EP1598558A1 - Oil sealed vane type rotary vacuum pump - Google Patents

Oil sealed vane type rotary vacuum pump Download PDF

Info

Publication number
EP1598558A1
EP1598558A1 EP05008941A EP05008941A EP1598558A1 EP 1598558 A1 EP1598558 A1 EP 1598558A1 EP 05008941 A EP05008941 A EP 05008941A EP 05008941 A EP05008941 A EP 05008941A EP 1598558 A1 EP1598558 A1 EP 1598558A1
Authority
EP
European Patent Office
Prior art keywords
oil
vacuum pump
rotary vane
vane vacuum
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05008941A
Other languages
German (de)
French (fr)
Other versions
EP1598558B1 (en
Inventor
Armin Conrad
Wolfgang Losch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP1598558A1 publication Critical patent/EP1598558A1/en
Application granted granted Critical
Publication of EP1598558B1 publication Critical patent/EP1598558B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/344Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
    • F04C18/3441Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
    • F04C18/3442Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/0085Prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/70Safety, emergency conditions or requirements
    • F04C2270/701Cold start

Definitions

  • the invention relates to an oil-sealed rotary vane vacuum pump after Generic term of the first claim.
  • Rotary vane vacuum pumps play an important role in the generation of vacuum. They are used to generate coarse and fine vacuum with final pressures of up to approx. 6 * 10 -3 mbar and are used in industry, research and laboratories. Traditionally, these pumps also serve as a backing pump for non-atmospheric pressure pumps such as Roots pumps and turbomolecular pumps. Depending on the application, they are designed in one or more stages.
  • Rotary vane vacuum pumps of the present type belong to the class of oil superposed positive displacement pumps. The oil in the pump performs a number of tasks, including on the one hand the sealing of the gas outlet against the gas inlet side. On the other hand, the oil is used for cooling and lubricating the mechanical components of the pump.
  • the oil also plays a negative role in the design of the drive motor.
  • the oil is tough and viscous. This requires a lot of power on the side of the drive motor in order to turn the rotor of the pump.
  • insufficient dimensioning ie, too low a torque of the drive motor, it may even happen that the pump does not even start up.
  • Remedy can provide the choice of an oil with higher viscosity, however, such oils have volatile constituents, so that the final pressure increases (Wutz: "Handbook Vacuum Technology", Vieweg-Verlag, 8th edition, p 202 ff).
  • the drive motors are designed very powerful in oil-lubricated rotary vane vacuum pumps.
  • Prior art rotary vane vacuum pumps of the prior art are equipped with asynchronous AC electric motors. Their typical torque as a function of the rotational speed is shown in FIG. At low speeds, the torque is low, the much higher maximum torque is achieved only at medium speeds. At higher speeds, the torque drops again.
  • This situation requires that the drive motors must be oversized, so that the rotary vane vacuum pumps can even start. This oversizing causes an unnecessarily high power consumption of the drive and thereby increases both the manufacturing costs, as well as the operating costs of the pump. The latter play an increasing role, as rotary vane vacuum pumps are designed for continuous operation.
  • the prior art rotary vane vacuum pumps are equipped with magnetic coupling and split pot, which leads to an increase in manufacturing costs while reducing operating costs.
  • the drive system of a rotary vane vacuum pump has at least two shafts, namely rotor shaft and motor shaft. Both must be stored, also coupling elements between the waves are needed. These measures increase the number of components, the assembly costs and the error rate of the pump.
  • the invention is therefore based on the object, an oil-sealed Rotary vane vacuum pump to build, which has the disadvantages of the prior art overcomes.
  • the oil-sealed rotary vane vacuum pump is driven by a brushless DC motor.
  • This consists of permanent magnets, which are mounted on the shaft of the pumping system, and stationary coils, which are controlled by an electronics.
  • These motors have a very even course of torque as a function of speed and angle of rotation. Even at very low speeds almost the full torque is applied as starting torque. In this way, a motor can be used, which has a significantly lower power consumption compared to an asynchronous AC motor with the same starting torque. Therefore, the entire engine is structurally smaller, so the pump can be made more compact.
  • the torque which is more uniform with respect to the rotation, ensures significantly smoother running, which has a very positive effect on vibration and noise development.
  • the rotary vane vacuum pump according to the invention requires only a single shaft, whereby manufacturing costs and susceptibility to errors are reduced.
  • FIG. 1 shows an oil-sealed rotary vane vacuum pump 1 with housing 2, gas inlet 3 and gas outlet 4.
  • the pumping system 5 is provided with a shaft 12 which is mounted in the bearings 13.
  • the pumping action results from the rotation of the shaft in conjunction with the rotary valves 7.
  • a hydraulic oil pump 6 supplies the bearings, which are designed as plain bearings, and the high-vacuum safety valve with oil. This valve closes when the shaft stops rotating, causing the oil pressure generated by the oil pump to drop.
  • On the shaft 12 permanent magnets sit 14.
  • Coils 10 generate a magnetic rotating field that changes its position by electronic commutation and thus set the shaft in rotation. Instead of the two waves of the prior art, namely rotor shaft and motor shaft, this pump has only one shaft.
  • Sensors 16 are used to determine the angular position of the shaft.
  • the sensor signals are read by the control electronics 8.
  • the control electronics generates the necessary voltages and currents for the coils and the commutation signals.
  • This control electronics is preferably located in a removable and in particular against the oil chamber dense part of the housing. Furthermore, it is designed so that it has to be connected to the energy supply only via a cable to an existing supply network, such as the 230 V AC mains or an industrial voltage network (eg 24 V or 48 V).
  • control electronics is designed so that they single or multi-phase line voltages between 60 V and 400 V or Industrial voltage networks (24 V or 48 V) can be operated.
  • One Selector switch allows adjustment to the respective supply voltage.
  • control electronics contains means with which they automatically can detect the applied supply voltage.
  • the control electronics 8 includes a power unit 9 for controlling the coils. It is advantageous if this power unit in thermal contact with the Housing wall is brought. About the housing is then in thermal Convection dissipates the heat from the pump, creating additional coolant can be avoided.
  • the coils in a mass, for example. Synthetic resin, shed so that they not attacked by the oil and the possibly contained residues and can be decomposed. Such residues occur, for example, in fields of application pumps, where corrosive and other process gases are pumped have to.
  • control electronics allows the shaft with various user-selectable rotational frequencies to operate and thus regulate the pumping speed of the pump.
  • the hydraulic pump must be so be designed so that they have enough oil pressure even in the lower speed range built to provide the bearings with oil and the High vacuum safety valve 20 to open. A pressure relief valve in the oil circuit must then open at high speeds to avoid excessive pressure.
  • the oil pump is dispensed with.
  • the high vacuum safety valve is designed electromagnetically and is of the Control electronics 8 controlled via cable 22. If the control electronics detects that When the shaft stops turning, it turns off the electromagnetic High vacuum safety valve in the closed state.
  • control electronics 8 containing housing part disposed within the pump housing.
  • FIG. 2 A further advantageous embodiment is shown in FIG. 2.
  • this rotary vane vacuum pump has a containment shell 18. This sits between the shaft and the coils, allowing the coils outside the oil-filled room.
  • This containment shell consists of a non-magnetic material, such as a ceramic.

Abstract

The pump has a pump system (5) arranged in a housing (2), where the system has a shaft (12) eccentrically arranged in a cylindrical chamber. A drive motor e.g. direct current motor, has permanent magnets (14) that are arranged on the shaft. Electrical coils (10) surround the magnets and produce a rotatable magnetic field. Control electronic (8) controls the coils and is arranged in a removable housing part of the pump.

Description

Die Erfindung betrifft eine ölgedichtete Drehschiebervakuumpumpe nach dem Oberbegriff des ersten Anspruchs.The invention relates to an oil-sealed rotary vane vacuum pump after Generic term of the first claim.

Drehschiebervakuumpumpen spielen eine wichtige Rolle in der Erzeugung von Vakuum. Sie dienen zur Erzeugung von Grob- und Feinvakuum mit Enddrücken bis ca. 6*10-3 mbar und werden in Industrie, Forschung und Labor eingesetzt. Traditionell dienen diese Pumpen auch als Vorvakuumpumpe für nicht gegen Atmosphärendruck verdichtende Pumpen wie Wälzkolbenpumpen und Turbomolekularpumpen. Dabei sind sie je nach Anwendung ein- oder mehrstufig ausgebildet.
Drehschiebervakuumpumpen des hier vorliegenden Typs gehören zu der Klasse der ölüberlagerten Verdrängerpumpen. Das Öl in der Pumpe erfüllt mehrere Aufgaben, darunter fällt zum einen die Abdichtung der Gasaustritts- gegen die Gaseintrittsseite. Zum anderen dient das Öl zur Kühlung und Schmierung der mechanischen Komponenten der Pumpe.
Das Öl spielt allerdings auch eine negative Rolle bei der Auslegung des Antriebsmotors. Zu Beginn des Betriebes, wenn die Pumpe kalt ist, ist das Öl zäh und dickflüssig. Damit wird sehr viel Leistung auf Seite des Antriebsmotors benötigt, um den Rotor der Pumpe drehen zu lassen. Bei unzureichender Dimensionierung, d.h. zu geringem Drehmoment, des Antriebsmotors kann es sogar vorkommen, dass die Pumpe gar nicht erst anläuft. Abhilfe kann die Wahl eines Öles mit höherer Viskosität schaffen, allerdings besitzen solche Öle leichtflüchtige Bestandteile, so dass der Enddruck zunimmt (Wutz: "Handbuch Vakuumtechnik", Vieweg-Verlag, 8te Auflage, S. 202ff). Da dies nicht in allen Pumpenanwendungen hingenommen werden kann, werden die Antriebsmotore in ölgeschmierten Drehschiebervakuumpumpen sehr leistungsstark ausgelegt.
Gattungsgemäße Drehschiebervakuumpumpen nach dem Stand der Technik werden mit asynchronen Wechselstrom-Elektromotoren ausgerüstet. Deren typisches Drehmoment in Abhängigkeit von der Drehzahl ist in Figur 3 gezeigt. Bei niedrigen Drehzahlen ist das Drehmoment gering, das deutlich höhere maximale Drehmoment wird erst bei mittleren Drehzahlen erreicht. Bei höheren Drehzahlen fällt das Drehmoment wieder ab. Dieser Sachverhalt bedingt, dass die Antriebsmotoren überdimensioniert werden müssen, damit die Drehschiebervakuumpumpen überhaupt anlaufen können. Diese Überdimensionierung verursacht eine unnötig hohe Leistungsaufnahme des Antriebes und erhöht dadurch sowohl die Herstellungskosten, als auch die Betriebskosten der Pumpe. Letztere spielen in zunehmenden Maße eine Rolle, da gerade Drehschiebervakuumpumpen für den Dauerbetrieb gedacht sind.
Negativ wirkt sich die Überdimensionierung des Antriebsmotors auch auf die Größe der gesamten Pumpe aus. Ein kompaktes Bauvolumen, wie es in heutigen Pumpständen und Anlagen anzustreben ist, lässt sich nicht auf Basis der Antriebsmotoren des Standes der Technik realisieren. Dies wird noch verschärft, da die nicht in Drehung des Rotors umgesetzte elektrische Energie in abzuführende Wärme umgewandelt wird. Diese muss innerhalb des Pumpstandes abgeführt werden, gegebenenfalls sogar mit aktiver Kühlung.
Wechselstromelektromotoren, wie sie meist insbesondere in kleinen und mittleren Drehschiebervakuumpumpen mit Saugvermögen bis 40 m3/h eingesetzt werden, sind oft Zweiphasenmotoren. Bei diesen Motoren werden Kondensatoren eingesetzt, um mehr als zwei Spulen pro Umfang einsetzen zu können. Daraus ergibt sich eine ungleichmäßige Drehmomentcharakteristik, d.h. ein ungleichmäßiges Drehmoment bezogen auf eine ganze Umdrehung der Welle. Hieraus resultiert eine unnötig hohe Vibrations- und Geräuschentwicklung, die in sehr vielen Anwendungsfällen schwer tolerierbar ist. Durch geeignete Installationsmaßnahmen muss dafür gesorgt werden, dass diese Schwingungen nicht auf z.B. empfmdliche Laborapparaturen übertragen werden.
Das Öl innerhalb der Drehschieberpumpe dient zum Kühlen, zum Schmieren der beweglichen Teile und zur Abdichtung des Schöpfraums. Eine Verschmutzung der Pumpenumgebung durch Öl, das aus dem Gehäuse austritt, gilt es zu verhindern. Gerade das Abdichten der Durchführung der Rotorwelle durch das Gehäuse ist schwierig. Traditionell werden hier Radialwellendichtungen eingesetzt, die allerdings einen hohen Verschleiß aufweisen, d.h. zu hohen Wartungskosten führen. Um die Probleme dieser Dichtungen zu beseitigen werden im Stand der Technik Drehschiebervakuumpumpen mit Magnetkupplung und Spalttopf ausgerüstet, was zu einer Erhöhung der Herstellungskosten bei Senkung der Betriebskosten führt.
Im Stand der Technik besitzt das Antriebssystem einer Drehschiebervakuumpumpe mindestens zwei Wellen, nämlich Rotorwelle und Motorwelle. Beide müssen gelagert werden, außerdem werden Kupplungselemente zwischen den Wellen benötigt. Diese Maßnahmen erhöhen die Zahl der Bauteile, die Montagekosten und die Fehleranfälligkeit der Pumpe.
Rotary vane vacuum pumps play an important role in the generation of vacuum. They are used to generate coarse and fine vacuum with final pressures of up to approx. 6 * 10 -3 mbar and are used in industry, research and laboratories. Traditionally, these pumps also serve as a backing pump for non-atmospheric pressure pumps such as Roots pumps and turbomolecular pumps. Depending on the application, they are designed in one or more stages.
Rotary vane vacuum pumps of the present type belong to the class of oil superposed positive displacement pumps. The oil in the pump performs a number of tasks, including on the one hand the sealing of the gas outlet against the gas inlet side. On the other hand, the oil is used for cooling and lubricating the mechanical components of the pump.
However, the oil also plays a negative role in the design of the drive motor. At the beginning of operation, when the pump is cold, the oil is tough and viscous. This requires a lot of power on the side of the drive motor in order to turn the rotor of the pump. In the case of insufficient dimensioning, ie, too low a torque of the drive motor, it may even happen that the pump does not even start up. Remedy can provide the choice of an oil with higher viscosity, however, such oils have volatile constituents, so that the final pressure increases (Wutz: "Handbook Vacuum Technology", Vieweg-Verlag, 8th edition, p 202 ff). Since this can not be tolerated in all pump applications, the drive motors are designed very powerful in oil-lubricated rotary vane vacuum pumps.
Prior art rotary vane vacuum pumps of the prior art are equipped with asynchronous AC electric motors. Their typical torque as a function of the rotational speed is shown in FIG. At low speeds, the torque is low, the much higher maximum torque is achieved only at medium speeds. At higher speeds, the torque drops again. This situation requires that the drive motors must be oversized, so that the rotary vane vacuum pumps can even start. This oversizing causes an unnecessarily high power consumption of the drive and thereby increases both the manufacturing costs, as well as the operating costs of the pump. The latter play an increasing role, as rotary vane vacuum pumps are designed for continuous operation.
Negatively, the oversizing of the drive motor also affects the size of the entire pump. A compact construction volume, as it is desirable in today's pumping stations and systems, can not be realized on the basis of the drive motors of the prior art. This is aggravated because the electrical energy not converted in rotation of the rotor is converted into dissipated heat. This must be dissipated within the pumping station, possibly even with active cooling.
AC electric motors, as they are mostly used in particular in small and medium rotary vane vacuum pumps with pumping speeds up to 40 m 3 / h, are often two-phase motors. These motors use capacitors to allow more than two coils per circumference. This results in an uneven torque characteristic, ie an uneven torque relative to a complete revolution of the shaft. This results in an unnecessarily high vibration and noise, which is difficult to tolerate in many applications. Suitable installation measures must be taken to ensure that these vibrations are not transferred to, for example, sensitive laboratory equipment.
The oil within the rotary vane pump is used for cooling, for lubricating the moving parts and for sealing the suction chamber. Contamination of the pump environment by oil escaping from the housing should be prevented. Especially the sealing of the implementation of the rotor shaft through the housing is difficult. Traditionally, radial shaft seals are used here, which, however, have a high degree of wear, ie lead to high maintenance costs. In order to eliminate the problems of these seals, the prior art rotary vane vacuum pumps are equipped with magnetic coupling and split pot, which leads to an increase in manufacturing costs while reducing operating costs.
In the prior art, the drive system of a rotary vane vacuum pump has at least two shafts, namely rotor shaft and motor shaft. Both must be stored, also coupling elements between the waves are needed. These measures increase the number of components, the assembly costs and the error rate of the pump.

Der Erfindung liegt daher die Aufgabe zu Grunde, eine ölgedichtete Drehschiebervakuumpumpe zu bauen, die die Nachteile des Standes der Technik überwindet.The invention is therefore based on the object, an oil-sealed Rotary vane vacuum pump to build, which has the disadvantages of the prior art overcomes.

Gelöst wird diese Aufgabe die kennzeichnenden Merkmale des ersten Anspruchs. Die Ansprüche 2 bis 10 stellen weitere vorteilhafte Ausgestaltungen der Erfindung dar.This object is achieved by the characterizing features of the first claim. The claims 2 to 10 provide further advantageous embodiments of the invention represents.

Erfindungsgemäß wird die ölgedichtete Drehschiebervakuumpumpe durch einen bürstenlosen Gleichstrommotor angetrieben. Dieser besteht aus Permanentmagneten, die auf der Welle des Pumpsystems angebracht sind, und ortsfesten Spulen, die von einer Elektronik angesteuert werden. Diese Motoren besitzen einen sehr gleichmäßigen Verlauf des Drehmoments in Abhängigkeit von Drehzahl und Drehwinkel. Bereits bei sehr niedrigen Drehzahlen wird als Anlaufdrehmoment nahezu das volle Drehmoment aufgebracht. Hierdurch kann ein Motor eingesetzt werden, der gegenüber einem asynchronen Wechselstrommotor mit gleichem Anlaufdrehmoment eine deutlich geringere Leistungsaufnahme besitzt. Daher ist auch der komplette Motor baulich kleiner, die Pumpe kann also kompakter gestaltet werden. Das bezogen auf die Drehung gleichmäßigere Drehmoment sorgt für eine deutlich höhere Laufruhe, was sich sehr positiv auf Vibrations- und Geräuschentwicklung auswirkt.
Statt mehrere Wellen, wie im Stand der Technik, benötigt die erfindungsgemäße Drehschiebervakuumpumpe nur eine einzige Welle, wodurch Herstellkosten uind Fehleranfälligkeit reduziert werden.
According to the invention, the oil-sealed rotary vane vacuum pump is driven by a brushless DC motor. This consists of permanent magnets, which are mounted on the shaft of the pumping system, and stationary coils, which are controlled by an electronics. These motors have a very even course of torque as a function of speed and angle of rotation. Even at very low speeds almost the full torque is applied as starting torque. In this way, a motor can be used, which has a significantly lower power consumption compared to an asynchronous AC motor with the same starting torque. Therefore, the entire engine is structurally smaller, so the pump can be made more compact. The torque, which is more uniform with respect to the rotation, ensures significantly smoother running, which has a very positive effect on vibration and noise development.
Instead of several waves, as in the prior art, the rotary vane vacuum pump according to the invention requires only a single shaft, whereby manufacturing costs and susceptibility to errors are reduced.

Die vorliegende Erfindung soll anhand der Figuren näher erläutert werden.

  • Fig. 1: Erfindungsgemäße Drehschiebervakuumpumpe mit Permanentmagneten auf der Welle und ein magnetisches Drehfeld erzeugende Spulen.
  • Fig. 2: Drehschiebervakuumpumpe mit Permanentmagneten auf der Welle und ein magnetisches Drehfeld erzeugende Spulen und Spalttopf.
  • Fig. 3: Drehmoment in Abhängigkeit von Drehzahl für asynchronen Wechselstrommotor (durchgezogen) und für einen Gleichstrommotor (gestrichelt), qualitativ.
  • The present invention will be explained in more detail with reference to FIGS.
  • Fig. 1: inventive rotary vane vacuum pump with permanent magnets on the shaft and a magnetic rotating field generating coils.
  • Fig. 2: rotary vane vacuum pump with permanent magnets on the shaft and a magnetic rotating field generating coils and split pot.
  • Fig. 3: torque as a function of speed for asynchronous AC motor (solid) and for a DC motor (dashed), qualitatively.
  • Figur 1 zeigt eine ölgedichtete Drehschiebervakuumpumpe 1 mit Gehäuse 2, Gaseinlass 3 und Gasauslass 4. Im Inneren des Gehäuses befindet sich das Pumpsystem 5 mit einer Welle 12, die in den Lagern 13 gelagert ist. Die Pumpwirkung ergibt sich aus der Rotation der Welle im Zusammenspiel mit den Drehschiebern 7. Eine hydraulische Ölpumpe 6 versorgt die Lagerstellen, die als Gleitlager ausgebildet sind, und das Hochvakuumsicherheitsventil mit Öl. Dieses Ventil schließt, wenn die Welle nicht mehr dreht und damit der von der Ölpumpe erzeugte Öldruck abfällt.
    Auf der Welle 12 sitzen Permanentmagnete 14. Spulen 10 erzeugen eine magnetisches Drehfeld, dass durch elektronische Kommutation seine Lage ändert und damit die Welle in Rotation versetzt. Statt der zwei Wellen des Standes der Technik, nämlich Rotorwelle und Motorwelle, besitzt diese Pumpe nur noch eine Welle. Sensoren 16, vorzugsweise Hallsensoren, dienen zur Bestimmung der Winkellage der Welle. Die Sensorsignale werden von der Regelelektronik 8 eingelesen. Die Regelelektronik erzeugt die für die Spulen notwendigen Spannungen und Ströme sowie die Kommutierungssignale. Diese Regelelektronik sitzt vorzugsweise in einem abnehmbaren und insbesondere gegen den Ölraum dichten Teil des Gehäuses. Weiterhin ist sie so ausgebildet, dass sie zur Energieversorgung lediglich über ein Kabel mit einem vorhandenen Versorgungsnetz, wie beispielsweise dem 230 V Wechselstromnetz oder einem Industriespannungsnetz (bspw. 24 V oder 48 V), verbunden werden muss.
    Figure 1 shows an oil-sealed rotary vane vacuum pump 1 with housing 2, gas inlet 3 and gas outlet 4. Inside the housing, the pumping system 5 is provided with a shaft 12 which is mounted in the bearings 13. The pumping action results from the rotation of the shaft in conjunction with the rotary valves 7. A hydraulic oil pump 6 supplies the bearings, which are designed as plain bearings, and the high-vacuum safety valve with oil. This valve closes when the shaft stops rotating, causing the oil pressure generated by the oil pump to drop.
    On the shaft 12 permanent magnets sit 14. Coils 10 generate a magnetic rotating field that changes its position by electronic commutation and thus set the shaft in rotation. Instead of the two waves of the prior art, namely rotor shaft and motor shaft, this pump has only one shaft. Sensors 16, preferably Hall sensors, are used to determine the angular position of the shaft. The sensor signals are read by the control electronics 8. The control electronics generates the necessary voltages and currents for the coils and the commutation signals. This control electronics is preferably located in a removable and in particular against the oil chamber dense part of the housing. Furthermore, it is designed so that it has to be connected to the energy supply only via a cable to an existing supply network, such as the 230 V AC mains or an industrial voltage network (eg 24 V or 48 V).

    In einer vorteilhaften Ausführung ist die Regelelektronik so ausgestaltet, dass sie an ein- oder mehrphasigen Netzspannungen zwischen 60 V und 400 V oder Industriespannungsnetzen (24 V oder 48 V) betrieben werden kann. Ein Wahlschalter erlaubt die Einstellung auf die jeweilige Versorgungsspannung. Noch vorteilhafter ist es, wenn die Regelelektronik Mittel enthält, mit denen sie selbsttätig die angelegte Versorgungsspannung erkennen kann. Diese Maßnahmen führen dazu, dass die ölgedichtete Drehschiebervakuumpumpe an allen Weltspannungsnetzen betrieben werden kann, wodurch erheblich Kosten gespart werden können, da die Pumpen nicht mehr auf spezielle örtliche Gegebenheiten angepasst werden müssen. Stattdessen können für alle Pumpen die gleichen Standardbauteile verwendet werden. In an advantageous embodiment, the control electronics is designed so that they single or multi-phase line voltages between 60 V and 400 V or Industrial voltage networks (24 V or 48 V) can be operated. One Selector switch allows adjustment to the respective supply voltage. Yet It is more advantageous if the control electronics contains means with which they automatically can detect the applied supply voltage. These measures lead to that the oil-sealed rotary vane vacuum pump on all world voltage networks can be operated, which can save considerable costs, as the Pumps no longer need to be adapted to specific local conditions. Instead, the same standard components can be used for all pumps become.

    Die Regelelektronik 8 enthält einen Leistungsteil 9 zur Ansteuerung der Spulen. Vorteilhaft ist es, wenn dieser Leistungsteil in thermischen Kontakt mit der Gehäusewandung gebracht wird. Über das Gehäuse wird dann in thermischer Konvektion die Wärme von der Pumpe abgeführt, wodurch zusätzliche Kühlmittel vermieden werden können.The control electronics 8 includes a power unit 9 for controlling the coils. It is advantageous if this power unit in thermal contact with the Housing wall is brought. About the housing is then in thermal Convection dissipates the heat from the pump, creating additional coolant can be avoided.

    Vorteilhaft sind die Spulen in einer Masse, bspw. Kunstharz, vergossen, damit sie vom Öl und den eventuell darin befindlichen Rückständen nicht angegriffen und zersetzt werden können. Solche Rückstände treten beispielsweise in Einsatzfeldern der Pumpen auf, in denen korrosive und andere Prozessgase gefördert werden müssen.Advantageously, the coils in a mass, for example. Synthetic resin, shed so that they not attacked by the oil and the possibly contained residues and can be decomposed. Such residues occur, for example, in fields of application pumps, where corrosive and other process gases are pumped have to.

    In einer vorteilhaften Ausführung ermöglicht die Regelelektronik, die Welle mit verschiedenen, vom Benutzer wählbaren Drehfrequenzen, zu betreiben und damit das Saugvermögen der Pumpe zu regulieren. Die Hydraulikpumpe muss so ausgelegt werden, dass sie auch im unteren Drehzahlbereich genügend Öldruck aufbaut, um die Lagerstellen mit Öl zu versorgen und das Hochvakuumsicherheitsventil 20 zu öffnen. Ein Überdruckventil im Ölkreislauf muss dann bei hohen Drehzahlen öffnen, um einen zu hohen Druck zu vermeiden.In an advantageous embodiment, the control electronics allows the shaft with various user-selectable rotational frequencies to operate and thus regulate the pumping speed of the pump. The hydraulic pump must be so be designed so that they have enough oil pressure even in the lower speed range built to provide the bearings with oil and the High vacuum safety valve 20 to open. A pressure relief valve in the oil circuit must then open at high speeds to avoid excessive pressure.

    In einer vorteilhaften Ausführung wird auf die Ölpumpe verzichtet. Statt dessen ist das Hochvakuumsicherheitsventil elektromagnetisch ausgestaltet und wird von der Regelelektronik 8 über Kabel 22 angesteuert. Stellt die Regelelektronik fest, dass sich die Welle nicht mehr dreht, schaltet sie das elektromagnetische Hochvakuumsicherheitsventil in den geschlossenen Zustand.In an advantageous embodiment, the oil pump is dispensed with. Instead, it is the high vacuum safety valve is designed electromagnetically and is of the Control electronics 8 controlled via cable 22. If the control electronics detects that When the shaft stops turning, it turns off the electromagnetic High vacuum safety valve in the closed state.

    In einer weiteren vorteilhaften Ausführung ist der die Regelelektronik 8 beinhaltende Gehäuseteil innerhalb des Pumpengehäuses angeordnet. In a further advantageous embodiment, the control electronics 8 containing housing part disposed within the pump housing.

    Eine weitere vorteilhafte Ausführung zeigt Figur 2. Gegenüber der in Figur 1 gezeigten Ausführung besitzt diese Drehschiebervakuumpumpe einen Spalttopf 18. Dieser sitzt zwischen der Welle und den Spulen und erlaubt damit, die Spulen außerhalb des mit Öl gefüllten Raumes anzuordnen. Dieser Spalttopf besteht aus einem nichtmagnetischen Material, beispielsweise einer Keramik.A further advantageous embodiment is shown in FIG. 2. In contrast to FIG. 1 As shown, this rotary vane vacuum pump has a containment shell 18. This sits between the shaft and the coils, allowing the coils outside the oil-filled room. This containment shell consists of a non-magnetic material, such as a ceramic.

    Claims (10)

    Ölgedichtete Drehschiebervakuumpumpe (1) mit mindestens einer Pumpstufe, wobei jede Pumpstufe aus einer zylindrischen Kammer mit darin exzentrisch angeordneter mit Schiebern (7) versehene Welle (12) besteht, wobei alle Pumpstufen von einer einstückigen Welle angetrieben werden, mit einem Antriebssystem für die Welle, dadurch gekennzeichnet, dass das Antriebssystem aus auf der Welle angebrachten Permanentmagneten (14) und ortfesten elektrischen Spulen (10) besteht, die ein elektrisches Drehfeld erzeugen, dass die zur Ansteuerung der Spulen notwendige Regelektronik (8) in einem abnehmbaren Gehäuseteil der Pumpe angeordnet ist. Oil-sealed rotary vane vacuum pump (1) with at least one pumping stage, each pump stage consisting of a cylindrical chamber with a shaft (12) eccentrically arranged therein with slides (7), wherein all pumping stages are driven by a one-piece shaft, with a drive system for the shaft, characterized, in that the drive system consists of shaft-mounted permanent magnets (14) and fixed electric coils (10) which generate a rotary electric field, in that the control electronics (8) necessary for controlling the coils are arranged in a removable housing part of the pump. Ölgedichtete Drehschiebervakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen der Welle und den Spulen (10) ein Spalttopf (18) zur Trennung von Pumpraum (9) und Atmosphäre dient.Oil-sealed rotary vane vacuum pump according to one of the preceding claims, characterized in that between the shaft and the coils (10) a split pot (18) for separating pump chamber (9) and atmosphere is used. Ölgedichtete Drehschiebervakuumpumpe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Sensoren (16) zur Bestimmung der Rotorlage vorhanden sind.Oil-sealed rotary vane vacuum pump according to claim 1 or 2, characterized in that sensors (16) are provided for determining the rotor position. Ölgedichtete Drehschiebervakuumpumpe nach Anspruch 3, dadurch gekennzeichnet, dass die Sensoren (16) zur Bestimmung der Rotorlage Hallsensoren sind. Oil-sealed rotary vane vacuum pump according to claim 3, characterized in that the sensors (16) for determining the rotor position are Hall sensors. Ölgedichtete Drehschiebervakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Regelelektronik (8) Mittel zur Änderung der Drehzahl der Welle enthält.Oil-sealed rotary vane vacuum pump according to one of the preceding claims, characterized in that the control electronics (8) contains means for changing the rotational speed of the shaft. Ölgedichtete Drehschiebervakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Regelelektronik (8) so ausgebildet ist, dass sie zur Energieversorgung direkt mit einem Spannungsnetz verbunden ist.Oil-sealed rotary vane vacuum pump according to one of the preceding claims, characterized in that the control electronics (8) is designed so that it is connected to the power supply directly to a voltage network. Ölgedichtete Drehschiebervakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Regelelektronik (8) mit ein- oder mehrphasigen Spannungen zwischen 60 V und 400 V betrieben werden kann.Oil-sealed rotary vane vacuum pump according to one of the preceding claims, characterized in that the control electronics (8) can be operated with single- or multi-phase voltages between 60 V and 400 V. Ölgedichtete Drehschiebervakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens der Leistungsteil (9) der Regelelektronik (8) mit der Gehäusewandung in thermischen Kontakt steht.Oil-sealed rotary vane vacuum pump according to one of the preceding claims, characterized in that at least the power part (9) of the control electronics (8) is in thermal contact with the housing wall. Ölgedichtete Drehschiebervakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Spulen (10) in Kunstharz vergossen sind.Oil-sealed rotary vane vacuum pump according to one of the preceding claims, characterized in that the coils (10) are cast in synthetic resin. Ölgedichtete Drehschiebervakuumpumpe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der die Regelelektronik (8) beinhaltende Gehäuseteil innerhalb des Pumpengehäuses (2) angeordnet ist.Oil-sealed rotary vane vacuum pump according to one of the preceding claims, characterized in that the housing part containing the control electronics (8) is arranged inside the pump housing (2).
    EP05008941.6A 2004-05-18 2005-04-23 Oil sealed vane type rotary vacuum pump Active EP1598558B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE102004024554.1A DE102004024554B4 (en) 2004-05-18 2004-05-18 Oil-sealed rotary vane vacuum pump
    DE102004024554 2004-05-18

    Publications (2)

    Publication Number Publication Date
    EP1598558A1 true EP1598558A1 (en) 2005-11-23
    EP1598558B1 EP1598558B1 (en) 2015-12-30

    Family

    ID=34935641

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP05008941.6A Active EP1598558B1 (en) 2004-05-18 2005-04-23 Oil sealed vane type rotary vacuum pump

    Country Status (3)

    Country Link
    US (1) US20050260082A1 (en)
    EP (1) EP1598558B1 (en)
    DE (1) DE102004024554B4 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2017192036A1 (en) * 2016-05-03 2017-11-09 Actuant Corporation Pump unit with integrated piston pump and electric motor

    Families Citing this family (17)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102006022772A1 (en) 2006-05-16 2007-11-22 Pfeiffer Vacuum Gmbh Drive arrangement for a vacuum pump
    DE102006032765A1 (en) * 2006-07-14 2008-01-17 Leybold Vacuum Gmbh vacuum pump
    DE102006039958A1 (en) * 2006-08-25 2008-02-28 Busch Produktions Gmbh Rotary vane vacuum pump or compressor in block design with floating disc rotor synchronous motor
    DE102006058843A1 (en) * 2006-12-13 2008-06-19 Pfeiffer Vacuum Gmbh vacuum pump
    DE102006058837C5 (en) * 2006-12-13 2022-05-05 Pfeiffer Vacuum Gmbh Lubricant sealed rotary vane vacuum pump
    DE102007060147A1 (en) 2007-12-13 2009-06-18 Pfeiffer Vacuum Gmbh Rotary vane vacuum pump
    DE102008042656A1 (en) 2008-10-07 2010-04-15 Ilmvac Gmbh Electric motor with encapsulated motor housing
    CN102725532B (en) * 2010-01-29 2015-09-23 Ulvac机工株式会社 Pump
    CN102280965B (en) * 2010-06-12 2013-07-24 中国科学院沈阳科学仪器股份有限公司 Shield motor for vacuum pump
    US20140363319A1 (en) * 2013-06-07 2014-12-11 Agilent Technologies, Inc Rotary vane vacuum pump
    DE102015010846B4 (en) 2015-08-19 2017-04-13 Nidec Gpm Gmbh Electric motor driven vacuum pump
    DE102015118022A1 (en) * 2015-10-22 2017-04-27 Pfeiffer Vacuum Gmbh Rotationsverdrängervakuumpumpe
    WO2017080599A1 (en) * 2015-11-12 2017-05-18 Pierburg Pump Technology Gmbh Electric motor vehicle vacuum pump
    CN106704185B (en) * 2017-03-29 2019-03-19 王鸿 Vacuum evacuation device and vacuum equipment
    US11905958B2 (en) * 2017-03-29 2024-02-20 Hong Wang Vacuuming device and vacuum apparatus
    EP3597922A1 (en) * 2018-07-19 2020-01-22 Agilent Technologies, Inc. (A Delaware Corporation) Vacuum pumping system having an oil-lubricated vacuum pump
    IT202000004513A1 (en) * 2020-03-04 2021-09-04 Marziano Salvaro VACUUM PUMP, ESPECIALLY FOR FOOD STORAGE EQUIPMENT.

    Citations (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS57146091A (en) * 1981-03-06 1982-09-09 Suzuki Sogyo Kk Compressor
    GB2151091A (en) * 1983-11-07 1985-07-10 Pfeiffer Vakuumtechnik Electric drive for oil sealed sliding vane rotary vacuum pump
    DE3730583A1 (en) * 1986-12-24 1988-07-07 Medizin Labortechnik Veb K Rotary-vane vacuum pump
    US5110264A (en) * 1989-12-20 1992-05-05 Allied-Signal Inc. Variable speed turbo vacuum pump
    US6019585A (en) * 1995-07-19 2000-02-01 Leybold Vakuum Gmbh Oil-sealed vane-type rotary vacuum pump with oil feed
    US20020172599A1 (en) * 1994-04-21 2002-11-21 Ebara Corporation Multishaft electric motor and positive-displacement pump combined with such multishaft electric motor
    EP1427088A2 (en) * 2002-12-03 2004-06-09 Toyoda Koki Kabushiki Kaisha Rotor with bonded permanent magnets for an electric motor
    EP1482178A1 (en) * 2003-05-28 2004-12-01 VARIAN S.p.A. Vacuum pumping device

    Family Cites Families (25)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    AT49630B (en) 1910-04-25 1911-08-25 Werkgenossenschaft Der Stubaie Locking device for wire tensioners.
    DE1910325A1 (en) * 1969-02-28 1970-09-10 Hyro Vakuum Technik Gmbh Rotary vane pump
    FR2586763B1 (en) * 1985-08-27 1989-07-28 Cit Alcatel MOTOR PUMP PUMP ASSEMBLY WITHOUT OUTER OIL LEAKS
    JPS62117571U (en) * 1986-01-20 1987-07-25
    JPS62218670A (en) * 1986-03-19 1987-09-26 Diesel Kiki Co Ltd Variable-capacity oscillating plate type compressor
    DE8703108U1 (en) * 1987-02-28 1988-03-31 Leybold Ag, 5000 Koeln, De
    DE3825035B4 (en) * 1988-07-09 2006-11-23 Flux-Geräte GmbH Brushless, electrically commutated motor for a drum or a container pump to Betieb on an AC voltage network
    DE4017194A1 (en) * 1990-05-29 1991-12-05 Leybold Ag ROTARY VALVE VACUUM PUMP
    DE4205926A1 (en) * 1992-02-26 1993-09-16 Magnet Motor Gmbh ELECTRIC PUMP
    DE4208194A1 (en) * 1992-03-14 1993-09-16 Leybold Ag METHOD FOR OPERATING AN OIL-SEALED VACUUM PUMP AND A VACUUM PUMP SUITABLE FOR IMPLEMENTING THIS METHOD
    DE4325282A1 (en) * 1993-07-28 1995-02-02 Leybold Ag Vacuum pump with auxiliary device
    US5618167A (en) * 1994-07-28 1997-04-08 Ebara Corporation Vacuum pump apparatus having peltier elements for cooling the motor & bearing housing and heating the outer housing
    DE69625401T2 (en) * 1995-03-20 2003-10-30 Ebara Corp vacuum pump
    AU5059199A (en) * 1998-08-06 2000-02-28 Automotive Motion Technology Limited A motor driven pump
    US6293772B1 (en) * 1998-10-29 2001-09-25 Innovative Mag-Drive, Llc Containment member for a magnetic-drive centrifugal pump
    US6443710B1 (en) * 1999-08-10 2002-09-03 Iwaki Co., Ltd. Magnetic pump
    DE10026003A1 (en) * 2000-05-25 2001-12-06 Bosch Gmbh Robert stator
    JP3930243B2 (en) * 2000-11-06 2007-06-13 本田技研工業株式会社 Magnet pump
    JP3913980B2 (en) * 2000-12-22 2007-05-09 本田技研工業株式会社 Magnetic-type pump drive device for vehicle engine
    US20040056539A1 (en) * 2001-11-30 2004-03-25 Du Hung T. Electric motor having armature coated with a thermally conductive plastic
    JP2003269345A (en) * 2002-03-13 2003-09-25 Aisin Seiki Co Ltd Motor-driven oil pump
    JP2003314469A (en) * 2002-04-24 2003-11-06 Matsushita Electric Ind Co Ltd Refrigerant pump
    DE10223869A1 (en) * 2002-05-29 2003-12-11 Leybold Vakuum Gmbh Two-shaft vacuum pump
    US7042122B1 (en) * 2002-08-02 2006-05-09 James Dufala Electric motor
    US7471026B2 (en) * 2006-03-13 2008-12-30 Isca Innovatons, Llc Brushless electric motor

    Patent Citations (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS57146091A (en) * 1981-03-06 1982-09-09 Suzuki Sogyo Kk Compressor
    GB2151091A (en) * 1983-11-07 1985-07-10 Pfeiffer Vakuumtechnik Electric drive for oil sealed sliding vane rotary vacuum pump
    DE3730583A1 (en) * 1986-12-24 1988-07-07 Medizin Labortechnik Veb K Rotary-vane vacuum pump
    US5110264A (en) * 1989-12-20 1992-05-05 Allied-Signal Inc. Variable speed turbo vacuum pump
    US20020172599A1 (en) * 1994-04-21 2002-11-21 Ebara Corporation Multishaft electric motor and positive-displacement pump combined with such multishaft electric motor
    US6019585A (en) * 1995-07-19 2000-02-01 Leybold Vakuum Gmbh Oil-sealed vane-type rotary vacuum pump with oil feed
    EP1427088A2 (en) * 2002-12-03 2004-06-09 Toyoda Koki Kabushiki Kaisha Rotor with bonded permanent magnets for an electric motor
    EP1482178A1 (en) * 2003-05-28 2004-12-01 VARIAN S.p.A. Vacuum pumping device

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    PATENT ABSTRACTS OF JAPAN vol. 006, no. 249 (M - 177) 8 December 1982 (1982-12-08) *

    Cited By (4)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    WO2017192036A1 (en) * 2016-05-03 2017-11-09 Actuant Corporation Pump unit with integrated piston pump and electric motor
    NL2016728B1 (en) * 2016-05-03 2017-11-10 Actuant Corp Pump unit with integrated piston pump and electric motor.
    CN109312736A (en) * 2016-05-03 2019-02-05 实用动力集团 Pump unit with integrated piston pump and electric motor
    US10598177B2 (en) 2016-05-03 2020-03-24 Power Packer North America, Inc. Pump unit with integrated piston pump and electric motor

    Also Published As

    Publication number Publication date
    EP1598558B1 (en) 2015-12-30
    DE102004024554B4 (en) 2018-01-25
    US20050260082A1 (en) 2005-11-24
    DE102004024554A1 (en) 2005-12-15

    Similar Documents

    Publication Publication Date Title
    EP1598558B1 (en) Oil sealed vane type rotary vacuum pump
    DE3319112C2 (en) Turbo compressor for high speeds
    US6761542B2 (en) Multishaft electric motor and positive-displacement pump combined with such multishaft electric motor
    EP1857681B1 (en) Vane vacuum pump with canned motor
    EP2080258A1 (en) Encapsulated electrical machine with liquid-cooled stator
    EP1812714A1 (en) Arrangement with a ventilator and a pump
    DE60027044T2 (en) TURBOMOLECULAR VACUUM PUMP WITH RADIAL FLOW
    EP3657021A1 (en) Vacuum pump
    WO2003055039A2 (en) Encapsulated motor
    WO2021115647A1 (en) Electrical orbiter vacuum pump having optimised control
    DE202005017738U1 (en) Fan and fluid pump assembly has electric drive motor with stator in association which are permanently magnetic outer rotor and permanently magnetic inner rotor for driving of fluid pump
    DE10144653B4 (en) Permanently energized electromechanical machine for operation in liquids and gases
    EP3422559B1 (en) Modulation method for an ac converter
    EP1598554B1 (en) Dry running piston type vacuum pump
    EP3438460A1 (en) Vacuum pump
    EP3683449B1 (en) Magnetic bearing and vacuum apparatus
    DE102008062054B4 (en) Arrangement with vacuum pump and method for operating a vacuum pump
    DE102016214696A1 (en) Electric disc motor with media separation in the motor gap
    DE102004003400B4 (en) A centrifugal pump unit
    DE102019214600A1 (en) Pump arrangement
    EP1870999B1 (en) Method for operating a pump with an electronic commutating electrical machine
    DE2352121A1 (en) Solenoid operated valve for pneumatic or hydraulic control - actuates port cylinder through preset angle, without seals between solenoid and port cylinder
    EP3582387A1 (en) Breaking method for a permanent magnet synchronous motor
    WO2017162243A1 (en) Drive unit
    EP3633204B1 (en) Vacuum pump

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL BA HR LV MK YU

    17P Request for examination filed

    Effective date: 20060106

    AKX Designation fees paid

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

    17Q First examination report despatched

    Effective date: 20120203

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R079

    Ref document number: 502005015060

    Country of ref document: DE

    Free format text: PREVIOUS MAIN CLASS: F04C0029100000

    Ipc: F04C0029040000

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    RIC1 Information provided on ipc code assigned before grant

    Ipc: F04C 29/04 20060101AFI20150731BHEP

    INTG Intention to grant announced

    Effective date: 20150824

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: REF

    Ref document number: 767624

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20160115

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R096

    Ref document number: 502005015060

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 12

    REG Reference to a national code

    Ref country code: LT

    Ref legal event code: MG4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20151230

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: MP

    Effective date: 20151230

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20151230

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20151230

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20160331

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20151230

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CZ

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20151230

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20151230

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20151230

    Ref country code: IS

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20160430

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160430

    Ref country code: PL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20151230

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20160502

    Ref country code: RO

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20151230

    Ref country code: EE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20151230

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R097

    Ref document number: 502005015060

    Country of ref document: DE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20151230

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    26N No opposition filed

    Effective date: 20161003

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20160423

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: MM4A

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160430

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160430

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20151230

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 13

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160423

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 767624

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20160423

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20160423

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 14

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: HU

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

    Effective date: 20050423

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20151230

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20151230

    Ref country code: TR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20151230

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BG

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20151230

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20220324

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: IT

    Payment date: 20220223

    Year of fee payment: 18

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20220425

    Year of fee payment: 18

    Ref country code: DE

    Payment date: 20220210

    Year of fee payment: 18

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 502005015060

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20230423

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20230423

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20230423

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20230430

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20231103