EP1608501A1 - Verfahren zum herstellen von faserverbundwerkstoffen und danach hergestellter faserverbundwerkstoff - Google Patents

Verfahren zum herstellen von faserverbundwerkstoffen und danach hergestellter faserverbundwerkstoff

Info

Publication number
EP1608501A1
EP1608501A1 EP04721485A EP04721485A EP1608501A1 EP 1608501 A1 EP1608501 A1 EP 1608501A1 EP 04721485 A EP04721485 A EP 04721485A EP 04721485 A EP04721485 A EP 04721485A EP 1608501 A1 EP1608501 A1 EP 1608501A1
Authority
EP
European Patent Office
Prior art keywords
staple fibers
fibers
composite material
fiber composite
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04721485A
Other languages
English (en)
French (fr)
Inventor
Klaus-Kurt Kölzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10314901A external-priority patent/DE10314901A1/de
Application filed by Individual filed Critical Individual
Publication of EP1608501A1 publication Critical patent/EP1608501A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/02Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising combinations of reinforcements, e.g. non-specified reinforcements, fibrous reinforcing inserts and fillers, e.g. particulate fillers, incorporated in matrix material, forming one or more layers and with or without non-reinforced or non-filled layers
    • B29C70/021Combinations of fibrous reinforcement and non-fibrous material
    • B29C70/025Combinations of fibrous reinforcement and non-fibrous material with particular filler
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/542Shear strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249982With component specified as adhesive or bonding agent

Definitions

  • the invention relates to a method for producing
  • Fiber composite materials also relates to a fiber composite material which is produced by the method according to the invention.
  • glass fiber spun threads are used, which are taken from a bundle of hundreds of elementary fibers and defined with the help of a cutting unit
  • Lengths for example from 1 to 10 cm, cut and simultaneously with a resin matrix in a certain
  • Weight ratio for example 30% glass fibers and 70%
  • Voluminized fibers in the sense of the invention are known from DE 1 01 14708 AI and EP 0 222 399 B1,
  • the invention has for its object to produce three-dimensional fiber composites that have a particularly large volume and if necessary
  • thermoplastic hollow microspheres Voluminize mat formed by expandable, thermoplastic hollow microspheres. This volumization or volume increase takes place by embedding unexpanded thermoplastic microparticles, such as hollow microspheres, which contain a certain amount of propellant gas, for example butane, in the spaces between the elementary fibers and then expanding them by means of a thermal process.
  • propellant gas for example butane
  • the filaments of the fiber strand are spread apart, as a result of which the diameter and the volume of the fiber strand or of the structure consisting of staple fibers increase by at least 10 to 10 times.
  • the fiber strands or other structures thus voluminized can be processed with a device which is also suitable for producing spray fiber laminates.
  • the amount of synthetic resin used in the spraying process can be measured by adjusting the spray nozzle so that it is just sufficient to support the open-pored and absorbent structures made of staple fibers until they are saturated
  • the resin fiber spraying process has been known for 40 years and is used in particular to produce a glass fiber reinforced plastic laminate. It was surprisingly found that this known spraying method can also be applied to volumized fibers.
  • the person skilled in the art did not expect that the comparatively very light, voluminized fibers could be flung over the required distances of typically 0.5 to 2 meters in order to achieve the target, that is to say a negative form to reach.
  • the person skilled in the art would have expected that due to the lightness of the voluminized fibers, a negative mold with a size of typically 30 to 40 cm would largely be missed and the waste would become too large. A clumping of the voluminized fibers that hit the negative mold was also to be expected.
  • the very light and soft material i.e. the voluminized fibers
  • the cutter which is used to chop continuous threads or fiber strands, is surprisingly not added, which would otherwise have required a great deal of maintenance.
  • Static charging is a major problem in the processing of glass fibers known from the prior art. Countermeasures such as earthing and ventilation must therefore be taken when processing glass fibers. The person skilled in the art has therefore expected that problems relating to static charging would be all the greater when processing voluminized fibers according to the invention, which are made of plastic.
  • a three-dimensional mat or the like produced in this way can, if desired, be compressed at least in places by generating pressure, for example in a press or with hand rollers, in such a way that a homogeneous, air-bubble-free laminate is formed, in which the originally three-dimensionally arranged staple fibers become a two-dimensional one Have orientated confusion.
  • pressure for example in a press or with hand rollers
  • a homogeneous, air-bubble-free laminate is formed, in which the originally three-dimensionally arranged staple fibers become a two-dimensional one Have orientated confusion.
  • the material is allowed to harden after spraying on the fiber mat without applying pressure, a three-dimensional mat with an open structure is created.
  • the processor can vary the density of this structure as desired by applying more or less pressure. It is also possible to produce areas with a flat, homogeneous structure and areas with a very voluminous structure within a molded part or structure produced in this way by point pressure.
  • the material thicknesses between a pressure-hardened three-dimensional mat and a compressed mat can vary up to three times, for example.
  • first base cover layer is produced from a homogeneous layer of flat-lying glass fibers, on which a core layer made of a three-dimensional tangle of voluminized staple fibers is placed.
  • the final cover layer is in turn a smooth layer of two-dimensionally arranged layers staple fibers,
  • This technology can be applied in one operation, whereby the wet-on-wet production ensures an overall homogeneity of the sandwich
  • Sandwich constructions in which cover layers were glued to a middle layer, could have the same material thicknesses and weights of cover layers and
  • Core material the shear strength, bending stiffness and the modulus of elasticity can be significantly improved.
  • the aforementioned technical parameters are increased by 20 to 30%.
  • the manufacturing costs were significantly reduced, since there is no need for a gluing step and cover layers and core material are produced in one operation.
  • glass fibers are sprayed for the production of cover layers.
  • the core material is produced by spraying the voluminized fibers.
  • Sandwich constructions have an extremely low specific weight and maximum form stability, especially with regard to bending stiffness and shear strength.
  • fenders for a motor vehicle bumpers, spoilers, air deflectors, engine covers for electric motors, deck hatches for a boat, floor panels, panels, children's play equipment such as slides and garden tools are produced in particular.
  • engine covers for electric motors deck hatches for a boat, floor panels, panels, children's play equipment such as slides and garden tools are produced in particular.
  • Spinning threads made of glass fibers which have been volumized by embedding thermoplastic hollow micro-bodies, are sprayed onto a negative mold with the aid of a resin-fiber spray gun
  • the resin content is approx. 50%.
  • the expanded staple fibers have a bar-shaped and voluminous structure, so that a mat layer thus created is oriented in a three-dimensional arrangement of the staple fibers.
  • the simultaneously sprayed-out synthetic resin is sucked up by the porous staple fibers, whereby cavities located between the staple fibers remain open and air-permeable.
  • a composite material produced in this way can also be used as the core layer of a sandwich construction by covering this composite material with two outer cover layers made of non-voluminized thin fiber composite materials. With these top layers, the amount of resin required, based on the fiber volume, is approx. 95%. The thicknesses of the individual layers depend on the desired design Conditions.
  • Airplanes Wind wings, containers, formwork panels, etc.
  • 1 is a plan view of a section of the mat-shaped composite material
  • FIG. 2 shows a cross section of the composite material from FIG. 1
  • FIG. 1 It can be seen from the top view of a mat-shaped composite material (1) shown in FIG. 1 that it contains tangled staple fibers (2) which are embedded in a matrix (3) made of hardenable thermosetting synthetic resin and are thus held together, between the staple fibers (2) embedded in the drawing not recognizable thermoplastic microspheres that under
  • the influence of heat has been expanded so that the matrix (3) with the staple fibers (2) embedded therein in the form of a tangle form a three-dimensional composite material.
  • the composite material (1) is sandwich-shaped, as shown in FIG. 2.
  • the cover layers (5) and (6) are, as it were, two-dimensional in that no expandable thermoplastic hollow microspheres or similar micro-bodies are embedded between the staple fibers of these layers.
  • FIG. 2 shows that the matrix (3) of the core layer (4) contains cavities (7) which make the mat-shaped composite material (1) permeable to air and liquids.
  • the cover layers (5) and (6) are in contrast to
  • the invention enables the production of sandwich moldings from composite materials that are not in a closed system, i.e. by pressing in a mold from two mold halves, but in the so-called open system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Herstellen von Faserverbundwerkstoffen sowie einen Faserverbundwerkstoff, der nach dem erfindungsgemässen Verfahren hergestellt ist.

Description

VERFAHREN ZUM HERSTELLEN VON
FASERVERBUNDWERKSTOFFEN UND DANACH HERGESTELLTER
FASERVERBUNDWERKSTOFF
Die Erfindung betrifft ein Verfahren zum Herstellen von
Faserverbundwerkstoffen, Außerdem betrifft die Erfindung einen Faserverbundwerkstoff, der nach dem erfindungsgemäßen Verfahren hergestellt ist,
Es ist bekannt, Verbundwerkstoffe herzustellen, indem Endlos-Spinnfäden, vorzugsweise Glasfaserfäden, zusammen mit härtbaren, duroplastischen Harzen auf eine Unterlage aufgespritzt werden und das Ganze aushärten gelassen wird.
Hierzu werden vorwiegend Glasfaser-Spinnfäden verwendet, die aus einem Bündel von Hunderten von Elementarfasern entnommen und mit Hilfe eines Schneidwerkes auf definierte
Längen, beispielsweise von 1 bis 1 0 cm, geschnitten und gleichzeitig mit einer Harz-Matrix in einem bestimmten
Gewichtsverhältnis, beispielsweise 30 % Glasfasern und 70 %
Harz, benetzt werden, Diese Glasfaser-Spinnfäden sind sehr dünn, nämlich wenige Zehntel Millimeter, und lassen sich aufgrund ihrer Längen- und Dickenverhältnisse als flache, zweidimensionale Wirrlage ablegen.
Voluminisierte Fasern im Sinne der Erfindung sind aus der DE 1 01 14708 AI sowie der EP 0 222 399 Bl bekannt,
Der Erfindung liegt die Aufgabe zugrunde, dreidimensionale Faserverbundwerkstoffe herzustellen, die ein besonders großes Volumen aufweisen und bei Bedarf
Öffnungen bzw, Hohlräume enthalten, welche für Luft und Flüssigkeiten durchlässig sein können, Diese Aufgabe wird erfindungsgemäß mit einem
Verfahren gelöst, welches die Merkmale des Anspruches 1 aufweist. Vorteilhafte Ausgestaltungen und Weiterbildungen dieses Verfahrens sind Gegenstand der auf Anspruch 1 rückbezogenen Unteransprüche.
Außerdem wird die vorstehend genannte Aufgabe mit einem Faserverbundwerkstoff gelöst, welcher die Merkmale des Anspruches 1 0 aufweist, Vorteilhafte Ausgestaltungen und Weiterbildungen dieses Faserverbundwerkstoffes sind
Gegenstand der auf Anspruch 1 0 rückbezogenen Unteransprüche.
Erfindungsgemäß kann beispielsweise eine Stapelfaser- Matte erzeugt werden, welche Glas-Spinnfäden enthält, die vorzugsweise modifiziert worden sind, um die aus den
Spinnfäden gebildete Matte durch expandierbare, thermoplastische Mikrohohlkugeln zu voluminisieren. Diese Voluminisierung oder Volumenvergrößerung erfolgt, indem man nicht expandierte, thermoplastische Mikropartikel, wie Mikrohohlkugeln, die eine bestimmte Menge Treibgas enthalten, beispielsweise Butan, in die Zwischenräume zwischen den Elementarfasern einbettet und sodann durch einen thermischen Prozess expandiert.
Bei diesem Expansionsprozess werden die Elementarfäden des Faserstranges voneinander abgespreizt, wodurch sich der Durchmesser und das Volumen des Faserstranges bzw. des aus Stapelfasern bestehenden Gebildes um mindestens das l Ofache bis l OOfache vergrößern. Die so voluminisierten Faserstränge oder sonstigen Gebilde können mit einer Vorrichtung, die auch zum Herstellen von Spritzfaser-Laminaten geeignet ist, verarbeitet werden. Beim Schneiden derartiger Faserstränge entstehen balkenartige, grobe Faserstapel, die im Gegensatz zu den dünnen, nicht voluminisierten Fasern oder Fasersträngen sich nicht zwei-, sondern dreidimensional orientieren und eine voluminöse Matte mit sehr offener, luftdurchlässiger Struktur bilden, Zusätzlich kann man durch geeignete Bindemittel, die ohnehin zum Fixieren der Mikropartikel, beispielsweise Mikrokugeln, erforderlich sind, den Faserverbundwerkstoffen eine gewisse Steifigkeit geben, was die Aufrechterhaltung der offenen Struktur bis zum Aushärten des Harzmaterials unterstützt,
Die beim Spritzprozess verwendete Menge Kunstharz kann durch Einstellen der Spritzdüse so bemessen werden, dass sie gerade ausreicht, um die offenporigen und saugfähigen Gebilde aus Stapelfasern bis zur Sättigung mit
Harz zu füllen, während zwischen den einzelnen Stapelfasern noch verbleibende Hohlräume offen bleiben, Hierdurch ergibt sich der zusätzliche Effekt, dass die zwischen den Stapelfasern eingebetteten Mikrohohlkugeln die Harzaufnahme (bezogen auf das Volumen) gegenüber nicht voluminisierten Fasergebilden um bis zu 50 bis 60 % reduzieren. Auf diese Weise ist neben einer erheblichen Gewichtseinsparung eine ebenso erhebliche
Kosteneinsparung möglich. Zwar ist seit 40 Jahren das Harzfaserspritzverfahren bekannt und wird insbesondere eingesetzt, um ein glasfaserverstärktes Kunststoff - Laminat herzustellen. Überraschend wurde festgestellt, dass dieses bekannte Spritzverfahren auch auf voluminisierte Fasern angewendet werden kann. Der Fachmann hat nicht erwartet, dass sich die vergleichsweise sehr leichten voluminisierten Fasern über die erforderlichen Distanzen von typischerweise 0,5 bis 2 Meter schleudern lassen, um so das Ziel, also eine Negativform, zu erreichen. Der Fachmann hätte erwartet, dass aufgrund der Leichtigkeit der voluminisierten Fasern eine Negativform mit einer Größe von typischerweise 30 bis 40 cm größtenteils verfehlt wird und somit der Abfall zu groß wird, Zu erwarten war ferner eine Verklumpung der voluminisierten Fasern, die auf die Negativform auftreffen.
Statt dessen verfilzt das sehr leichte und weiche Material, also die voluminisierten Fasern nicht. Das Schneidgerät (Cutter), welches eingesetzt wird, um Endlosfäden bzw. Fasersträngen zu zerhacken, wird überraschend nicht zugesetzt, was andernfalls zu einem großen Wartungsaufwand geführt hätte.
Bei der aus dem Stand der Technik bekannten Verarbeitung von Glasfasern stellt die statische Aufladung ein großes Problem dar. Es müssen daher bei der Verarbeitung von Glasfasern Gegenmaßnahmen wie Erdung und Lüftung getroffen werden. Der Fachmann hat daher erwartet, dass Probleme in Bezug auf statische Aufladung bei der Verarbeitung von erfindungsgemäßen voluminisierten Fasern, die aus Kunststoff bestehen, umso größer sein würde.
Überraschend war dies jedoch nicht der Fall.
Diese vom Fachmann befürchteten vorgenannten Probleme konnten insbesondere durch hinreichende Benetzung der voluminisierten Fasern mit Harzpartikeln vermieden werden. In diesem Fall wird die Kinetik nicht durch die voluminisierten Fasern, sondern durch das deutlich schwerere Harz bestimmt. Die gleichmäßige Verteilung der gespritzten voluminisierten Fasern auf den Negativformen konnte so realisiert werden, Ein Abstand von 2 Metern konnte beim Spritzen problemlos überbrückt werden, Auch kleine
Negativformen wurden hinreichend genau getroffen, so dass übergroße Abfallmengen nebst damit verbundenen Verunreinigungen vermieden werden konnten, Eine derart hergestellte dreidimensionale Matte oder dergleichen kann, falls erwünscht, durch Erzeugung von Druck, beispielsweise in einer Presse oder mit Handrollern, zumindest stellenweise so verdichtet werden, dass ein homogenes, luftblasenfreies Laminat entsteht, in welchem die ursprünglich dreidimensional angeordneten Stapelfasern sich in eine zweidimensionale Wirrlage orientiert haben. Lässt man jedoch nach dem Aufspritzen der Fasermatte das Material ohne Druckausübung aushärten, entsteht eine dreidimensionale Matte mit offener Struktur.
Je nach konstruktiven Anforderungen kann der Verarbeiter die Dichte dieser Struktur durch Ausüben von mehr oder weniger Druck beliebig variieren. Es ist auch möglich, innerhalb eines derart hergestellten Formteiles oder Gebildes durch punktuellen Druck Bereiche mit einer flachen, homogenen Struktur und Bereiche mit einer sehr voluminösen Struktur herzustellen. Die Materialstärken zwischen einer drucklos ausgehärteten dreidimensionalen Matte und einer verdichteten Matte können beispielsweise bis zum Dreifachen variieren.
Besonders interessant ist die Möglichkeit der Herstellung von Sandwich-Konstruktionen, wobei eine erste Basis- Decklage aus einer homogenen Schicht flachliegender Glasfasern hergestellt wird, auf welche eine Kernschicht aus einer dreidimensionalen Wirrlage voluminisierter Stapelfasern gelegt wird, Die abschließende Decklage ist wiederum eine glatte Lage zweidimensional angeordneter Stapelfasern,
Diese Technologie kann in einem Arbeitsgang angewendet werden, wobei sich durch die Nass-in-Nass- Herstellung eine Gesamthomogenität der Sandwich-
Konstruktion ergibt, welche mit der Herstellungsweise üblicher Sandwich-Konstruktionen durch das Einbetten von leichten, aber artfremden Materialien, beispielsweise Holz oder Schaumstoff, nicht erreicht werden kann. Die gesamte Sandwich-Konstruktion besteht dann aus geschnittenen Stapelfasern, die sich an den Grenzflächen ineinander verkrallen. Decklagen, die dus Glasfasermaterial bestehen können, werden also nicht mit dem Kernmaterial verklebt. Es entsteht so ein neuartiges Produkt mit überlegenen technischen Eigenschaften, Im Vergleich zu
Sandwichkonstruktionen, bei denen Decklagen mit einer Mittelschicht verklebt wurden, konnte bei gleichen Materialstärken und Gewichten von Decklagen und
Kernmaterial die Scherfestigkeit, Biegesteifigkeit sowie das Elastizitätsmodul deutlich verbessert werden. Es gelangen Erhöhungen der vorgenannten technischen Parameter um 20 bis 30 %. Die Herstellungskosten wurden zugleich deutlich gesenkt, da ein Klebeschritt entfällt und in einem Arbeitsgang Deckschichten und Kernmaterial hergestellt werden. Für die Herstellung von Deckschichten werden also beispielsweise Glasfasern gespritzt. Das Kernmaterial wird durch Spritzen der voluminisierten Fasern erzeugt.
Auf diese Weise in einem offenen System hergestellte
Sandwich-Konstruktionen haben ein extrem geringes spezifisches Gewicht und höchste Formfestigkeit, insbesondere in Bezug auf Biegesteifigkeit und Scherfestigkeit.
Erfindungsgemäß werden insbesondere Kotflügel für ein Kraftfahrzeug, Stoßstangen, Spoiler, Luftabweiser, Motorabdeckungen für Elektromotoren, Deckluken für ein Boot, Bodenplatten, Paneele, Kinderspielgeräte wie Rutschbahnen sowie Gartengeräte hergestellt. Es handelt sich hierbei um typische Kleinteile bzw. kleine Formen, Beispiel:
Spinnfäden aus Glasfasern, die durch Einbetten von thermoplastischen Mikrohohlkörpern voluminisiert worden sind, werden mit Hilfe einer Harz-Faser-Spritzpistole auf eine Negativform aufgespritzt, Dabei werden gleichzeitig die
Endlos-Spinnfäden mit Hilfe eines Schneidwerkes in Stapelfasern von beispielsweise 3 cm Länge zerhackt und gemeinsam mit einem Sprühstrahl aus härtbarem Harz wie ungesättigtem Polyester auf die Negativform aufgespritzt. Die verwendete Harzmenge ist so bemessen, dass sie gerade zur
Sättigung der saugfähigen Stapelfasern ausreicht, Bezogen auf das Faservolumen beträgt der Harzanteil ca. 50 %.
Die expandierten Stapelfasern haben eine balkenförmige und voluminöse Struktur, so dass eine so entstehende Mattenlage sich in dreidimensionaler Anordnung der Stapelfasern orientiert. Das gleichzeitig ausgespritzte Kunstharz wird von den porösen Stapelfasern aufgesogen, wobei zwischen den Stapelfasern befindliche Hohlräume offen und luftdurchlässig bleiben. Nach dem Aushärten des Harzes entsteht ein Verbund dus dreidimensional angeordneten, extrem harten Stapelfasern, welche einen in den Berührungs- und Kreuzungspunkten mit so genannten spanischen Reitern vergleichbaren Verbundwerkstoff ergeben, der sowohl leicht ist als auch höchste statische Festigkeit aufweist.
Ein auf diese Weise hergestellter Verbundwerkstoff kann auch als Kernlage einer Sandwich-Konstruktion verwendet werden, indem man diesen Verbundwerkstoff mit zwei außen liegenden Decklagen aus nicht-voluminisierten dünnen Faserverbundwerkstoffen abdeckt. Bei diesen Decklagen beträgt die notwendige Harzmenge, bezogen auf das Faservolumen, ca. 95 %. Die Dicken der einzelnen Lagen richten sich nach den gewünschten konstruktiven Anforderungen.
Durch die in einem Arbeitsgαng mögliche Herstellung
(Nαss-in-Nαss) der Sandwich-Konstruktion sind mechanische
Festigkeiten in Bezug auf das spezifische Gewicht erreichbar, die mit kaum einer anderen Sandwich-Konstruktion zu erreichen sind.
Verwendungsbereiche für derartige Verbundwerkstoffe sind überall dort gegeben, wo höchste Festigkeiten bei möglichst geringem Gewicht wünschenswert sind, beispielsweise bei der Herstellung von Booten, Fahrzeugen,
Flugzeugen, Windflügeln, Containern, Schalungsplatten u, dgl..
Zur weiteren Erläuterung der Erfindung ist in der Zeichnung ein Ausführungsbeispiel eines mattenförmigen Verbundwerkstoffes schematisch dargestellt, und zwar zeigt
Fig. 1 eine Draufsicht auf einen Ausschnitt aus dem mattenförmigen Verbundwerkstoff,
Fig. 2 einen Querschnitt des Verbundwerkstoffes aus Fig. 1
Aus der in Figur 1 gezeigten Draufsicht eines mattenförmigen Verbundwerkstoffes ( 1 ) ist erkennbar, dass dieser wirr gelegte Stapelfasern (2) enthält, welche in einer Matrix (3) aus härtbarem duroplastischem Kunstharz eingebettet und somit zusammengehalten sind, Zwischen den Stapelfasern (2) sind in der Zeichnung nicht erkennbar thermoplastische Mikrohohlkugeln eingebettet, die unter
Wärmeeinfluss ausgedehnt worden sind, so dass die Matrix (3) mit den darin in Form einer Wirrlage eingebetteten Stapelfasern (2) einen dreidimensionalen Verbundwerkstoff bilden. Der Verbundwerkstoff (1 ) ist sandwichförmig ausgebildet, wie Figur 2 zeigt. Auf einer dreidimensionalen Kernlage (4) ist eine obere Deckschicht (5) und eine untere Deckschicht (6) angeordnet. Die Deckschichten (5) und (6) sind im Gegensatz zur Kernlage (4) sozusagen zweidimensional ausgebildet, dd zwischen die Stapelfasern dieser Lagen keine expandierbaren thermoplastischen Mikrohohlkugeln oder ähnliche Mikrokörper eingebettet sind.
Figur 2 lässt erkennen, dass in der Matrix (3) der Kernlage (4) Hohlräume (7) enthalten sind, welche den mattenförmigen Verbundwerkstoff (1 ) für Luft und Flüssigkeiten durchlässig machen. Die Deckschichten (5) und (6) sind im Gegensatz zur
Kernlage (4) biasenfrei und damit dicht ausgebildet, wie aus Figur 2 zu erkennen ist.
Durch die Erfindung wird die Herstellung von Sandwich- Formteilen aus Komposit-Werkstoffen, die nicht im geschlossenen System, d.h. durch das Pressen in einer Form aus zwei Formhälften, sondern im so genannten offenen System hergestellt werden.

Claims

Ansprüche
1 . Verfahren zum Herstellen von Faserverbundwerkstoffen, dadurch gekennzeichnet, dass mit härtbarem duroplastischem Kunstharz getränkte und/oder imprägnierte auf Länge geschnittene Stapelfasern zu einer dreidimensionalen Wirrlage gelegt und so aneinander gebunden werden.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass Stapelfasern mit einer Länge von 0,5 bis 20 cm verarbeitet werden.
3, Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Stapelfasern auf Basis von Glasfasern verarbeitet werden.
4, Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Stapelfasern aus Kunststoff verarbeitet werden.
5, Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass Stapelfasern aus Kohlenstoff bzw, Karbonfasern verarbeitet werden,
6, Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass zum Volumisieren der dreidimensionalen Wirrlage vor oder beim Legen derselben in die mit Kunststoff getränkten Stapelfasern thermoplastische Mikrohohlkugeln eingebettet werden.
7, Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die geschnittenen Stapelfasern mit einem härtbaren Kunstharz wie ungesättigtes Polyester, Epoxidharz, PU-Harz, Vinylesterharz und/oder Phenolharz in einer
Menge benetzt werden, die ausreicht, die saugfähigen Stapelfasern bis zur Sättigung zu tränken, wobei jedoch Hohlräume zwischen den dreidimensional angeordneten Stapelfasern offen bleiben.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die dreidimensionale Wirrlage zumindest auf einer Seite mit einer glatten, homogenen, zweidimensionalen Lage aus nicht-volumisierten Fasern versehen wird,
9, Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die dreidimensionale Wirrlage zumindest stellenweise zu einer homogenen, blasenfreien
Verbundwerkstofflage komprimiert wird.
10. Faserverbundwerkstoff, bestehend aus einer Matrix (3) aus ausgehärtetem thermoplastischen Kunstharz und darin in dreidimensionaler Wirrlegung eingebetteten Stapelfasern (2), wobei der Werkstoff im offenen System hergestellt wurde.
1 1 .Faserverbundwerkstoff nach Anspruch 10, dadurch gekennzeichnet, dass die Matrix (3) Hohlräume (7) enthält, welche für Gas wie Luft und/oder Flüssigkeiten durchlässig sind,
1 2. Faserverbundwerkstoff nach den Ansprüchen 1 0 oder 1 1 , dadurch gekennzeichnet, dass die Matrix (3) geschnittene
Stapelfasern (2) mit einer Länge von 0,5 bis 20 cm enthält.
1 3, Faserverbundwerkstoff nach Anspruch 1 2, dadurch gekennzeichnet, dass die Stapelfasern (2) auf der Basis von Glasfasern oder auf der Basis von Kunststofffasern wie Kohlenstofffasern hergestellt sind.
4, Faserverbundwerkstoff nach einem der Ansprüche 10 bis 1 3, dadurch gekennzeichnet, dass die geschnittenen Stapelfasern (2) durch Einbettung von thermoplastischen Mikrohohlkugeln volumisiert sind,
15, Faserverbundwerkstoff nach einem der Ansprüche 10 bis 14, dadurch gekennzeichnet, dass die dreidimensional angeordneten Stapelfasern (2) mit einem härtbaren
Kunststoffharz (z, B, ungesättigte Polyester, Epoxidharz, PU-Harz, Vinylesterharz, Phenolharz) in einer Menge benetzt sind, die ausreicht, die saugfähigen Stapelfaserbündel bis zur Sättigung zu tränken, wobei Hohlräume (7) zwischen den dreidimensional angeordneten Stapelfasern jedoch offen geblieben sind.
16. Faserverbundwerkstoff nach einem der Ansprüche 10 bis 15, dadurch gekennzeichnet, dass die geschnittenen Stapelfasern (2) in Form einer Sandwich-Konstruktion angeordnet sind, bei welcher die erste Decklage (5) aus einer glatten, homogenen, zweidimensional angeordneten Lage aus nicht-volumisierten Fasern, die Kernlage (4) aus einer dreidimensional angeordneten Wirrlage von volumisierten Stapelfasern und die abschließende- dritte Decklage (6) wiederum aus einer glatten, homogenen zweidimensional angeordneten Lage aus nicht-volumisierten Fasern besteht.
7, Faserverbundwerkstoff nach einem der Ansprüche 1 0 bis 1 6, dadurch gekennzeichnet, dass die geschnittenen Stapelfasern (2) in Teilbereichen durch Erzeugung von Druck zu einer homogenen, luftblasenfreien Verbundwerkstofflage komprimiert sind und andere Teilbereiche durch druckfreie Verarbeitung in der dreidimensionalen Wirrlage bestehen bleiben.
8. Bauelement umfassend einen Faserverbundwerkstoff mit den Merkmalen nach einem der Ansprüche 10 bis 1 7, dadurch gekennzeichnet, dαss das Bauelement ein Kotflügel, eine Stoßstange, ein Spoiler, ein Luftabweiser, eine Motorabdeckung für Elektromotoren, eine Deckluke, eine Stauklappe, eine Bodenpidtte, ein Paneel, ein Kinderspielgerät wie Rutschbahn oder ein Gartengerät ist,
EP04721485A 2003-04-01 2004-03-18 Verfahren zum herstellen von faserverbundwerkstoffen und danach hergestellter faserverbundwerkstoff Withdrawn EP1608501A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10314901A DE10314901A1 (de) 2003-04-01 2003-04-01 Verfahren zum Herstellen von Faserverbundwerkstoffen und danach hergestellter Faserverbundwerkstoff
DE10314901 2003-04-01
DE20310085U 2003-07-01
DE20310085U DE20310085U1 (de) 2003-04-01 2003-07-01 Faserverbundwerkstoff
PCT/EP2004/002789 WO2004087404A1 (de) 2003-04-01 2004-03-18 Verfahren zum herstellen von faserverbundwerkstoffen und danach hergestellter faserverbundwerkstoff

Publications (1)

Publication Number Publication Date
EP1608501A1 true EP1608501A1 (de) 2005-12-28

Family

ID=33132669

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04721485A Withdrawn EP1608501A1 (de) 2003-04-01 2004-03-18 Verfahren zum herstellen von faserverbundwerkstoffen und danach hergestellter faserverbundwerkstoff

Country Status (4)

Country Link
US (1) US20060194034A1 (de)
EP (1) EP1608501A1 (de)
BR (1) BRPI0409010A (de)
WO (1) WO2004087404A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8726612B2 (en) * 2008-04-29 2014-05-20 Steven G. Lomske Modular panel
JP5901518B2 (ja) * 2009-06-12 2016-04-13 クイックステップ、テクノロジーズ、プロプライエタリ、リミテッドQuickstep Technologies Pty,Ltd. 高度複合構成要素の製造方法
DE102010009938A1 (de) * 2010-03-02 2011-09-08 Wedi Gmbh Mehrschichtiges Beschichtungssystem mit einer Deckschicht aus einem 2-Komponenten-Reaktionsharz
US20220250335A1 (en) * 2021-02-11 2022-08-11 Johns Manville Lightweight thermoplastic composite products and methods of making same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1493547A (en) * 1923-01-06 1924-05-13 John F Johnson Bearing burning-in device
US5126172A (en) * 1990-11-20 1992-06-30 C.C. Omega Chemical, Inc. Plastic sheet for a boat hull and the like and method of making it
US5792398A (en) * 1991-06-12 1998-08-11 Glasis Holding Ab Hot pressing method of forming a composite laminate containing expanded thermoplastic particles
US5328494A (en) * 1992-04-08 1994-07-12 Davidson Textron Inc. Method of forming a preform by precoating glass fibers prior to chopping and preforming
US6497787B1 (en) * 2000-04-18 2002-12-24 Owens-Corning Veil Netherlands B.V. Process of manufacturing a wet-laid veil

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004087404A1 *

Also Published As

Publication number Publication date
BRPI0409010A (pt) 2006-03-28
WO2004087404A1 (de) 2004-10-14
US20060194034A1 (en) 2006-08-31

Similar Documents

Publication Publication Date Title
EP0222399B1 (de) Verstärkungsmaterial und Verfahren zu seiner Herstellung
DE60105338T3 (de) Zwischen-Verbundstoff, dessen Herstellungsverfahren und dessen Verwendung als Formmaterial
DE102006035939B4 (de) Verfahren zur Herstellung von Faserverbundbauteilen und Faserverbundbauteil
DE19944437B4 (de) Energieabsorbierendes Element
EP1372925B1 (de) Verstarkungsmaterial mit volumisierten fasern und verfahren zu dessen herstellung
EP1608501A1 (de) Verfahren zum herstellen von faserverbundwerkstoffen und danach hergestellter faserverbundwerkstoff
DE102017128501A1 (de) Verfahren zum Herstellen eines Verbundbauteils
EP0628104B1 (de) Abriebfester, faserverstärkter bodenbelag, verfahren zu seiner herstellung und seine verwendung
EP1211054A1 (de) Verfahren zum Herstellen einer Faserverbundstruktur
WO2009033559A1 (de) Verfahren zur herstellung eines faserverbundbauteils
EP2036701A1 (de) Schichtstruktur sowie Verfahren und Vorrichtung zur Herstellung einer Schichtstruktur
DE2042073C3 (de) Faserverstärktes, flexibles Sandwich-Kunststoffrohr und Verfahren zu dessen Herstellung
DE20310085U1 (de) Faserverbundwerkstoff
EP2842727B1 (de) Verfahren zur Herstellung eines faserverstärktes Verbundbauteils
DE102017003643B3 (de) Verfahren zur Herstellung eines Furniers aus Rattan, Furnierblatt, Formbauteil und Verwendung dafür
DE102009023033B4 (de) Verfahren zur Herstellung eines Halbzeugs für eine Bodenstruktur
EP1727930A1 (de) Komplexmatte mit einer lage aus volumisierten fasern
DE102007048003A1 (de) Verfahren zur Herstellung von Bauteilen aus faserverstärktem Kunststoff und nach dem Verfahren hergestellte Bauteile
DE19926417A1 (de) Sandwichbauteil
DE19615903C2 (de) Wärmedämmelement
WO2018028791A1 (de) Verfahren zur herstellung eines faser-matrix-halbzeugs
EP3535120B1 (de) Verbundwerkstoffelement, insbesondere für sportgeräte
DE2740647A1 (de) Verbundwerkstoff in sandwich-bauweise, verfahren zu seiner herstellung und seine verwendung
DE19958805B4 (de) Faserverbundbauteil
AT516767B1 (de) Verfahren zur Herstellung eines Faser-Matrix-Halbzeugs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050823

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070316

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070727