EP1598558A1 - Oil sealed vane type rotary vacuum pump - Google Patents
Oil sealed vane type rotary vacuum pump Download PDFInfo
- Publication number
- EP1598558A1 EP1598558A1 EP05008941A EP05008941A EP1598558A1 EP 1598558 A1 EP1598558 A1 EP 1598558A1 EP 05008941 A EP05008941 A EP 05008941A EP 05008941 A EP05008941 A EP 05008941A EP 1598558 A1 EP1598558 A1 EP 1598558A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- oil
- vacuum pump
- rotary vane
- vane vacuum
- shaft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005086 pumping Methods 0.000 claims description 9
- 229920003002 synthetic resin Polymers 0.000 claims description 2
- 239000000057 synthetic resin Substances 0.000 claims description 2
- 230000005684 electric field Effects 0.000 claims 1
- 230000005291 magnetic effect Effects 0.000 abstract description 7
- 239000003921 oil Substances 0.000 description 19
- 239000007789 gas Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010720 hydraulic oil Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/30—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
- F04C18/34—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
- F04C18/344—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member
- F04C18/3441—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation
- F04C18/3442—Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the inner member the inner and outer member being in contact along one line or continuous surface substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the inlet and outlet opening
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C25/00—Adaptations of pumps for special use of pumps for elastic fluids
- F04C25/02—Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/0042—Driving elements, brakes, couplings, transmissions specially adapted for pumps
- F04C29/0085—Prime movers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C2270/00—Control; Monitoring or safety arrangements
- F04C2270/70—Safety, emergency conditions or requirements
- F04C2270/701—Cold start
Definitions
- the invention relates to an oil-sealed rotary vane vacuum pump after Generic term of the first claim.
- Rotary vane vacuum pumps play an important role in the generation of vacuum. They are used to generate coarse and fine vacuum with final pressures of up to approx. 6 * 10 -3 mbar and are used in industry, research and laboratories. Traditionally, these pumps also serve as a backing pump for non-atmospheric pressure pumps such as Roots pumps and turbomolecular pumps. Depending on the application, they are designed in one or more stages.
- Rotary vane vacuum pumps of the present type belong to the class of oil superposed positive displacement pumps. The oil in the pump performs a number of tasks, including on the one hand the sealing of the gas outlet against the gas inlet side. On the other hand, the oil is used for cooling and lubricating the mechanical components of the pump.
- the oil also plays a negative role in the design of the drive motor.
- the oil is tough and viscous. This requires a lot of power on the side of the drive motor in order to turn the rotor of the pump.
- insufficient dimensioning ie, too low a torque of the drive motor, it may even happen that the pump does not even start up.
- Remedy can provide the choice of an oil with higher viscosity, however, such oils have volatile constituents, so that the final pressure increases (Wutz: "Handbook Vacuum Technology", Vieweg-Verlag, 8th edition, p 202 ff).
- the drive motors are designed very powerful in oil-lubricated rotary vane vacuum pumps.
- Prior art rotary vane vacuum pumps of the prior art are equipped with asynchronous AC electric motors. Their typical torque as a function of the rotational speed is shown in FIG. At low speeds, the torque is low, the much higher maximum torque is achieved only at medium speeds. At higher speeds, the torque drops again.
- This situation requires that the drive motors must be oversized, so that the rotary vane vacuum pumps can even start. This oversizing causes an unnecessarily high power consumption of the drive and thereby increases both the manufacturing costs, as well as the operating costs of the pump. The latter play an increasing role, as rotary vane vacuum pumps are designed for continuous operation.
- the prior art rotary vane vacuum pumps are equipped with magnetic coupling and split pot, which leads to an increase in manufacturing costs while reducing operating costs.
- the drive system of a rotary vane vacuum pump has at least two shafts, namely rotor shaft and motor shaft. Both must be stored, also coupling elements between the waves are needed. These measures increase the number of components, the assembly costs and the error rate of the pump.
- the invention is therefore based on the object, an oil-sealed Rotary vane vacuum pump to build, which has the disadvantages of the prior art overcomes.
- the oil-sealed rotary vane vacuum pump is driven by a brushless DC motor.
- This consists of permanent magnets, which are mounted on the shaft of the pumping system, and stationary coils, which are controlled by an electronics.
- These motors have a very even course of torque as a function of speed and angle of rotation. Even at very low speeds almost the full torque is applied as starting torque. In this way, a motor can be used, which has a significantly lower power consumption compared to an asynchronous AC motor with the same starting torque. Therefore, the entire engine is structurally smaller, so the pump can be made more compact.
- the torque which is more uniform with respect to the rotation, ensures significantly smoother running, which has a very positive effect on vibration and noise development.
- the rotary vane vacuum pump according to the invention requires only a single shaft, whereby manufacturing costs and susceptibility to errors are reduced.
- FIG. 1 shows an oil-sealed rotary vane vacuum pump 1 with housing 2, gas inlet 3 and gas outlet 4.
- the pumping system 5 is provided with a shaft 12 which is mounted in the bearings 13.
- the pumping action results from the rotation of the shaft in conjunction with the rotary valves 7.
- a hydraulic oil pump 6 supplies the bearings, which are designed as plain bearings, and the high-vacuum safety valve with oil. This valve closes when the shaft stops rotating, causing the oil pressure generated by the oil pump to drop.
- On the shaft 12 permanent magnets sit 14.
- Coils 10 generate a magnetic rotating field that changes its position by electronic commutation and thus set the shaft in rotation. Instead of the two waves of the prior art, namely rotor shaft and motor shaft, this pump has only one shaft.
- Sensors 16 are used to determine the angular position of the shaft.
- the sensor signals are read by the control electronics 8.
- the control electronics generates the necessary voltages and currents for the coils and the commutation signals.
- This control electronics is preferably located in a removable and in particular against the oil chamber dense part of the housing. Furthermore, it is designed so that it has to be connected to the energy supply only via a cable to an existing supply network, such as the 230 V AC mains or an industrial voltage network (eg 24 V or 48 V).
- control electronics is designed so that they single or multi-phase line voltages between 60 V and 400 V or Industrial voltage networks (24 V or 48 V) can be operated.
- One Selector switch allows adjustment to the respective supply voltage.
- control electronics contains means with which they automatically can detect the applied supply voltage.
- the control electronics 8 includes a power unit 9 for controlling the coils. It is advantageous if this power unit in thermal contact with the Housing wall is brought. About the housing is then in thermal Convection dissipates the heat from the pump, creating additional coolant can be avoided.
- the coils in a mass, for example. Synthetic resin, shed so that they not attacked by the oil and the possibly contained residues and can be decomposed. Such residues occur, for example, in fields of application pumps, where corrosive and other process gases are pumped have to.
- control electronics allows the shaft with various user-selectable rotational frequencies to operate and thus regulate the pumping speed of the pump.
- the hydraulic pump must be so be designed so that they have enough oil pressure even in the lower speed range built to provide the bearings with oil and the High vacuum safety valve 20 to open. A pressure relief valve in the oil circuit must then open at high speeds to avoid excessive pressure.
- the oil pump is dispensed with.
- the high vacuum safety valve is designed electromagnetically and is of the Control electronics 8 controlled via cable 22. If the control electronics detects that When the shaft stops turning, it turns off the electromagnetic High vacuum safety valve in the closed state.
- control electronics 8 containing housing part disposed within the pump housing.
- FIG. 2 A further advantageous embodiment is shown in FIG. 2.
- this rotary vane vacuum pump has a containment shell 18. This sits between the shaft and the coils, allowing the coils outside the oil-filled room.
- This containment shell consists of a non-magnetic material, such as a ceramic.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
- Rotary Pumps (AREA)
Abstract
Description
Die Erfindung betrifft eine ölgedichtete Drehschiebervakuumpumpe nach dem Oberbegriff des ersten Anspruchs.The invention relates to an oil-sealed rotary vane vacuum pump after Generic term of the first claim.
Drehschiebervakuumpumpen spielen eine wichtige Rolle in der Erzeugung von
Vakuum. Sie dienen zur Erzeugung von Grob- und Feinvakuum mit Enddrücken bis
ca. 6*10-3 mbar und werden in Industrie, Forschung und Labor eingesetzt.
Traditionell dienen diese Pumpen auch als Vorvakuumpumpe für nicht gegen
Atmosphärendruck verdichtende Pumpen wie Wälzkolbenpumpen und
Turbomolekularpumpen. Dabei sind sie je nach Anwendung ein- oder mehrstufig
ausgebildet.
Drehschiebervakuumpumpen des hier vorliegenden Typs gehören zu der Klasse der
ölüberlagerten Verdrängerpumpen. Das Öl in der Pumpe erfüllt mehrere Aufgaben,
darunter fällt zum einen die Abdichtung der Gasaustritts- gegen die
Gaseintrittsseite. Zum anderen dient das Öl zur Kühlung und Schmierung der
mechanischen Komponenten der Pumpe.
Das Öl spielt allerdings auch eine negative Rolle bei der Auslegung des
Antriebsmotors. Zu Beginn des Betriebes, wenn die Pumpe kalt ist, ist das Öl zäh
und dickflüssig. Damit wird sehr viel Leistung auf Seite des Antriebsmotors
benötigt, um den Rotor der Pumpe drehen zu lassen. Bei unzureichender
Dimensionierung, d.h. zu geringem Drehmoment, des Antriebsmotors kann es sogar
vorkommen, dass die Pumpe gar nicht erst anläuft. Abhilfe kann die Wahl eines
Öles mit höherer Viskosität schaffen, allerdings besitzen solche Öle leichtflüchtige
Bestandteile, so dass der Enddruck zunimmt (Wutz: "Handbuch Vakuumtechnik",
Vieweg-Verlag, 8te Auflage, S. 202ff). Da dies nicht in allen Pumpenanwendungen
hingenommen werden kann, werden die Antriebsmotore in ölgeschmierten
Drehschiebervakuumpumpen sehr leistungsstark ausgelegt.
Gattungsgemäße Drehschiebervakuumpumpen nach dem Stand der Technik werden
mit asynchronen Wechselstrom-Elektromotoren ausgerüstet. Deren typisches
Drehmoment in Abhängigkeit von der Drehzahl ist in Figur 3 gezeigt. Bei niedrigen
Drehzahlen ist das Drehmoment gering, das deutlich höhere maximale Drehmoment
wird erst bei mittleren Drehzahlen erreicht. Bei höheren Drehzahlen fällt das
Drehmoment wieder ab. Dieser Sachverhalt bedingt, dass die Antriebsmotoren
überdimensioniert werden müssen, damit die Drehschiebervakuumpumpen
überhaupt anlaufen können. Diese Überdimensionierung verursacht eine unnötig
hohe Leistungsaufnahme des Antriebes und erhöht dadurch sowohl die
Herstellungskosten, als auch die Betriebskosten der Pumpe. Letztere spielen in
zunehmenden Maße eine Rolle, da gerade Drehschiebervakuumpumpen für den
Dauerbetrieb gedacht sind.
Negativ wirkt sich die Überdimensionierung des Antriebsmotors auch auf die Größe
der gesamten Pumpe aus. Ein kompaktes Bauvolumen, wie es in heutigen
Pumpständen und Anlagen anzustreben ist, lässt sich nicht auf Basis der
Antriebsmotoren des Standes der Technik realisieren. Dies wird noch verschärft, da
die nicht in Drehung des Rotors umgesetzte elektrische Energie in abzuführende
Wärme umgewandelt wird. Diese muss innerhalb des Pumpstandes abgeführt
werden, gegebenenfalls sogar mit aktiver Kühlung.
Wechselstromelektromotoren, wie sie meist insbesondere in kleinen und mittleren
Drehschiebervakuumpumpen mit Saugvermögen bis 40 m3/h eingesetzt werden,
sind oft Zweiphasenmotoren. Bei diesen Motoren werden Kondensatoren eingesetzt,
um mehr als zwei Spulen pro Umfang einsetzen zu können. Daraus ergibt sich eine
ungleichmäßige Drehmomentcharakteristik, d.h. ein ungleichmäßiges Drehmoment
bezogen auf eine ganze Umdrehung der Welle. Hieraus resultiert eine unnötig hohe
Vibrations- und Geräuschentwicklung, die in sehr vielen Anwendungsfällen schwer
tolerierbar ist. Durch geeignete Installationsmaßnahmen muss dafür gesorgt werden,
dass diese Schwingungen nicht auf z.B. empfmdliche Laborapparaturen übertragen
werden.
Das Öl innerhalb der Drehschieberpumpe dient zum Kühlen, zum Schmieren der
beweglichen Teile und zur Abdichtung des Schöpfraums. Eine Verschmutzung der
Pumpenumgebung durch Öl, das aus dem Gehäuse austritt, gilt es zu verhindern.
Gerade das Abdichten der Durchführung der Rotorwelle durch das Gehäuse ist
schwierig. Traditionell werden hier Radialwellendichtungen eingesetzt, die
allerdings einen hohen Verschleiß aufweisen, d.h. zu hohen Wartungskosten führen.
Um die Probleme dieser Dichtungen zu beseitigen werden im Stand der Technik
Drehschiebervakuumpumpen mit Magnetkupplung und Spalttopf ausgerüstet, was
zu einer Erhöhung der Herstellungskosten bei Senkung der Betriebskosten führt.
Im Stand der Technik besitzt das Antriebssystem einer Drehschiebervakuumpumpe
mindestens zwei Wellen, nämlich Rotorwelle und Motorwelle. Beide müssen
gelagert werden, außerdem werden Kupplungselemente zwischen den Wellen
benötigt. Diese Maßnahmen erhöhen die Zahl der Bauteile, die Montagekosten und
die Fehleranfälligkeit der Pumpe.Rotary vane vacuum pumps play an important role in the generation of vacuum. They are used to generate coarse and fine vacuum with final pressures of up to approx. 6 * 10 -3 mbar and are used in industry, research and laboratories. Traditionally, these pumps also serve as a backing pump for non-atmospheric pressure pumps such as Roots pumps and turbomolecular pumps. Depending on the application, they are designed in one or more stages.
Rotary vane vacuum pumps of the present type belong to the class of oil superposed positive displacement pumps. The oil in the pump performs a number of tasks, including on the one hand the sealing of the gas outlet against the gas inlet side. On the other hand, the oil is used for cooling and lubricating the mechanical components of the pump.
However, the oil also plays a negative role in the design of the drive motor. At the beginning of operation, when the pump is cold, the oil is tough and viscous. This requires a lot of power on the side of the drive motor in order to turn the rotor of the pump. In the case of insufficient dimensioning, ie, too low a torque of the drive motor, it may even happen that the pump does not even start up. Remedy can provide the choice of an oil with higher viscosity, however, such oils have volatile constituents, so that the final pressure increases (Wutz: "Handbook Vacuum Technology", Vieweg-Verlag, 8th edition, p 202 ff). Since this can not be tolerated in all pump applications, the drive motors are designed very powerful in oil-lubricated rotary vane vacuum pumps.
Prior art rotary vane vacuum pumps of the prior art are equipped with asynchronous AC electric motors. Their typical torque as a function of the rotational speed is shown in FIG. At low speeds, the torque is low, the much higher maximum torque is achieved only at medium speeds. At higher speeds, the torque drops again. This situation requires that the drive motors must be oversized, so that the rotary vane vacuum pumps can even start. This oversizing causes an unnecessarily high power consumption of the drive and thereby increases both the manufacturing costs, as well as the operating costs of the pump. The latter play an increasing role, as rotary vane vacuum pumps are designed for continuous operation.
Negatively, the oversizing of the drive motor also affects the size of the entire pump. A compact construction volume, as it is desirable in today's pumping stations and systems, can not be realized on the basis of the drive motors of the prior art. This is aggravated because the electrical energy not converted in rotation of the rotor is converted into dissipated heat. This must be dissipated within the pumping station, possibly even with active cooling.
AC electric motors, as they are mostly used in particular in small and medium rotary vane vacuum pumps with pumping speeds up to 40 m 3 / h, are often two-phase motors. These motors use capacitors to allow more than two coils per circumference. This results in an uneven torque characteristic, ie an uneven torque relative to a complete revolution of the shaft. This results in an unnecessarily high vibration and noise, which is difficult to tolerate in many applications. Suitable installation measures must be taken to ensure that these vibrations are not transferred to, for example, sensitive laboratory equipment.
The oil within the rotary vane pump is used for cooling, for lubricating the moving parts and for sealing the suction chamber. Contamination of the pump environment by oil escaping from the housing should be prevented. Especially the sealing of the implementation of the rotor shaft through the housing is difficult. Traditionally, radial shaft seals are used here, which, however, have a high degree of wear, ie lead to high maintenance costs. In order to eliminate the problems of these seals, the prior art rotary vane vacuum pumps are equipped with magnetic coupling and split pot, which leads to an increase in manufacturing costs while reducing operating costs.
In the prior art, the drive system of a rotary vane vacuum pump has at least two shafts, namely rotor shaft and motor shaft. Both must be stored, also coupling elements between the waves are needed. These measures increase the number of components, the assembly costs and the error rate of the pump.
Der Erfindung liegt daher die Aufgabe zu Grunde, eine ölgedichtete Drehschiebervakuumpumpe zu bauen, die die Nachteile des Standes der Technik überwindet.The invention is therefore based on the object, an oil-sealed Rotary vane vacuum pump to build, which has the disadvantages of the prior art overcomes.
Gelöst wird diese Aufgabe die kennzeichnenden Merkmale des ersten Anspruchs.
Die Ansprüche 2 bis 10 stellen weitere vorteilhafte Ausgestaltungen der Erfindung
dar.This object is achieved by the characterizing features of the first claim.
The
Erfindungsgemäß wird die ölgedichtete Drehschiebervakuumpumpe durch einen
bürstenlosen Gleichstrommotor angetrieben. Dieser besteht aus
Permanentmagneten, die auf der Welle des Pumpsystems angebracht sind, und
ortsfesten Spulen, die von einer Elektronik angesteuert werden. Diese Motoren
besitzen einen sehr gleichmäßigen Verlauf des Drehmoments in Abhängigkeit von
Drehzahl und Drehwinkel. Bereits bei sehr niedrigen Drehzahlen wird als
Anlaufdrehmoment nahezu das volle Drehmoment aufgebracht. Hierdurch kann ein
Motor eingesetzt werden, der gegenüber einem asynchronen Wechselstrommotor
mit gleichem Anlaufdrehmoment eine deutlich geringere Leistungsaufnahme
besitzt. Daher ist auch der komplette Motor baulich kleiner, die Pumpe kann also
kompakter gestaltet werden. Das bezogen auf die Drehung gleichmäßigere
Drehmoment sorgt für eine deutlich höhere Laufruhe, was sich sehr positiv auf
Vibrations- und Geräuschentwicklung auswirkt.
Statt mehrere Wellen, wie im Stand der Technik, benötigt die erfindungsgemäße
Drehschiebervakuumpumpe nur eine einzige Welle, wodurch Herstellkosten uind
Fehleranfälligkeit reduziert werden.According to the invention, the oil-sealed rotary vane vacuum pump is driven by a brushless DC motor. This consists of permanent magnets, which are mounted on the shaft of the pumping system, and stationary coils, which are controlled by an electronics. These motors have a very even course of torque as a function of speed and angle of rotation. Even at very low speeds almost the full torque is applied as starting torque. In this way, a motor can be used, which has a significantly lower power consumption compared to an asynchronous AC motor with the same starting torque. Therefore, the entire engine is structurally smaller, so the pump can be made more compact. The torque, which is more uniform with respect to the rotation, ensures significantly smoother running, which has a very positive effect on vibration and noise development.
Instead of several waves, as in the prior art, the rotary vane vacuum pump according to the invention requires only a single shaft, whereby manufacturing costs and susceptibility to errors are reduced.
Die vorliegende Erfindung soll anhand der Figuren näher erläutert werden.
Figur 1 zeigt eine ölgedichtete Drehschiebervakuumpumpe 1 mit Gehäuse 2,
Gaseinlass 3 und Gasauslass 4. Im Inneren des Gehäuses befindet sich das
Pumpsystem 5 mit einer Welle 12, die in den Lagern 13 gelagert ist. Die
Pumpwirkung ergibt sich aus der Rotation der Welle im Zusammenspiel mit den
Drehschiebern 7. Eine hydraulische Ölpumpe 6 versorgt die Lagerstellen, die als
Gleitlager ausgebildet sind, und das Hochvakuumsicherheitsventil mit Öl. Dieses
Ventil schließt, wenn die Welle nicht mehr dreht und damit der von der Ölpumpe
erzeugte Öldruck abfällt.
Auf der Welle 12 sitzen Permanentmagnete 14. Spulen 10 erzeugen eine
magnetisches Drehfeld, dass durch elektronische Kommutation seine Lage ändert
und damit die Welle in Rotation versetzt. Statt der zwei Wellen des Standes der
Technik, nämlich Rotorwelle und Motorwelle, besitzt diese Pumpe nur noch eine
Welle. Sensoren 16, vorzugsweise Hallsensoren, dienen zur Bestimmung der
Winkellage der Welle. Die Sensorsignale werden von der Regelelektronik 8
eingelesen. Die Regelelektronik erzeugt die für die Spulen notwendigen
Spannungen und Ströme sowie die Kommutierungssignale. Diese Regelelektronik
sitzt vorzugsweise in einem abnehmbaren und insbesondere gegen den Ölraum
dichten Teil des Gehäuses. Weiterhin ist sie so ausgebildet, dass sie zur
Energieversorgung lediglich über ein Kabel mit einem vorhandenen
Versorgungsnetz, wie beispielsweise dem 230 V Wechselstromnetz oder einem
Industriespannungsnetz (bspw. 24 V oder 48 V), verbunden werden muss.Figure 1 shows an oil-sealed rotary
On the
In einer vorteilhaften Ausführung ist die Regelelektronik so ausgestaltet, dass sie an ein- oder mehrphasigen Netzspannungen zwischen 60 V und 400 V oder Industriespannungsnetzen (24 V oder 48 V) betrieben werden kann. Ein Wahlschalter erlaubt die Einstellung auf die jeweilige Versorgungsspannung. Noch vorteilhafter ist es, wenn die Regelelektronik Mittel enthält, mit denen sie selbsttätig die angelegte Versorgungsspannung erkennen kann. Diese Maßnahmen führen dazu, dass die ölgedichtete Drehschiebervakuumpumpe an allen Weltspannungsnetzen betrieben werden kann, wodurch erheblich Kosten gespart werden können, da die Pumpen nicht mehr auf spezielle örtliche Gegebenheiten angepasst werden müssen. Stattdessen können für alle Pumpen die gleichen Standardbauteile verwendet werden. In an advantageous embodiment, the control electronics is designed so that they single or multi-phase line voltages between 60 V and 400 V or Industrial voltage networks (24 V or 48 V) can be operated. One Selector switch allows adjustment to the respective supply voltage. Yet It is more advantageous if the control electronics contains means with which they automatically can detect the applied supply voltage. These measures lead to that the oil-sealed rotary vane vacuum pump on all world voltage networks can be operated, which can save considerable costs, as the Pumps no longer need to be adapted to specific local conditions. Instead, the same standard components can be used for all pumps become.
Die Regelelektronik 8 enthält einen Leistungsteil 9 zur Ansteuerung der Spulen.
Vorteilhaft ist es, wenn dieser Leistungsteil in thermischen Kontakt mit der
Gehäusewandung gebracht wird. Über das Gehäuse wird dann in thermischer
Konvektion die Wärme von der Pumpe abgeführt, wodurch zusätzliche Kühlmittel
vermieden werden können.The
Vorteilhaft sind die Spulen in einer Masse, bspw. Kunstharz, vergossen, damit sie vom Öl und den eventuell darin befindlichen Rückständen nicht angegriffen und zersetzt werden können. Solche Rückstände treten beispielsweise in Einsatzfeldern der Pumpen auf, in denen korrosive und andere Prozessgase gefördert werden müssen.Advantageously, the coils in a mass, for example. Synthetic resin, shed so that they not attacked by the oil and the possibly contained residues and can be decomposed. Such residues occur, for example, in fields of application pumps, where corrosive and other process gases are pumped have to.
In einer vorteilhaften Ausführung ermöglicht die Regelelektronik, die Welle mit
verschiedenen, vom Benutzer wählbaren Drehfrequenzen, zu betreiben und damit
das Saugvermögen der Pumpe zu regulieren. Die Hydraulikpumpe muss so
ausgelegt werden, dass sie auch im unteren Drehzahlbereich genügend Öldruck
aufbaut, um die Lagerstellen mit Öl zu versorgen und das
Hochvakuumsicherheitsventil 20 zu öffnen. Ein Überdruckventil im Ölkreislauf
muss dann bei hohen Drehzahlen öffnen, um einen zu hohen Druck zu vermeiden.In an advantageous embodiment, the control electronics allows the shaft with
various user-selectable rotational frequencies to operate and thus
regulate the pumping speed of the pump. The hydraulic pump must be so
be designed so that they have enough oil pressure even in the lower speed range
built to provide the bearings with oil and the
High
In einer vorteilhaften Ausführung wird auf die Ölpumpe verzichtet. Statt dessen ist
das Hochvakuumsicherheitsventil elektromagnetisch ausgestaltet und wird von der
Regelelektronik 8 über Kabel 22 angesteuert. Stellt die Regelelektronik fest, dass
sich die Welle nicht mehr dreht, schaltet sie das elektromagnetische
Hochvakuumsicherheitsventil in den geschlossenen Zustand.In an advantageous embodiment, the oil pump is dispensed with. Instead, it is
the high vacuum safety valve is designed electromagnetically and is of the
In einer weiteren vorteilhaften Ausführung ist der die Regelelektronik 8
beinhaltende Gehäuseteil innerhalb des Pumpengehäuses angeordnet. In a further advantageous embodiment, the
Eine weitere vorteilhafte Ausführung zeigt Figur 2. Gegenüber der in Figur 1
gezeigten Ausführung besitzt diese Drehschiebervakuumpumpe einen Spalttopf 18.
Dieser sitzt zwischen der Welle und den Spulen und erlaubt damit, die Spulen
außerhalb des mit Öl gefüllten Raumes anzuordnen. Dieser Spalttopf besteht aus
einem nichtmagnetischen Material, beispielsweise einer Keramik.A further advantageous embodiment is shown in FIG. 2. In contrast to FIG. 1
As shown, this rotary vane vacuum pump has a
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004024554 | 2004-05-18 | ||
DE102004024554.1A DE102004024554B4 (en) | 2004-05-18 | 2004-05-18 | Oil-sealed rotary vane vacuum pump |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1598558A1 true EP1598558A1 (en) | 2005-11-23 |
EP1598558B1 EP1598558B1 (en) | 2015-12-30 |
Family
ID=34935641
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05008941.6A Not-in-force EP1598558B1 (en) | 2004-05-18 | 2005-04-23 | Oil sealed vane type rotary vacuum pump |
Country Status (3)
Country | Link |
---|---|
US (1) | US20050260082A1 (en) |
EP (1) | EP1598558B1 (en) |
DE (1) | DE102004024554B4 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017192036A1 (en) * | 2016-05-03 | 2017-11-09 | Actuant Corporation | Pump unit with integrated piston pump and electric motor |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006022772A1 (en) | 2006-05-16 | 2007-11-22 | Pfeiffer Vacuum Gmbh | Drive arrangement for a vacuum pump |
DE102006032765A1 (en) * | 2006-07-14 | 2008-01-17 | Leybold Vacuum Gmbh | vacuum pump |
DE102006039958A1 (en) * | 2006-08-25 | 2008-02-28 | Busch Produktions Gmbh | Rotary vane vacuum pump or compressor in block design with floating disc rotor synchronous motor |
DE102006058843A1 (en) * | 2006-12-13 | 2008-06-19 | Pfeiffer Vacuum Gmbh | vacuum pump |
DE102006058837C5 (en) * | 2006-12-13 | 2022-05-05 | Pfeiffer Vacuum Gmbh | Lubricant sealed rotary vane vacuum pump |
DE102007060147A1 (en) | 2007-12-13 | 2009-06-18 | Pfeiffer Vacuum Gmbh | Rotary vane vacuum pump |
DE102008042656A1 (en) | 2008-10-07 | 2010-04-15 | Ilmvac Gmbh | Electric motor with encapsulated motor housing |
CN102725532B (en) * | 2010-01-29 | 2015-09-23 | Ulvac机工株式会社 | Pump |
CN102280965B (en) * | 2010-06-12 | 2013-07-24 | 中国科学院沈阳科学仪器股份有限公司 | Shield motor for vacuum pump |
US20140363319A1 (en) * | 2013-06-07 | 2014-12-11 | Agilent Technologies, Inc | Rotary vane vacuum pump |
DE102015010846B4 (en) | 2015-08-19 | 2017-04-13 | Nidec Gpm Gmbh | Electric motor driven vacuum pump |
DE102015118022B4 (en) * | 2015-10-22 | 2024-05-29 | Pfeiffer Vacuum Gmbh | Rotary displacement vacuum pump |
EP3374640B1 (en) * | 2015-11-12 | 2024-03-06 | Pierburg Pump Technology GmbH | Electric automotive vacuum pump |
US11905958B2 (en) * | 2017-03-29 | 2024-02-20 | Hong Wang | Vacuuming device and vacuum apparatus |
CN106704185B (en) * | 2017-03-29 | 2019-03-19 | 王鸿 | Vacuum evacuation device and vacuum equipment |
EP3597922B1 (en) * | 2018-07-19 | 2024-08-28 | Agilent Technologies, Inc. (A Delaware Corporation) | Vacuum pumping system having an oil-lubricated vacuum pump |
IT202000004513A1 (en) * | 2020-03-04 | 2021-09-04 | Marziano Salvaro | VACUUM PUMP, ESPECIALLY FOR FOOD STORAGE EQUIPMENT. |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57146091A (en) * | 1981-03-06 | 1982-09-09 | Suzuki Sogyo Kk | Compressor |
GB2151091A (en) * | 1983-11-07 | 1985-07-10 | Pfeiffer Vakuumtechnik | Electric drive for oil sealed sliding vane rotary vacuum pump |
DE3730583A1 (en) * | 1986-12-24 | 1988-07-07 | Medizin Labortechnik Veb K | Rotary-vane vacuum pump |
US5110264A (en) * | 1989-12-20 | 1992-05-05 | Allied-Signal Inc. | Variable speed turbo vacuum pump |
US6019585A (en) * | 1995-07-19 | 2000-02-01 | Leybold Vakuum Gmbh | Oil-sealed vane-type rotary vacuum pump with oil feed |
US20020172599A1 (en) * | 1994-04-21 | 2002-11-21 | Ebara Corporation | Multishaft electric motor and positive-displacement pump combined with such multishaft electric motor |
EP1427088A2 (en) * | 2002-12-03 | 2004-06-09 | Toyoda Koki Kabushiki Kaisha | Rotor with bonded permanent magnets for an electric motor |
EP1482178A1 (en) * | 2003-05-28 | 2004-12-01 | VARIAN S.p.A. | Vacuum pumping device |
Family Cites Families (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT49630B (en) | 1910-04-25 | 1911-08-25 | Werkgenossenschaft Der Stubaie | Locking device for wire tensioners. |
DE1910325A1 (en) * | 1969-02-28 | 1970-09-10 | Hyro Vakuum Technik Gmbh | Rotary vane pump |
FR2586763B1 (en) * | 1985-08-27 | 1989-07-28 | Cit Alcatel | MOTOR PUMP PUMP ASSEMBLY WITHOUT OUTER OIL LEAKS |
JPS62117571U (en) * | 1986-01-20 | 1987-07-25 | ||
JPS62218670A (en) * | 1986-03-19 | 1987-09-26 | Diesel Kiki Co Ltd | Variable-capacity oscillating plate type compressor |
DE8703108U1 (en) * | 1987-02-28 | 1988-03-31 | Leybold AG, 5000 Köln | Vacuum pump with a device for measuring speed |
DE3825035B4 (en) * | 1988-07-09 | 2006-11-23 | Flux-Geräte GmbH | Brushless, electrically commutated motor for a drum or a container pump to Betieb on an AC voltage network |
DE4017194A1 (en) * | 1990-05-29 | 1991-12-05 | Leybold Ag | ROTARY VALVE VACUUM PUMP |
DE4205926A1 (en) * | 1992-02-26 | 1993-09-16 | Magnet Motor Gmbh | ELECTRIC PUMP |
DE4208194A1 (en) * | 1992-03-14 | 1993-09-16 | Leybold Ag | METHOD FOR OPERATING AN OIL-SEALED VACUUM PUMP AND A VACUUM PUMP SUITABLE FOR IMPLEMENTING THIS METHOD |
DE4325282A1 (en) * | 1993-07-28 | 1995-02-02 | Leybold Ag | Vacuum pump with auxiliary device |
US5618167A (en) * | 1994-07-28 | 1997-04-08 | Ebara Corporation | Vacuum pump apparatus having peltier elements for cooling the motor & bearing housing and heating the outer housing |
EP0733804B1 (en) * | 1995-03-20 | 2002-12-18 | Ebara Corporation | Vacuum pump |
EP1102935B1 (en) * | 1998-08-06 | 2003-01-08 | Automotive Motion Technology Limited | A motor driven pump |
US6293772B1 (en) * | 1998-10-29 | 2001-09-25 | Innovative Mag-Drive, Llc | Containment member for a magnetic-drive centrifugal pump |
EP1120569B1 (en) * | 1999-08-10 | 2015-07-29 | Iwaki Co., Ltd. | Magnet pump |
DE10026003A1 (en) * | 2000-05-25 | 2001-12-06 | Bosch Gmbh Robert | stator |
JP3930243B2 (en) * | 2000-11-06 | 2007-06-13 | 本田技研工業株式会社 | Magnet pump |
JP3913980B2 (en) * | 2000-12-22 | 2007-05-09 | 本田技研工業株式会社 | Magnetic-type pump drive device for vehicle engine |
US20040056539A1 (en) * | 2001-11-30 | 2004-03-25 | Du Hung T. | Electric motor having armature coated with a thermally conductive plastic |
JP2003269345A (en) * | 2002-03-13 | 2003-09-25 | Aisin Seiki Co Ltd | Motor-driven oil pump |
JP2003314469A (en) * | 2002-04-24 | 2003-11-06 | Matsushita Electric Ind Co Ltd | Refrigerant pump |
DE10223869A1 (en) * | 2002-05-29 | 2003-12-11 | Leybold Vakuum Gmbh | Two-shaft vacuum pump |
US7042122B1 (en) * | 2002-08-02 | 2006-05-09 | James Dufala | Electric motor |
US7471026B2 (en) * | 2006-03-13 | 2008-12-30 | Isca Innovatons, Llc | Brushless electric motor |
-
2004
- 2004-05-18 DE DE102004024554.1A patent/DE102004024554B4/en not_active Expired - Fee Related
-
2005
- 2005-04-23 EP EP05008941.6A patent/EP1598558B1/en not_active Not-in-force
- 2005-05-17 US US11/130,574 patent/US20050260082A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57146091A (en) * | 1981-03-06 | 1982-09-09 | Suzuki Sogyo Kk | Compressor |
GB2151091A (en) * | 1983-11-07 | 1985-07-10 | Pfeiffer Vakuumtechnik | Electric drive for oil sealed sliding vane rotary vacuum pump |
DE3730583A1 (en) * | 1986-12-24 | 1988-07-07 | Medizin Labortechnik Veb K | Rotary-vane vacuum pump |
US5110264A (en) * | 1989-12-20 | 1992-05-05 | Allied-Signal Inc. | Variable speed turbo vacuum pump |
US20020172599A1 (en) * | 1994-04-21 | 2002-11-21 | Ebara Corporation | Multishaft electric motor and positive-displacement pump combined with such multishaft electric motor |
US6019585A (en) * | 1995-07-19 | 2000-02-01 | Leybold Vakuum Gmbh | Oil-sealed vane-type rotary vacuum pump with oil feed |
EP1427088A2 (en) * | 2002-12-03 | 2004-06-09 | Toyoda Koki Kabushiki Kaisha | Rotor with bonded permanent magnets for an electric motor |
EP1482178A1 (en) * | 2003-05-28 | 2004-12-01 | VARIAN S.p.A. | Vacuum pumping device |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 006, no. 249 (M - 177) 8 December 1982 (1982-12-08) * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017192036A1 (en) * | 2016-05-03 | 2017-11-09 | Actuant Corporation | Pump unit with integrated piston pump and electric motor |
NL2016728B1 (en) * | 2016-05-03 | 2017-11-10 | Actuant Corp | Pump unit with integrated piston pump and electric motor. |
CN109312736A (en) * | 2016-05-03 | 2019-02-05 | 实用动力集团 | Pump unit with integrated piston pump and electric motor |
US10598177B2 (en) | 2016-05-03 | 2020-03-24 | Power Packer North America, Inc. | Pump unit with integrated piston pump and electric motor |
Also Published As
Publication number | Publication date |
---|---|
EP1598558B1 (en) | 2015-12-30 |
DE102004024554A1 (en) | 2005-12-15 |
DE102004024554B4 (en) | 2018-01-25 |
US20050260082A1 (en) | 2005-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1598558B1 (en) | Oil sealed vane type rotary vacuum pump | |
DE3319112C2 (en) | Turbo compressor for high speeds | |
US6761542B2 (en) | Multishaft electric motor and positive-displacement pump combined with such multishaft electric motor | |
EP1812714B1 (en) | Arrangement with a ventilator and a pump | |
EP1857681B1 (en) | Vane vacuum pump with canned motor | |
DE102012219841A1 (en) | Electric pump and method of manufacturing an electric pump | |
EP2080258A1 (en) | Encapsulated electrical machine with liquid-cooled stator | |
DE60027044T2 (en) | TURBOMOLECULAR VACUUM PUMP WITH RADIAL FLOW | |
EP3657021A1 (en) | Vacuum pump | |
WO2003055039A2 (en) | Encapsulated motor | |
EP3067560B1 (en) | Vacuum pump with at least one pump stage | |
WO2021115647A1 (en) | Electrical orbiter vacuum pump having optimised control | |
DE10144653B4 (en) | Permanently energized electromechanical machine for operation in liquids and gases | |
EP3422559B1 (en) | Modulation method for an ac converter | |
EP1598554B1 (en) | Dry running piston type vacuum pump | |
EP3438460A1 (en) | Vacuum pump | |
EP3683449B1 (en) | Magnetic bearing and vacuum apparatus | |
EP2215704B1 (en) | Electrohydraulic unit | |
DE102008062054B4 (en) | Arrangement with vacuum pump and method for operating a vacuum pump | |
DE102004003400B4 (en) | A centrifugal pump unit | |
DE102016214696A1 (en) | Electric disc motor with media separation in the motor gap | |
DE102019214600A1 (en) | Pump arrangement | |
DE2352121A1 (en) | Solenoid operated valve for pneumatic or hydraulic control - actuates port cylinder through preset angle, without seals between solenoid and port cylinder | |
EP3582387A1 (en) | Breaking method for a permanent magnet synchronous motor | |
WO2017162243A1 (en) | Drive unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
17P | Request for examination filed |
Effective date: 20060106 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20120203 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502005015060 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: F04C0029100000 Ipc: F04C0029040000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F04C 29/04 20060101AFI20150731BHEP |
|
INTG | Intention to grant announced |
Effective date: 20150824 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 767624 Country of ref document: AT Kind code of ref document: T Effective date: 20160115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502005015060 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151230 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20151230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151230 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151230 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151230 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151230 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160430 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151230 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160502 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151230 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151230 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005015060 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151230 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20161003 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160423 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151230 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160423 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 767624 Country of ref document: AT Kind code of ref document: T Effective date: 20160423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160423 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20050423 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151230 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151230 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151230 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220324 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20220223 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220425 Year of fee payment: 18 Ref country code: DE Payment date: 20220210 Year of fee payment: 18 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005015060 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20230423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230423 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230423 |