EP1597529A2 - Flat pipe comprising a return bend section and a heat exchanger constructed therewith - Google Patents

Flat pipe comprising a return bend section and a heat exchanger constructed therewith

Info

Publication number
EP1597529A2
EP1597529A2 EP04710027A EP04710027A EP1597529A2 EP 1597529 A2 EP1597529 A2 EP 1597529A2 EP 04710027 A EP04710027 A EP 04710027A EP 04710027 A EP04710027 A EP 04710027A EP 1597529 A2 EP1597529 A2 EP 1597529A2
Authority
EP
European Patent Office
Prior art keywords
flat tube
tube
flat
section
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04710027A
Other languages
German (de)
French (fr)
Other versions
EP1597529B1 (en
Inventor
Walter Demuth
Wolfgang Geiger
Martin Kotsch
Michael Kranich
Karl-Heinz Staffa
Christoph Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP1597529A2 publication Critical patent/EP1597529A2/en
Application granted granted Critical
Publication of EP1597529B1 publication Critical patent/EP1597529B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • F28D1/0476Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0073Gas coolers

Definitions

  • the invention relates to a flat tube according to the preamble of claim 1 and to a heat exchanger constructed therewith.
  • a generic flat tube with an inverted bend section and a heat exchanger with a tube block constructed from this type of flat tube are described in the published patent application DE 198 30 863 A1.
  • the flat tube is bent over in such a way that its two adjacent, flat tube sections run in the longitudinal direction with opposite flow directions and with longitudinal axes offset at least in the transverse direction.
  • the published patent application EP 0 659 500 A1 likewise describes a flat tube with a reversing bend section and a heat exchanger with a tube block constructed from this type of flat tube.
  • a straight flat tube blank is first bent out of the flat tube plane in a U-shape until the flat tube legs run parallel to one another, after which the latter are each 90 ° with respect to the U- Bow area are twisted.
  • the resulting flat tube thus has two flat tube sections lying in one plane, the ends of which end on the same side opposite the reversing bend section.
  • the angle which the flat tube transverse axis encloses along the reversing bend section with the plane in which the straight pipe legs lie initially increases over one torsion range from zero to the value of 90 ° present at the head end of the reversing bend section, and then over the other Torsional range again to decrease to 0 °.
  • a disadvantage of the described reversing bend section is that the extension of the flat tube perpendicular to the plane of the flat pipe legs in the head region of the reversing bend section always corresponds to a flat tube width and therefore cannot be reduced if necessary, so that the dimensions of the associated heat exchanger tube block in the direction perpendicular to the plane of the straight flat tube legs cannot be influenced.
  • the object of the invention is to provide a flat tube with an inverted bend section which is relatively simple to manufacture and is suitable for building very pressure-stable heat exchangers with a small installation space, and to provide a heat exchanger constructed from such flat tubes.
  • the main idea of the invention is to form a reversing arc section such that a main bending axis is parallel to the Flat tube plane and runs at a predeterminable angle to the pipe longitudinal extension, the flat pipe plane being determined by the length and width of the flat pipe.
  • a predeterminable angle to the pipe longitudinal extension is 90 °, ie, the main bending axis is perpendicular to the longitudinal tube extension.
  • the flat tube according to the invention is displaced in the area of the reversing bend section in the flat tube plane parallel to the tube extension by a path s, the path s being composed of a flat tube width b and a desired distance d between the flat tube sections after the forming.
  • an angle ⁇ with which the flat tube sections pass into the reversing bend section can be freely selected during the shaping of the flat tubes and, in an advantageous embodiment of the invention, is in the range of 13 ° ⁇ ⁇ 67 °.
  • the angle ⁇ and / or the path s is achieved by at least one bending operation about at least one bending axis (B) which is perpendicular to the flat tube plane.
  • the displacement of the flat tube is achieved by two bending processes about two bending axes, which are carried out before or after the main bending process about the first bending axis, the first bending axis running in the middle of the offset area, the offset area being approximately twice is as long as the reverse arc section.
  • the two planar tube sections adjoining the reversing bend section are arranged lying parallel to the stacking direction z, preferably with one, in parallel planes laterally offset from one another after the shaping process
  • a tube block in a serpentine construction can be formed, in which the serpentines are laterally offset.
  • the tube block thus formed has a depth of twice the flat tube width plus the said distance d between the flat tube sections.
  • the tube block depth per reversing bend section increases by the flat tube width plus the said transverse distance d of the flat tube sections. Due to the transverse spacing, corresponding gaps form between the flat tube sections in a tube block constructed with such flat tubes, which facilitates the condensation removal, e.g. in the application of the pipe block in an evaporator of a motor vehicle air conditioning system.
  • the reversing bend section is formed in a further shaping step such that the two tube sections lie next to one another and parallel with the distance d in a common plane. This can be done by symmetrical or asymmetrical shaping of the reversing arch section.
  • Flat tube sections are in the same plane - referred to below as the first reversing bend sections - and the reversing bend sections in which the flat tubes are located in different planes - hereinafter referred to as designated second reversing bend sections -, a tube block in serpentine construction can be realized, the depth of which depends on the number of first reversing bend sections formed in succession.
  • a pipe block in a serpentine construction with a depth of twice the flat pipe width plus the said distance d between the flat pipe sections can be realized, in which a tempering medium , for example a refrigerant or a coolant, first flows through the flat tube sections which lie in a common plane, and then flows through the flat tube sections which lie in the stacking direction or counter to the stacking direction in the next common plane.
  • a tempering medium for example a refrigerant or a coolant
  • a serpentine design by executing a number of second reversing arch sections without lateral offset - hereinafter referred to as the third reversing arch section - for example in the stacking direction, and then forming a first reversing arch section, to which a number of Connect the second reverse bend sections.
  • a second reversing arc section can of course also be arranged.
  • the main bending process around the main bending axis is carried out at a predeterminable angle to the longitudinal pipe extension, the predeterminable angle essentially corresponding to the angle ⁇ with which the flat pipe sections merge into the reversing bend section.
  • the two flat tube sections lie in two mutually parallel planes, the two flat tube sections enclosing an angle with a value of 2 ⁇ .
  • the two pipe legs are each deformed with a further bending process about a bending axis that runs perpendicular to the flat pipe plane, so that they each transition into the reversing bend section at the angle ⁇ .
  • the described procedure provides the required already described offset of the flat tube in a different way.
  • the further forming steps are carried out analogously to those already described in order to ensure that the two flat tube sections lie next to one another and parallel with the distance d in a common plane. As already stated, this can be done by symmetrical or asymmetrical shaping of the reversing arch section.
  • the gaps between adjacent flat tubes do not need to be kept as large or not larger than the flat tube width when stacking a tube block from these flat tubes, but can be significantly narrower, which favors the production of a compact and pressure-stable heat exchanger.
  • the reverse bend section can be realized by relatively simple pipe bending processes.
  • the flat tube can be bent one or more times in this way, its depth, ie its extent in the transverse direction as defined above, increasing with each bend if the lateral offset is always in the same direction.
  • a tube block of any depth, that is to say expanding in the transverse direction can be formed, this transverse or depth direction usually representing the direction in which a medium to be cooled or heated is passed outside through the flat tube surfaces through the Heat exchanger is passed through.
  • Additional heat-conducting fins are usually provided between the tube block sections which follow one another in the stacking direction in order to improve the heat transfer. Since, as already mentioned, the tube interspaces can be kept very narrow, correspondingly low heat-conducting corrugated fins can also be used, which likewise improves the compactness and stability of a tube / fin block formed in this way.
  • a flat tube heat exchanger for motor vehicle air conditioning systems several flat tubes according to the invention are stacked one above the other in the stacking direction z to form a tube block.
  • the flat tubes each end with one end in at least one laterally arranged collecting channel running in the stacking direction of the tube block, at least one of the two tube sections connected to one another via the reversing bend section can form a tubular serpentine wound in the stacking direction z, and wherein the two flat tube ends lie on the same or on opposite sides and at least one of the two tube ends can be twisted by an angle between 0 ° and 90 °.
  • the flat tubes according to the invention By designing the flat tubes according to the invention with a 180 ° deflection in the flow direction, it is possible to realize a smaller installation space for the heat exchangers, such as a gas cooler or an evaporator, since closer distances in the stacking direction and / or between the tubes can be achieved. In addition, springing up of the flat tube legs is almost avoided. Another advantage is that the heat exchangers constructed with the flat tubes according to the invention have a stiffer construction with tighter tolerances.
  • the refrigerant is led to the air in a cross-countercurrent flow.
  • the flat tube runs back in the same plane as on the outward path, but offset laterally by a path s, so that the leading section of the flat tube from the returning section by a distance d is distant.
  • the two flat tube sections lie in the same plane, which is determined by the length and width of the flat tubes in their straight sections.
  • the forming is preferably carried out in three stages. In the first stage, the flat tube experiences a lateral offset from the stretched state. The amount of the offset s corresponds to the sum of the flat tube width b and the distance d.
  • a bend with a radius r around a main bending axis A parallel to the flat tube plane and perpendicular to the tube extension, where r is the inner radius of the bend.
  • the main bending axis A lies approximately in the middle of the offset area.
  • the sections of the flat tube are then parallel to each other in different planes.
  • the reverse arc section is formed that the flat tube sections are again in a common plane.
  • the deformed reversing bend section can either be completely below or above with respect to the common flat tube plane or be symmetrical with respect to this common plane.
  • any asymmetrical positions of the reversing arch section to the common plane are possible.
  • the forming steps can also be interchanged.
  • the flat tube according to the invention forms a serpentine flat tube, in that at least one of the two flat tube sections connected via a reversing bend section is bent in the stacking direction to form a pipe serpentine, ie it consists of third reversing bend sections successively in the stacking direction with the corresponding flat pipe sections.
  • a so-called serpentine heat exchanger can be constructed with any number of serpentine block parts which follow one another in the depth direction.
  • the mouth ends lie on the same or on opposite sides, with at least one end, preferably both ends, being twisted in relation to the subsequent central region.
  • This twisting rotates the flat tube transverse axis in the direction of the mouth end towards the stacking direction, so that the extension of the flat tube ends in the transverse direction can be kept smaller than the flat tube width.
  • the twisting takes place at a maximum of 90 °, so that in the case of flat pipe sections running perpendicular to the stacking direction, the pipe ends are parallel to the stacking direction and their extent in the transverse direction is only as large as the flat pipe thickness. This enables a comparatively close arrangement of associated pipe block in the depth direction of a pipe block constructed therewith, on the relevant pipe block side in the stacking direction, extending collection and distribution channels.
  • a heat exchanger is characterized by the use of one or more of the flat tubes according to the invention in the construction of a corresponding tube block, with the above-mentioned properties and advantages of such a tube block structure.
  • a compact, highly pressure-stable evaporator with a relatively low weight, low internal volume and good condensate separation for an air conditioning system of a motor vehicle can be realized in this way, multi-chamber flat tubes preferably being used.
  • the heat exchanger can be implemented in a single-layer construction, in which the flat tube sections between two reversing bend sections or between a reversing bend section and a flat tube end consist of a flat, straight tube section, and in a serpentine construction, in which these flat tube sections are bent into a coil.
  • the tube ends of the flat tubes used and thus also the associated collecting and distribution channels are located on opposite sides of the tube block.
  • the collecting channels can then each be formed by a collecting box or collecting pipe, which run along the stacking direction on the relevant pipe block side, also referred to as the block vertical direction, and the parallel supply or discharge of the temperature control medium passed through the pipe interior to and from the individual flat pipes serve.
  • the flat tube ends all open on the same tube block side. Due to the design of the flat tubes, the two tube ends of each flat tube are offset from one another in the direction of the block depth, so that two corresponding collecting channels lying adjacent to one another in the direction of the block depth can be assigned to them. Accordingly, the temperature control medium passed through the interior of the pipe is supplied and removed on the same heat exchanger side.
  • these collecting channels are formed by two separate collecting pipes or collecting boxes, hereinafter referred to simply as collecting pipes for the sake of simplicity, or by a common collecting pipe.
  • the latter can be achieved by dividing an initially uniform collecting tube interior with a longitudinal partition into the two collecting channels, or by producing the collecting tube as an extruded tube profile with two separate hollow chambers forming the collecting channels.
  • At least one of the two manifolds or at least one of the two hollow chambers is one longitudinally divided collecting pipe divided by transverse partition walls into several collecting channels separated from each other in the block vertical direction.
  • Temperature control medium is initially only fed into the part of all flat tubes that opens there.
  • the number and position of the transverse partition walls determine the division of the flat tubes into successively flowed through groups of parallel flowed flat tubes.
  • the arrangement of the flat tubes with respect to an air flow remains unchanged despite the reversing bend section, i. H. one side of the flat tube facing the air continues to face the air after the reversing bend section and one side of the flat tube facing away from the air continues to face away from the air even after the reversing bend section.
  • Figure 1 is a plan view of a flat tube with a reverse bend section and twisted tube ends.
  • 3a shows a plan view of a flat tube before a bending process about a main bending axis A
  • 3b shows a plan view of a flat tube after a bending process about a main bending axis A
  • FIGS. 4 is a partial side view of a tube / fin block of a heat exchanger constructed from flat tubes according to FIGS. 1 and 2,
  • FIG. 5 is a partial side view of a tube / fin block of a heat exchanger with serpentine flat tubes
  • the flat tube 1 shown in a top view in FIG. 1 is made in one piece from a straight multi-chamber profile using suitable bending processes. It includes two flat, rectilinear pipe sections 2a, 2b, which are connected to one another via an inverted bend section 3 and have opposite flow directions for a temperature control medium passed through the several parallel chambers inside the flat pipe 1, for example a refrigerant of a motor vehicle air conditioning system.
  • a temperature control medium passed through the several parallel chambers inside the flat pipe 1, for example a refrigerant of a motor vehicle air conditioning system.
  • One of the two possible flow profiles is shown in FIG. 1 by corresponding flow arrows 4a, 4b.
  • the longitudinal axes 5a, 5b of the two running parallel to the flow directions 4a, 4b plane, straight pipe sections 2a, 2b define a longitudinal direction x and are offset from one another in a transverse direction y perpendicular thereto.
  • the two flat tube sections 2a, 2b lie with a first reversing arc section 3 in a common xy plane, which is perpendicular to a stacking direction z, in which several such flat tubes are used
  • Formation of a heat exchanger tube block can be stacked on top of one another, as will be explained in more detail below with reference to FIGS. 4 and 5.
  • the corresponding coordinate axes x, y, z are shown in FIGS. 1 to 5.
  • the reversing bend section 3 is obtained in that the initial, rectilinear flat tube profile of a desired width b is shifted in the area of an offset region U as shown in FIG. 3a in the flat tube plane parallel to the tube extension by a path s which is determined by the tube width b and the desired one Distance d is composed.
  • the shift or the offset can take place in the positive y direction or in the opposite direction in the negative y direction.
  • the transition between the flat tube sections 2a, 2b and the reversing bend section 3 takes place at a predeterminable angle ⁇ .
  • the angle ⁇ and / or the path s are achieved by at least one bending process around at least one bending axis B1, B2, which runs perpendicular to the flat tube plane.
  • the described offset by the path s is preferably achieved by two bending processes around the bending axes B1 and B2 shown in FIG. 3a, these two bending processes preferably being carried out before the bending process around the main bending axis A.
  • the main bending axis A runs in the middle of the offset area U, the offset area U being approximately twice as long as the reversing arc section 3.
  • the two straight tube sections 2a, 2b of the flat tube 1 are obtained.
  • the two straight pipe sections 2a, 2b are offset, as shown in FIG. 2a, in mutually parallel planes with a selectable distance 2r in the z direction and in the selectable distance d in the y direction, the following applies to the maximum inner radius r: ( h r d FR ) / 2, where h r is the height of the fins and d F is the flat tube thickness, which results in a reasonable lower limit for r the flat tube thickness d FR .
  • a reasonable value for the angle ⁇ lies within the limits 13 ° ⁇ ⁇ 67 °.
  • the selectable distance is preferably between approximately 0.2 mm and 20 mm, while the flat tube width b is typically between one and a few centimeters.
  • straight pipe sections 2a, 2b are connected to one another on the one side via the reversing bend section 3, they both run out on the opposite side in the form of twisted pipe ends 6a, 6b.
  • the twisting takes place about the respective longitudinal central axis 5a, 5b, alternatively also about a parallel longitudinal axis, i.e. with a transverse offset with respect to the longitudinal central axis, by an arbitrary angle between 0 ° and 90 °, the torsion angle being approximately 90 ° in the case shown.
  • FIG. 2 it is clear that due to the described formation of the reversing sheet section 3, the height c of the reversing sheet section 3 and thus the extent in the stacking direction z is small and can be selected depending on the bending radius. In particular, this height c of the reversing bend section 3 remains significantly smaller than the flat tube width b. As a result, several such flat tubes can be stacked on top of one another in a heat exchanger tube block with a stack height that can be kept significantly smaller than the flat tube width, as the heat exchanger examples described below show.
  • a further modification of the flat tube of FIGS. 1 and 2 may consist in the fact that the two flat tube sections 2a, 2b lie in two mutually offset xy planes, as shown in FIG. 2a.
  • the transverse direction y is defined by the fact that it is both for Longitudinal direction x of the straight pipe sections and perpendicular to the pipe block stacking direction z.
  • FIG. 3b shows an alternative possibility for designing the reversing sheet section 3 after a main bending process.
  • the main bending process around the bending axis A is carried out here before the offset is realized by further bending processes around a bending axis B3.
  • the main bending axis A runs at the predeterminable angle ⁇ in the limits 13 ° ⁇ ⁇ 67 ° to the pipe longitudinal extension.
  • the two pipe sections are each bent inwards about the bending axis 3 according to the arrows. According to the illustration in FIG.
  • the distance d between the flat tubes is realized by a limitation, in the example shown realized by a limitation bar with the width d, the bending axis B3 being implemented by an upper end of the limitation bar in the example shown.
  • the flat tube sections 2a and 2b shown lie in different parallel planes and include a diaper of 2. After the additional bending processes, the two flat tube sections 2a and 2b lie parallel to one another in the different parallel planes, as shown in FIG. 2a, so that the further shaping steps already described can be carried out in order to ensure that the two flat tube sections 2a, 2b are parallel with each other the distance d lie in a common plane (see FIGS. 2b to 2c).
  • FIGS. 4 and 5 show an application for the flat tube type of FIGS. 1 and 2 in the form of a tube / fin block 9 of an evaporator 10, as can be used in particular in motor vehicle air conditioning systems.
  • the heat exchanger shown in sections can also be used for any other heat transfer purposes, for example as a gas cooler.
  • this includes Evaporator 10 between two end-side cover plates 11, 12 a stack of several flat tubes 1 according to FIGS. 1 and 2 with interposed, thermally conductive corrugated fins 8.
  • the height of the heat-conducting fins 8 corresponds approximately to the height c of the flat tube reversing bend sections 3 and is therefore clearly borrowed smaller than the flat tube width b.
  • a gap corresponding to the distance d between the two straight tube sections 2a, 2b of each flat tube 1 is formed between the two block parts.
  • the corrugated fins 8 extend in one piece over the entire flat tube depth and thus also over this gap, with them on both sides, i.e. can survive on the front and back of the block, as needed.
  • the block front is defined here by the fact that it is guided by a second temperature medium, e.g. Supply air to be cooled for a vehicle interior in which
  • Pipe transverse direction y i.e. in the depth direction of the block.
  • the transverse extension of the ends of the flat tube ends is less than the width of the flat tube b due to their twisting.
  • a common collecting pipe can be provided for both rows of stacks of pipe ends 6a, 6b, which is divided into the two required, separate collecting channels by means of a longitudinal partition.
  • the evaporator 10 with the tube / fin block 9 thus formed can be realized in a compact design and very pressure-stable and has a high heat transfer efficiency.
  • a heat transfer performance can be achieved with relatively narrow flat tubes, which would otherwise require at least approximately twice as wide, non-curved flat tubes.
  • the unique flat tube deflection means that the temperature control medium to be passed through the tube interior can be fed in and out on one and the same tube block side, which is advantageous in some applications.
  • 5 shows an embodiment in a serpentine construction.
  • 5 shows a plurality of serpentine flat tubes 13 which are stacked one above the other in any desired number to form the serpentine tube block there.
  • the serpentine flat tube 13 used for this is largely identical to that of FIGS. 1 and 2, with the exception that on both sides of the inverted bend section 3, which is similar to that of FIGS. 1 and 2, not only a straight, single-layer pipe section, but a multiple Connects serpentine coiled pipe section 12, which in turn face each other offset in the block depth direction by a corresponding gap.
  • the serpentine turns . 12 of the respective pipe coil section 13 are, as usual, by bending the flat pipe at the relevant point about the transverse pipe axis there by an angle of
  • heat-conductive corrugated fins 8 are introduced continuously from the front of the block to the rear of the block with an optional overhang. It goes without saying that here, as in the example of FIGS. 4 and 5, a corrugated fin row can be provided instead for each of the two rows of pipe blocks offset in the block depth, in which case the gap between the two rows of blocks can also remain free.
  • any other number of corrugated fins and / or corrugated fins with different widths can of course be used in each corrugated fin layer across the pipe block depth, for example a first one that extends over two thirds of the pipe block depth and a second one Corrugated fin extending over the remaining third of the tube block depth.
  • the gap favors the condensate separation of the evaporator.
  • the height of the heat-conducting fins 8 and thus the stacking distance between adjacent, straight flat tube sections both within a serpentine flat tube 13 and between two adjacent serpentine flat tubes 13 roughly corresponds to that opposite the Flat tube width b significantly lower height c of the reversing bend section 3 '.
  • the twisting chosen in this case of the flat tube ends 6, which in turn opens on the same block side, of 90 ° does not collide with this low stacking height, since the serpentine flat tubes 13 each have a greater height in the stacking direction z than the flat tube width 12 due to their flat tube sections.
  • the right-angled twisting of the ends 6 by 90 ° enables, as mentioned, the use of particularly narrow manifolds or manifolds forming them.
  • 5 shows such a collecting tube 7 on the front side, into which the front row of flat tube ends 6 opens.
  • the serpentine flat tubes 13 can be connected to the
  • Flat tube 1 of FIGS. 1 and 2 can be combined. Numerous other alternatives to the two flat tube designs shown are possible.
  • the flat tube can thus have two or more reversing bend sections and corresponding deflections.
  • serpentine flat tube 13 of FIG. 5 can be modified such that at least one further serpentine turn in one and / or in the other serpentine tube section causes the relevant flat tube end 6 to lie on the block side opposite the reversing bend section 3.
  • a serpentine flat tube 13 of the type shown in FIG. 5, but with one or more additional reversing bend sections 3, can be provided in order to build up a tube block for a serpentine heat exchanger that is at least three parts in the block depth direction.
  • the flat tube ends 6 can also be left undetected.
  • a two-chamber header tube can be used, which already has two separate, longitudinal tubes in the production stage Has hollow chambers. It is made from an extruded profile and integrally contains two separate longitudinal chambers, which form the collecting channels for the heat exchanger in question.
  • suitable circumferential slots are to be made in the manifold 7, into which the flat tube ends 6 are tightly inserted.
  • header pipes can also be used which, by means of appropriate transverse walls, contain several header channels separated from each other in the block vertical direction z.
  • This will the flat tubes in the tube block are combined into several groups in such a way that the tubes of a group are flowed through in parallel and the various tube groups are flowed through in series.
  • a supplied temperature control medium flows from a collection channel on the intake side into the group of flat tubes opening there and then arrives at the other end thereof in a collection channel functioning as a deflection chamber, into which a second group of flat tubes opens in addition to this first group, into which the temperature control medium is then deflected.
  • the flat tubes according to the invention can be used to produce very compact, pressure-stable flat tube blocks in a single-layer construction or serpentine construction with a high heat transfer capacity.
  • Heat exchangers manufactured with this are suitable e.g. also for comparatively high pressure CO2 air conditioning systems, such as are increasingly being considered for motor vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Surgical Instruments (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • External Artificial Organs (AREA)

Abstract

The flat tube (1) has a bent over section (3) so that connected sections (2a,2b) have opposite flow directions (4a, 4b) and mutually offset longitudinal axes (5a, 5b). The bent over section is formed so that a main bend axis (A) is parallel to the plane of the flat tube and at a definable angle to the pipe length, whereby the flat tube plane is defined by the length and width directions of the flat tube. An independent claim is also included for the following: (a) a gas cooler with an inventive device (b) and an evaporator with an inventive device.

Description

Flachrohr mit Umkehrbogenabschnitt und damit aufgebauter Wärmeübertrager Flat tube with reversing bend section and thus built-up heat exchanger
Die Erfindung bezieht sich auf ein Flachrohr nach dem Oberbegriff des Anspruchs 1 und auf einen damit aufgebauten Wärmeübertrager.The invention relates to a flat tube according to the preamble of claim 1 and to a heat exchanger constructed therewith.
Ein gattungsgemäßes Flachrohr mit einem Umkehrbogenabschnitt und ein Wärmeübertrager mit einem aus diesem Flachrohrtyp aufgebauten Rohrblock sind in der Offenlegungsschrift DE 198 30 863 A1 beschrieben. Zur Herstellung des dortigen Flachrohres mit Umkehrbogenabschnitt , wird das Flachrohr derart umgebogen, dass seine beiden daran anschließenden, planen Rohrabschnitte in Längsrichtung mit entgegengesetzten Durchströ- mungsrichtungen und mit gegeneinander mindestens in Querrichtung versetzten Längsachsen verlaufen.A generic flat tube with an inverted bend section and a heat exchanger with a tube block constructed from this type of flat tube are described in the published patent application DE 198 30 863 A1. To produce the flat tube there with a reversing bend section, the flat tube is bent over in such a way that its two adjacent, flat tube sections run in the longitudinal direction with opposite flow directions and with longitudinal axes offset at least in the transverse direction.
Die Offenlegungsschrift EP 0 659 500 A1 beschreibt ebenfalls ein Flachrohr mit Umkehrbogenabschnitt und einen Wärmeübertrager mit einem aus diesem Flachrohrtyp aufgebauten Rohrblock. Zur Herstellung des dortigen Flachrohres wird ein geradliniger Flachrohr-Rohling zunächst U-förmig aus der Flachrohrebene herausgebogen, bis die Flachrohrschenkel zueinander parallel verlaufen, wonach letztere um jeweils 90° gegenüber dem U- Bogenbereich tordiert werden. Das dadurch entstehende Flachrohr besitzt somit zwei in einer Ebene liegende, plane Rohrabschnitte, deren Mündungsenden auf der gleichen, dem Umkehrbogenabschnitt entgegengesetzten Seite liegen. Der Winkel, den die Flachrohrquerachse entlang des Umkehr- bogenabschnitts mit der Ebene einschließt, in welcher die geradlinigen Rohrschenkel liegen, nimmt zunächst über den einen Torsionsbereich hinweg von null auf den am Kopfende des Umkehrbogenabschnitts vorliegenden Wert von 90° zu, um dann über den anderen Torsionsbereich hinweg wieder auf 0° abzunehmen. Als nachteilig kann bei dem beschriebenen Um- kehrbogenabschnitt angesehen werden, dass die Ausdehnung des Flachrohrs senkrecht zur Ebene der planen Rohrschenkel im Kopfbereich des Umkehrbogenabschnitts immer einer Flachrohrbreite entspricht und bei Bedarf deshalb nicht verkleinert werden kann, so dass die Abmessungen des zugehörigen Wärmeübertragerrohrblocks in der Richtung senkrecht zur Ebe- ne der geradlinigen Flachrohrschenkel nicht beeinflußt werden kann.The published patent application EP 0 659 500 A1 likewise describes a flat tube with a reversing bend section and a heat exchanger with a tube block constructed from this type of flat tube. To produce the flat tube there, a straight flat tube blank is first bent out of the flat tube plane in a U-shape until the flat tube legs run parallel to one another, after which the latter are each 90 ° with respect to the U- Bow area are twisted. The resulting flat tube thus has two flat tube sections lying in one plane, the ends of which end on the same side opposite the reversing bend section. The angle which the flat tube transverse axis encloses along the reversing bend section with the plane in which the straight pipe legs lie initially increases over one torsion range from zero to the value of 90 ° present at the head end of the reversing bend section, and then over the other Torsional range again to decrease to 0 °. A disadvantage of the described reversing bend section is that the extension of the flat tube perpendicular to the plane of the flat pipe legs in the head region of the reversing bend section always corresponds to a flat tube width and therefore cannot be reduced if necessary, so that the dimensions of the associated heat exchanger tube block in the direction perpendicular to the plane of the straight flat tube legs cannot be influenced.
Aufgabe der Erfindung ist es, ein Flachrohr mit einem Umkehrbogenabschnitt bereitzustellen, welches sich relativ einfach herstellen läßt und sich zum Aufbau sehr druckstabiler Wärmeübertrager mit geringem Bauraum eignet, sowie einen aus solchen Flachrohren aufgebauten Wärmeübertrager anzugeben.The object of the invention is to provide a flat tube with an inverted bend section which is relatively simple to manufacture and is suitable for building very pressure-stable heat exchangers with a small installation space, and to provide a heat exchanger constructed from such flat tubes.
Diese Aufgabe wird erfindungsgemäß bezüglich des Flachrohres mit den Merkmalen des Patentanspruchs 1 sowie bezüglich eines Wärmeübertragers mit den Merkmalen der Patentansprüche 13, 17 oder 18 gelöst.This object is achieved according to the invention with respect to the flat tube with the features of claim 1 and with regard to a heat exchanger with the features of claims 13, 17 or 18.
Die abhängigen Patentansprüche betreffen vorteilhafte Aus- und Weiterbildungen der Erfindung.The dependent claims relate to advantageous developments and further developments of the invention.
Der Hauptgedanke der Erfindung besteht darin, einen Umkehrbogenabschnitt dergestalt auszubilden, dass eine Hauptbiegeachse parallel zur Flachrohrebene und unter einem vorgebbaren Winkel zur Rohrlängserstrek- kung verläuft, wobei die Flachrohrebene durch die Längen- und Breitenerstreckung des Flachrohrs bestimmt wird. Bei einer vorteilhaften Ausfuhr rungsform beträgt der vorgebbare Winkel 90°, d.h. die Hauptbiegeachse verläuft dann senkrecht zur Rohrlängserstreckung.The main idea of the invention is to form a reversing arc section such that a main bending axis is parallel to the Flat tube plane and runs at a predeterminable angle to the pipe longitudinal extension, the flat pipe plane being determined by the length and width of the flat pipe. In an advantageous Ausfuh r approximate shape of the predetermined angle is 90 °, ie, the main bending axis is perpendicular to the longitudinal tube extension.
Das erfindungsgemäße Flachrohr wird bei der Umformung im Bereich des Umkehrbogenabschnitts in der Flachrohrebene parallel zur Rohrerstreckung um einen Weg s verschoben, wobei der Weg s sich aus einer Flachrohr- breite b und aus einem gewünschten Abstand d zwischen den Flachrohrabschnitten nach der Umformung zusammensetzt.The flat tube according to the invention is displaced in the area of the reversing bend section in the flat tube plane parallel to the tube extension by a path s, the path s being composed of a flat tube width b and a desired distance d between the flat tube sections after the forming.
Bei dem erfindungsgemäßen Flachrohr ist ein Winkel α mit dem die Flachrohrabschnitte in den Umkehrbogenabschnitt übergehen bei der Umformung der Flachrohre frei wählbar und liegt bei einer vorteilhafte Ausführungsform der Erfindung im Bereich von 13° < α < 67°.In the flat tube according to the invention, an angle α with which the flat tube sections pass into the reversing bend section can be freely selected during the shaping of the flat tubes and, in an advantageous embodiment of the invention, is in the range of 13 ° <α <67 °.
Bei einer vorteilhaften Ausführungsform des erfindungsgemäßen Flachrohrs wird der Winkel α und/oder der Weg s durch mindestens einen Biegevor- gang um mindestens eine Biegeachse (B) erreicht, die senkrecht zur Flachrohrebene verläuft.In an advantageous embodiment of the flat tube according to the invention, the angle α and / or the path s is achieved by at least one bending operation about at least one bending axis (B) which is perpendicular to the flat tube plane.
Bei einer besonders vorteilhaften Ausführungsform des erfindungsgemäßen Flachrohre wird die Verschiebung des Flachrohrs durch zwei Biegevorgänge um zwei Biegeachsen erreicht, die vor oder nach dem Hauptbiegevorgang um die erste Biegeachse durchgeführt werden, wobei die erste Biegeachse in der Mitte des Versatzbereiches verläuft, wobei der Versatzbereich ungefähr doppelt so lang ist als der Umkehrbogenabschnitt. Dies gilt insbesondere dann, wenn ein Hauptbiegevorgang um eine Hauptbiegeachse durchge- führt wird, die senkrecht zur Rohrerstreckung verläuft. Bei dem bisher beschriebenen erfindungsgemäßen Flachrohr sind die beiden planen an den Umkehrbogenabschnitt anschließenden Rohrabschnitte nach dem Umformvorgang in zueinander seitlich versetzten parallelen Ebe- nen senkrecht zur Stapelrichtung z liegend angeordnet, bevorzugt mit einemIn a particularly advantageous embodiment of the flat tubes according to the invention, the displacement of the flat tube is achieved by two bending processes about two bending axes, which are carried out before or after the main bending process about the first bending axis, the first bending axis running in the middle of the offset area, the offset area being approximately twice is as long as the reverse arc section. This applies in particular when a main bending process is carried out around a main bending axis that is perpendicular to the pipe extension. In the flat tube according to the invention described so far, the two planar tube sections adjoining the reversing bend section are arranged lying parallel to the stacking direction z, preferably with one, in parallel planes laterally offset from one another after the shaping process
Abstand d in Querrichtung y zwischen 0,2 mm und 20 mm. Bei einer Verwendung von einmalig dergestalt umgebogenen Flachrohren läßt sich, wenn die Richtung des Versatzes bei jeder Umlenkung gewechselt wird, ein Rohrblock in Serpentinenbauweise bilden, bei dem die Serpentinen seitlich ver- setzt verlaufen. Der so gebildete Rohrblock hat eine Tiefe von der doppelten Flachrohrbreite zuzüglich des besagten Abstandes d zwischen den planen Rohrabschnitten. Mit mehrmals in die gleiche Richtung versetzt umgebogenen Flachrohren erhöht sich die Rohrblocktiefe pro Umkehrbogenabschnitt um die Flachrohrbreite zuzüglich des besagten Querabstands d der planen Rohrabschnitte. Durch den Querabstand bilden sich zwischen den Flachrohrabschnitten entsprechende Spalte in einem mit solchen Flachrohren aufgebauten Rohrblock, was die Kondenswasserabscheidung erleichtert, z.B. im Anwendungsfall des Rohrblocks in einem Verdampfers einer Kraftfahrzeug-Klimaanlage.Distance d in the transverse direction y between 0.2 mm and 20 mm. If flat tubes bent in this way are used, if the direction of the offset is changed with each deflection, a tube block in a serpentine construction can be formed, in which the serpentines are laterally offset. The tube block thus formed has a depth of twice the flat tube width plus the said distance d between the flat tube sections. With flat tubes bent over several times in the same direction, the tube block depth per reversing bend section increases by the flat tube width plus the said transverse distance d of the flat tube sections. Due to the transverse spacing, corresponding gaps form between the flat tube sections in a tube block constructed with such flat tubes, which facilitates the condensation removal, e.g. in the application of the pipe block in an evaporator of a motor vehicle air conditioning system.
Um zu erreichen, dass die Flachrohre in einer gemeinsamen Ebene liegen, wird in einem weiteren Umformungsschritt der Umkehrbogenabschnitt so umgeformt, dass die beiden Rohrabschnitte nebeneinander und parallel mit dem Abstand d in einer gemeinsamen Ebene liegen. Dies kann durch eine symmetrische oder unsymmetrische Umformung des Umkehrbogenabschnitts erfolgen.In order to ensure that the flat tubes lie in a common plane, the reversing bend section is formed in a further shaping step such that the two tube sections lie next to one another and parallel with the distance d in a common plane. This can be done by symmetrical or asymmetrical shaping of the reversing arch section.
Durch einen Wechsel zwischen den Umkehrbogenabschnitten, bei denen dieBy alternating between the reverse arc sections where the
Flachrohrabschnitte in der gleichen Ebene liegen - nachfolgend als erste Umkehrbogenabschnitte bezeichnet - und den Umkehrbogenabschnitten, bei denen die Flachrohre in unterschiedlichen Ebenen liegen - nachfolgend als zweite Umkehrbogenabschnitte bezeichnet - , läßt sich eine Rohrblock in Serpentinenbauweise realisieren, dessen Tiefe von der Anzahl von hintereinander gebildeten ersten Umkehrbogenabschnitten abhängig ist. Durch einen ständigen Wechsel von erste und zweiten Umkehrbogenabschnitten, bei denen die Richtung des Versatzes ebenfalls entgegengesetzt ausgeführt ist, läßt sich beispielsweise ein Rohrblock in Serpentinenbauweise mit einer Tiefe von der doppelten Flachrohrbreite zuzüglich des besagten Abstandes d zwischen den planen Rohrabschnitten realisieren, bei dem ein Temperiermedium, beispielsweise ein Kältemittel oder ein Kühlmittel, zuerst durch die Flachrohrabschnitte fließt, die in einer gemeinsamen Ebene liegen, und dann auf durch die Flachrohrabschnitte fließt, die in Stapelrichtung oder entgegen der Stapelrichtung in der nächsten gemeinsamen Ebene liegen.Flat tube sections are in the same plane - referred to below as the first reversing bend sections - and the reversing bend sections in which the flat tubes are located in different planes - hereinafter referred to as designated second reversing bend sections -, a tube block in serpentine construction can be realized, the depth of which depends on the number of first reversing bend sections formed in succession. By constantly changing the first and second reversing bend sections, in which the direction of the offset is also carried out in the opposite direction, a pipe block in a serpentine construction with a depth of twice the flat pipe width plus the said distance d between the flat pipe sections can be realized, in which a tempering medium , for example a refrigerant or a coolant, first flows through the flat tube sections which lie in a common plane, and then flows through the flat tube sections which lie in the stacking direction or counter to the stacking direction in the next common plane.
Zudem ist aber auch möglich, eine Serpentinenbauform dadurch zu errei- chen, dass eine Anzahl von zweiten Umkehrbogenabschnitten ohne seitlichen Versatz ausgeführt werden - nachfolgend als dritte Umkehrbogenabschnitt bezeichnet - , beispielsweise in Stapelrichtung und das anschließend ein erster Umkehrbogenabschnitt gebildet wird, dem sich eine Anzahl von zweiten Umkehrbogenabschnitten anschließen. Anstelle des ersten Umkehr- bogenabschnitts kann selbstverständlich auch ein zweiter Umkehrbogenabschnitt angeordnet werden. Bei einer solchen Rohrblock werden zuerst alle Flachrohrabschnitte, die übereinander in einem vorderen Bereich liegen, d.h. in einem der Luft zugewandten Bereich, von dem Temperiermedium durchströmt und anschließend werden nach einem ersten oder einem zweiten Umkehrbogenabschnitt alle in einem hinteren Bereich liegenden Flachrohrabschnitte durchströmt,, wobei die Reihenfolge der Durchströmung auch entgegengesetzt sein kann, d.h. es wird zuerst der hintere Bereich und dann der vordere Bereich durchströmt, wobei die Durchströmung je nach Anwendungsfall von oben nach unter oder von unten nach ober erfolgen kann. Bei einem alternativen Vorgehen zur Gestaltung des Umkehrbogenabschnitts, wird der Hauptbiegevorgang um die Hauptbiegeachse unter einem vorgebbaren Winkel zur Rohrlängserstreckung durchgeführt, wobei der vorgebbare Winkel im Wesentlichen dem Winkel α entspricht, mit dem die Flachrohrabschnitte in den Umkehrbogenabschnitt übergehen. Nach dem Hauptbiegevorgang liegen die beiden Flachrohrabschnitte in zwei zueinander parallelen Ebenen, wobei die beiden Flachrohrabschnitte einen Winkel mit einem Wert von 2α einschließen. Um parallele Rohrschenkel zu erhalten, werden die beiden Rohrschenkel jeweils mit einem weiteren Biegevorgang um eine Biegeachse, die senkrecht zur Flachrohrebene verläuft, so umgeformt, dass sie jeweils unter dem Winkel α in den Umkehrbogenabschnitt übergehen. Die beschriebene Vorgehensweise liefert auf eine andere Art den benötigten bereits beschriebenen Versatz des Flachrohrs.In addition, however, it is also possible to achieve a serpentine design by executing a number of second reversing arch sections without lateral offset - hereinafter referred to as the third reversing arch section - for example in the stacking direction, and then forming a first reversing arch section, to which a number of Connect the second reverse bend sections. Instead of the first reversing arc section, a second reversing arc section can of course also be arranged. In the case of such a tube block, all of the flat tube sections which are located one above the other in a front area, that is to say in an area facing the air, are first flowed through by the temperature control medium and then, after a first or a second reversing bend section, all the flat tube sections lying in a rear area are flowed through, whereby the sequence of the flow can also be opposite, ie first the rear region and then the front region are flowed through, the flow being able to take place from top to bottom or from bottom to top depending on the application. In an alternative procedure for designing the reversing bend section, the main bending process around the main bending axis is carried out at a predeterminable angle to the longitudinal pipe extension, the predeterminable angle essentially corresponding to the angle α with which the flat pipe sections merge into the reversing bend section. After the main bending process, the two flat tube sections lie in two mutually parallel planes, the two flat tube sections enclosing an angle with a value of 2α. In order to obtain parallel pipe legs, the two pipe legs are each deformed with a further bending process about a bending axis that runs perpendicular to the flat pipe plane, so that they each transition into the reversing bend section at the angle α. The described procedure provides the required already described offset of the flat tube in a different way.
Die weiteren Umformungsschritte werden analog zu den bereits beschrieben durchgeführt, um zu erreichen, dass die beiden Flachrohrabschnitte nebeneinander und parallel mit dem Abstand d in einer gemeinsamen Ebene liegen. Dies kann, wie bereits ausgeführt, durch eine symmetrische oder unsymmetrische Umformung des Umkehrbogenabschnitts erfolgen.The further forming steps are carried out analogously to those already described in order to ensure that the two flat tube sections lie next to one another and parallel with the distance d in a common plane. As already stated, this can be done by symmetrical or asymmetrical shaping of the reversing arch section.
Grundsätzlich ist es aber auch möglich die Reihenfolge der Umformungsschritte umzukehren und durch eine symmetrische oder unsymmetrische Umformung des Umkehrbogenabschnitts die beiden Rohrabschnitte erst so umzuformen, dass sie in einer gemeinsamen Ebene liegen und den Winkel von 2α einschließen und anschließend die beiden oben beschriebenen Biegevorgänge durchzuführen, um zu erreichen, dass die beiden Rohrabschnitte parallel nebeneinander mit dem Abstand d in der gemeinsamen Ebene liegen. Insgesamt wird durch die erfindungsgemäße Gestaltung des Umkehrbogenabschnitts erreicht, dass dessen Ausdehnung in Stapelrichtung deutlich kleiner als die Flachrohrbreite gehalten werden kann. Dementsprechend brauchen die Zwischenräume zwischen benachbarten Flachrohren beim stapel- förmigen Aufbau eines Rohrblocks aus diesen Flachrohren nicht so groß bzw. nicht größer als die Flachrohrbreite gehalten werden, sondern können deutlich enger sein, was die Herstellung eines kompakten und druckstabilen Wärmeübertragers begünstigt. Zudem läßt sich der Umkehrbogenabschnitt durch relativ einfache Rohrbiegevorgänge realisieren. Das Flachrohr kann dabei einmal oder mehrmals in dieser Weise umgebogen sein, wobei sich seine Tiefenausdehnung, d.h. seine Ausdehnung in der wie oben definierten Querrichtung, mit jeder Umbiegung vergrößert, wenn der seitliche Versatz immer in die gleiche Richtung erfolgt. Dadurch läßt sich mit verhältnismäßig schmalen, druckstabilen Flachrohren ein beliebig tiefer, d.h. sich in der Quer- richtung ausdehnender Rohrblock bilden, wobei diese Quer- oder Tiefenrichtung üblicherweise diejenige Richtung darstellt, in welcher ein zu kühlendes oder erwärmendes Medium außen an den Flachrohrflächen vorbei durch den Wärmeübertrager hindurchgeleitet wird. Dabei sind meist zusätzliche Wärmeleitrippen zwischen den in Stapelrichtung aufeinanderfolgenden Rohrblockabschnitten zur Verbesserung der Wärmeübertragung vorgesehen. Da wie gesagt die Rohrzwischenräume sehr eng gehalten werden können, lassen sich auch entsprechend niedrige wärmeleitende Wellrippen einsetzen, was gleichfalls die Kompaktheit und Stabilität eines so gebildeten Rohr-Rippenblocks verbessert.In principle, however, it is also possible to reverse the order of the forming steps and to first reshape the two pipe sections by symmetrical or asymmetrical shaping of the reversing bend section so that they lie in a common plane and enclose the angle of 2α and then carry out the two bending processes described above in order to carry out to achieve that the two pipe sections are parallel to each other with the distance d in the common plane. Overall, the design of the reversing bend section according to the invention ensures that its expansion in the stacking direction can be kept significantly smaller than the flat tube width. Accordingly, the gaps between adjacent flat tubes do not need to be kept as large or not larger than the flat tube width when stacking a tube block from these flat tubes, but can be significantly narrower, which favors the production of a compact and pressure-stable heat exchanger. In addition, the reverse bend section can be realized by relatively simple pipe bending processes. The flat tube can be bent one or more times in this way, its depth, ie its extent in the transverse direction as defined above, increasing with each bend if the lateral offset is always in the same direction. As a result, with relatively narrow, pressure-stable flat tubes, a tube block of any depth, that is to say expanding in the transverse direction, can be formed, this transverse or depth direction usually representing the direction in which a medium to be cooled or heated is passed outside through the flat tube surfaces through the Heat exchanger is passed through. Additional heat-conducting fins are usually provided between the tube block sections which follow one another in the stacking direction in order to improve the heat transfer. Since, as already mentioned, the tube interspaces can be kept very narrow, correspondingly low heat-conducting corrugated fins can also be used, which likewise improves the compactness and stability of a tube / fin block formed in this way.
Zur Herstellung eines Flachrohr-Wärmeübertragers für Kraftfahrzeugklimaanlagen werden mehrere erfindungsgemäße Flachrohre in Stapelrichtung z zu einem Rohrblock übereinandergestapelt. Die Flachrohre münden mit je einem Ende in mindestens einen seitlich angeordneten in Stapelrichtung des Rohrblocks verlaufenden Sammelkanal, wobei mindestens einer der beiden, über den Umkehrbogenabschnitt miteinander verbundenen Rohrabschnitte eine in Stapelrichtung z gewundene Rohrserpentine bilden kann, und wobei die beiden Flachrohrenden auf derselben oder auf gegenüberliegenden Seiten liegen und wenigstens eines der beiden Rohrenden um einen Winkel zwischen 0° und 90° tordiert sein kann.To produce a flat tube heat exchanger for motor vehicle air conditioning systems, several flat tubes according to the invention are stacked one above the other in the stacking direction z to form a tube block. The flat tubes each end with one end in at least one laterally arranged collecting channel running in the stacking direction of the tube block, at least one of the two tube sections connected to one another via the reversing bend section can form a tubular serpentine wound in the stacking direction z, and wherein the two flat tube ends lie on the same or on opposite sides and at least one of the two tube ends can be twisted by an angle between 0 ° and 90 °.
Durch die erfindungsgemäße Ausführung der Flachrohre mit einer 180° Umlenkung in Strömungsrichtung, ist es'möglich einen kleineren Bauraum für die Wärmeübertrager wie beispielsweise einen Gaskühler oder einen Verdampfer zu realisieren, da engere Abstände in Stapelrichtung und/oder zwischen den Rohren realisiert werden können. Zudem wird eine Auffederung der Flachrohrschenkel nahezu vermieden. Ein weiterer Vorteil liegt darin, dass die mit den erfindungsgemäßen Flachrohren aufgebauten Wärmeübertrager eine steifere Konstruktion mit engeren Toleranzen aufweisen.By designing the flat tubes according to the invention with a 180 ° deflection in the flow direction, it is possible to realize a smaller installation space for the heat exchangers, such as a gas cooler or an evaporator, since closer distances in the stacking direction and / or between the tubes can be achieved. In addition, springing up of the flat tube legs is almost avoided. Another advantage is that the heat exchangers constructed with the flat tubes according to the invention have a stiffer construction with tighter tolerances.
Bei der vorliegenden Gaskühlervariante wird das Kältemittel in einem Flachrohr im Kreuz-Gegenstrom zur Luft geführt. Am gegenüberliegenden Blok- kende erfolgt eine Umlenkung um 180°, d. h. das Flachrohr läuft in der gleichen Ebene wie auf dem Hinweg zurück, allerdings um einen Weg s seitlich versetzt, so dass der hinführende Abschnitt des Flachrohrs vom zurückfüh- renden Abschnitt um einen Abstand d distanziert ist. Die beiden Flachrohrabschnitte liegen in der gleichen Ebene, die durch die Längs- und Breitenerstreckung der Flachrohre in ihren geraden Abschnitten bestimmt wird. Die Umformung wird vorzugsweise in drei Stufen durchgeführt. In der ersten Stufe erfährt das Flachrohr vom gestreckten Zustand aus einen seitlichen Versatz, Der Betrag des Versatzes s entspricht der Summe aus Flachrohrbreite b und Abstand d. Anschließend erfolgt eine Biegung mit einem Radius r um eine Hauptbiegeachse A parallel zur Flachrohrebene und senkrecht zur Rohrerstreckung, wobei r der Innenradius der Biegung ist. Die Hauptbiegeachse A liegt ungefähr in der Mitte des Versatzbereiches. Die Abschnitte des Flachrohres liegen anschließend parallel zueinander in verschiedenen Ebenen. In einem dritten Schritt wird der Umkehrbogenabschnitt so umgeformt, dass die Flachrohrabschnitte wieder in einer gemeinsamen Ebene liegen. Der umgeformte Umkehrbogenabschnitt kann entweder vollständig unterhalb oder oberhalb bezüglich der gemeinsamen Flachrohrebene liegen oder symmetrisch bezüglich dieser gemeinsamen Ebene liegen. Zudem sind be- liebige asymmetrische Lagen des Umkehrbogenabschnitts zu der gemeinsamen Ebene möglich. Alternativ zu der beschriebenen Umformungsrei- henfolge, können die Umformungsschritte auch vertauscht werden.In the present gas cooler variant, the refrigerant is led to the air in a cross-countercurrent flow. At the opposite end of the block there is a deflection by 180 °, ie the flat tube runs back in the same plane as on the outward path, but offset laterally by a path s, so that the leading section of the flat tube from the returning section by a distance d is distant. The two flat tube sections lie in the same plane, which is determined by the length and width of the flat tubes in their straight sections. The forming is preferably carried out in three stages. In the first stage, the flat tube experiences a lateral offset from the stretched state. The amount of the offset s corresponds to the sum of the flat tube width b and the distance d. This is followed by a bend with a radius r around a main bending axis A parallel to the flat tube plane and perpendicular to the tube extension, where r is the inner radius of the bend. The main bending axis A lies approximately in the middle of the offset area. The sections of the flat tube are then parallel to each other in different planes. In a third step, the reverse arc section is formed that the flat tube sections are again in a common plane. The deformed reversing bend section can either be completely below or above with respect to the common flat tube plane or be symmetrical with respect to this common plane. In addition, any asymmetrical positions of the reversing arch section to the common plane are possible. As an alternative to the forming sequence described, the forming steps can also be interchanged.
Für den Versatz des Flachrohrs in der Ebene lassen sich folgende geometri- sehe Beziehungen aufstellen: Der Winkel α in dem das Flachrohr im Versatzbereich abweichend von der ursprünglichen Rohrerstreckung verläuft ergibt sich aus α=arctan (b +d/U). Mit b: Flachrohrbreite, d: Abstand zwischen den Flachrohren, U: Versatzbereich.The following geometrical relationships can be established for the offset of the flat tube in the plane: The angle α in which the flat tube runs in the offset area deviating from the original tube extension results from α = arctan (b + d / U). With b: flat tube width, d: distance between the flat tubes, U: offset area.
Für den Versatzbereich U ergibt sich folgende Abschätzung: U = 2 π r, wobei r der Innenradius des 180° Bogens ist. Für den maximalen Innenradius r max gilt: (hr-dFR) 2, wobei hr eine Rippenhöhe und dp eine Flachrohrdicke ist. Als sinnvolle unterer Grenzwert für r min erscheint die Flachrohrdicke dFR. Gemäß dieser Formeln liegt ein sinnvoller Wert für in den Grenzen 13° < α < 67°The following estimate results for the offset area U: U = 2 π r, where r is the inner radius of the 180 ° arc. The following applies to the maximum inner radius r max: (h r -d FR ) 2, where h r is a fin height and dp is a flat tube thickness. The flat tube thickness d FR appears as a reasonable lower limit for r min. According to these formulas, a reasonable value is within the limits 13 ° <α <67 °
Bei einer vorteilhafte Ausführungsform bildet das erfindungsgemäße Flachrohr ein Serpentinenflachrohr, indem mindestens der eine der beiden über einen Umkehrbogenabschnitt verbundenen Flachrohrabschnitte in der Sta- pelrichtung zu einer Rohrserpentine gebogen ist, d.h. er besteht aus in Stapelrichtung aufeinanderfolgenden dritten Umkehrbogenabschnitten mit den entsprechenden planen Rohrabschnitte. Mit so gestalteten Flachrohren läßt sich ein sogenannter Serpentinen-Wärmeübertrager mit einer beliebigen Anzahl an in Tiefenrichtung aufeinanderfolgenden Serpentinenblockteilen auf- bauen. Bei einer weiteren Ausführungsform des erfindungsgemäßen Flachrohrs liegen die Mündungsenden auf der gleichen oder auf gegenüberliegenden Seiten, wobei wenigstens ein Ende, vorzugsweise beide Enden gegenüber dem anschließenden Mittenbereich tordiert sind. Durch diese Tordierung wird die Flachrohrquerachse in Richtung Mündungsende zur Stapelrichtung hin gedreht, so daß die Ausdehnung der Flachrohrenden in der Querrichtung kleiner als die Flachrohrbreite gehalten werden kann. Maximal erfolgt die Tordierung um 90°, so daß dann bei senkrecht zur Stapelrichtung verlaufen- den planen Rohrabschnitten die Rohrenden parallel zur Stapelrichtung liegen und ihre Ausdehnung in der Querrichtung nur noch so groß wie die Flachrohrdicke ist. Dies ermöglicht eine in Tiefen richtung eines damit aufgebauten Rohrblocks vergleichsweise enge Anordnung zugehöriger, sich an der betreffenden Rohrblockseite in Stapelrichtung erstreckender Sammel- und Verteilerkanäle.In an advantageous embodiment, the flat tube according to the invention forms a serpentine flat tube, in that at least one of the two flat tube sections connected via a reversing bend section is bent in the stacking direction to form a pipe serpentine, ie it consists of third reversing bend sections successively in the stacking direction with the corresponding flat pipe sections. With flat tubes designed in this way, a so-called serpentine heat exchanger can be constructed with any number of serpentine block parts which follow one another in the depth direction. In a further embodiment of the flat tube according to the invention, the mouth ends lie on the same or on opposite sides, with at least one end, preferably both ends, being twisted in relation to the subsequent central region. This twisting rotates the flat tube transverse axis in the direction of the mouth end towards the stacking direction, so that the extension of the flat tube ends in the transverse direction can be kept smaller than the flat tube width. The twisting takes place at a maximum of 90 °, so that in the case of flat pipe sections running perpendicular to the stacking direction, the pipe ends are parallel to the stacking direction and their extent in the transverse direction is only as large as the flat pipe thickness. This enables a comparatively close arrangement of associated pipe block in the depth direction of a pipe block constructed therewith, on the relevant pipe block side in the stacking direction, extending collection and distribution channels.
Ein Wärmeübertrager ist durch die Verwendung eines oder mehrerer der erfindungsgemäßen Flachrohre im Aufbau eines entsprechenden Rohrblocks charakterisiert, mit den oben erwähnten Eigenschaften und Vorteilen eines solchen Rohrblockaufbaus. Insbesondere läßt sich in dieser Weise ein kompakter, hoch druckstabiler Verdampfer mit relativ niedrigem Gewicht, geringem innerem Volumen und guter Kondenswasserabscheidung für eine Klimaanlage eines Kraftfahrzeuges realisieren, wobei vorzugsweise Mehrkammer-Flachrohre eingesetzt werden. Der Wärmeüberträger ist sowohl in einlagiger Bauweise, bei denen die Flachrohrabschnitte zwischen zwei Umkehrbogenabschnitten bzw. zwischen einem Umkehrbogenabschnitt und einem Flachrohrende aus einem planen, geradlinigen Rohrabschnitt bestehen, als auch in Serpentinenbäuweise ausführbar, bei welcher diese Flachrohrabschnitte zu einer Rohrschlange gebogen sind. Bei einem weitergebildeten Wärmeübertrager befinden sich die Rohrenden der verwendeten Flachrohre und damit auch die zugehörigen Sammel- und Verteilerkanäle, nachfolgend der Einfachheit halber einheitlich als Sammelkanäle bezeichnet, auf gegenüberliegenden Rohrblockseiten. Die Sam- melkanäle können dann von je einem Sammelkasten oder Sammelrohr gebildet sein, die an der betreffenden Rohrblockseite entlang der Stapelrichtung, auch als Blockhochrichtung bezeichnet verlaufen und der parallelen Zuführung bzw. Abführung des durch das Rohrinnere geleiteten Temperiermediums zu den bzw. aus den einzelnen Flachrohren dienen.A heat exchanger is characterized by the use of one or more of the flat tubes according to the invention in the construction of a corresponding tube block, with the above-mentioned properties and advantages of such a tube block structure. In particular, a compact, highly pressure-stable evaporator with a relatively low weight, low internal volume and good condensate separation for an air conditioning system of a motor vehicle can be realized in this way, multi-chamber flat tubes preferably being used. The heat exchanger can be implemented in a single-layer construction, in which the flat tube sections between two reversing bend sections or between a reversing bend section and a flat tube end consist of a flat, straight tube section, and in a serpentine construction, in which these flat tube sections are bent into a coil. In the case of a further developed heat exchanger, the tube ends of the flat tubes used and thus also the associated collecting and distribution channels, hereinafter referred to simply as collecting channels for the sake of simplicity, are located on opposite sides of the tube block. The collecting channels can then each be formed by a collecting box or collecting pipe, which run along the stacking direction on the relevant pipe block side, also referred to as the block vertical direction, and the parallel supply or discharge of the temperature control medium passed through the pipe interior to and from the individual flat pipes serve.
In einer dazu alternativen Weiterbildung der Erfindung münden die Flachrohrenden sämtlich auf derselben Rohrblockseite. Bedingt durch die Gestaltung der Flachrohre sind dabei die beiden Rohrenden eines jeden Flachrohres zueinander in der Blocktiefenrichtung versetzt, so daß ihnen zwei entspre- chend in Blocktiefenrichtung nebeneinanderliegende Sammelkanäle zugeordnet werden können. Dementsprechend erfolgen Zu- und Abführung des durch das Rohrinnere geleitete Temperiermediums an derselben Wärmeübertragerseite.In an alternative development of the invention, the flat tube ends all open on the same tube block side. Due to the design of the flat tubes, the two tube ends of each flat tube are offset from one another in the direction of the block depth, so that two corresponding collecting channels lying adjacent to one another in the direction of the block depth can be assigned to them. Accordingly, the temperature control medium passed through the interior of the pipe is supplied and removed on the same heat exchanger side.
In weiterer Ausgestaltung dieses Wärmeübertragertyps mit zwei nebeneinanderliegenden Sammelkanälen auf derselben Rohrblockseite ist vorgesehen, diese Sammelkanäle durch zwei getrennte Sammelrohre bzw. Sammelkästen, nachfolgend der Einfachheit halber einheitlich als Sammelrohre bezeichnet, oder durch ein gemeinsames Sammelrohr zu bilden. Letzteres läßt sich dadurch realisieren, daß ein zunächst einheitlicher Sammelrohrinnen- raum mit einer Längstrennwand in die beiden Sammelkanäle abgeteilt wird, oder dadurch, daß das Sammelrohr als extrudiertes Rohrprofil mit zwei getrennten, die Sammelkanäle bildenden Hohlkammern gefertigt wird.In a further embodiment of this type of heat exchanger with two adjacent collecting channels on the same pipe block side, it is provided that these collecting channels are formed by two separate collecting pipes or collecting boxes, hereinafter referred to simply as collecting pipes for the sake of simplicity, or by a common collecting pipe. The latter can be achieved by dividing an initially uniform collecting tube interior with a longitudinal partition into the two collecting channels, or by producing the collecting tube as an extruded tube profile with two separate hollow chambers forming the collecting channels.
Bei einem weitergebildeten Wärmeübertrager ist wenigstens eines der beiden Sammelrohre bzw. wenigstens eine der beiden Hohlkammern eines längsgeteilten Sammelrohres durch Quertrennwände in mehrere, in Blockhochrichtung voneinander getrennte Sammelkanäle unterteilt. Dadurch wird eine gruppenweise serielle Durchströmung der Flachrohre im Rohrblock erzielt, indem das dem Rohrblock über einen ersten Sammelkanal des quer- geteilten Sammelrohres bzw. der quergeteilten Hohlkammer zugeführteIn a further developed heat exchanger, at least one of the two manifolds or at least one of the two hollow chambers is one longitudinally divided collecting pipe divided by transverse partition walls into several collecting channels separated from each other in the block vertical direction. In this way, a serial flow through the flat tubes in the tube block is achieved in that the tube tube is supplied to the tube block via a first collecting channel of the cross-divided collecting tube or the cross-divided hollow chamber
Temperiermedium zunächst nur in den dort mündenden Teil aller Flachrohre eingespeist wird. Der Sammelkanal, in den dieser Teil der Flachrohre mit dem anderen Rohrende mündet, fungiert dann als Umlenkkanal, in welchem das Temperiermedium von den dort mündenden Flachrohren in einen weite- ren, ebenfalls dort mit einem Ende mündenden Teil aller Flachrohre umgelenkt wird. Anzahl und Lage der Quertrennwände bestimmen die Einteilung der Flachrohre in nacheinander durchströmte Gruppen von parallel durchströmten Flachrohren.Temperature control medium is initially only fed into the part of all flat tubes that opens there. The collecting duct, into which this part of the flat tubes opens with the other tube end, then functions as a deflection channel in which the temperature control medium is deflected from the flat tubes opening there into another part of all flat tubes, which also ends there. The number and position of the transverse partition walls determine the division of the flat tubes into successively flowed through groups of parallel flowed flat tubes.
Bei einem erfindungsgemäß hergestellten Flachrohr bleibt die Anordnung der Flachrohre bezüglich eines Luftstromes trotz des Umkehrbogenabschnitts unverändert, d. h. eine der Luft zugewandte Seite des Flachrohrs ist auch nach dem Umkehrbogenabschnitt weiterhin der Luft zugewandt und eine der Luft abgewandte Seite des Flachrohr ist auch nach dem Umkehrbo- genabschnitt weiterhin von der Luft abgewandt.In the case of a flat tube produced according to the invention, the arrangement of the flat tubes with respect to an air flow remains unchanged despite the reversing bend section, i. H. one side of the flat tube facing the air continues to face the air after the reversing bend section and one side of the flat tube facing away from the air continues to face away from the air even after the reversing bend section.
Im Gegensatz dazu, wird eine Lage der Rohrunter- bzw. Rohroberseite durch den Umkehrbogenabschnitt verändert, d. h. die Rohrunterseite des Flach- - rohrs wird zur Rohroberseite des Flachrohrs und eine Rohroberseite des Flachrohrs wird zur Rohrunterseite des Flachrohrs.In contrast to this, a position of the tube underside or tube top is changed by the reversing bend section, i. H. the tube underside of the flat tube becomes the tube top side of the flat tube and a tube top side of the flat tube becomes the tube underside of the flat tube.
Vorteilhafte Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend beschrieben. Hierbei zeigen:Advantageous embodiments of the invention are shown in the drawings and are described below. Here show:
Fig. 1 eine Draufsicht auf ein Flachrohr mit einem Umkehrbogenabschnitt und tordierten Rohrenden; Fig. 2a Seitenansicht längs des Pfeils I in Fig. 1 eines Flachrohrs mit einem zweiten Umkehrbogenabschnitt;Figure 1 is a plan view of a flat tube with a reverse bend section and twisted tube ends. Fig. 2a side view along arrow I in Fig. 1 of a flat tube with a second reversing bend section;
2b bis 2d Seitenansichten längs des Pfeils I von Fig. 1 von Flachrohren mit verschieden ausgeführten ersten Umkehrbogenabschnitten;2b to 2d side views along arrow I of FIG. 1 of flat tubes with differently designed first reversing bend sections;
Fig. 3a eine Draufsicht auf ein Fiachrohr vor einem Biegevorgang um eine Hauptbiegeachse A;3a shows a plan view of a flat tube before a bending process about a main bending axis A;
Fig. 3b eine Draufsicht auf ein Flachrohr nach einem Biegevorgang um eine Hauptbiegeachse A;3b shows a plan view of a flat tube after a bending process about a main bending axis A;
Fig. 4 eine ausschnittsweise Seitenansicht eines aus Flachrohren gemäß den Fig. 1 und 2 aufgebauten Rohr-/Rippenblocks eines Wärmeübertragers,4 is a partial side view of a tube / fin block of a heat exchanger constructed from flat tubes according to FIGS. 1 and 2,
Fig. 5 eine ausschnittsweise Seitenansicht eines Rohr-/Rippenblocks eines Wärmeübertragers mit serpentinenförmigen Flachrohren,5 is a partial side view of a tube / fin block of a heat exchanger with serpentine flat tubes,
Das in Fig. 1 in einer Draufsicht gezeigte Flachrohr 1 ist einstückig aus einem geradlinigen Mehrkammerprofil unter Verwendung geeigneter Biegevorgänge gefertigt. Es beinhaltet zwei plane, geradlinige Rohrabschnitte 2a, 2b, die über einen Umkehrbogenabschnitt 3 miteinander verbunden sind und entgegengesetzte Durchströmungsrichtungen für ein durch die mehreren parallelen Kammern im Inneren des Flachrohres 1 hindurchgeleitetes Temperiermedium, z.B. ein Kältemittel einer Kraftfahrzeug-Klimaanlage, aufweisen. Einer der beiden möglichen Strömungsverläufe ist in Fig. 1 durch ent- sprechende Strömungspfeile 4a, 4b dargestellt. Die parallel zu den Durchströmungsrichtungen 4a, 4b verlaufenden Längsachsen 5a, 5b der beiden planen, geradlinigen Rohrabschnitte 2a, 2b definieren eine Längsrichtung x und sind in einer dazu senkrechten Querrichtung y gegeneinander versetzt. Wie insbesondere aus den Seitenansichten von Fig. 2b bis 2c ersichtlich ist, liegen die beiden planen Rohrabschnitte 2a, 2b mit einem ersten Umkehrbo- genabschnitt 3 in einer gemeinsamen x-y-Ebene, die senkrecht zu einer Stapelrichtung z ist, in welcher mehrere solche Flachrohre zur Bildung eines Wärmeübertrager-Rohrblocks aufeinandergestapelt werden, wie unten anhand der Fig. 4 und 5 näher erläutert wird. Zur besseren Orientierung sind in den Fig. 1 bis 5 jeweils die entsprechenden Koordinatenachsen x, y, z ein- gezeichnet.The flat tube 1 shown in a top view in FIG. 1 is made in one piece from a straight multi-chamber profile using suitable bending processes. It includes two flat, rectilinear pipe sections 2a, 2b, which are connected to one another via an inverted bend section 3 and have opposite flow directions for a temperature control medium passed through the several parallel chambers inside the flat pipe 1, for example a refrigerant of a motor vehicle air conditioning system. One of the two possible flow profiles is shown in FIG. 1 by corresponding flow arrows 4a, 4b. The longitudinal axes 5a, 5b of the two running parallel to the flow directions 4a, 4b plane, straight pipe sections 2a, 2b define a longitudinal direction x and are offset from one another in a transverse direction y perpendicular thereto. As can be seen in particular from the side views of FIGS. 2b to 2c, the two flat tube sections 2a, 2b lie with a first reversing arc section 3 in a common xy plane, which is perpendicular to a stacking direction z, in which several such flat tubes are used Formation of a heat exchanger tube block can be stacked on top of one another, as will be explained in more detail below with reference to FIGS. 4 and 5. For better orientation, the corresponding coordinate axes x, y, z are shown in FIGS. 1 to 5.
Der Umkehrbogenabschnitt 3 wird dadurch erhalten, daß das anfängliche, geradlinige Flachrohrprofil einer gewünschten Breite b im Bereich eines Versatzbereiches U wie in Fig. 3a dargestellt in der Flachrohrebene parallel zur Rohrerstreckung um einen Weg s verschoben wird, der sich aus der Rohrbreite b und dem gewünschten Abstand d zusammensetzt. Die Verschiebung bzw. der Versatz kann dabei in positiver y-Richtung oder entgegengesetzt in negativer y-Richtung erfolgen. Der Übergang zwischen den Flachrohrabschnitten 2a, 2b und dem Umkehrbogenabschnitt 3 erfolgt unter ei- nem vorgebbaren Winkel α. Der Winkel α und/oder der Weg s werden dabei durch mindestens einen Biegevorgang um mindestens eine Biegeachse B1 , B2 erreicht, die senkrecht zur Flachrohrebene verläuft. Vorzugsweise wird der beschriebene Versatz um den Weg s durch zwei Biegevorgänge um die in Fig. 3a dargestellten Biegeachsen B1 und B2 erreicht, wobei diese beiden Biegevorgänge vorzugsweise vor dem Biegevorgang um die Hauptbiegeachse A durchgeführt werden. Die Hauptbiegeachse A verläuft im dargestellten Ausführungsbeispiel in der Mitte des Versatzbereiches U, wobei der Versatzbereich U ungefähr doppelt so lang ist als der Umkehrbogenabschnitt 3.The reversing bend section 3 is obtained in that the initial, rectilinear flat tube profile of a desired width b is shifted in the area of an offset region U as shown in FIG. 3a in the flat tube plane parallel to the tube extension by a path s which is determined by the tube width b and the desired one Distance d is composed. The shift or the offset can take place in the positive y direction or in the opposite direction in the negative y direction. The transition between the flat tube sections 2a, 2b and the reversing bend section 3 takes place at a predeterminable angle α. The angle α and / or the path s are achieved by at least one bending process around at least one bending axis B1, B2, which runs perpendicular to the flat tube plane. The described offset by the path s is preferably achieved by two bending processes around the bending axes B1 and B2 shown in FIG. 3a, these two bending processes preferably being carried out before the bending process around the main bending axis A. In the exemplary embodiment shown, the main bending axis A runs in the middle of the offset area U, the offset area U being approximately twice as long as the reversing arc section 3.
Auf die beschriebene Weise erhält man die beiden geradlinigen Rohrabschnitte 2a, 2b des Flachrohres 1. Nach dem Versatz des Flachrohres 1 und dem Hauptbiegevorgang liegen die beiden geradlinigen Rohrabschnitte 2a, 2b wie in Fig. 2a dargestellt versetzt in zueinander parallelen Ebenen mit einem wählbaren Abstand 2r in z-Richtung und in dem wählbaren Abstand d in y-Richtung, wobei für den maximalen Innenradius r gilt: (hrdFR)/2, wobei hr die Rippenhöhe und dF die Flachrohrdicke ist, daraus ergibt sich als sinnvoller unterer Grenzwert für r die Flachrohrdicke dFR. Gemäß dieser Formeln liegt ein sinnvoller Wert für den Winkel α in den Grenzen 13° < α < 67°. Der wählbare Abstand beträgt vorzugsweise zwischen etwa 0,2mm und 20mm, während die Flachrohrbreite b typischerweise zwischen einem und einigen wenigen Zentimetern beträgt.In the manner described, the two straight tube sections 2a, 2b of the flat tube 1 are obtained. After the offset of the flat tube 1 and In the main bending process, the two straight pipe sections 2a, 2b are offset, as shown in FIG. 2a, in mutually parallel planes with a selectable distance 2r in the z direction and in the selectable distance d in the y direction, the following applies to the maximum inner radius r: ( h r d FR ) / 2, where h r is the height of the fins and d F is the flat tube thickness, which results in a reasonable lower limit for r the flat tube thickness d FR . According to these formulas, a reasonable value for the angle α lies within the limits 13 ° <α <67 °. The selectable distance is preferably between approximately 0.2 mm and 20 mm, while the flat tube width b is typically between one and a few centimeters.
Während die geradlinigen Rohrabschnitte 2a, 2b auf der einen Seite über den Umkehrbogenabschnitt 3 miteinander verbunden sind, laufen sie beide auf der gegenüberliegenden Seite in Form von tordierten Rohrenden 6a, 6b aus. Die Tordierung erfolgt um die jeweilige Längsmittelachse 5a, 5b, alternativ auch um eine dazu parallele Längsachse, d.h. mit einem Querversatz bezüglich der Längsmittelachse, um einen beliebigen Winkel zwischen 0° und 90°, wobei im gezeigten Fall der Torsionswinkel ca. 90° beträgt.While the straight pipe sections 2a, 2b are connected to one another on the one side via the reversing bend section 3, they both run out on the opposite side in the form of twisted pipe ends 6a, 6b. The twisting takes place about the respective longitudinal central axis 5a, 5b, alternatively also about a parallel longitudinal axis, i.e. with a transverse offset with respect to the longitudinal central axis, by an arbitrary angle between 0 ° and 90 °, the torsion angle being approximately 90 ° in the case shown.
Aus Fig. 2 wird deutlich, daß aufgrund der geschilderten Bildung des Umkehrbogenabschnitts 3 die Höhe c des Umkehrbogenabschnitts 3 und damit die Ausdehnung in der Stapelrichtung z gering ist und abhängig vom Biegeradius wählbar ist. Insbesondere bleibt diese Höhe c des Umkehrbogenabschnitts 3 deutlich kleiner als die Flachrohrbreite b. Dadurch können mehrere solche Flachrohre in einem Wärmeübertrager-Rohrblock mit einer Stapelhöhe übereinandergeschichtet werden, die deutlich kleiner gehalten werden kann als die Flachrohrbreite, wie die nachfolgend beschriebenen Wärmeübertragerbeispiele zeigen. Eine weitere Modifikation des Flachrohres der Fig. 1 und 2 kann darin bestehen, daß die beiden planen Rohrabschnitte 2a, 2b wie in Fig. 2a gezeigt in zwei zueinander versetzten x-y-Ebenen liegen. In diesem Fall ist die Querrichtung y dadurch definiert, daß sie sowohl zur Längsrichtung x der geradlinigen Rohrabschnitte als auch zur Rohrblock- Stapelrichtung z senkrecht ist.From Fig. 2 it is clear that due to the described formation of the reversing sheet section 3, the height c of the reversing sheet section 3 and thus the extent in the stacking direction z is small and can be selected depending on the bending radius. In particular, this height c of the reversing bend section 3 remains significantly smaller than the flat tube width b. As a result, several such flat tubes can be stacked on top of one another in a heat exchanger tube block with a stack height that can be kept significantly smaller than the flat tube width, as the heat exchanger examples described below show. A further modification of the flat tube of FIGS. 1 and 2 may consist in the fact that the two flat tube sections 2a, 2b lie in two mutually offset xy planes, as shown in FIG. 2a. In this case, the transverse direction y is defined by the fact that it is both for Longitudinal direction x of the straight pipe sections and perpendicular to the pipe block stacking direction z.
Die Fig. 3b zeigt eine alternative Möglichkeit zur Gestaltung des Umkehrbo- genabschnitts 3 nach einem Hauptbiegevorgang. Wie aus Fig. 3b ersichtlich ist wird hier erst der Hauptbiegevorgang um die Biegeachse A durchgeführt, bevor der Versatz durch weitere Biegevorgänge um eine Biegeachse B3 realisiert wird. Die Hauptbiegeachse A verläuft dabei unter dem vorgebbaren Winkel α in den Grenzen 13° < α < 67° zur Rohrlängserstreckung. Nach dem Hauptbiegevorgang werden die beiden Rohrabschnitte jeweils um die Biegeachse 3 gemäß den Pfeilen nach innen gebogen. Gemäß der Darstellung in Fig. 3b wird der Abstand d zwischen den Flachrohren durch eine Begrenzung realisiert, im dargestellten Beispiel durch eine Begrenzungsleiste mit der Breite d realisiert, wobei im dargestellten Beispiel durch ein oberes Ende der Begrenzungsleiste die Biegeachse B3 realisiert ist. Die dargestellten Flachrohrabschnitte 2a und 2b liegen in unterschiedlichen parallelen Ebenen und schließen einen Windel von 2 ein. Nach den zusätzlichen Biegevorgängen liegen die beiden Flachrohrabschnitte 2a und 2b parallel zueinander in den unterschiedlichen parallelen Ebenen, wie in Fig. 2a dargestellt, so dass die weiteren bereits beschriebenen Umformungsschritte durchgeführt werden können, um zu erreichen, dass die beiden Flachrohrabschnitte 2a, 2b parallel mit dem Abstand d in einer gemeinsamen Ebene liegen (siehe Fig. 2b bis 2c).3b shows an alternative possibility for designing the reversing sheet section 3 after a main bending process. As can be seen from FIG. 3b, the main bending process around the bending axis A is carried out here before the offset is realized by further bending processes around a bending axis B3. The main bending axis A runs at the predeterminable angle α in the limits 13 ° <α <67 ° to the pipe longitudinal extension. After the main bending process, the two pipe sections are each bent inwards about the bending axis 3 according to the arrows. According to the illustration in FIG. 3b, the distance d between the flat tubes is realized by a limitation, in the example shown realized by a limitation bar with the width d, the bending axis B3 being implemented by an upper end of the limitation bar in the example shown. The flat tube sections 2a and 2b shown lie in different parallel planes and include a diaper of 2. After the additional bending processes, the two flat tube sections 2a and 2b lie parallel to one another in the different parallel planes, as shown in FIG. 2a, so that the further shaping steps already described can be carried out in order to ensure that the two flat tube sections 2a, 2b are parallel with each other the distance d lie in a common plane (see FIGS. 2b to 2c).
Die Fig. 4 und 5 zeigen einen Anwendungsfall für den Flachrohrtyp der Fig. 1 und 2 in Form eines Rohr-/Rippenblocks 9 eines Verdampfers 10, wie er insbesondere in Kraftfahrzeug-Klimaanlagen verwendbar ist. Es versteht sich, daß sich der ausschnittsweise gezeigte Wärmeübertrager je nach Auslegung auch für beliebige andere Wärmeübertragungszwecke einsetzen läßt, beispielsweise als Gaskühler. Wie aus Fig. 4 ersichtlich, beinhaltet dieser Verdampfer 10 zwischen zwei endseitigen Deckblechen 11 , 12 einen Stapel mehrerer Flachrohre 1 gemäß Fig. 1 und 2 mit zwischenliegenden, wärme- leitfähigen Wellrippen 8. Die Höhe der Wärmeleitrippen 8 entspricht ungefähr der Höhe c der Flachrohr-Umkehrbogenabschnitte 3 und ist damit deut- lieh kleiner als die Flachrohrbreite b.4 and 5 show an application for the flat tube type of FIGS. 1 and 2 in the form of a tube / fin block 9 of an evaporator 10, as can be used in particular in motor vehicle air conditioning systems. It goes without saying that, depending on the design, the heat exchanger shown in sections can also be used for any other heat transfer purposes, for example as a gas cooler. As can be seen from Fig. 4, this includes Evaporator 10 between two end-side cover plates 11, 12 a stack of several flat tubes 1 according to FIGS. 1 and 2 with interposed, thermally conductive corrugated fins 8. The height of the heat-conducting fins 8 corresponds approximately to the height c of the flat tube reversing bend sections 3 and is therefore clearly borrowed smaller than the flat tube width b.
Durch die Verwendung des Flachrohres 1 der Fig. 1 und 2 wird ein Rohr- Rippenblock 9 mit in der Tiefe, d.h. in y-Richtung, zweiteiliger Struktur gebildet, wobei in jedem der beiden Blockteile jeweils die Rohrabschnitte mit glei- eher Durchströmungsrichtung in der Stapelrichtung z übereinanderliegen. Zwischen den beiden Blockteilen ist ein dem Abstand d der beiden geradlinigen Rohrabschnitte 2a, 2b eines jeden Flachrohres 1 entsprechender Spalt gebildet. Die Wellrippen 8 erstrecken sich im dargestellten Ausführungsbeispiel einteilig über die gesamte Flachrohrtiefe und damit auch über diesen Spalt hinweg, wobei sie zu beiden Seiten, d.h. an der Vorder- und an der Rückseite des Blocks, nach Bedarf überstehen können. Es ist aber auch möglich mehrteilige, insbesondere zweiteilige Wellrippen 8 zu verwenden. Die Blockvorderseite ist hierbei dadurch definiert, daß sie von einem außenseitig über die Verdampferoberflächen hinweggeleiteten, zweiten Tempe- riermedium, z.B. zu kühlende Zuluft für einen Fahrzeuginnenraum, in derThrough the use of the flat tube 1 of FIGS. 1 and 2, a tube-fin block 9 with a depth, i.e. formed in the y-direction, two-part structure, wherein in each of the two block parts the pipe sections with the same flow direction lie one above the other in the stacking direction z. A gap corresponding to the distance d between the two straight tube sections 2a, 2b of each flat tube 1 is formed between the two block parts. In the exemplary embodiment shown, the corrugated fins 8 extend in one piece over the entire flat tube depth and thus also over this gap, with them on both sides, i.e. can survive on the front and back of the block, as needed. However, it is also possible to use multi-part, in particular two-part corrugated fins 8. The block front is defined here by the fact that it is guided by a second temperature medium, e.g. Supply air to be cooled for a vehicle interior in which
Rohrquerrichtung y, d.h. in Blocktiefenrichtung, angeströmt wird.Pipe transverse direction y, i.e. in the depth direction of the block.
Die Quererstreckung der Flachrohrmündungsenden ist aufgrund ihrer Tordierung geringer als die Flachrohrbreite b. Dies erleichtert den Anschluß zweier zugehöriger, in der Fig. 4 nicht gezeigter Sammelkanäle, die jeweils von einem Sammelkasten bzw. Sammelrohr gebildet sein können, dessen Quererstreckung in y-Richtung nicht größer als die Flachrohrbreite b zu sein braucht und in seinem Durchmesser bei einem Torsionswinkel der Flachrohrenden von ca. 90° sogar nur noch wenig größer als die Flach rohrdicke zu sein braucht. Es ist daher problemlos möglich, zwei Sammelrohre auf der betreffenden Rohrblockseite nebeneinanderliegend in Stapelrichtung z verlaufend anzuordnen, um jeweils eines der beiden Enden jedes Flachrohres 1 aufzunehmen. Alternativ kann ein gemeinsames Sammelrohr für beide Stapelreihen der Rohrenden 6a, 6b vorgesehen sein, das mittels einer Längstrennwand in die zwei benötigten, getrennten Sammelkanäle unterteilt ist.The transverse extension of the ends of the flat tube ends is less than the width of the flat tube b due to their twisting. This facilitates the connection of two associated collecting channels, not shown in FIG. 4, which can each be formed by a collecting box or collecting tube, the transverse extent of which in the y-direction need not be greater than the flat tube width b and its diameter at a torsion angle the flat tube ends of approx. 90 ° are only slightly larger than the flat tube thickness needs to be. It is therefore easily possible to run two manifolds on the relevant tube block side next to each other in the stacking direction z to arrange to receive one of the two ends of each flat tube 1. Alternatively, a common collecting pipe can be provided for both rows of stacks of pipe ends 6a, 6b, which is divided into the two required, separate collecting channels by means of a longitudinal partition.
Es zeigt sich, daß der Verdampfer 10 mit dem so gebildeten Rohr- /Rippenblock 9 in kompakter Bauform und sehr druckstabil realisierbar ist und dabei einen hohen Wärmeübertragungs-Wirkungsgrad aufweist. Durch das Umbiegen der Flachrohre zu zwei in der Blocktiefe versetzten Rohrab- schnitten 2a, 2b kann mit relativ schmalen Flachrohren eine Wärmeübertragungsleistung erzielt werden, für die ansonsten mindestens etwa doppelt so breite, nicht gebogene Flachrohre erforderlich wären. Gleichzeitig wird durch die einmalige Flachrohrumlenkung erreicht, daß das durch das Rohrinnere hindurchzuführende Temperiermedium auf ein und derselben Rohrblockseite zu- und abgeführt werden kann, was in manchen Anwendungsfällen vorteilhaft ist.It turns out that the evaporator 10 with the tube / fin block 9 thus formed can be realized in a compact design and very pressure-stable and has a high heat transfer efficiency. By bending the flat tubes into two tube sections 2a, 2b offset in the block depth, a heat transfer performance can be achieved with relatively narrow flat tubes, which would otherwise require at least approximately twice as wide, non-curved flat tubes. At the same time, the unique flat tube deflection means that the temperature control medium to be passed through the tube interior can be fed in and out on one and the same tube block side, which is advantageous in some applications.
In den Fig. 5 ist ein Ausführungsbeispiel in Serpentinenbauweise gezeigt. Die Ausschnittsansicht von Fig. 5 zeigt dabei mehrere Serpentinen- Flachrohre 13, die zur Bildung des dortigen Serpentinenrohrblocks in beliebiger, gewünschter Anzahl übereinandergestapelt sind. Das hierfür verwendete Serpentinen-Flachrohr 13 ist weitgehend baugleich mit demjenigen der Fig. 1 und 2, mit der Ausnahme, daß sich beidseitig des zu demjenigen der Fig. 1 und 2 gleichartigen Umkehrbogenabschnitts 3 jeweils nicht nur ein geradliniger, einlagiger Rohrabschnitt, sondern ein mehrfach Serpentinen- förmig gewundener Rohrschlangenabschnitt 12 anschließt, die sich somit wiederum in Blocktiefenrichtung um einen entsprechenden Spalt versetzt gegenüberstehen. Die Serpentinenwindungen. 12 des jeweiligen Rohrschlangenabschnitts 13 sind wie üblich durch Umbiegen des Flachrohrs an der betreffenden Stelle um die dortige Rohrquerachse um einen Winkel von5 shows an embodiment in a serpentine construction. 5 shows a plurality of serpentine flat tubes 13 which are stacked one above the other in any desired number to form the serpentine tube block there. The serpentine flat tube 13 used for this is largely identical to that of FIGS. 1 and 2, with the exception that on both sides of the inverted bend section 3, which is similar to that of FIGS. 1 and 2, not only a straight, single-layer pipe section, but a multiple Connects serpentine coiled pipe section 12, which in turn face each other offset in the block depth direction by a corresponding gap. The serpentine turns . 12 of the respective pipe coil section 13 are, as usual, by bending the flat pipe at the relevant point about the transverse pipe axis there by an angle of
180° gebildet. Zwischen den einzelnen Rohrschlangenwindungen 13 sowie zwischen aufeinanderfolgenden Serpentinen-Flachrohren 12 sind wärme- leitfähige Wellrippen 8 durchgehend von der Blockvorderseite bis zur Blockrückseite mit optionalem Überstand eingebracht. Es versteht sich, daß hier wie auch im Beispiel der Fig. 4 und 5 stattdessen je eine Wellrippenreihe für jeden der beiden in Blocktiefen richtung versetzten Rohrblockreihen vorgesehen sein kann, wobei in diesem Fall auch der Spalt zwischen den beiden Blockreihen frei bleiben kann. Statt dieser hälftigen Teilung mit zwei gleich breiten Wellrippen können über die Rohrblocktiefe hinweg in jeder Wellrippenschicht selbstverständlich eine beliebige andere Anzahl von Wellrippen und/oder Wellrippen mit unterschiedlicher Breite eingesetzt werden, z.B. eine erste, sich über zwei Drittel der Rohrblocktiefe erstreckende und eine zweite, sich über das restliche Drittel der Rohrblocktiefe erstreckende Well- rippe. In jedem Fall begünstigt der Spalt die Kondenswasserabscheidung des Verdampfers.Formed 180 °. Between the individual coil windings 13 and Between successive serpentine flat tubes 12, heat-conductive corrugated fins 8 are introduced continuously from the front of the block to the rear of the block with an optional overhang. It goes without saying that here, as in the example of FIGS. 4 and 5, a corrugated fin row can be provided instead for each of the two rows of pipe blocks offset in the block depth, in which case the gap between the two rows of blocks can also remain free. Instead of this halving with two corrugated fins of the same width, any other number of corrugated fins and / or corrugated fins with different widths can of course be used in each corrugated fin layer across the pipe block depth, for example a first one that extends over two thirds of the pipe block depth and a second one Corrugated fin extending over the remaining third of the tube block depth. In any case, the gap favors the condensate separation of the evaporator.
Wie aus den Fig. 4 und 5 zu erkennen, entspricht auch in diesem Beispiel die Höhe der Wärmeleitrippen 8 und damit der Stapelabstand benachbarter, geradliniger Flachrohrabschnitte sowohl innerhalb eines Serpentinen- Flachrohres 13 als auch zwischen zwei benachbarten Serpentinen- Flachrohren 13 in etwa der gegenüber der Flachrohrbreite b deutlich geringeren Höhe c des Umkehrbogenabschnitts 3'. Die in diesem Fall gewählte Tordierung der wiederum auf derselben Blockseite mündenden Flachrohrenden 6 von 90° kollidiert mit dieser geringen Stapelhöhe nicht, da die Serpentinen-Flachrohre 13 aufgrund ihrer Rohrschlangenabschnitte 12 insgesamt jeweils eine gegenüber der Flachrohrbreite größere Höhe in Stapelrichtung z aufweisen. Die rechtwinklige Tordierung der Enden 6 um 90° ermöglicht, wie erwähnt, die Verwendung besonders schmaler Sammelkanäle bzw. diese bildende Sammelrohre. In Fig. 5 ist ein solches vorderseitiges Sammelrohr 7 dargestellt, in das die vordere Reihe der Flachrohrenden 6 einmündet. Zu- dem können wie in Fig. 5 dargestellt die Serpentinen-Flachrohre 13 mit demAs can be seen from FIGS. 4 and 5, also in this example the height of the heat-conducting fins 8 and thus the stacking distance between adjacent, straight flat tube sections both within a serpentine flat tube 13 and between two adjacent serpentine flat tubes 13 roughly corresponds to that opposite the Flat tube width b significantly lower height c of the reversing bend section 3 '. The twisting chosen in this case of the flat tube ends 6, which in turn opens on the same block side, of 90 ° does not collide with this low stacking height, since the serpentine flat tubes 13 each have a greater height in the stacking direction z than the flat tube width 12 due to their flat tube sections. The right-angled twisting of the ends 6 by 90 ° enables, as mentioned, the use of particularly narrow manifolds or manifolds forming them. 5 shows such a collecting tube 7 on the front side, into which the front row of flat tube ends 6 opens. In addition, as shown in FIG. 5, the serpentine flat tubes 13 can be connected to the
Flachrohr 1 der Fig. 1 und 2 kombiniert werden. Zu den beiden gezeigten Flachrohrgestaltungen sind zahlreiche weitere Alternativen möglich. So kann das Flachrohr zwei oder mehr Umkehrbogenab- schnitte und dementsprechende Umlenkungen aufweisen.Flat tube 1 of FIGS. 1 and 2 can be combined. Numerous other alternatives to the two flat tube designs shown are possible. The flat tube can thus have two or more reversing bend sections and corresponding deflections.
Zudem kann das Serpentinen-Flachrohr 13 von Fig. 5 dahingehend modifiziert werden, daß durch mindestens eine weitere Serpentinenwindung im einen und/oder im anderen Serpentinenrohrabschnitt das betreffende Flachrohrende 6 auf der dem Umkehrbogenabschnitt 3 gegenüberliegenden Blockseite zu liegen kommt. In einer weiteren Realisierung kann ein Serpentinen-Flachrohr 13 der Art von Fig. 5, jedoch mit einem oder mehreren zusätzlichen Umkehrbogenabschnitten 3 vorgesehen sein, um damit einen in Blocktiefenrichtung mindestens dreiteiligen Rohrblock für einen Serpentinen- Wärmeübertrager aufzubauen. Je nach Anwendungsfall können die Flach- rohrenden 6 auch untordiert belassen werden.In addition, the serpentine flat tube 13 of FIG. 5 can be modified such that at least one further serpentine turn in one and / or in the other serpentine tube section causes the relevant flat tube end 6 to lie on the block side opposite the reversing bend section 3. In a further implementation, a serpentine flat tube 13 of the type shown in FIG. 5, but with one or more additional reversing bend sections 3, can be provided in order to build up a tube block for a serpentine heat exchanger that is at least three parts in the block depth direction. Depending on the application, the flat tube ends 6 can also be left undetected.
In denjenigen Ausführungsbeispielen, in denen die Flachrohrenden 6 auf derselben Blockseite ausmünden, kann statt zweier Sammelrohre 7 oder eines gemeinsamen Sammelrohrs, in das bei der Herstellung eine Längstrennwand separat eingebracht wird, ein Zweikammer-Sammelrohr verwendet werden, welches bereits im Fertigungsstadium zwei getrennte, längsverlaufende Hohlkammern aufweist. Es ist aus einem extrudierten Profil gefertigt und beinhaltet integral zwei voneinander getrennte Längskammern, welche die Sammelkanäle für den betreffenden Wärmeübertrager bilden. Dazu sind, wie auch in den anderen Sammelrohrausführungen, geeignete umfangsseitige Schlitze in das Sammelrohr 7 einzubringen, in welche die Flachrohrenden 6 dicht eingefügt werden.In those exemplary embodiments in which the flat tube ends 6 open out on the same block side, instead of two header tubes 7 or a common header tube, into which a longitudinal partition wall is separately introduced during manufacture, a two-chamber header tube can be used, which already has two separate, longitudinal tubes in the production stage Has hollow chambers. It is made from an extruded profile and integrally contains two separate longitudinal chambers, which form the collecting channels for the heat exchanger in question. For this purpose, as in the other manifold designs, suitable circumferential slots are to be made in the manifold 7, into which the flat tube ends 6 are tightly inserted.
Je nach Wärmeübertragertyp können zudem Sammelrohre verwendet wer- den, die mittels entsprechender Querwände mehrere, in der Blockhochrichtung z voneinander getrennte Sammelkanäle beinhalten. Dadurch werden die Flachrohre im Rohrblock zu mehreren Gruppen derart zusammengefaßt, daß die Rohre einer Gruppe parallel und die verschiedenen Rohrgruppen seriell durchströmt werden. Ein zugeführtes Temperiermedium strömt von einem einthttsseitigen Sammelkanal in die Gruppe der dort mündenden Flachrohre und gelangt dann an deren anderem Ende in einen als Umlenkraum fungierenden Sammelkanal, in den neben dieser ersten Gruppe eine zweite Flachrohrgruppe einmündet, in die das Temperiermedium dann umgelenkt wird. Dies kann durch entsprechende Positionierung der Querwände in einem oder beiden Sammelrohren in beliebiger Weise bis zu einem aus- trittsseitigen Sammelkanal fortgesetzt werden, über den das Temperiermedium dann den Rohrblock verläßt.Depending on the type of heat exchanger, header pipes can also be used which, by means of appropriate transverse walls, contain several header channels separated from each other in the block vertical direction z. This will the flat tubes in the tube block are combined into several groups in such a way that the tubes of a group are flowed through in parallel and the various tube groups are flowed through in series. A supplied temperature control medium flows from a collection channel on the intake side into the group of flat tubes opening there and then arrives at the other end thereof in a collection channel functioning as a deflection chamber, into which a second group of flat tubes opens in addition to this first group, into which the temperature control medium is then deflected. This can be continued in any way by appropriately positioning the transverse walls in one or both header pipes up to an outlet-side header duct, via which the temperature control medium then leaves the tube block.
Die obige Beschreibung verschiedener Ausführungsbeispiele zeigt, daß sich mit den erfindungsgemäßen Flachrohren sehr kompakte, druckstabile Flachrohrblöcke in einlagiger Bauweise oder Serpentinenbauweise mit hohem Wärmeübertragungsvermögen herstellen lassen. Damit hergestellte Wärmeübertrager eignen sich z.B. auch für mit vergleichsweise hohem Druck arbeitende CO2-Klimaanlagen, wie sie zunehmend für Kraftfahrzeuge in Betracht gezogen werden. The above description of various exemplary embodiments shows that the flat tubes according to the invention can be used to produce very compact, pressure-stable flat tube blocks in a single-layer construction or serpentine construction with a high heat transfer capacity. Heat exchangers manufactured with this are suitable e.g. also for comparatively high pressure CO2 air conditioning systems, such as are increasingly being considered for motor vehicles.

Claims

Patentansprüche claims
1. Flachrohr mit einem Umkehrbogenabschnitt (3), in welchem das Flachrohr (1) derart umgebogen ist, dass seine beiden daran anschließen- den, planen Rohrabschnitte (2a, 2b) in Längsrichtung mit entgegengesetzten Durchströmungsrichtungen (4a, 4b) und mit gegeneinander mindestens in Querrichtung (y) versetzten Längsachsen (5a, 5b) verlaufen, dadurch gekennzeichnet, dass der Umkehrbogenabschnitt (3) dergestalt gebildet ist, dass eine1. Flat tube with an inverted bend section (3) in which the flat tube (1) is bent in such a way that its two adjoining, flat tube sections (2a, 2b) in the longitudinal direction with opposite flow directions (4a, 4b) and with at least one against the other run in the transverse direction (y) offset longitudinal axes (5a, 5b), characterized in that the reversing arc section (3) is formed such that a
Hauptbiegeachse (A) parallel zur Flachrohrebene und unter einem vorgebbaren Winkel zur Rohrlängserstreckung verläuft, wobei die Flachrohrebene durch die Längen- und Breitenerstreckung des Flachrohrs (1) bestimmt wird.The main bending axis (A) runs parallel to the flat tube plane and at a predeterminable angle to the longitudinal pipe extension, the flat pipe plane being determined by the length and width extension of the flat pipe (1).
2. Flachrohr nach Anspruch 1 , weiter dadurch gekennzeichnet, dass der vorgebbaren Winkel 90° ist.2. Flat tube according to claim 1, further characterized in that the predeterminable angle is 90 °.
3. Flachrohr nach Anspruch 1 oder 2, weiter dadurch gekennzeichnet, dass das Flachrohr (1) im Bereich des Umkehrbogenabschnitts (3) in der3. Flat tube according to claim 1 or 2, further characterized in that the flat tube (1) in the region of the reversing bend section (3) in the
Flachrohrebene parallel zur Rohrerstreckung um einen Weg (s) verschoben ist. Flat tube plane is shifted parallel to the tube extension by one path (s).
4. Flachrohr nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Rohrabschnitte (2a, 2b) unter einem vorgebbaren Winkel (α) in den Umkehrbogenabschnitt (3) übergehen.4. Flat tube according to one of claims 1 to 3, characterized in that the tube sections (2a, 2b) pass at a predeterminable angle (α) into the reversing bend section (3).
5. Flachrohr nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, dass der Winkel (α) und/oder der Weg (s) durch mindestens einen Biegevorgang um mindestens eine Biegeachse (B) erreicht wird, die senkrecht zur Flachrohrebene verläuft.5. Flat tube according to one of claims 3 or 4, characterized in that the angle (α) and / or the path (s) is achieved by at least one bending process about at least one bending axis (B) which is perpendicular to the flat tube plane.
6. Flachrohr nach Anspruch 5, weiter dadurch gekennzeichnet, dass die Verschiebung des Flachrohrs (1) durch zwei Biegevorgänge um zwei Biegeachsen (B1 , B2) erreicht wird, die vor oder nach dem Hauptbiegevorgang um die erste Biegeachse (A) durchgeführt werden, wobei die erste Biegeachse (A) in der Mitte eines Versatzbereich'es (U) ver- läuft.6. Flat tube according to claim 5, further characterized in that the displacement of the flat tube (1) is achieved by two bending processes around two bending axes (B1, B2), which are carried out before or after the main bending process around the first bending axis (A), wherein the first bending axis (a) in the center of an offset area 'it (U) comparable running.
7. Flachrohr nach einem der vorherigen Ansprüche, weiter dadurch gekennzeichnet, dass die beiden, an den Umkehrbogenabschnitt (3) anschließenden, planen Rohrabschnitte (2a, 2b) in zueinander parallelen Ebenen senkrecht zur Stapelrichtung (z) liegend mit einem Abstand7. Flat tube according to one of the preceding claims, further characterized in that the two, adjacent to the reversing bend section (3), planar pipe sections (2a, 2b) lying in mutually parallel planes perpendicular to the stacking direction (z) at a distance
(d) angeordnet sind,(d) are arranged,
8. Flachrohr nach einem der vorherigen Ansprüche, weiter dadurch gekennzeichnet, dass in einem weiteren Umformungsschritt der Um- kehrbogenabschnitt (3) so umgeformt wird, dass die beiden Rohrschenkel (2a, 2b) nebeneinander und parallel mit dem Abstand (d) in einer gleichen Ebene liegen. 8. Flat tube according to one of the preceding claims, further characterized in that in a further shaping step the reversing bend section (3) is shaped such that the two tube legs (2a, 2b) next to one another and in parallel with the distance (d) in the same Level.
9. Flachrohr nach Anspruch 7, weiter dadurch gekennzeichnet, dass der Umkehrbogenabschnitt (3) symmetrisch oder unsymmetrisch umgeformt wird.9. Flat tube according to claim 7, further characterized in that the reversing bend section (3) is formed symmetrically or asymmetrically.
10. Flachrohr nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass der Abstand (d) in Querrichtung (y) zwischen 0,2 mm und 20 mm ist.10. Flat tube according to one of claims 7 or 8, characterized in that the distance (d) in the transverse direction (y) is between 0.2 mm and 20 mm.
11. Flachrohr nach einem der vorherigen Ansprüche, dadurch gekennzeich- net, dass durch den Umkehrbogenabschnitt (3) eine der Luft zugewandte Seite des Flachrohrabschnitts (2a) zu einer der Luft zugewandten Seite des Flachrohrabschnitts (2b) wird und eine der Luft abgewandte Seite des Flachrohrabschnitts (2a) zu einer der Luft abgewandten Seite des Flachrohrabschnitts (2b) wird.11. Flat tube according to one of the preceding claims, characterized in that through the reversing bend section (3) one side of the flat tube section (2a) facing the air becomes one side of the flat tube section (2b) facing the air and one side facing away from the air Flat tube section (2a) to a side of the flat tube section (2b) facing away from the air.
12. Flachrohr nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass durch den Umkehrbogenabschnitt (3) eine Rohrunterseite des Rohrabschnitts (2a) zur Rohroberseite des Rohrabschnitts (2b) wird und eine Rohroberseite des Rohrabschnitts (2a) zur Rohrunter- seite des Rohrabschnitts (2b) wird.12. Flat tube according to one of the preceding claims, characterized in that a tube underside of the tube section (2a) becomes the tube top side of the tube section (2b) and a tube top side of the tube section (2a) becomes the tube bottom side of the tube section (2b) through the reversing bend section (3) ) becomes.
13. Flachrohr-Wärmeübertrager für eine Kraftfahrzeug-Klimaanlage, mit13. Flat tube heat exchanger for a motor vehicle air conditioning system, with
- einem Rohrblock (9) mit einem oder mehreren in einer Stapelrichtung (z) übereinandergestapelten Flachrohren (1) nach einem der An- sprüche 1 bis 11.- A tube block (9) with one or more flat tubes (1) stacked one above the other in a stacking direction (z) according to one of claims 1 to 11.
14. Flachrohr-Wärmeübertrager nach Anspruch 13, dadurch gekennzeichnet, dass seitlich am Rohrblock (9) entlang der Stapelrichtung (z) verlaufende Sammelkanäle (7) angeordnet sind, in welche die Flachrohre (1) mit je einem Ende (6) münden. 14. Flat tube heat exchanger according to claim 13, characterized in that laterally on the tube block (9) along the stacking direction (z) extending collecting channels (7) are arranged, into which the flat tubes (1) open with one end (6) each.
15. Flachrohr-Wärmeübertrager nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass mindestens einer der beiden, über den Umkehrbogenabschnitt (3) miteinander verbundenen Rohrabschnitte (2a, 2b) eine in Stapelrichtung (z) gewundene Rohrserpentine (12) bildet.15. Flat tube heat exchanger according to claim 13 or 14, characterized in that at least one of the two tube sections (2a, 2b) connected to one another via the reversing bend section (3) forms a tube serpentine (12) which is wound in the stacking direction (z).
16. Flachrohr-Wärmeübertrager nach einem der Ansprüche 13 bis 15, dadurch gekennzeichnet, dass die beiden Flachrohrenden (6) auf derselben oder auf gegenüberliegenden Seiten liegen und wenigstens eines der beiden Rohrenden (6a, 6b) um einen Winkel zwischen 0° und 90° tordiert ist.16. Flat tube heat exchanger according to one of claims 13 to 15, characterized in that the two flat tube ends (6) lie on the same or on opposite sides and at least one of the two tube ends (6a, 6b) through an angle between 0 ° and 90 ° is twisted.
17. Gaskühler mit einem Flachrohr-Wärmeübertrager (10) nach einem der17. Gas cooler with a flat tube heat exchanger (10) according to one of the
Ansprüche 13 bis 16.Claims 13 to 16.
18. Verdampfer mit einem Flachrohr-Wärmeübertrager (10) nach einem der18. Evaporator with a flat tube heat exchanger (10) according to one of the
Ansprüche 13 bis 16.Claims 13 to 16.
.o0o. .o0o.
EP04710027A 2003-02-18 2004-02-11 Flat pipe comprising a return bend section and a heat exchanger constructed therewith Expired - Lifetime EP1597529B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10306848 2003-02-18
DE10306848A DE10306848A1 (en) 2003-02-18 2003-02-18 Flat tube with bend section forming heat exchanger for gas cooler or evaporator has bent over section with main bend axis parallel to flat tube plane and at definable angle to pipe length
PCT/EP2004/001257 WO2004074756A2 (en) 2003-02-18 2004-02-11 Flat pipe comprising a return bend section and a heat exchanger constructed therewith

Publications (2)

Publication Number Publication Date
EP1597529A2 true EP1597529A2 (en) 2005-11-23
EP1597529B1 EP1597529B1 (en) 2007-07-11

Family

ID=32747996

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04710027A Expired - Lifetime EP1597529B1 (en) 2003-02-18 2004-02-11 Flat pipe comprising a return bend section and a heat exchanger constructed therewith

Country Status (8)

Country Link
US (1) US20060243432A1 (en)
EP (1) EP1597529B1 (en)
JP (1) JP2006518029A (en)
CN (1) CN100362303C (en)
AT (1) ATE366905T1 (en)
BR (1) BRPI0407582A (en)
DE (2) DE10306848A1 (en)
WO (1) WO2004074756A2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006018688B4 (en) * 2006-04-13 2009-08-27 Visteon Global Technologies Inc., Van Buren Method for bending multiport tubes for heat exchangers
US20080302518A1 (en) * 2007-06-07 2008-12-11 Joseph Durdel Flat tube heat exchanger
WO2010072221A2 (en) * 2008-12-23 2010-07-01 Noise Limit Aps Cooling device with bended flat tube and related manufacturing method
DE602009001094D1 (en) * 2009-02-17 2011-05-26 Abengoa Solar New Tech Sa Flags heat exchanger
CN101850391B (en) * 2009-03-31 2012-07-04 三花丹佛斯(杭州)微通道换热器有限公司 Flat pipe processing method, flat pipe, heat exchanger processing method and heat exchanger
DE102009047620C5 (en) * 2009-12-08 2023-01-19 Hanon Systems Heat exchanger with tube bundle
CN101846465B (en) * 2010-04-13 2011-11-09 三花丹佛斯(杭州)微通道换热器有限公司 Heat exchanger
CN101936672B (en) * 2010-09-15 2012-09-19 三花控股集团有限公司 Heat exchanger with improved surface airflow field distribution uniformity
CN201945091U (en) * 2010-11-18 2011-08-24 三花丹佛斯(杭州)微通道换热器有限公司 Heat exchanger
CN103644685A (en) * 2013-12-26 2014-03-19 杭州三花微通道换热器有限公司 Heat exchanger and air conditioner with multiple refrigeration systems provided with heat exchanger
US10317141B2 (en) * 2014-11-25 2019-06-11 Hydro Extruded Solutions As Multi port extrusion tubing design
US20160363387A1 (en) * 2015-06-12 2016-12-15 Hamilton Sundstrand Space Systems International, Inc. Phase-change material heat exchanger
CN113654394A (en) * 2021-08-05 2021-11-16 浙江酷灵信息技术有限公司 Heat exchanger

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2209325C3 (en) * 1970-05-18 1978-08-03 Noranda Metal Industries Inc., Bellingham, Wash. (V.St.A.) Heat exchange tube
JP3043051B2 (en) * 1990-11-22 2000-05-22 昭和アルミニウム株式会社 Heat exchange equipment
JP3305460B2 (en) * 1993-11-24 2002-07-22 昭和電工株式会社 Heat exchanger
IT1272091B (en) * 1993-12-20 1997-06-11 Borletti Climatizzazione PROCEDURE FOR BENDING AN OBLONG CROSS-SECTION TUBE AND HEAT EXCHANGER WITH U-SHAPED U-SHAPED TUBES
DE19830863A1 (en) * 1998-07-10 2000-01-13 Behr Gmbh & Co Flat tube with transverse offset reversing bend section and thus built-up heat exchanger
US20030102113A1 (en) * 2001-11-30 2003-06-05 Stephen Memory Heat exchanger for providing supercritical cooling of a working fluid in a transcritical cooling cycle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004074756A2 *

Also Published As

Publication number Publication date
CN100362303C (en) 2008-01-16
BRPI0407582A (en) 2006-02-14
DE502004004288D1 (en) 2007-08-23
WO2004074756A2 (en) 2004-09-02
CN1751216A (en) 2006-03-22
WO2004074756A3 (en) 2004-10-21
DE10306848A1 (en) 2004-08-26
JP2006518029A (en) 2006-08-03
ATE366905T1 (en) 2007-08-15
US20060243432A1 (en) 2006-11-02
EP1597529B1 (en) 2007-07-11

Similar Documents

Publication Publication Date Title
EP1036296B1 (en) Flat tube with transversally offset u-bend section and heat exchanger configured using same
EP2026028B1 (en) Heat exchanger, more particularly for automotive vehicle
EP1042641B1 (en) Heat exchanger tubular block and a multi-chamber flat tube which can be used therefor
DE3781651T2 (en) METHOD FOR PRODUCING A HEAT EXCHANGER UNIT WITH INTEGRATED COOLING RIBS.
DE60011616T2 (en) HEAT EXCHANGER WITH MULTICHANNEL TUBES
EP0845647B1 (en) Flat tube heat exchanger with twisted tube ends
EP1701125A2 (en) Heat exchanger with flat tubes and flat tube for heat exchanger
EP0401752A2 (en) Refrigerant condensor for a vehicle air conditioner
DE112005000797T5 (en) heat exchangers
DE112005001295T5 (en) heat exchangers
EP1597529B1 (en) Flat pipe comprising a return bend section and a heat exchanger constructed therewith
DE10257767A1 (en) Heat exchanger for condenser or gas cooler for air conditioning installations has two rows of channels for coolant with manifolds at ends and has ribs over which air can flow
DE10054158A1 (en) Multi-chamber pipe with circular flow channels
DE69729836T2 (en) Evaporator
EP1411310B1 (en) Heat exhanger with serpentine structure
EP0912869A1 (en) Flat tube heat exchanger with more than two flows and a deflecting bottom for motor vehicles, and process for manufacturing the same
EP1588115B1 (en) Heat exchanger, especially gas cooler
EP0845648B1 (en) Flat tube heat exchanger, particularly serpentine condenser
EP1934545B1 (en) Heating body, cooling circuit, air conditioning unit for a motor vehicle air conditioning system, and air conditioning system for a motor vehicle
EP2937658B1 (en) Internal heat exchanger
EP1321734A1 (en) Flat tubes heat exchanger and fabricating process associated
EP2049859B1 (en) Motor vehicle air conditioning system
EP1166025B1 (en) Multiblock heat-transfer system
EP0910778B1 (en) Flat tube evaporator with vertical flat tubes for motor vehicles
EP1293743B1 (en) Flat tubes heat exchanger core with deformed tube ends

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050919

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BEHR GMBH & CO. KG

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WALTER, CHRISTOPH

Inventor name: KOTSCH, MARTIN

Inventor name: GEIGER, WOLFGANG

Inventor name: DEMUTH, WALTER

Inventor name: KRANICH, MICHAEL

Inventor name: STAFFA, KARL-HEINZ

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502004004288

Country of ref document: DE

Date of ref document: 20070823

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071011

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071022

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071011

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071211

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071012

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080219

Year of fee payment: 5

26N No opposition filed

Effective date: 20080414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071011

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080215

Year of fee payment: 5

BERE Be: lapsed

Owner name: BEHR G.M.B.H. & CO. KG

Effective date: 20080228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090211

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090302

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080211

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080229

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110315

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004004288

Country of ref document: DE

Effective date: 20120901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120901