EP1606064A2 - Buse de pulverisation de liquide surchauffe - Google Patents
Buse de pulverisation de liquide surchauffeInfo
- Publication number
- EP1606064A2 EP1606064A2 EP04720049A EP04720049A EP1606064A2 EP 1606064 A2 EP1606064 A2 EP 1606064A2 EP 04720049 A EP04720049 A EP 04720049A EP 04720049 A EP04720049 A EP 04720049A EP 1606064 A2 EP1606064 A2 EP 1606064A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- nozzle
- liquid
- pressure
- sprayed
- speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 110
- 239000007921 spray Substances 0.000 title claims description 22
- 239000000203 mixture Substances 0.000 claims description 31
- 238000002347 injection Methods 0.000 claims description 20
- 239000007924 injection Substances 0.000 claims description 20
- 230000000694 effects Effects 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 8
- 238000005507 spraying Methods 0.000 claims description 8
- 229920006395 saturated elastomer Polymers 0.000 claims description 7
- 230000015572 biosynthetic process Effects 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 238000002604 ultrasonography Methods 0.000 claims description 3
- 239000000126 substance Substances 0.000 abstract 1
- 239000002245 particle Substances 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- 239000003570 air Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000010935 stainless steel Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 239000012080 ambient air Substances 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05B—SPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
- B05B1/00—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
- B05B1/34—Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means designed to influence the nature of flow of the liquid or other fluent material, e.g. to produce swirl
Definitions
- the present invention relates to a nozzle for spraying a superheated liquid, in the form of very fine droplets whose average size can be less than 5 microns, at a very high speed that can greatly exceed the speed of sound, for liquid flow rates that can be very important and adjustable in a very wide range, these results being obtained without the assistance of a compressed gas or ultrasound;
- the term superheated liquid relates to a liquid at a temperature To and a pressure Po greater than the saturated vapor pressure Ps corresponding to To, the vapor pressure Ps itself being greater than the pressure of the gaseous medium in which the liquid is sprayed.
- the invention also provides arrangements for adjusting the exit section of the nozzle to maintain a maximum supersonic velocity of the sprayed droplets when the pressure or temperature of the sprayed liquid varies, or when the ambient pressure in which the liquid is sprayed varies.
- This device finds its application in industrial installations requiring the very rapid cooling of a gas by liquid spraying, and thus involving the formation of very small liquid droplets, carried at very high speed.
- the spraying nozzles are intended for spraying non-superheated liquids by forming a jet of liquid which is broken at the outlet of the nozzle by spiral elements or other elements. ; the device according to the invention does not require the use of such elements, the jet exploding itself under the effect of the overpressure of the liquid.
- nozzles allow liquid sprays at speeds rarely exceeding the speed of sound, and the average size of the sprayed droplets is rarely less than twenty or fifty microns; the best performance in terms of size and droplet velocities are obtained by the use of a compressed gas in assistance with the spraying, or by ultrasound for the low flow nozzles; finally, these nozzles are not equipped with devices for adjusting the outlet section to maintain a maximum supersonic velocity of the droplets when the pressure or the temperature of the liquid sprayed vary, or when the ambient pressure in which the liquid is sprayed varies.
- the device according to the invention makes it possible to remedy these drawbacks in special cases where large flow rates of liquids must be sprayed in the form of very fine droplets, at very high speeds, with flow rates, pressure, and temperatures of sprayed liquid. can vary in large proportions, and when the pressure of the medium or the liquid is sprayed can also vary in large proportions.
- the present invention therefore relates to a device according to the arrangements described below.
- the invention also aims at the characteristic points and the embodiments described in variants.
- Device shown in Figure l.A consisting of a nozzle body (1) fixed on a support (0) for supplying superheated liquid; the nozzle body comprises a duct (3) where the superheated liquid circulates, followed by a convergent and several injectors (4) where the superheated liquid is set in speed to open on a diverging nozzle of relaxation and setting speed ( 5); as soon as it enters this nozzle, the jet of liquid evaporates partially and explodes instantly under the effect of its own vapor pressure, to form a mixture of fine droplets and vapor.
- the generator of the divergent nozzle (5) has a discontinuity, that is to say an angle, at its intersection with that of the injectors (4), and its outlet section is dimensioned so that the mixture is ejected from the nozzle at the pressure P1 of the external medium without formation of a pressure wave in the divergent nozzle (5); the ejection speed of the mixture then corresponds to the maximum ejection speed.
- the pressure decreases, causing a drop in temperature of the mixture, a continuous evaporation of the liquid, and a continuous speed of steam due to the increase of its flow; under the effect of the friction with the vapor, the droplets of liquid are also put in speed, and the process continues until the outlet orifice (6), or the pressure PI of the mixture is in equilibrium with that of the ambient in which the liquid is sprayed.
- the mathematical simulation of the flow of the superheated liquid throughout the device shows that the outlet pressure of the injectors (4) is equal to the saturated vapor pressure Ps; as soon as it enters the divergent nozzle, the liquid stream cools, boils instantly, and splits into particles under the effect of the vapor pressure forces internal to the liquid; the size of the particles is related to these splitting forces, which themselves depend on the liquid conductivity, the heat exchange and diffusion coefficients, and the slope of the generator of the divergent nozzle (5) at the junction with the injectors (4); these forces are all the greater, and the size of the particles all the smaller, as this slope approaches the vertical.
- the flow rate of the sprayed liquid can be modified by changing the pressure Po and the temperature Po of the liquid at the inlet of the nozzle; ideally, the highest particle velocity at the output of the device is obtained when this value pair corresponds to the output section of the divergent nozzle (5).
- the slope of the generatrix of the divergent nozzle In order to improve the performance of the device, the slope of the generatrix of the divergent nozzle
- the divergent nozzle (5) can, at the limit, be vertical at its junction with the injectors (4), as shown in Figure A: the divergent nozzle (5) therefore has a flat at its junction with (4); this flat, creating a strong pressure variation, allows the obtaining of very fine droplets and facilitates the machining of the nozzle. If necessary, the divergent nozzle may be partially or totally integrated into the support
- a spray nozzle according to Figure A consisting of a stainless steel body 20 mm in length, 9 injectors of diameters 0.5 mm, and a divergent nozzle of output diameter. equal to 8 mm, makes it possible to spray 200 k / h of superheated water at 60 bar and 270 ° C in ambient air, at an ejection speed close to 540 m / s,
- the size of the particles being sprayed being close to 5 microns and their temperature equal to 100 ° C .; nearly 30% of the superheated water inlet flow is in the form of steam at the outlet of the nozzle.
- the device according to the invention consists of a nozzle body (1) fixed on a support (0) allowing the supply of superheated liquid; the nozzle body comprises a conduit (3) or
- the 105 circulates the superheated liquid, followed by a convergent and an annular passage section (16) which we will call the Annular Injector, or the superheated liquid is put in speed to open on a diverging nozzle of relaxation and setting speed ( 5); as soon as it enters this nozzle, the jet of liquid evaporates partially and explodes instantly under the effect of its own vapor pressure, to form a mixture of fine droplets and vapor.
- the generator of the divergent nozzle (5) has a discontinuity, that is to say an angle, at its intersection with that of the annular injector (16), and its outlet section is nnensioned so that the mixture is ejected from the nozzle at the pressure P1 of the external medium without formation of a pressure wave in the divergent nozzle (5); the ejection speed of the mixture then corresponds to the maximum ejection speed.
- the annular injector is constituted by the free space between a cavity (16), cylindrical for example, and an injection core (8); the method of fixing the injection core on the nozzle body allows the circulation of the liquid to be sprayed into the nozzle.
- FIG. 2 shows a cylindrical injection core (8) provided with a base (9) having through-holes (10), the base itself being fastened to the conduit of FIG. entry (3).
- the size of the particles is related to these splitting forces, which themselves depend on the liquid conductivity, the heat exchange and diffusion coefficients, and the slope of the generator of the divergent nozzle (5) at the junction with the injector (16); these forces are all the greater, and the size of the particles all the smaller, as this slope approaches the vertical.
- the flow rate of the sprayed liquid can be modified by changing the pressure Po and the temperature Po of the liquid at the inlet of the nozzle; ideally, the highest particle velocity at the output of the device is obtained when this value pair corresponds to the output section of the divergent nozzle (5).
- the slope of the generatrix of the divergent nozzle In order to improve the performance of the device, the slope of the generatrix of the divergent nozzle
- the divergent nozzle (5) can, at its junction with the generatrix of the cavity (16), be at Kmite perpendicular to the axis of this cavity, as shown in Figure 1.A: the divergent nozzle (5) therefore has a increased section brutal to the output of the injector (16); this abrupt increase in section creates a strong pressure variation and allows very fine droplets to be obtained; Moreover, it facilitates the machining of the nozzle.
- the diverging nozzle may be partially or totally integrated with the external support (0), as shown in FIG.
- a spray nozzle according to Figure 2 consisting of a stainless steel body 50 mm in length, an annular injector having a hole of diameter 5 mm and a diameter injection core 4 mm, and a divergent nozzle 50 output diameter equal to 16 mm, can spray 800 k / h of superheated water at 60 bar and 270 ° C in ambient air, at a speed of ejection close to 540 m / s, the size of the particles sprayed being close to 5 microns and their temperature equal to 100 ° C; nearly 30% of the superheated water inlet flow is in the form of steam at the outlet of the nozzle.
- the device according to the invention consists of a nozzle body (1) fixed on a support (0) allowing the supply of superheated liquid; the nozzle body comprises a conduit (3) or circulates the superheated liquid, followed by a convergent and one or more injectors (4) or the
- the shape of the downstream generator (12B) of the core (11) is indifferent, and can either be flat, ie constitute a flat bottom, or have an aerodynamic profile to limit the pressure drop of the mixture after its output of the spray nozzle, or be adapted to other constraints of the environment of the nozzle.
- the generatrix of the divergent nozzle (5) has a discontinuity, ie an angle, at its
- the core (11) is supported by a mechanism for adjusting from the outside its relative position relative to the nozzle (5) this mechanism can indifferently be incorporated in the nozzle or be external; the non-exhaustive example of Figure 3 shows a core supported by an axis (13) passing through the spray nozzle, and having at its end a base (9) provided with holes
- the pressure decreases, causing a drop in temperature of the mixture, a continuous evaporation of the liquid, and a continuous speed of steam due to the increase of its flow; under the effect of friction with the vapor, the droplets of liquid are also accelerated, and the process continues to the outlet orifice, or the pressure P1 of the mixture is in equilibrium with that of the gaseous medium wherein the liquid is sprayed.
- the mathematical simulation of the flow of the superheated liquid throughout the device shows that the pressure at the output of the injector (16) is equal to the saturated vapor pressure Ps; 200 as soon as it enters the divergent nozzle, the liquid stream cools, instantly boils, and splits into particles under the effect of vapor pressure forces internal to the liquid; the size of the particles is related to these splitting forces, which themselves depend on the liquid conductivity, the heat exchange and diffusion coefficients, and the slope of the generator of the divergent nozzle (5) at the junction with the injector (16); these forces are
- the flow rate of the sprayed liquid can be modified by changing the pressure Po and the temperature To of the liquid at the inlet of the nozzle.
- the slope of the generatrix of the divergent nozzle (5) can, at its junction with the generatrix of the cavity (16), be at the limit perpendicular to the axis of this cavity, as shown in FIG. 3: the divergent nozzle (5) therefore has a sharp section increase with respect to the output of the injector (16); this sudden increase in section creates a strong variation of pressure and allows the obtaining of very fine
- the diverging nozzle may be partially or totally integrated with the external support (0), as shown in FIG.
- a spray nozzle according to FIG. 3 consisting of a stainless steel body 80 mm long, 9 injectors 0.5 mm in diameter, a nozzle
- 220 diverging output diameter equal to 23 mm, and a core diameter of up to 80 mm, can spray 200 k / h of superheated water at 60 bar and 270 ° C in air whose PI pressure varies from ambient pressure to 0.1 bar A, the extreme conditions of ejection being: -For air at ambient pressure: an ejection speed close to 540 m / s, and a particle size sprayed close to 5 microns at a temperature of 100 ° C; nearly 30%
- 225 of the superheated water inlet flow are in the form of steam at the outlet of the nozzle.
- FIG. 4 represents a device provided with a system
- the core (11) is subjected to the force of the spring (11) tending to introduce it into the nozzle (5), and to the static and dynamic pressure forces of the mixture flow. These are directly related to the flow rate and temperature To of the superheated water at the inlet of the nozzle, the pressure PI output, and the output slopes of the generators (5) and (11); they tend to extract the core (11) from the divergent nozzle
- a spray nozzle according to FIG. 4 consisting of the same elements as those of the example of variant 3 but including the system
- VARIANT 5 ', 65 Device shown in Figure 5 to improve the variants 3 and 4 to increase their capacity and facilitate manufacture, replacing the cylindrical injectors (4) by an annular injector (16) .
- the annular injector is constituted by the free space between a cavity (16), cylindrical for example, and an injection core (8); the mode of attachment of the injection core to the nozzle body 70 allows the circulation of the liquid to be sprayed into the nozzle.
- the non-exhaustive example of Figure 5 shows a cylindrical injection core (8) provided with a base (9) having through holes (10) for the circulation of the liquid to be sprayed.
- a spray nozzle according to Figure 5 consisting of a stainless steel body length 50 m, an annular injector having a hole of 75 diameter 5 mm and a core diameter of 4 mm. , and a divergent nozzle with an outlet diameter equal to 16 m, makes it possible to spray 800 kh of superheated water at 60 bar and 270 ° C into air in air whose pressure P varies from 1 bar A to 0.1 bar A, the extreme conditions of ejection being: For air at 1 bar A: an ejection speed close to 540 ms, and a particle size 280 pulverized close to 5 microns at a temperature equal to 100 ° C .; nearly 30% of the superheated water inlet flow is in the form of steam at the outlet of the nozzle.
- FIG. 6 shows a conical shaped injection core (15).
- FIG. 7 shows a cylindrical shaped injection core (15) 295 provided with semi-cylindrical outer cells (19) parallel to the axis of (15), of different lengths, each constituting a section passage for the liquid to be sprayed; the number of cells (19) opening on the nozzle (5), and therefore the passage section of the injector, are directly related to the position of the core (11) in the nozzle (5).
- the device according to the invention finds its applications in the following industrial processes; -Chemical processes requiring the very rapid cooling of industrial gases, -Crime processes and food industry requiring the use of liquids sprayed in the form of particles of very small dimensions, -Processes requiring the use of liquids sprayed at very high speeds: facilities
Landscapes
- Nozzles (AREA)
- Special Spraying Apparatus (AREA)
Description
Claims
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL04720049T PL1606064T3 (pl) | 2003-03-24 | 2004-03-12 | Dysza przeznaczona do rozpylania cieczy przegrzanej |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0303532A FR2852867B1 (fr) | 2003-03-24 | 2003-03-24 | Buse de pulverisation de liquide surchauffe |
FR0303532 | 2003-03-24 | ||
PCT/FR2004/000604 WO2004085073A2 (fr) | 2003-03-24 | 2004-03-12 | Buse de pulverisation de liquide surchauffe |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1606064A2 true EP1606064A2 (fr) | 2005-12-21 |
EP1606064B1 EP1606064B1 (fr) | 2008-04-09 |
Family
ID=32947100
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04720049A Expired - Lifetime EP1606064B1 (fr) | 2003-03-24 | 2004-03-12 | Buse de pulverisation de liquide surchauffe |
Country Status (15)
Country | Link |
---|---|
US (1) | US7753286B2 (fr) |
EP (1) | EP1606064B1 (fr) |
JP (1) | JP4493647B2 (fr) |
CN (1) | CN100525931C (fr) |
AT (1) | ATE391562T1 (fr) |
BR (1) | BRPI0408776A (fr) |
CA (1) | CA2519273C (fr) |
DE (1) | DE602004012985T2 (fr) |
DK (1) | DK1606064T3 (fr) |
ES (1) | ES2305751T3 (fr) |
FR (1) | FR2852867B1 (fr) |
PL (1) | PL1606064T3 (fr) |
PT (1) | PT1606064E (fr) |
RU (1) | RU2301710C2 (fr) |
WO (1) | WO2004085073A2 (fr) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2852867B1 (fr) | 2003-03-24 | 2005-06-03 | Joseph Haiun | Buse de pulverisation de liquide surchauffe |
US20100019058A1 (en) * | 2006-09-13 | 2010-01-28 | Vanderzwet Daniel P | Nozzle assembly for cold gas dynamic spray system |
KR100801658B1 (ko) | 2006-09-19 | 2008-02-05 | 한국에너지기술연구원 | 연료전지용 양방향 가변노즐 이젝터 |
US8006923B2 (en) | 2007-12-12 | 2011-08-30 | Elkhart Brass Manufacturing Company, Inc. | Smooth bore nozzle with adjustable bore |
US8012407B2 (en) * | 2008-07-08 | 2011-09-06 | Siemens Industry, Inc. | Power clamping for water boxes |
ES2360732B1 (es) * | 2009-10-24 | 2012-04-24 | Universidad De Vigo | Método de obtención de recubrimientos porosos mediante proyección térmica asistida por l�?ser. |
RU2445172C2 (ru) * | 2010-05-25 | 2012-03-20 | Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кузбасский государственный технический университет имени Т.Ф. Горбачева" (КузГТУ) | Форсунка для распыления жидкостей |
US20140027528A1 (en) * | 2011-03-21 | 2014-01-30 | Hivap Pty Ltd | High velocity mist evaporation |
RU2475285C1 (ru) * | 2011-10-05 | 2013-02-20 | Общество С Ограниченной Ответственностью "Каланча" | Устройство для тушения пожаров горючих газов, жидкостей и твердых материалов |
JP6385864B2 (ja) * | 2015-03-18 | 2018-09-05 | 株式会社東芝 | ノズルおよび液体供給装置 |
CN105834054B (zh) * | 2016-05-13 | 2018-02-27 | 江苏大学 | 一种压电二相流超声雾化喷头 |
CN106925461A (zh) * | 2017-05-02 | 2017-07-07 | 广东贺尔环境技术有限公司 | 水气混合雾化组件 |
RU2721349C1 (ru) * | 2019-06-03 | 2020-05-19 | Общероссийская общественная организация "Всероссийское добровольное пожарное общество" | Установка пожаротушения автономная модульная |
US11919241B1 (en) | 2021-02-25 | 2024-03-05 | Xerox Corporation | Optimized nozzle design for drop-on-demand printers and methods thereof |
US12042991B2 (en) | 2021-02-25 | 2024-07-23 | Xerox Corporation | Energy dissipative nozzles for drop-on-demand printing and methods thereof |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2636780A (en) * | 1950-08-17 | 1953-04-28 | Frank T Barnes | Device for atomizing grease |
US3450494A (en) * | 1967-07-18 | 1969-06-17 | Conrad J Gaiser | Amorphous sodium silicate having inherent binding properties and method of producing same |
US4717075A (en) * | 1986-07-18 | 1988-01-05 | Northern Research & Engineering Corp. | Particulate dispersion apparatus |
US5171613A (en) * | 1990-09-21 | 1992-12-15 | Union Carbide Chemicals & Plastics Technology Corporation | Apparatus and methods for application of coatings with supercritical fluids as diluents by spraying from an orifice |
JP2849063B2 (ja) * | 1996-02-14 | 1999-01-20 | 株式会社共立合金製作所 | 流体噴出ノズル |
GB9609885D0 (en) * | 1996-05-11 | 1996-07-17 | Phirex Uk Ltd | Improved mistex water mist nozzles |
DE19711405A1 (de) * | 1997-03-19 | 1998-09-24 | Stiftung Inst Fuer Werkstoffte | Vorrichtung zur Feinstzerstäubung von Metallschmelzen der Pulverproduktion und Sprühkompaktierung |
EP0983797A3 (fr) * | 1998-09-04 | 2003-02-05 | Robatech AG | Procédé et dispositif d'application d'un adhésif sur une surface de produit |
US6502767B2 (en) * | 2000-05-03 | 2003-01-07 | Asb Industries | Advanced cold spray system |
FR2852867B1 (fr) | 2003-03-24 | 2005-06-03 | Joseph Haiun | Buse de pulverisation de liquide surchauffe |
-
2003
- 2003-03-24 FR FR0303532A patent/FR2852867B1/fr not_active Expired - Fee Related
-
2004
- 2004-03-12 ES ES04720049T patent/ES2305751T3/es not_active Expired - Lifetime
- 2004-03-12 US US10/551,297 patent/US7753286B2/en not_active Expired - Fee Related
- 2004-03-12 BR BRPI0408776-3A patent/BRPI0408776A/pt not_active Application Discontinuation
- 2004-03-12 JP JP2006505723A patent/JP4493647B2/ja not_active Expired - Fee Related
- 2004-03-12 AT AT04720049T patent/ATE391562T1/de active
- 2004-03-12 DK DK04720049T patent/DK1606064T3/da active
- 2004-03-12 PL PL04720049T patent/PL1606064T3/pl unknown
- 2004-03-12 CN CNB2004800077648A patent/CN100525931C/zh not_active Expired - Fee Related
- 2004-03-12 DE DE602004012985T patent/DE602004012985T2/de not_active Expired - Lifetime
- 2004-03-12 RU RU2005132597/12A patent/RU2301710C2/ru not_active IP Right Cessation
- 2004-03-12 PT PT04720049T patent/PT1606064E/pt unknown
- 2004-03-12 CA CA002519273A patent/CA2519273C/fr not_active Expired - Fee Related
- 2004-03-12 WO PCT/FR2004/000604 patent/WO2004085073A2/fr active IP Right Grant
- 2004-03-12 EP EP04720049A patent/EP1606064B1/fr not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
See references of WO2004085073A2 * |
Also Published As
Publication number | Publication date |
---|---|
PT1606064E (pt) | 2008-08-22 |
US20070176022A1 (en) | 2007-08-02 |
JP4493647B2 (ja) | 2010-06-30 |
CN1764505A (zh) | 2006-04-26 |
CN100525931C (zh) | 2009-08-12 |
ES2305751T3 (es) | 2008-11-01 |
DE602004012985T2 (de) | 2009-05-28 |
DE602004012985D1 (fr) | 2008-05-21 |
WO2004085073A2 (fr) | 2004-10-07 |
EP1606064B1 (fr) | 2008-04-09 |
RU2301710C2 (ru) | 2007-06-27 |
WO2004085073A3 (fr) | 2004-10-28 |
BRPI0408776A (pt) | 2006-03-28 |
RU2005132597A (ru) | 2006-03-10 |
JP2006521199A (ja) | 2006-09-21 |
ATE391562T1 (de) | 2008-04-15 |
FR2852867B1 (fr) | 2005-06-03 |
DK1606064T3 (da) | 2008-07-21 |
CA2519273A1 (fr) | 2004-10-07 |
FR2852867A1 (fr) | 2004-10-01 |
US7753286B2 (en) | 2010-07-13 |
CA2519273C (fr) | 2009-05-19 |
PL1606064T3 (pl) | 2008-11-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1606064B1 (fr) | Buse de pulverisation de liquide surchauffe | |
US9050481B2 (en) | Decontamination | |
JP2011523893A (ja) | 改良されたミスト発生装置および方法 | |
WO2008024032A1 (fr) | Pulvérisateur de liquide | |
JP2010247133A (ja) | 二流体ノズル | |
Dahm et al. | Experimental visualizations of liquid breakup regimes in fuel slinger atomization | |
JP2006521199A5 (fr) | ||
JP4580985B2 (ja) | ドライアイス粒子の噴流生成方法及び装置 | |
FR2662377A1 (fr) | Procede et dispositif de pulverisation de liquide, ainsi que leurs applications. | |
CA2758643C (fr) | Buse apte a maximaliser la quantite de mouvement produite par un ecoulement diphasique provenant de la detente d'un debit saturant | |
SU1653853A1 (ru) | Способ пневмораспыла жидкости и устройство дл его осуществлени | |
FR2561539A1 (fr) | Dispositif de pulverisation d'un liquide dans un flux gazeux a plusieurs venturis successifs et applications de ce dispositif | |
CN108160359B (zh) | 可实现多种喷雾功能的喷嘴装置 | |
EP3749445B1 (fr) | Dispositif d'injection de charge d'une unite fcc | |
Dahl et al. | Atomization of liquids and suspensions with hollow cone nozzles | |
RU2015740C1 (ru) | Форсунка | |
FR2488815A1 (fr) | Dispositif de pulverisation de liquide et ses applications | |
Vyazov et al. | Mach number effect on droplet phase angular distribution behind a nozzle under near-wall liquid film outflow with co-current gas flow into vacuum | |
RU2218214C2 (ru) | Ударно-струйная форсунка | |
Günther et al. | Superheated Atomization | |
EP3140032A1 (fr) | Dispositif d'injection, notamment pour injecter une charge d'hydrocarbures dans une unité de raffinage. | |
RU2300424C1 (ru) | Распылитель | |
BE571082A (fr) | ||
BE1028008A1 (fr) | Atomiseur pour la pulverisation d'un liquide | |
FR2605538A1 (fr) | Tuyere d'atomisation par gaz a ecoulement liquide stabilise aerodynamiquement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050826 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: THERMOKIN |
|
RIN2 | Information on inventor provided after grant (corrected) |
Inventor name: THERMOKIN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REF | Corresponds to: |
Ref document number: 602004012985 Country of ref document: DE Date of ref document: 20080521 Kind code of ref document: P |
|
NLT2 | Nl: modifications (of names), taken from the european patent patent bulletin |
Owner name: THERMOKIN Effective date: 20080416 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20080626 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080409 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080709 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080409 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2305751 Country of ref document: ES Kind code of ref document: T3 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080409 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080409 |
|
26N | No opposition filed |
Effective date: 20090112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080409 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080409 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080710 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20110325 Year of fee payment: 8 Ref country code: DK Payment date: 20110325 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20110325 Year of fee payment: 8 Ref country code: CZ Payment date: 20110224 Year of fee payment: 8 Ref country code: AT Payment date: 20110222 Year of fee payment: 8 Ref country code: TR Payment date: 20110224 Year of fee payment: 8 Ref country code: PT Payment date: 20110223 Year of fee payment: 8 Ref country code: PL Payment date: 20110221 Year of fee payment: 8 Ref country code: SE Payment date: 20110329 Year of fee payment: 8 Ref country code: LU Payment date: 20110405 Year of fee payment: 8 Ref country code: FR Payment date: 20110216 Year of fee payment: 8 Ref country code: IT Payment date: 20110324 Year of fee payment: 8 Ref country code: FI Payment date: 20110329 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081010 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20110328 Year of fee payment: 8 Ref country code: DE Payment date: 20110329 Year of fee payment: 8 Ref country code: GB Payment date: 20110325 Year of fee payment: 8 Ref country code: BE Payment date: 20110330 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20120912 |
|
BERE | Be: lapsed |
Owner name: *THERMOKIN Effective date: 20120331 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120313 Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120312 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120312 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120912 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 391562 Country of ref document: AT Kind code of ref document: T Effective date: 20120312 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20121130 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120312 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120312 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120312 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120402 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602004012985 Country of ref document: DE Effective date: 20121002 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120312 |
|
REG | Reference to a national code |
Ref country code: PL Ref legal event code: LAPE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20130711 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120313 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120312 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120312 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121002 |