EP1605014A1 - Polyethylenharze für Röhrenfassungen - Google Patents

Polyethylenharze für Röhrenfassungen Download PDF

Info

Publication number
EP1605014A1
EP1605014A1 EP04253420A EP04253420A EP1605014A1 EP 1605014 A1 EP1605014 A1 EP 1605014A1 EP 04253420 A EP04253420 A EP 04253420A EP 04253420 A EP04253420 A EP 04253420A EP 1605014 A1 EP1605014 A1 EP 1605014A1
Authority
EP
European Patent Office
Prior art keywords
molecular weight
resin
density
10min
polyethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04253420A
Other languages
English (en)
French (fr)
Inventor
designation of the inventor has not yet been filed The
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ineos Manufacturing Belgium NV
Solvay SA
Original Assignee
Solvay Polyolefins Europe Belgium SA
Solvay SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34930388&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1605014(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Solvay Polyolefins Europe Belgium SA, Solvay SA filed Critical Solvay Polyolefins Europe Belgium SA
Priority to EP04253420A priority Critical patent/EP1605014A1/de
Priority to ES05746191T priority patent/ES2423920T3/es
Priority to RU2007100137/02A priority patent/RU2375392C2/ru
Priority to EP05746191.5A priority patent/EP1753812B1/de
Priority to KR1020077000368A priority patent/KR101178075B1/ko
Priority to US11/628,866 priority patent/US7714074B2/en
Priority to CN2005800263877A priority patent/CN1993417B/zh
Priority to BRPI0511991-0A priority patent/BRPI0511991A/pt
Priority to PCT/EP2005/005823 priority patent/WO2005121238A1/en
Priority to JP2007526240A priority patent/JP4982372B2/ja
Publication of EP1605014A1 publication Critical patent/EP1605014A1/de
Priority to IL179921A priority patent/IL179921A/en
Priority to EGNA2006001178 priority patent/EG25581A/xx
Priority to US12/591,140 priority patent/US7812095B2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins

Definitions

  • the present invention relates to polyethylene resins, more particularly those suitable for use as pipes, pipe attachments or fittings, and to a process for producing such resins.
  • the present invention also relates to the use of polyethylene compounds comprising such resins for the manufacture of pipes or pipe fittings, and to such fittings themselves.
  • Polyolefins such as polyethylenes which have high molecular weight generally have improved mechanical properties over their lower molecular weight counterparts.
  • high molecular weight polyolefins can be difficult to process and can be costly to produce.
  • polyethylene with enhanced toughness, strength and environmental stress cracking resistance is important. These enhanced properties are more readily attainable with high molecular weight polyethylene.
  • ESCR environmental stress cracking resistance
  • the processibility of the resin decreases.
  • MWD broad or bimodal molecular weight distribution
  • Polyethylene resins are known for the production of pipes and fittings. Pipe resins require high stiffness (creep rupture strength), combined with a high resistance against slow crack growth as well as resistance to crack propagation yielding impact toughness. However, there is the need to improve the creep rupture strength of currently available pipe resins, keeping the resistance against slow crack growth and the rapid crack propagation at least at a constant level. This would permit an increase in the pressure rating of such pipes.
  • Polyethylene pipes are widely used as they are lightweight and can be easily assembled by fusion welding. Polyethylene pipes also have a good flexibility and impact resistance, and are corrosion free. Unless polyethylene pipes are reinforced, they are however limited in their hydrostatic resistance by the inherent low yield strength of polyethylene. It is generally accepted that the higher the density of the polyethylene, the higher will be the long term hydrostatic strength.
  • Pipe resins are known in the art which are referred to by the names "PE 80" and "PE 100". This classification is described in ISO 9080 and ISO 12162. These are polyethylene resins which when used for the formation of pipes of specific dimensions, survive a long term pressure test at different temperatures for a period of 5,000 hours.
  • Extrapolation according to ISO 9080 shows that they have an extrapolated 20°C / 50 years stress at a lower prediction level (97.5% confidence level - "LPL") of at least 8 and 10 MPa; such resins are known as PE80 and PE 100 resins respectively.
  • the density of the current basic powder used in the production of a PE100 compound is close to 0.950 g/cm 3 (typically from 0.949 to 0.951 g/cm 3 ).
  • Such polyethylene resins containing conventional amounts of black pigments have densities from about 0.958 to 0.960 g/cm 3 .
  • Pipe fittings are also required to have such properties. In addition, it is desired that pipe fittings have good resistance to sagging.
  • PE 100 resin the key components for a good PE 100 resin are the combination of a low molecular weight high density polyethylene with little or no short chain branching (SCB) due to comonomer incorporation and a linear low density polyethylene (LLDPE) resin with high molecular weight and SCB.
  • SCB short chain branching
  • LLDPE linear low density polyethylene
  • polyethylene resins of such composition are produced in a cascade reactor process using Ziegler-Natta catalysts.
  • Another variant might be to blend different polyethylene powders and extrude them to form a physical blend, as opposed to a chemical blend produced using a cascade reactor.
  • physical blending often leads to a poor mixing of the melts, which leaves large high molecular weight microscopic particles (referred to as gels in the art) embedded in the final product.
  • the weight fraction of the LLDPE resin is around 50% of the blend.
  • the low molecular weight high density polyethylene (HDPE) confers a high crystallinity, and thus a high rigidity and resistance to creep for the blend, and depresses the melt viscosity of the blend.
  • the high molecular weight LLDPE provides the polyethylene blend with a high density of tie-molecules as a result of the short chain branching, which are responsible for the enhanced environmental stress crack growth resistance (ESCR) observed in these blends.
  • ESCR enhanced environmental stress crack growth resistance
  • WO 00/60001 discloses a high density multimodal polyethylene for use in pipes and having a PE 80 and PE 100 rating, wherein the high molecular weight fraction typically comprises 45-55wt% of the composition, and has a density less than 0.930 g/cm 3 and an HLMI of less than 0.30 g/10min.
  • the MI 5 of the resin is typically 0.2-0.3 g/10min.
  • WO 02/34829 discloses a high density multimodal polyethylene for use in pipes or fittings, wherein the resin typically has an MI 5 of 0.2-0.6 g/10min, and the low molecular weight fraction (LMW block) comprises at least 51 wt% of the resin.
  • the LMW block comprises 55 wt% of the resin, and the resin has an MI 5 of 0.63 g/10min.
  • This resin would not be suitable for pipe fittings because the very narrow molecular weight distribution (MWD) of the individual blocks and the narrow MWD of the resulting composition would cause both poor homogeneity and poor processability.
  • MWD molecular weight distribution
  • WO 02/102891 discloses a high density multimodal polyethylene for use in pipes or fittings, wherein the resin typically has an MI 5 of 0.15 - 2 g/10min, and the low molecular weight fraction comprises at least 53 wt% of the resin.
  • the LMW block comprises 58.4 wt% of the resin, and the resin has an MI 5 of 0.54 g/10min. This resin would not be suitable for pipe fittings because the very high proportion of first block would cause poor product homogeneity resulting in poor mechanical properties.
  • JP 2000-109521A discloses a high density multimodal polyethylene for use in pipes or fittings, wherein the resin typically has an MI 5 of 0.25-0.50 g/10min, and the low molecular weight fraction comprises 45-60 wt% of the resin.
  • the resin typically has an MI 5 of 0.25-0.50 g/10min
  • the low molecular weight fraction comprises 45-60 wt% of the resin.
  • 1-hexene or 1-octene as comonomer in the high molecular weight fraction.
  • the single Examples of the invention has an MI 5 of 0.42 g/10min, but uses 1-butene as the comonomer and hence has a density of only 952 kg/m 3 .
  • the present invention provides in a first aspect a polyethylene resin having an MI 5 of from 0.40 to 0.70 g/10min, and comprising from 47 to 52 wt% of a low molecular weight polyethylene fraction, and from 48 to 53 wt% of a high molecular weight polyethylene fraction, wherein the high molecular weight polyethylene fraction comprises a copolymer of ethylene and either 1-hexene or 1-octene.
  • the low molecular weight polyethylene fraction comprises a polyethylene having a density of at least 0.965 g/cm 3 and an MI 2 of from 5 to 1000 g/10min
  • the high molecular weight polyethylene fraction has a density of from 0.910 to 0.940g/cm 3 and an MI 5 of from 0.01 to 2 g/10min.
  • the present invention further provides the use of such a polyethylene resin for the manufacture of pipes and fittings, and in a further aspect a pipe or fitting comprising the polyethylene resin of the invention.
  • the high molecular weight fraction comprises from 0.1-10 wt% of comonomer (ie 1-hexene or 1-octene).
  • the MI 5 of the resin is from 0.45 to 0.65 g/10min. This value refers to the resin after granulation, not immediately upon exiting the polymerisation reactor.
  • MI 2 and MI 5 represent the fluidity indices measured according to ASTM standard D 1238 (1986) at a temperature of 190°C under a load of 2.16 kg and 5 kg respectively.
  • Fluidity index HLMI or MI 21 means the fluidity index measured according to ASTM standard D 1238 (1986) at a temperature of 190°C under a load of 21.6 kg.
  • the resin of the present invention preferably comprises from 48 to 51 % by weight of the low molecular weight fraction, more preferably between 49 and 51 wt%.
  • the resins according to the invention preferably have a density measured according to ASTM standard D 792 (on a sample prepared according to ASTM standard D 1928 Procedure C) of at least 957 kg/m 3 , more particularly at least 959 kg/m 3 . Preferably the density does not exceed 963 kg/m 3 . Particularly preferred are resins whose density is between 959 and 961 kg/m 3 . These densities refer to the resin after granulation, not immediately upon exiting the polymerisation reactor.
  • the density of the polymer (A) present in the resins according to the invention is preferably at least 972 kg/m 3 .
  • the density of copolymer (B) is preferably at least 910 kg/m 3 .
  • the density of copolymer (B) does not exceed preferably 928 kg/m 3 , more particularly not 926 kg/m 3 .
  • ethylene polymer (A) is an ethylene polymer comprising monomer units derived from ethylene and possibly monomer units derived from other olefins.
  • Copolymer (B) is a copolymer comprising monomer units derived from ethylene and monomer units derived from 1-hexene or 1-octene.
  • hexene or octene content is measured by RMN 13 C according to the method described in J.C.RANDALL, JMS-REV.MACROMOL.CHEM. PHYS., C29(2&3), p.201-317 (1989).
  • the content of units derived from the comonomer is calculated from measurements of the integrals of the characteristic spectral lines of the comonomer (eg for hexene 23.4; 34.9 and 38.1 ppm) with respect to the integral of the characteristic spectral line of the units derived from ethylene (30 ppm).
  • the content in copolymer (B) of monomer units derived from 1-hexene or 1-octene, hereinafter called comonomer content, is generally at least 0.4 mole %, in particular at least 0.6 mole %.
  • the comonomer content of copolymer (B) is usually at most 1.8 mole %, preferably at most 1.5 mole %. Particularly preferred is a comonomer content that does between 0.7 and 1.1 mole %.
  • Ethylene polymer (A) may optionally contain monomer units derived from another olefin.
  • Ethylene polymer (A) comprises preferably at least 99.5 mole %, more particularly at least 99.8, mole % of monomer units derived from ethylene. Particularly preferred is an ethylene homopolymer.
  • Polymer (A) according to the invention preferably has an MI 2 of at least 200, preferably at least 250g/10 min.
  • the MI 2 of polymer (A) generally does not exceed 1000 g/10 min, preferably no more than 700 g/10 min.
  • Polymer (A) preferably has an HLMI of at least 1000 g/10 min.
  • Polymer (A) preferably has an inherent viscosity ⁇ A (measured in tetrahydronaphthalene at 160°C, at a concentration of 1 g/l, by means of an Ostwald type viscosimeter (K2/K1 approximately 620)) of at least 0.45 dl/g, preferably at least 0.50 dl/g. Its inherent viscosity generally does not exceed 0.75 dl/g, and is preferably no higher than 0.65 dl/g.
  • ⁇ A measured in tetrahydronaphthalene at 160°C, at a concentration of 1 g/l, by means of an Ostwald type viscosimeter (K2/K1 approximately 620)
  • the melt index MI 5 of copolymer (B) according to the invention is preferably at least 0.005 g/10 min. It preferably does not exceed 0.1 g/10 min.
  • Copolymer (B) presents advantageously an HLMI of at least 0.05 g/10 min which also does not exceed 2 g/10 min.
  • Copolymer (B) has in general an inherent viscosity ⁇ B of at least 2.7 dl/g, preferably at least 3.9 dl/g. Its inherent viscosity ⁇ B does not exceed in general 10.9 dl/g, preferably not 7.6 dl/g.
  • the ratio between the inherent viscosity of copolymer (B) ( ⁇ B ) and that of polymer (A) ( ⁇ A ) is generally at least 4, preferably at least 6.
  • the ⁇ B / ⁇ A ratio does not generally exceed 15, preferably not 12.
  • the resin according to the invention typically has an HLMI/MI 5 ratio greater than 20, preferably greater than 25.
  • the HLMI/MI 5 ratio does not usually exceed 150.
  • the HLMI/MI 5 ratio does not exceed 70.
  • the HLMI/MI 5 ratio of the resin illustrates the broad or bimodal molecular weight distribution of the resin.
  • Polymer (A) and copolymer (B) utilised in the resin according to the invention each have a molecular weight distribution characterised by a ratio M w /M n greater than 4.
  • the M w /M n ratio means the ratio between the mean molecular mass by weight M W and the mean molecular mass by number M n of the polymer as they are measured by steric exclusion chromatography (SEC) according to the developing standards ISO/DIS 16014-1 and ISO/DIS 16014-2.
  • SEC steric exclusion chromatography
  • Polymer (A) preferably has a molecular weight distribution M w /M n that does not exceed 12, more particularly not 10.
  • Copolymer (B) preferably has a molecular weight distribution M w /M n of at least 6 but no more than 15, preferably no more than 12. It has been found that utilisation of polymers (A) and (B) having a molecular weight distribution M w /M n greater than 4 makes it possible to obtain compositions having better homogeneity when the composition is utilised subsequently in comparison with compositions having the same composition and the same characteristics but comprising ethylene polymers having a molecular mass distribution M w /M n below 4.
  • the resins of the invention are preferably obtained by means of a process utilising at least two polymerisation reactors connected in series, according to which process:
  • Polymerisation in suspension means polymerisation in a diluent which is in the liquid state in the polymerisation conditions (temperature, pressure) used, these polymerisation conditions or the diluent being such that at least 50% by weight (preferably at least 70%) of the polymer formed is insoluble in said diluent.
  • the diluent used in this polymerisation process is usually a hydrocarbon diluent, inert to the catalyst, to the cocatalyst and to the polymer formed, such for example as a linear or branched alkane or a cycloalkane, having from 3 to 8 carbon atoms, such as hexane or isobutane.
  • the quantity of hydrogen introduced into the first reactor is in general set so as to obtain, in the diluent, a molar ratio between hydrogen and ethylene of 0.05 to 1. In the first reactor, this molar ratio is preferably at least 0.1.
  • the medium drawn off from the first reactor comprising in addition the polymer (A) is subjected to expansion so as to eliminate (degas) at least part of the hydrogen.
  • the expansion is advantageously effected at a temperature below or equal to the polymerisation temperature in the first reactor.
  • the temperature at which the expansion is effected is usually greater than 20°C, it is preferably at least 40°C.
  • the pressure at which the expansion is carried out is below the pressure in the first reactor.
  • the expansion pressure is preferably below 1.5 MPa.
  • the expansion pressure is usually at least 0.1 MPa.
  • the quantity of hydrogen still present in the at least partially degassed medium is generally below 1% by weight of the quantity of hydrogen initially present in the medium drawn off from the first polymerisation reactor, this quantity is preferably below 0.5%.
  • the quantity of hydrogen present in the partially degassed medium introduced into the further polymerisation reactor is therefore low or even nil.
  • the further reactor is preferably also supplied with hydrogen.
  • the quantity of hydrogen introduced into the further reactor is in general set so as to obtain, in the diluent, a molar ratio between hydrogen and ethylene of 0.001 to 0.1. In this further reactor, this molar ratio is preferably at least 0.004. It does not exceed preferably 0.05.
  • the ratio between the hydrogen concentration in the diluent in the first reactor and that in the further polymerisation reactor is usually at least 20, preferably at least 30. Particularly preferred is a ratio of concentrations of at least 40. This ratio does not usually exceed 300, preferably not 200.
  • the quantity of 1-hexene or 1-octene introduced into the further polymerisation reactor is such that in the further reactor the comonomer /ethylene molar ratio in the diluent is preferably at least 0.05, more preferably at least 0.1.
  • the comonomer /ethylene molar ratio preferably does not exceed 3, more preferably not 2.8.
  • the catalyst employed in the polymerisation process may be any catalyst(s) suitable for preparing the low and high density fractions.
  • the same catalyst produces both the high and low molecular weight fractions.
  • the catalyst may be a chromium catalyst, a Ziegler-Natta catalyst, or a metallocene catalyst.
  • the catalyst is a Ziegler-Natta catalyst.
  • the catalyst used comprises at least one transition metal.
  • Transition metal means a metal of groups 4, 5 or 6 of the Periodic Table of elements (CRC Handbook of Chemistry and Physics, 75th edition, 1994-95).
  • the transition metal is preferably titanium and/or zirconium.
  • a catalyst comprising not only the transition metal but also magnesium is preferably utilised. Good results have been obtained with catalysts comprising:
  • the cocatalyst utilised in the process is preferably an organoaluminium compound.
  • Unhalogenated organoaluminium compounds of formula AlR 3 in which R represents an alkyl grouping having from 1 to 8 carbon atoms are preferred. Particularly preferred are triethylaluminium and triisobutylaluminium.
  • the cocatalyst is introduced into the first polymerisation reactor. Fresh cocatalyst may also be introduced into the further reactor.
  • the quantity of cocatalyst introduced into the first reactor is in general at least 0.1x10 -3 mole per litre of diluent. It does not usually exceed 5 ⁇ 10 -3 mole per litre of diluent. Any quantity of fresh cocatalyst introduced into the further reactor does not usually exceed 5 ⁇ 10 -3 mole per litre of diluent.
  • the polymerisation temperature is generally from 20 to 130°C. It is preferably at least 60°C. For preference, it does not exceed 115°C.
  • the total pressure at which the process is effected is in general from 0.1 MPa to 10 MPa. In the first polymerisation reactor, the total pressure is preferably at least 2.5 MPa. Preferably, it does not exceed 5 MPa. In the further polymerisation reactor, the total pressure is preferably at least 1.3 MPa. Preferably, it does not exceed 4.3 MPa.
  • the period of polymerisation in the first reactor and in the further reactor is in general at least 20 minutes, preferably at least 30 minutes. It does not usually exceed 5 hours, preferably not 3 hours.
  • a suspension comprising the resin of the invention is collected at the outlet of the further polymerisation reactor.
  • the composition may be separated from the suspension by any known means.
  • the suspension is subjected to a pressure expansion (final expansion) so as to eliminate the diluent, the ethylene, the alpha-olefin and any hydrogen from the composition.
  • This process makes it possible to obtain, with a good yield and with a low oligomers content, a composition having a very good compromise between mechanical properties and utilisation properties.
  • compositions of the invention are well suited to the manufacture of pipes and pipe fittings, particularly pipes for the conveying of fluids under pressure such as water and gas.
  • the invention therefore also concerns the use of a composition according to the invention for the manufacture of pipes or pipe fittings.
  • the compositions of the invention may be mixed with the usual additives for utilisation of polyolefins, such as stabilisers (antioxidant agents, anti-acids and/or anti-UVs), antistatic agents and utilisation agents ("processing aid"), and pigments.
  • the invention therefore concerns also a mixture comprising a composition according to the invention and at least one of the additives described above.
  • mixtures comprising at least 95%, preferably at least 97%, by weight of a composition according to the invention and at least one of the additives described above.
  • the manufacture of pipes by extrusion of a composition according to the invention is preferably carried out on an extrusion line comprising an extruder, a sizer and a drawing device. Extrusion is generally performed on an extruder of the single-screw type and at a temperature of 150 to 230°C.
  • the sizing of the pipes may be effected by the creation of negative pressure outside the pipe and/or by the creation.of positive pressure inside the pipe.
  • Pipes manufactured by means of the compositions according to the invention are characterised by:
  • Magnesium diethylate was caused to react for 4 hours at 150°C with titanium tetrabutylate in quantities such that the molar ratio of titanium to magnesium was equal to 2.
  • Polymerisation grade hexane was added to the alcoholate mixture in order to obtain a solution containing 250g of mixture per litre of solution. Thereafter the reaction product thus obtained was chlorinated and precipitated by placing it in contact with an ethylaluminium dichloride solution for 90 minutes at 45°C.
  • An ethylene polymer composition in suspension in isobutane was manufactured in two loop reactors connected in series, separated by a device making it possible to effect pressure expansion continuously.
  • the catalyst as described in item a) of Example 1 was introduced continuously into the first loop reactor, and polymerisation of the ethylene to form polymer (A) was effected in this medium.
  • Said medium comprising polymer (A) in addition was drawn off continuously from said reactor and was subjected to expansion (48°C, 0.6 MPa) so as to eliminate at least part of the hydrogen.
  • the resulting medium at least partially degassed from hydrogen was then introduced continuously into a second polymerisation reactor at the same time as ethylene, hexene, isobutane and hydrogen, and polymerisation of the ethylene and the hexene was effected in order to form the copolymer (B).
  • the suspension comprising the polymer composition was drawn off continuously from the second reactor and this suspension was subjected to a final expansion so as to evaporate the isobutane and the reagents present (ethylene, hexene and hydrogen) and recover the composition in the form of a powder that was subjected to drying in order to finish the degassing of the isobutane.
  • the other polymerisation conditions are specified in Table 1.
  • Example 1 To the resins of Examples 1 to 6 were added, per 100 parts of polyethylene composition, 0.35 parts by weight of antioxidant IRGANOX® B225, 0.075 parts by weight of zirconium stearate, 0.025 parts of weight of calcium stearate and 2.25 parts by weight of carbon black.
  • the resultant composition was extruded on a compounding device comprising a melting zone (single screw extruder, 90mm screw diameter, 24D length) and a homogenising zone (single screw extruder, 90mm diameter screw, 36D length) at a rate of 40kg/hr and with a residence time of 540 seconds.
  • the resulting compound was passed through a strand pelletiser and pellets of the resulting compound were recovered.
  • Creep resistance was evaluated on 50mm SDR 17 pipes produced on KM and/or Battenfeld extruders according to ISO 1167.
  • the pressure tests results are on the basis of an MRS rating equal 10 MPa, according to the standard IS09080.
  • Rapid crack propagation was determined at an internal pressure generally equal to at least 10 bars, as measured at 0°C on a pipe of diameter 110 mm and thickness 10 mm according to method S4 described in ISO13477.
  • EXAMPLE 1 2 3 4 5 6 Creep Pipe 1 - 12.4MPa 142 190 138 142 337 209 Pipe 2 - 12.4MPa 152 200 121 184 418 198 Pipe 1 - 12.1MPa 937 731 538 879 1149 465 Pipe 2 - 12.1MPa 1018 815 583 989 1160 459 Pipe 1 - 5.5MPa 167 230 208 897 3898 449 Pipe2-5.5MPa 140 277 277 1070 4129 555 Pipe 1 - 5.0MPa 6521 4820 - 4663 4201 >5820 Stress crack resistance - notched pipe test Pipe 1 - 4.6MPa 3498 2402 7956 1537 1568 4100 Pipe 2 - 4.6MPa 3570 2526 1414 1602 4693 Rapid crack propagation
EP04253420A 2004-06-09 2004-06-09 Polyethylenharze für Röhrenfassungen Withdrawn EP1605014A1 (de)

Priority Applications (13)

Application Number Priority Date Filing Date Title
EP04253420A EP1605014A1 (de) 2004-06-09 2004-06-09 Polyethylenharze für Röhrenfassungen
JP2007526240A JP4982372B2 (ja) 2004-06-09 2005-05-27 ポリエチレンパイプ装着具樹脂
CN2005800263877A CN1993417B (zh) 2004-06-09 2005-05-27 管道配件用聚乙烯树脂
PCT/EP2005/005823 WO2005121238A1 (en) 2004-06-09 2005-05-27 Polyethylene pipe fitting resins
EP05746191.5A EP1753812B1 (de) 2004-06-09 2005-05-27 Polyethylenrohrfittingharze
KR1020077000368A KR101178075B1 (ko) 2004-06-09 2005-05-27 폴리에틸렌 파이프 배관 수지
US11/628,866 US7714074B2 (en) 2004-06-09 2005-05-27 Polyethylene pipe fitting resins
ES05746191T ES2423920T3 (es) 2004-06-09 2005-05-27 Resinas de polietileno para accesorios de tubería
BRPI0511991-0A BRPI0511991A (pt) 2004-06-09 2005-05-27 resinas de polietileno para encaixe de canos
RU2007100137/02A RU2375392C2 (ru) 2004-06-09 2005-05-27 Полиэтиленовые смолы для трубопроводной арматуры
EGNA2006001178 EG25581A (en) 2004-06-09 2006-12-07 Polyethylene pipe fitting resins
IL179921A IL179921A (en) 2004-06-09 2006-12-07 Pipe fittings made from polyethylene resins
US12/591,140 US7812095B2 (en) 2004-06-09 2009-11-10 Polyethylene pipe fitting resins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP04253420A EP1605014A1 (de) 2004-06-09 2004-06-09 Polyethylenharze für Röhrenfassungen

Publications (1)

Publication Number Publication Date
EP1605014A1 true EP1605014A1 (de) 2005-12-14

Family

ID=34930388

Family Applications (2)

Application Number Title Priority Date Filing Date
EP04253420A Withdrawn EP1605014A1 (de) 2004-06-09 2004-06-09 Polyethylenharze für Röhrenfassungen
EP05746191.5A Revoked EP1753812B1 (de) 2004-06-09 2005-05-27 Polyethylenrohrfittingharze

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP05746191.5A Revoked EP1753812B1 (de) 2004-06-09 2005-05-27 Polyethylenrohrfittingharze

Country Status (11)

Country Link
US (2) US7714074B2 (de)
EP (2) EP1605014A1 (de)
JP (1) JP4982372B2 (de)
KR (1) KR101178075B1 (de)
CN (1) CN1993417B (de)
BR (1) BRPI0511991A (de)
EG (1) EG25581A (de)
ES (1) ES2423920T3 (de)
IL (1) IL179921A (de)
RU (1) RU2375392C2 (de)
WO (1) WO2005121238A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3063222A1 (de) * 2013-10-30 2016-09-07 Abu Dhabi Polymers Co. Ltd (Borouge) LLC. Polyethylenzusammensetzung zum spritzgiessen
US9440044B2 (en) 2014-06-06 2016-09-13 Zeus Industrial Products, Inc. Peelable heat-shrink tubing
US9655710B2 (en) 2011-01-28 2017-05-23 Merit Medical Systems, Inc. Process of making a stent
US9827703B2 (en) 2013-03-13 2017-11-28 Merit Medical Systems, Inc. Methods, systems, and apparatuses for manufacturing rotational spun appliances
US9987833B2 (en) 2012-01-16 2018-06-05 Merit Medical Systems, Inc. Rotational spun material covered medical appliances and methods of manufacture
US10028852B2 (en) 2015-02-26 2018-07-24 Merit Medical Systems, Inc. Layered medical appliances and methods
US10507268B2 (en) 2012-09-19 2019-12-17 Merit Medical Systems, Inc. Electrospun material covered medical appliances and methods of manufacture
US10799617B2 (en) 2013-03-13 2020-10-13 Merit Medical Systems, Inc. Serially deposited fiber materials and associated devices and methods

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2130859A1 (de) 2008-06-02 2009-12-09 Borealis AG Polymerzusammensetzungen mit verbesserter Homogenität und verbessertem Geruch, Verfahren zu deren Herstellung und daraus hergestellte Rohre
EP2130863A1 (de) 2008-06-02 2009-12-09 Borealis AG Hochdichte Polymerzusammensetzungen, Verfahren für ihre Herstellung und daraus hergestellte druckfeste Rohre
EP2410011A1 (de) * 2010-07-23 2012-01-25 INEOS Manufacturing Belgium NV Polyethylenzusammensetzung
FR2969021B1 (fr) * 2010-12-16 2014-04-11 Commissariat Energie Atomique Dispositif de decoupe de structure comprenant des nano-objets filaires et procede associe
JP2013227545A (ja) * 2012-03-28 2013-11-07 Japan Polyethylene Corp パイプ及び継手用ポリエチレン並びにその成形体
CN103374160B (zh) * 2012-04-13 2015-12-02 中国石油天然气股份有限公司 一种聚乙烯组合物及其制备和应用
CN104098818B (zh) * 2013-04-03 2016-07-06 中国石油天然气股份有限公司 一种高密度聚乙烯组合物及其制备和应用
WO2016159168A1 (ja) 2015-03-31 2016-10-06 日本ポリエチレン株式会社 パイプ及び継手用ポリエチレン並びにその成形体
KR102617263B1 (ko) 2020-08-10 2023-12-27 주식회사 예담케미칼 세라믹 미소구체를 포함하는 플라스틱 컴파운드 조성물 및 이의 제조방법
KR102548429B1 (ko) 2020-12-04 2023-06-28 주식회사 예담케미칼 배관용 hdpe 플라스틱 컴파운드 조성물 및 이의 제조방법
WO2023117558A1 (en) 2021-12-23 2023-06-29 Borealis Ag Polymer composition for pipes having very good impact properties and slow crack growth resistance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060001A1 (en) * 1999-03-30 2000-10-12 Atofina Research Polyolefins and uses thereof
WO2002102891A1 (en) * 2001-06-14 2002-12-27 Solvay Polyolefins Europe-Belgium (Société Anonyme) Ethylene polymer composition
EP1359191A1 (de) * 2002-04-29 2003-11-05 SOLVAY POLYOLEFINS EUROPE - BELGIUM (Société Anonyme) Polymer für Kraftstofftanks

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199719A (ja) * 1998-01-07 1999-07-27 Asahi Chem Ind Co Ltd ポリエチレン製パイプ
EP1201713A1 (de) * 2000-10-27 2002-05-02 ATOFINA Research Rohre aus Polyethylen und Verfahren zum Herstellen
ATE303236T1 (de) * 2001-06-14 2005-09-15 Solvay Verfahren zum compoundieren einer multimodalen polyethylenzusammensetzung
EP1357152A1 (de) * 2002-04-26 2003-10-29 Solvay Polyolefins Europe-Belgium (Société Anonyme) Polymer für Kraftstofftanks
EP1359192A1 (de) * 2002-04-30 2003-11-05 Solvay Polyolefins Europe-Belgium (Société Anonyme) Rohre aus Polyethylen
AU2003240541A1 (en) * 2002-06-04 2003-12-19 Union Carbide Chemicals & Plastics Technology Corporation Polymer compositions and method of making pipes thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060001A1 (en) * 1999-03-30 2000-10-12 Atofina Research Polyolefins and uses thereof
WO2002102891A1 (en) * 2001-06-14 2002-12-27 Solvay Polyolefins Europe-Belgium (Société Anonyme) Ethylene polymer composition
EP1359191A1 (de) * 2002-04-29 2003-11-05 SOLVAY POLYOLEFINS EUROPE - BELGIUM (Société Anonyme) Polymer für Kraftstofftanks

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9655710B2 (en) 2011-01-28 2017-05-23 Merit Medical Systems, Inc. Process of making a stent
US10653511B2 (en) 2011-01-28 2020-05-19 Merit Medical Systems, Inc. Electrospun PTFE coated stent and method of use
US10653512B2 (en) 2011-01-28 2020-05-19 Merit Medical Systems, Inc. Electrospun PTFE coated stent and method of use
US11623438B2 (en) 2012-01-16 2023-04-11 Merit Medical Systems, Inc. Rotational spun material covered medical appliances and methods of manufacture
US9987833B2 (en) 2012-01-16 2018-06-05 Merit Medical Systems, Inc. Rotational spun material covered medical appliances and methods of manufacture
US10005269B2 (en) 2012-01-16 2018-06-26 Merit Medical Systems, Inc. Rotational spun material covered medical appliances and methods of manufacture
US10507268B2 (en) 2012-09-19 2019-12-17 Merit Medical Systems, Inc. Electrospun material covered medical appliances and methods of manufacture
US11541154B2 (en) 2012-09-19 2023-01-03 Merit Medical Systems, Inc. Electrospun material covered medical appliances and methods of manufacture
US9827703B2 (en) 2013-03-13 2017-11-28 Merit Medical Systems, Inc. Methods, systems, and apparatuses for manufacturing rotational spun appliances
US10799617B2 (en) 2013-03-13 2020-10-13 Merit Medical Systems, Inc. Serially deposited fiber materials and associated devices and methods
US10953586B2 (en) 2013-03-13 2021-03-23 Merit Medical Systems, Inc. Methods, systems, and apparatuses for manufacturing rotational spun appliances
EP3063222A1 (de) * 2013-10-30 2016-09-07 Abu Dhabi Polymers Co. Ltd (Borouge) LLC. Polyethylenzusammensetzung zum spritzgiessen
EP3063222A4 (de) * 2013-10-30 2017-05-03 Abu Dhabi Polymers Co. Ltd (Borouge) LLC. Polyethylenzusammensetzung zum spritzgiessen
US10434222B2 (en) 2014-06-06 2019-10-08 Zeus Industrial Products, Inc. Peelable heat-shrink tubing
US9901661B2 (en) 2014-06-06 2018-02-27 Zeus Industrial Products, Inc. Peelable heat-shrink tubing
US9440044B2 (en) 2014-06-06 2016-09-13 Zeus Industrial Products, Inc. Peelable heat-shrink tubing
US10028852B2 (en) 2015-02-26 2018-07-24 Merit Medical Systems, Inc. Layered medical appliances and methods
US11026777B2 (en) 2015-02-26 2021-06-08 Merit Medical Systems, Inc. Layered medical appliances and methods

Also Published As

Publication number Publication date
CN1993417B (zh) 2011-07-13
US20100056728A1 (en) 2010-03-04
JP2008501828A (ja) 2008-01-24
KR101178075B1 (ko) 2012-09-07
IL179921A0 (en) 2007-05-15
JP4982372B2 (ja) 2012-07-25
KR20070034046A (ko) 2007-03-27
US20080033135A1 (en) 2008-02-07
EP1753812A1 (de) 2007-02-21
CN1993417A (zh) 2007-07-04
EP1753812B1 (de) 2013-07-10
US7812095B2 (en) 2010-10-12
BRPI0511991A (pt) 2008-01-22
RU2375392C2 (ru) 2009-12-10
EG25581A (en) 2012-03-11
ES2423920T3 (es) 2013-09-25
RU2007100137A (ru) 2008-07-20
IL179921A (en) 2012-01-31
WO2005121238A1 (en) 2005-12-22
US7714074B2 (en) 2010-05-11

Similar Documents

Publication Publication Date Title
EP1753812B1 (de) Polyethylenrohrfittingharze
EP1655334B1 (de) Multimodale Polyethylenzusammensetzung mit verbesserter Homogenität
KR100935044B1 (ko) 전력 또는 통신 케이블용 외부 외장층
US7232866B2 (en) Ethylene polymer composition
EP1922342B1 (de) Polymerzusammensetzung
AU2014356524B2 (en) Multimodal polymer
EP1819770B1 (de) Mit hochaktivem katalysator erhältliche multimodale polyethylenzusammensetzung
US20120148775A1 (en) Ethylene polymer composition
KR102415134B1 (ko) 카본 블랙 및 카본 블랙에 대한 전달체 중합체를 포함하는 중합체 조성물
WO2006048255A1 (en) Multimodal polyethylene composition with improved homogeneity
CN111655781A (zh) 具有改进的escr耐性的聚烯烃组合物
EP1489112A2 (de) Polymerisationsverfahren
KR20040089207A (ko) 환경응력균열저항성이 우수한 파이프용 폴리에틸렌수지조성물

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051011