EP1608861B1 - Dispositif de commande d'un moteur a combustion interne - Google Patents

Dispositif de commande d'un moteur a combustion interne Download PDF

Info

Publication number
EP1608861B1
EP1608861B1 EP04820452A EP04820452A EP1608861B1 EP 1608861 B1 EP1608861 B1 EP 1608861B1 EP 04820452 A EP04820452 A EP 04820452A EP 04820452 A EP04820452 A EP 04820452A EP 1608861 B1 EP1608861 B1 EP 1608861B1
Authority
EP
European Patent Office
Prior art keywords
air
cylinder
lam
fuel ratio
estimated value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04820452A
Other languages
German (de)
English (en)
Other versions
EP1608861A1 (fr
Inventor
Hong Zhang
Gerd RÖSEL
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
VDO Automotive AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VDO Automotive AG filed Critical VDO Automotive AG
Publication of EP1608861A1 publication Critical patent/EP1608861A1/fr
Application granted granted Critical
Publication of EP1608861B1 publication Critical patent/EP1608861B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1409Introducing closed-loop corrections characterised by the control or regulation method using at least a proportional, integral or derivative controller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • F02D2041/1419Several control loops, either as alternatives or simultaneous the control loops being cascaded, i.e. being placed in series or nested

Definitions

  • the invention relates to a device for controlling an internal combustion engine having a plurality of cylinders and injectors associated with the cylinders, which meter fuel, with an exhaust gas probe which is arranged in an exhaust tract and whose measurement signal is characteristic for the air / fuel ratio in the respective cylinder.
  • From the DE 199 03 721 C1 is a method for a multi-cylinder internal combustion engine for cylinder-selective control of an air / fuel mixture to be burned, at the lambda values for different cylinders or cylinder groups are sensed and regulated separately.
  • Each cylinder is associated with a single controller, which is designed as a PI or PID controller, whose controlled variable is a cylinder-specific lambda value and whose reference variable is a cylinder-specific desired value of the lambda.
  • the manipulated variable of the respective controller then influences the injection of the fuel in the respective associated cylinder.
  • a method for controlling an internal combustion engine having a controller designed as a PID controller whose controlled variable is an estimate of a cylinder-specific air / fuel ratio determined by an observer and whose command variable is a correspondingly converted mean lambda control factor, rated with a setpoint value. air / fuel ratio.
  • the mean lambda control factor is determined by averaging all cylinder-specific lambda control factors.
  • Each cylinder-specific lambda control factor is the manipulated variable of the respective PID controller assigned to the cylinder.
  • a corrected injection time is determined by multiplying an injection period predetermined for all cylinders of the internal combustion engine by the respective cylinder-specific lambda control factor.
  • the object of the invention is to provide a device for controlling an internal combustion engine, which ensures a precise control of the internal combustion engine.
  • the invention is characterized by an apparatus for controlling an internal combustion engine having a plurality of cylinders and the injection valves associated with the cylinders, which meter fuel, with an exhaust gas probe, which is arranged in an exhaust tract and whose measurement signal is characteristic of the air / fuel ratio in the respective cylinder.
  • a first controller is provided whose control difference is a difference between an actual value and an estimated value of a cylinder-specific deviation of the air / fuel ratio from a predefinable air / fuel ratio.
  • the first controller also has an integral control parameter.
  • the manipulated variable of the first regulator is a first estimate.
  • a second controller is provided whose control difference is the first estimated value and which has a proportional control parameter and whose manipulated variable is a cylinder-individual lambda control factor. Furthermore, a PT1 filter is provided by means of which a second estimated value is determined by PT1 filtering of the cylinder-specific lambda control factor. A unit is provided which determines the estimated value of the cylinder-specific deviation of the air / fuel ratio from the predeterminable air / fuel ratio from the difference between the first and the second estimated value.
  • a block determines a fuel mass to be supplied, which is to be supplied to the respective cylinder of the internal combustion engine, depending on a load size and in which then the supplied fuel mass is corrected depending on the cylinder-individual lambda control factor. Further, in the block, an actuating signal for controlling the injection valve is generated depending on the corrected fuel mass to be supplied.
  • the possible control speed can be increased compared to when the second controller is designed as a further I-controller, which is connected downstream of the first controller.
  • the device according to the invention a high robustness with a very high control accuracy. This is attributable inter alia to the fact that the actual value is taken into account by means of the second estimated value, by means of which the injection valve is activated. The application effort is low in the device according to the invention.
  • the invention is further distinguished by a device for controlling the internal combustion engine, in which the second is supplied to the controller as a control difference, a difference of an actual value and an estimated value of the cylinder-individual deviation of the air / fuel ratio of a predetermined air / fuel ratio.
  • the second controller has another integral control parameter. Its manipulated variable is the cylinder-specific lambda control factor. In this device, too, it is ensured that the second controller can be operated at a high regulating speed and the device has a high degree of robustness with a high control accuracy.
  • the application effort is low in the device according to the invention.
  • a block which adapts the first estimated value by means of a weighting factor before it is fed to the unit. Furthermore, a further block is provided, which adapts the cylinder-specific lambda control factor by means of a further weighting factor before it is fed to the PT1 filter.
  • the cylinder-individual air / fuel ratio can be determined even more precisely when determining the estimated value of the cylinder-specific deviation of the air / fuel ratio, in particular with regard to different lengths of the cylinder outlets to the all cylinders or at least all Cylinders associated with a cylinder bank exhaust probe and with a view to mixing in the respective Cylinders generated exhaust gas packets in the region of the exhaust gas probe.
  • the predefinable air / fuel ratio is an average air / fuel ratio of all cylinder-specific air / fuel ratios.
  • a third controller is provided, the reference variable is a predetermined for all cylinders of the engine air / fuel ratio, the controlled variable is the average air / fuel ratio of all cylinder individual air / fuel ratios and its manipulated variable Lambda control factor is.
  • the predetermined air / fuel ratio can be adjusted easily and precisely in all cylinders.
  • a further advantageous development of the invention provides that the proportional control parameter or the further integral control parameter of the second controller is load-dependent. As a result, the control quality can then be increased simply, since the different mixing of the exhaust gas packages resulting from the individual combustions of the air / fuel mixture in the respective cylinders Z1-Z4 can be easily taken into account.
  • An internal combustion engine ( FIG. 1 ) comprises an intake tract 1, an engine block 2, a cylinder head 3 and an exhaust tract 4.
  • the intake tract preferably comprises a throttle valve 11, a collector 12 and a suction pipe 13 which is guided towards a cylinder Z1 via an intake passage in the engine block.
  • the engine block further comprises a crankshaft 21, which is coupled via a connecting rod 25 with the piston 24 of the cylinder Z1.
  • the cylinder head comprises a valvetrain with a gas inlet valve 30, a gas outlet valve 31 and valve actuators 32, 33.
  • the cylinder head 3 further comprises an injection valve 34 and a spark plug 35.
  • the injection valve may also be disposed in the intake passage.
  • the exhaust tract 4 comprises a catalyst 40, which is preferably designed as a three-way catalyst. From the exhaust tract 4, an exhaust gas recirculation line can be led to the intake tract 1, in particular to the collector 12.
  • a control device 6 is provided, which is associated with sensors which detect different measured variables and in each case determine the measured value of the measured variable.
  • the control device 6 determines dependent on at least one of the measured variables manipulated variables, which are then converted into one or more actuating signals for controlling the actuators by means of corresponding actuators.
  • the sensors are a pedal position sensor 71, which detects the position of an accelerator pedal 7, an air mass meter 14, which detects an air mass flow upstream of the throttle valve 11, a temperature sensor 15 that detects the intake air temperature, a pressure sensor 16 that detects the intake manifold pressure, a crankshaft angle sensor 22 that detects a crankshaft angle, another temperature sensor 23 that detects a coolant temperature, a camshaft angle sensor 36, which detects the camshaft angle and an exhaust gas probe 41 which detects a residual oxygen content of the exhaust gas and whose measurement signal is characteristic of the air / fuel ratio in the cylinder Z1.
  • the exhaust gas probe 41 is preferably designed as a linear lambda probe and thus generates over a wide range of the air / fuel ratio, a proportional to this measurement signal.
  • any subset of said sensors or additional sensors may be present.
  • the actuators are, for example, the throttle valve 11, the gas inlet and gas outlet valves 30, 31, the injection valve 34, the spark plug 35, and the pulse charging valve 18.
  • each bank of cylinders is assigned an exhaust gas probe.
  • the block diagram shows the blocks of the control device 6 which are relevant in connection with the invention.
  • a block B1 corresponds to the internal combustion engine.
  • a block B2 is a cylinder-individually detected air / fuel ratio LAM_I supplied as input.
  • the cylinder-individually detected air / fuel ratio LAM_I is derived from the measurement signal of the exhaust gas probe 41 within a predefinable time or crankshaft angle window, which is assigned to the exhaust gas packet generated in the respective cylinder.
  • a mean air / fuel ratio LAM_MW is determined by averaging the cylinder-individually detected air / fuel ratios LAM_I of all cylinders Z1 to Z4 of the internal combustion engine. Furthermore, in block B2, an actual value D_LAM_I of a cylinder-specific air / fuel ratio deviation is determined from the difference between the average air / fuel ratio LAM_MW and the cylinder / cylinder-specific air / fuel ratio LAM_I.
  • a summing point S1 the difference between the actual value D_LAM_I and an estimated value D_LAM_I_EST of the cylinder-specific air / fuel ratio deviation is determined and then assigned to a block B3 which comprises a first controller and whose input variable is then the control difference of the first controller.
  • the first controller is designed as an integral controller, ie it has an integral control parameter.
  • the manipulated variable of the first regulator is a first estimated value EST1.
  • the first estimated value EST1 is preferably multiplied in a block B4 by a weighting factor that takes into account that the control difference at the input of the first controller is also influenced by exhaust packets of other cylinders Z1 to Z4 due to the different lengths of the outlets of the cylinders Z1 to Z4 towards the Exhaust probe 41 and a mixing of the exhaust gas packets of the individual cylinders Z1 to Z4 in the area the exhaust gas probe 41. Subsequently, the thus corrected first estimated value EST1 is fed to a summing point S2. Alternatively, however, the first estimate EST1 may also be fed directly from the block B3 to the summing point S2.
  • a block B5 comprises a second controller whose control difference is the first estimated value EST1 and which is designed as a P controller, ie has a proportional control parameter.
  • the manipulated variable of the second controller is a cylinder-specific lambda control factor LAM_FAC_I.
  • This cylinder-specific lambda control factor LAM_FAC_I is preferably corrected via a block B6, which corresponds to the block B4, by means of a further weighting factor, and then fed to a block B7 which comprises a PT1 filter which filters the cylinder-specific lambda control factor LAM_FAC_I and thus at its output a second Estimate EST2 provides.
  • the estimated value D_LAM_I_EST of the cylinder-specific air / fuel ratio deviation is determined from the difference of the first and second estimated values EST1, EST2.
  • a third controller is provided whose command variable is a predetermined for all cylinders of the internal combustion engine air / fuel ratio and the controlled variable is the average air / fuel ratio LAM_MW.
  • the manipulated variable of the third controller is a lambda control factor LAM_FAC_ALL. The third controller thus has the task that viewed over all cylinders Z1 to Z4 of the internal combustion engine, the predetermined air / fuel ratio is adjusted.
  • a fuel mass MFF to be metered is determined as a function of an air mass flow MAF in the respective cylinders Z1 to Z4 and optionally the rotational speed N and a target value LAM_SP of the air / fuel ratio for all cylinders Z1-Z4.
  • a corrected fuel mass MFF_COR to be metered is determined by multiplying the fuel mass MFF to be metered, the lambda control factor LAM_FAC_ALL and the cylinder-specific lambda control factor LAM_FAC_I.
  • an actuating signal is then generated with which the respective injection valve 34 is activated.
  • controller structure shown are provided for each additional cylinder Z1 to Z4 corresponding control structures B_Z2 to B_Z4 for the respective further cylinder Z2 to Z4.
  • the second estimated value EST2 compensates the control path dynamics, that is to say the dynamics of the internal combustion engine in such a way that the control interventions of the first and second controllers are included in the determination of the estimated value D_LAM_I_EST of the cylinder-specific air / fuel ratio deviation.
  • the second controller whose controlled variable is the first estimated value EST1
  • the second controller has no further I-component
  • an increase in the possible control speed and an increase in the robustness of the control structure is achieved in comparison to the case in which the second controller additionally has an I-component. Share has.
  • the weighting factor of the block B6 may also be provided with a negative sign. This has the consequence that the second estimated value EST2 is added in the summing point S2.
  • the weighting factors of the blocks B4 and / or B6 are also dependent on the load size, which is preferably the air mass flow MAF in the respective cylinder Z1-Z4 and / or the rotational speed N is.
  • control parameter of the second regulator that is to say the proportional control parameter here
  • the control parameter of the second regulator can also be dependent on the load variable, which is preferably the air mass flow MAF in the respective cylinder Z1-Z4 and / or the rotational speed N.
  • the control quality can then be increased simply, since the different mixing of the exhaust gas packages resulting from the individual combustions of the air / fuel mixture in the respective cylinders Z1-Z4 is taken into account.
  • the second controller in a block B5 ' unlike the second controller, has the FIG. 2 as a control difference, the difference between the actual value D_LAM_I and the estimated value LAM_I_EST of the cylinder-specific air / fuel ratio deviation.
  • the second controller of block B5 ' also has another integral control parameter, which is preferably selected to be the product of the integral control parameter of the first controller of the block B3 and the proportional control parameter of the second controller of the block B5 in FIG FIG. 2 equivalent.
  • the manipulated variable of the second controller is likewise the cylinder-specific lambda control factor LAM_FAC_I.
  • Both the cylinder-specific lambda control factor LAM_FAC_I and the lambda control factor LAM_FAC_ALL can also be corresponding additive correction values for the fuel mass MFF to be metered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

L'invention concerne un dispositif de commande d'un moteur à combustion interne comprenant un premier régulateur dont la différence de régulation correspond à la différence entre une valeur réelle (D_LAM_I) et une estimation (D_LAM_I_EST) d'un écart individuel au cylindre du rapport air-carburant relativement à un rapport air-carburant déterminé. Le premier régulateur comporte un paramètre de régulation intégral dont la grandeur de réglage est une première estimation (EST1). Un deuxième régulateur, dont la différence de régulation est la première estimation (EST1), est pourvu d'un paramètre de régulation proportionnel dont la grandeur de réglage est un facteur de régulation lambda (LAM_FAC_I) individuel au cylindre. Un filtre PT1 sert à déterminer une deuxième estimation (EST2) par filtrage PT1 du facteur de régulation lambda (LAM_FAC_I) individuel au cylindre. Une unité effectue l'estimation (D_LAM_I_EST) de l'écart individuel au cylindre du rapport air-carburant relativement au rapport air-carburant déterminé à partir de la différence entre la première et la deuxième estimation (EST1, EST2). En fonction du facteur de régulation lambda (LAM_FAC_I) individuel au cylindre, une masse de carburant (MFF) à mesurer est corrigée, et cette masse de carburant corrigée (MFF_COR) sert à déterminer un signal de réglage pour la soupape d'injection.

Claims (6)

  1. Dispositif de commande d'un moteur à combustion interne avec plusieurs cylindres (Z1 à Z4) et des soupapes d'injection (34) associées aux cylindres qui mesurent le carburant, avec une sonde de gaz d'échappement (41) qui est disposée dans une conduite d'échappement (4) et dont le signal de mesure est caractéristique de la proportion air/carburant dans chaque cylindre (Z1 à Z4), dans lequel
    - un premier régulateur est prévu, dont la différence de régulation est une différence d'une valeur réelle (D_LAM_I) d'un écart individuel pour chaque cylindre de la proportion air/carburant par rapport à une proportion air/carburant prescriptible et une valeur estimée (D_LAM_I_EST) de l'écart individuel pour chaque cylindre de la proportion air/carburant par rapport à une proportion air/carburant prescriptible, ce régulateur ayant un paramètre de régulation intégral et dont la grandeur réglante est une première valeur estimée (EST1),
    - un deuxième régulateur est prévu, dont la différence de régulation est la première valeur estimée (EST1) et qui a un paramètre de régulation proportionnel et dont la grandeur réglante est un facteur de régulation lambda individuel pour chaque cylindre (LAM_FAC_I),
    - un filtre PT1 est prévu, au moyen duquel une deuxième valeur estimée (EST2) est déterminée par le filtrage PT1 du facteur de régulation lambda individuel pour chaque cylindre (LAM_FAC_I),
    - une unité est prévue, laquelle détermine la valeur estimée (D_LAM_I_EST) de l'écart individuel pour chaque cylindre de la proportion air/carburant à partir de la différence des premières et deuxièmes valeurs estimées (EST1, EST2),
    - un bloc est prévu, lequel détermine une masse de carburant (MFF) à amener, laquelle doit être amenée à chaque cylindre (Z1 à Z4) du moteur à combustion interne, en fonction d'une grandeur de charge et dans lequel bloc est corrigée la masse de carburant à amener (MFF) en fonction du facteur de régulation lambda individuel pour chaque cylindre (LAM_FAC_I), et qui génère un signal de réglage pour commander la soupape d'injection (34) en fonction de la masse de carburant (MFF_COR) corrigée à amener.
  2. Dispositif de commande d'un moteur à combustion interne avec plusieurs cylindres (Z1 à Z4) et des soupapes d'injection (34) associées aux cylindres qui mesurent le carburant, avec une sonde de gaz d'échappement (41) qui est disposée dans une conduite d'échappement (4) et dont le signal de mesure est caractéristique de la proportion air/carburant dans chaque cylindre (Z1 à Z4), dans lequel
    - un premier régulateur est prévu, dont la différence de régulation est une différence d'une valeur réelle (D_LAM_I) d'un écart individuel pour chaque cylindre de la proportion air/carburant par rapport à une proportion air/carburant prescriptible et une valeur estimée (D_LAM_I_EST) de l'écart individuel pour chaque cylindre de la proportion air/carburant par rapport à une proportion air/carburant prescriptible, ce régulateur ayant un paramètre de régulation intégral et dont la grandeur réglante est une première valeur estimée (EST1),
    - un deuxième régulateur est prévu, dont la différence de régulation est une différence d'une valeur réelle (D_LAM_I) et d'une valeur estimée (D_LAM_I_ST) d'un écart individuel pour chaque cylindre de la proportion air/carburant par rapport à une proportion air/carburant prescriptible, lequel régulateur a un autre paramètre de régulation intégral et dont la grandeur réglante est un facteur de régulation lambda individuel pour chaque cylindre (LAM_FAC_I),
    - un filtre PT1 est prévu, au moyen duquel une deuxième valeur estimée (EST2) est déterminée par le filtrage PT1 du facteur de régulation lambda individuel pour chaque cylindre (LAM_FAC_I),
    - une unité est prévue, laquelle détermine la valeur estimée (D_LAM_I_EST) de l'écart individuel pour chaque cylindre de la proportion air/carburant à partir de la différence des premières et deuxièmes valeurs estimées (EST1, EST2),
    - un bloc est prévu, lequel détermine une masse de carburant (MFF) à amener, laquelle doit être amenée à chaque cylindre (Z1 à Z4) du moteur à combustion interne, en fonction d'une grandeur de charge et dans lequel bloc est corrigée la masse de carburant à amener (MFF) en fonction du facteur de régulation lambda individuel pour chaque cylindre (LAM_FAC_I), et qui génère un signal de réglage pour commander la soupape d'injection (34) en fonction de la masse de carburant (MFF_COR) corrigée à amener.
  3. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un bloc (B4) est prévu, lequel adapte la première valeur estimée (EST1) au moyen d'un facteur de pondération avant qu'elle ne soit transmise à l'unité, et en ce qu'un autre bloc (B6) est prévu, lequel adapte le facteur de régulation lambda individuel pour chaque cylindre (LAM_FAC_I) au moyen d'un autre facteur de pondération avant qu'il ne soit transmis au filtre PT1.
  4. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la proportion air/carburant prescriptible est une proportion air/carburant moyenne (LAM_MW) de toutes les proportions air/carburant individuelles au cylindre.
  5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un troisième régulateur est prévu, dont la grandeur de conduite est une proportion air/carburant prescrite pour tous les cylindres du moteur à combustion interne, dont la grandeur réglée est la proportion air/carburant moyenne de toutes les proportions air/carburant individuelles au cylindre et dont la grandeur réglante est un facteur de régulation lambda (LAM_FAC_ALL).
  6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le paramètre de régulation proportionnel ou l'autre paramètre de régulation intégral du deuxième régulateur est prescrit en fonction de la charge.
EP04820452A 2003-12-16 2004-11-10 Dispositif de commande d'un moteur a combustion interne Not-in-force EP1608861B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10358988A DE10358988B3 (de) 2003-12-16 2003-12-16 Vorrichtung zum Steuern einer Brennkraftmaschine
DE10358988 2003-12-16
PCT/EP2004/052912 WO2005059342A1 (fr) 2003-12-16 2004-11-10 Dispositif de commande d'un moteur a combustion interne

Publications (2)

Publication Number Publication Date
EP1608861A1 EP1608861A1 (fr) 2005-12-28
EP1608861B1 true EP1608861B1 (fr) 2008-04-23

Family

ID=34399713

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04820452A Not-in-force EP1608861B1 (fr) 2003-12-16 2004-11-10 Dispositif de commande d'un moteur a combustion interne

Country Status (4)

Country Link
US (1) US7284545B2 (fr)
EP (1) EP1608861B1 (fr)
DE (2) DE10358988B3 (fr)
WO (1) WO2005059342A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004004291B3 (de) * 2004-01-28 2005-01-27 Siemens Ag Verfahren zum Anpassen des Erfassens eines Messsignals einer Abgassonde
DE102005057975A1 (de) * 2005-12-05 2007-06-06 Robert Bosch Gmbh Verfahren zur zylinderindividuellen Steuerung der Kraftstoff- und/oder Luftmenge einer Brennkraftmaschine
JP4487971B2 (ja) * 2006-04-24 2010-06-23 トヨタ自動車株式会社 内燃機関の空燃比制御装置
DE102006033869B3 (de) * 2006-07-21 2008-01-31 Siemens Ag Verfahren und Vorrichtung zur Diagnose der zylinderselektiven Ungleichverteilung eines Kraftstoff-Luftgemisches, das den Zylindern eines Verbrennungsmotors zugeführt wird
DE102008009034B3 (de) * 2008-02-14 2009-04-23 Audi Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
EP2098709B1 (fr) * 2008-03-04 2016-07-06 GM Global Technology Operations LLC Procédé pour faire fonctionner un moteur à combustion interne
DE102008058008B3 (de) * 2008-11-19 2010-02-18 Continental Automotive Gmbh Vorrichtung zum Betreiben einer Brennkraftmaschine
GB2487589B (en) * 2011-01-28 2017-10-11 Gm Global Tech Operations Llc Method for operating a diesel/natural-gas internal combustion engine
JP5616274B2 (ja) * 2011-03-31 2014-10-29 本田技研工業株式会社 空燃比制御装置
AT513359B1 (de) * 2012-08-17 2014-07-15 Ge Jenbacher Gmbh & Co Og Verfahren zum Betreiben einer Brennkraftmaschine
DE102013220117B3 (de) * 2013-10-04 2014-07-17 Continental Automotive Gmbh Vorrichtung zum Betreiben einer Brennkraftmaschine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3800176A1 (de) 1988-01-07 1989-07-20 Bosch Gmbh Robert Steuereinrichtung fuer eine brennkraftmaschine und verfahren zum einstellen von parametern der einrichtung
EP0670419B1 (fr) * 1994-02-04 1999-12-29 Honda Giken Kogyo Kabushiki Kaisha Système d'estimation du rapport air/carburant pour un moteur à combustion interne
FR2775315B1 (fr) * 1998-02-25 2000-05-05 Magneti Marelli France Procede et dispositif d'autoadaptation rapide de richesse pour moteur a injection avec sonde d'oxygene dans les gaz d'echappement
DE19903721C1 (de) 1999-01-30 2000-07-13 Daimler Chrysler Ag Betriebsverfahren für eine Brennkraftmaschine mit Lambdawertregelung und Brennkraftmaschine
IT1311435B1 (it) * 1999-12-17 2002-03-12 Magneti Marelli Spa Metodo per la stima del rapporto stechiometrico del carburante per unsistema di controllo di un motore a combustione interna.
IT1321203B1 (it) * 2000-02-01 2003-12-31 Magneti Marelli Spa Metodo per il controllo del titolo della miscela aria - carburante inun motore a scoppio .
US6708681B2 (en) * 2000-07-07 2004-03-23 Unisia Jecs Corporation Method and device for feedback controlling air-fuel ratio of internal combustion engine
DE10221376B4 (de) 2002-05-14 2013-05-23 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine

Also Published As

Publication number Publication date
WO2005059342A1 (fr) 2005-06-30
US7284545B2 (en) 2007-10-23
EP1608861A1 (fr) 2005-12-28
DE502004006915D1 (de) 2008-06-05
DE10358988B3 (de) 2005-05-04
US20060260592A1 (en) 2006-11-23

Similar Documents

Publication Publication Date Title
EP1749149B1 (fr) Procede pour detecter un rapport air/carburant, specifique a chaque cylindre, dans un moteur a combustion interne
DE102005009101B3 (de) Verfahren und Vorrichtung zum Ermitteln eines Korrekturwertes zum Beeinflussen eines Luft/Kraftstoff-Verhältnisses
DE102004004291B3 (de) Verfahren zum Anpassen des Erfassens eines Messsignals einer Abgassonde
DE102006019894B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102006037752B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102006061659B4 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
EP1608861B1 (fr) Dispositif de commande d'un moteur a combustion interne
DE102005004441B3 (de) Vorrichtung und Verfahren zum Ermitteln einer Stellgröße eines Reglers einer Brennkraftmaschine
DE102005034690B3 (de) Verfahren und Vorrichtung zum Anpassen des Erfassens eines Messsignals einer Abgassonde
EP1857659A2 (fr) Procédé et dispositif destinés à l'utilisation d'un moteur à combustion interne
EP1730391B1 (fr) Procede et dispositif de commande d'un moteur a combustion interne
DE102005010028A1 (de) Reglervorrichtung zur Kompensation von Streuungen von Injektoren
DE102012204332B4 (de) Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102015219362B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102004021339B4 (de) Verfahren und Vorrichtung zum Überwachen eines Aufheizens eines Abgaskatalysators einer Brennkraftmaschine
DE102008018013B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
WO2016134943A1 (fr) Procédé et dispositif procédé permettant de faire fonctionner un moteur à combustion interne
DE102008009033B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
EP1844228B1 (fr) Procede et dispositif permettant de commander un moteur a combustion interne
DE102008005881B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102015219526B4 (de) Verfahren und System zum Betreiben einer Brennkraftmaschine
DE102004048704B4 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
DE102004036733A1 (de) Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
WO2016055246A1 (fr) Procédé et dispositif pour faire fonctionner un moteur à combustion interne
DE10359671A1 (de) Vorrichtung zum Steuern einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051020

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

17Q First examination report despatched

Effective date: 20061004

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VDO AUTOMOTIVE AG

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502004006915

Country of ref document: DE

Date of ref document: 20080605

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090126

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081113

Year of fee payment: 5

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081110

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502004006915

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004006915

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: CONTINENTAL AUTOMOTIVE GMBH, 30165 HANNOVER, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201130

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004006915

Country of ref document: DE

Owner name: VITESCO TECHNOLOGIES GMBH, DE

Free format text: FORMER OWNER: VITESCO TECHNOLOGIES GMBH, 30165 HANNOVER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004006915

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220601