according to the invention requires a two-way shape memory material, so that the connecting rod can be specifically shortened and extended.
  • the connecting rod in which the artificial muscle is electrically controlled.
  • the mechanical energy generated by the muscle element can originate from the electrical energy of the signal.
  • Electrically controlled artificial muscle elements have the advantage that they are compatible with the usual control technology of an internal combustion engine.
  • connection rod in which the artificial muscle is gradually controlled, in particular two-stage is switchable.
  • Such a design of the connecting rod facilitates the control, in particular when the artificial muscle according to an on-off circuit works ie only from a deactivated state - rest position - in an activated state - working position - changes and vice versa.
  • Complex maps do not have to be generated and provided in this embodiment, as is required, for example, with steplessly controllable artificial muscle elements or connecting rods.
  • embodiments of the connecting rod in which the artificial muscle can be steplessly controlled are also advantageous, among other aspects. This allows an efficiency-optimized change d. H. Adjustment of the compression ratio E at the respective operating point, whereby the potential of a variable compression ratio in the partial load range can be fully utilized, which is only partially possible with a stepwise adjustment.
  • the second sub-task on which the invention is based is achieved by a method for realizing a variable compression ratio ⁇ in an internal combustion engine, in which a connecting rod, which is pivotally connected at one end to a piston of the internal combustion engine and for coupling the piston and crankshaft with their other End is integrally connected to the crankshaft of the internal combustion engine, is formed in such a way that the connecting rod along an imaginary line L, which connects the two ends of the connecting rod with each other in length, the method being characterized in that the connecting rod is provided with an artificial muscle and a change in length of the connecting rod is caused by an activation of the artificial muscle, whereby the compression ratio E of the internal combustion engine is changed.
  • Embodiments of the method are advantageous in which an element is used as an artificial muscle, which expands upon activation, so that the length of the connecting rod along an imaginary line L is increased by activation of the artificial muscle, whereby a higher compression ratio ⁇ of the internal combustion engine is realized.
  • Embodiments of the method in which the artificial muscle is activated in the partial load operation of the internal combustion engine in such a manner that the compression ratio ⁇ of the internal combustion engine is increased with decreasing load are advantageous.
  • the connecting rod is extended with decreasing load, whereby the compression ratio ⁇ is increased in the partial load range with the aim of improving the efficiency.
  • embodiments of the method are also advantageous in which an element is used as an artificial muscle, which contracts upon activation, so that the length of the connecting rod along an imaginary line L is reduced by activation of the artificial muscle, thereby realizing a lower compression ratio E of the internal combustion engine becomes.
  • Embodiments of the method in which the artificial muscle is activated in such a manner that the compression ratio E of the internal combustion engine is reduced with increasing load are advantageous.
  • the length of the connecting rod is reduced with increasing load and in this way the increased tendency to knock with increasing load taken into account.
  • Embodiments of the method in which a carbon nanotube, a polymer gel or a shape memory material is used as the artificial muscle are advantageous.
  • the advantages of these embodiments have already been described in detail in connection with the description of the connecting rod according to the invention.
  • the artificial muscle is electrically activated, i. is controlled. This facilitates the activation of the artificial muscle due to systems already present on the internal combustion engine.
  • the activation can be realized by means of the engine control and the on-board battery.
  • Embodiments of the method in which the artificial muscle can be controlled in steps, in particular in two stages, are advantageous.
  • This variant of the method allows simple control or control algorithms, without complex maps would have to be stored in the engine control.
  • embodiments of the method in which the artificial muscle is steplessly stepless are also advantageous, which allows the utilization of the full efficiency potential, which results from a fully variable compression ratio ⁇ .
  • FIG. 1 was already explained in more detail in the introduction to the description, which is why at this point not on the in the FIG. 1 illustrated diagram to be received.
  • FIG. 2a shows schematically in a side view and partially cut a first Embodiment of the connecting rod 3 in the deactivated state, wherein the crank mechanism is shown in top dead center (TDC).
  • TDC top dead center
  • the connecting rod 3 is provided at its one end 12 with a small connecting rod 8 and at its other end 13 with a large connecting rod 9, wherein the connecting rod 3 is articulated via a arranged in the small connecting rod 8 piston pin 2 with the piston 7 and with the large connecting rod eye 9 is rotatably mounted on a crankshaft journal 4 a Kurbelwellenkröpfung 5 of the crankshaft 6.
  • the piston 7 of the illustrated cylinder 1, which is guided in a cylinder tube 14, is located at top dead center (TDC) and, together with the cylinder tube 14 and the cylinder head, forms the combustion chamber or the compression volume 10.
  • the connecting rod 3 has in the deactivated state along an imaginary line L, which connects the two ends 12,13 - ie the small connecting rod 8 and the large connecting rod 9 - the connecting rod 3 with each other, a length I 1 .
  • the connecting rod 3 is characterized in that it comprises an artificial muscle 11 which changes its geometric shape by activation.
  • the connecting rod 3 has been formed using carbon nanotubes 11 arranged in a section between the small connecting rod eye 8 and the large connecting rod eye 9.
  • Carbon nanotubes are characterized by their high thermal capacity, which makes them suitable for use in an internal combustion engine. They can be controlled electrically and expand upon activation, as in FIG. 2b you can see.
  • carbon nanotubes 11 are suitable for the design of the connecting rod 3 to full load operation ie the connecting rod 3 formed using carbon nanotubes 11 has in its deactivated state (in FIG. 2 a) a length I 1 , with which - in terms of knock limit - maximum load at maximum load compression ratio ⁇ max is realized. With decreasing load, the carbon nanotubes 11 are activated, whereby the length I 2 of the connecting rod 3 increases and the compression ratio E is increased ( FIG. 2b ).
  • FIG. 2b schematically shows in a side view and partially cut in FIG. 2a illustrated first embodiment of the connecting rod 3 in the activated state, wherein the crank mechanism is shown in top dead center (TDC).
  • TDC top dead center
  • the carbon nanotubes 11 are activated and expanded along the line L, whereby the length I 2 of the connecting rod 3 is now increased. As a result, the compression volume 10 is smaller when activated artificial muscle 11 and the compression ratio E higher.
  • the connecting rod 3 In deactivated state ( FIG. 2a ), the connecting rod 3 is suitable for full load operation, whereas the in FIG. 2b shown activated state of the carbon nanotubes 11 high compression ratio E in partial load operation allows.
  • FIG. 2b would then represent the deactivated state and FIG. 2a the activated and contracted state of the connecting rod 3, ie exactly the reverse as in the embodiment of an expanded upon activation of artificial muscle 11 described in detail above.
  • FIG. 3a shows schematically in a side view and partially in section a second embodiment of the connecting rod 3, wherein the connecting rod 3 in the deactivated state and the crank drive is at top dead center (TDC).
  • FIG. 3b shows this in FIG. 3a illustrated embodiment in the activated state.
  • FIGS. 2a and 2b For the rest, reference will be made to FIGS. 2a and 2b , The same reference numerals have been used for the same components.
  • this second embodiment of the connecting rod 3 has an artificial muscle 11 formed using shape memory materials.
  • the artificial muscle 11 and thus also the connecting rod 3 has a banana-shaped shape and thus a length I 1 (FIG. Figur3a ).
  • the artificial muscle 11 stretches on activation, which is why the connecting rod 3 in the activated state has an elongated shape of the length I 2 .
  • a two-way shape memory material was used, so that the transformation process of the connecting rod 3 is reversible and the connecting rod 3 can be targeted shortened and extended ie can change between their two structural configuration with the different connecting rod lengths I 1 and I 2 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Claims (25)

  1. Bielle (3) pour un moteur à combustion interne pour réaliser un rapport de compression variable ε, qui peut être connectée de manière articulée par l'une de ses extrémités (12) à un piston (7) du moteur à combustion interne, et qui peut être connectée de manière articulée, pour l'accouplement du piston (7) et du vilebrequin (6), par son autre extrémité (13), au vilebrequin (6) du moteur à combustion interne, la bielle (3) pouvant varier en longueur le long d'une ligne imaginaire L qui relie l'une à l'autre les deux extrémités (12, 13) de la bielle (3),
    caractérisée en ce que
    la bielle (3) comprend un muscle artificiel (11) qui, lorsqu'il est activé, modifie sa forme géométrique, de sorte qu'une variation de la longueur de la bielle (3) et donc un rapport de compression ε variable, puissent être obtenus.
  2. Bielle (3) selon la revendication 1,
    caractérisée en ce que
    le muscle artificiel (11), lorsqu'il est activé, se dilate et provoque de cette manière la variation de longueur de la bielle (3).
  3. Bielle (3) selon la revendication 1,
    caractérisée en ce que
    le muscle artificiel (11), lorsqu'il est activé, se contracte et provoque de cette manière la variation de longueur de la bielle (3).
  4. Bielle (3) selon la revendication 1,
    caractérisée en ce que
    le muscle artificiel (11), lorsqu'il est activé, modifie sa forme et provoque de cette manière la variation de longueur de la bielle (3).
  5. Bielle (3) selon la revendication 1 ou 2,
    caractérisée en ce que
    le muscle artificiel (11) comprend des nanotubes de carbone.
  6. Bielle (3) selon la revendication 1 ou 3,
    caractérisée en ce que
    le muscle artificiel (11) comprend au moins un gel polymère.
  7. Bielle (3) selon la revendication 1 ou 4,
    caractérisée en ce que
    le muscle artificiel (11) comprend au moins un matériau à mémoire de forme.
  8. Bielle (3) selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    le muscle artificiel (11) peut être commandé électriquement.
  9. Bielle (3) selon l'une quelconque des revendications précédentes,
    caractérisée en ce que
    le muscle artificiel (11) peut être commandé par incréments.
  10. Bielle (3) selon la revendication 9,
    caractérisée en ce que
    le muscle artificiel (11) peut être commuté en deux incréments.
  11. Bielle (3) selon l'une quelconque des revendications 1 à 8,
    caractérisée en ce que
    le muscle artificiel (11) peut être commandé en continu.
  12. Procédé pour réaliser un rapport de compression variable ε dans un moteur à combustion interne, dans lequel une bielle (3), qui peut être connectée de manière articulée par l'une de ses extrémités (12) à un piston du moteur à combustion interne, et qui peut être connectée de manière articulée, pour l'accouplement du piston et du vilebrequin (6), par son autre extrémité (13), au vilebrequin (6) du moteur à combustion interne, est réalisée de telle sorte que la bielle (3) puisse varier en longueur le long d'une ligne imaginaire L qui relie l'une à l'autre les deux extrémités (12, 13) de la bielle (3),
    caractérisé en ce que
    la bielle (3) est pourvue d'un muscle artificiel (11) et, par l'activation du muscle artificiel (11), on obtient une variation de la longueur de la bielle (3), de sorte que le rapport de compression ε du moteur à combustion interne soit modifié.
  13. Procédé selon la revendication 12,
    caractérisé en ce que
    l'on utilise comme muscle artificiel (11) un élément qui se dilate lorsqu'il est activé, de sorte que par l'activation du muscle artificiel (11), la longueur de la bielle (3) le long de la ligne imaginaire L soit augmentée, de sorte qu'un rapport de compression ε plus élevé du moteur à combustion interne soit obtenu.
  14. Procédé selon la revendication 12 ou 13,
    caractérisé en ce que
    le muscle artificiel (11), pendant le fonctionnement en charge partielle du moteur à combustion interne, est activé de telle sorte que le rapport de compression ε du moteur à combustion interne augmente en fonction de la diminution de la charge.
  15. Procédé selon la revendication 12,
    caractérisé en ce que
    l'on utilise comme muscle artificiel (11) un élément qui se contracte lorsqu'il est activé, de sorte que par l'activation du muscle artificiel (11), la longueur de la bielle (3) le long de la ligne imaginaire L soit réduite, de sorte qu'un rapport de compression ε moins élevé du moteur à combustion interne soit obtenu.
  16. Procédé selon la revendication 12 ou 15,
    caractérisé en ce que
    le muscle artificiel (11) est activé de telle sorte que le rapport de compression ε du moteur à combustion interne diminue en fonction de l'augmentation de la charge.
  17. Procédé selon la revendication 12,
    caractérisé en ce que
    l'on utilise comme muscle artificiel (11) un élément qui, lorsqu'il est activé, modifie sa forme géométrique, de sorte que par l'activation du muscle artificiel (11), la longueur de la bielle (3) varie le long d'une ligne imaginaire L, de sorte que l'on obtienne un rapport de compression ε variable du moteur à combustion interne.
  18. Procédé selon l'une quelconque des revendications 12 à 14,
    caractérisé en ce que
    l'on utilise comme muscle artificiel (11) des nanotubes de carbone.
  19. Procédé selon la revendication 12, 15 ou 16,
    caractérisé en ce que
    l'on utilise comme muscle artificiel (11) un gel polymère.
  20. Procédé selon la revendication 12 ou 17,
    caractérisé en ce que
    l'on utilise comme muscle artificiel (11) un matériau à mémoire de forme.
  21. Procédé selon l'une quelconque des revendications 12 à 20,
    caractérisé en ce que
    le muscle artificiel (11) est activé, c'est-à-dire commandé, électriquement.
  22. Procédé selon l'une quelconque des revendications 12 à 21,
    caractérisé en ce que
    le muscle artificiel (11) peut être commandé par incréments.
  23. Procédé selon la revendication 22,
    caractérisé en ce que
    le muscle artificiel (11) peut être commuté en deux incréments.
  24. Procédé selon l'une quelconque des revendications 12 à 21,
    caractérisé en ce que
    le muscle artificiel (11) peut être commandé en continu.
  25. Procédé selon l'une quelconque des revendications 12 à 24,
    caractérisé en ce que
    le muscle artificiel (11) est commandé de telle sorte que le rapport de compression ε du moteur à combustion interne soit augmenté en fonction de la réduction de la charge, ou que le rapport de compression ε du moteur à combustion interne soit réduit en fonction de l'augmentation de la charge.
EP20040102913 2004-06-23 2004-06-23 Bielle pour un moteur à combustion interne et méthode de réalisation d'une compression variable Expired - Fee Related EP1610008B1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE200450009965 DE502004009965D1 (de) 2004-06-23 2004-06-23 Pleuelstange für eine Brennkraftmaschine und Verfahren zur Realisierung eines variablen Verdichtungsverhältnisses
EP20040102913 EP1610008B1 (fr) 2004-06-23 2004-06-23 Bielle pour un moteur à combustion interne et méthode de réalisation d'une compression variable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP20040102913 EP1610008B1 (fr) 2004-06-23 2004-06-23 Bielle pour un moteur à combustion interne et méthode de réalisation d'une compression variable

Publications (2)

Publication Number Publication Date
EP1610008A1 EP1610008A1 (fr) 2005-12-28
EP1610008B1 true EP1610008B1 (fr) 2009-08-26

Family

ID=34929236

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20040102913 Expired - Fee Related EP1610008B1 (fr) 2004-06-23 2004-06-23 Bielle pour un moteur à combustion interne et méthode de réalisation d'une compression variable

Country Status (2)

Country Link
EP (1) EP1610008B1 (fr)
DE (1) DE502004009965D1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007040700A1 (de) * 2007-08-29 2009-03-05 Robert Bosch Gmbh Hubkolben-Verbrennungskraftmaschine mit einstellbarem Verdichtungsverhältnis
DE102013107127A1 (de) * 2013-07-05 2015-01-08 Hilite Germany Gmbh Pleuel für eine zweistufige variable Verdichtung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5442037A (en) * 1994-09-07 1995-08-15 Tong Yang Nylon Co., Ltd. Polyester prepolymer showing shape-memory effect
DE10017104A1 (de) * 2000-04-06 2001-10-11 Univ Ilmenau Tech Fluidmechanisches Antriebselement
US6499446B1 (en) * 2000-10-18 2002-12-31 Ford Global Technologies, Inc. Variable compression ratio connecting rod locking mechanism I
DE10211971A1 (de) * 2002-03-19 2003-10-02 Bayerische Motoren Werke Ag Vorrichtung zur Veränderung eines Verdichtungsverhältnisses einer Hubkolben-Brennkraftmaschine
US6701885B2 (en) * 2002-05-13 2004-03-09 General Motors Corporation Engine connecting rod mechanism for cylinder pressure control
DE50209239D1 (de) * 2002-10-17 2007-02-22 Ford Global Tech Llc Ventileinrichtung für ein Kraftfahrzeug

Also Published As

Publication number Publication date
DE502004009965D1 (de) 2009-10-08
EP1610008A1 (fr) 2005-12-28

Similar Documents

Publication Publication Date Title
DE4416989C2 (de) Vorrichtung zur Umwandlung einer kreisförmigen Bewegung in eine Hin- und Herbewegung und umgekehrt
DE102012014917A1 (de) Druckimpulsansteuerung für eine Verstelleinrichtung eines variablen Verdichtungsverhältnisses
DE102011018166A1 (de) Vorrichtung zum Verändern eines Kompressionsverhältnisses einer Hubkolben-Brennkraftmaschine
DE102009006633A1 (de) Brennkraftmaschine mit verlängertem Expansionshub und verstellbarem Verdichtungsverhältnis
DE102012214659B4 (de) In der Länge veränderbare Pleuelstange und Verfahren zum Betreiben einer Brennkraftmaschine mit einer derartigen Pleuelstange
DE102013003682A1 (de) Brennkraftmaschine arbeitend nach dem realen Viertakt-Atkinson-Zyklus und Verfahren zu ihrer Laststeuerung
DE102017207644A1 (de) Verfahren zum Verändern eines zylinderzugehörigen Verdichtungsverhältnisses e einer fremdgezündeten Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
DE102012008244B4 (de) Mehrgelenkskurbeltrieb einer Brennkraftmaschine
EP1610008B1 (fr) Bielle pour un moteur à combustion interne et méthode de réalisation d'une compression variable
EP3267011A1 (fr) Dispositif de modification d'un rapport de compression d'un moteur à combustion interne à pistons alternatifs
EP2792846A1 (fr) Moteur à combustion interne à double vilebrequin
DE102013019214B3 (de) Mehrgelenkskurbeltrieb einer Brennkraftmaschine sowie Verfahren zum Betreiben eines Mehrgelenkskurbeltriebs
DE102017207645A1 (de) Verfahren zum Verändern eines zylinderzugehörigen Verdichtungsverhältnisses ε einer Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
DE102016215752A1 (de) Stellkolben einer Vorrichtung zur Veränderung des Verdichtungsverhältnisses einer Zylindereinheit einer Hubkolbenbrennkraftmaschine
DE102008063337A1 (de) Kontinuierlich verstellbare Ventilhubvorrichtung
DE102015224157A1 (de) Einrichtung zum Betätigen eines Schaltelements einer Vorrichtung zum Verändern eines Verdichtungsverhältnisses einer Zylindereinheit sowie Verfahren zum Verbinden eines Kurvenscheibenelements mit einer Führungsstange
DE2734447A1 (de) Explosionshubkolbenmotor
DE102014018898A1 (de) Mehrgelenkskurbeltrieb für eine Brennkraftmaschine mit einem Exzenterwellen-Stellantrieb umfassend ein schaltbares Getriebe mit mindestens zwei verschiedenen Untersetzungsverhältnissen
DE102018118322B4 (de) Kurbeltrieb für eine Viertakt-Hubkolben-Brennkraftmaschine
DE102018210265B4 (de) Kolben für eine Brennkraftmaschine und Verfahren zum Betreiben einer Brennkraftmaschine mit einem derartigen Kolben
EP1650411A1 (fr) Déphaseur d'arbre à cames et méthode pour modifier la phase d'un arbre à cames avec une muscle artificiel
WO2003104666A1 (fr) Transmission à bielle, notamment pour moteurs à combustion interne à piston alternatif
DE102017111395A1 (de) Vorrichtung zur Veränderung des Verdichtungsverhältnisses einer Hubkolbenbrennkraftmaschine
DE102008039533B4 (de) Ventilbetätigungseinrichtung zur variablen Steuerung eines Ventils
AT519798B1 (de) Pleuel mit Exzenter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20060628

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORD GLOBAL TECHNOLOGIES, LLC, A SUBSIDARY OF FORD

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004009965

Country of ref document: DE

Date of ref document: 20091008

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100527

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160525

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160531

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160629

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004009965

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170623

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170623

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630