EP1586221B1 - Ionenbeschleuniger-anordnung - Google Patents

Ionenbeschleuniger-anordnung Download PDF

Info

Publication number
EP1586221B1
EP1586221B1 EP03782395A EP03782395A EP1586221B1 EP 1586221 B1 EP1586221 B1 EP 1586221B1 EP 03782395 A EP03782395 A EP 03782395A EP 03782395 A EP03782395 A EP 03782395A EP 1586221 B1 EP1586221 B1 EP 1586221B1
Authority
EP
European Patent Office
Prior art keywords
longitudinal
ionization chamber
arrangement
longitudinal direction
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03782395A
Other languages
English (en)
French (fr)
Other versions
EP1586221B8 (de
EP1586221A1 (de
Inventor
Günter KORNFELD
Gregory Coustou
Norbert Koch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Air Systems and Electron Devices GmbH
Original Assignee
Thales Electron Devices GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales Electron Devices GmbH filed Critical Thales Electron Devices GmbH
Publication of EP1586221A1 publication Critical patent/EP1586221A1/de
Publication of EP1586221B1 publication Critical patent/EP1586221B1/de
Application granted granted Critical
Publication of EP1586221B8 publication Critical patent/EP1586221B8/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03HPRODUCING A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03H1/00Using plasma to produce a reactive propulsive thrust
    • F03H1/0037Electrostatic ion thrusters
    • F03H1/0062Electrostatic ion thrusters grid-less with an applied magnetic field
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/54Plasma accelerators

Definitions

  • the invention relates to an ion accelerator arrangement specified in the preamble of claim 1. Art.
  • Ion accelerator arrangements are, for example, in use for surface treatment, in particular in semiconductor technology, or as a propulsion for spacecraft. Ions are typically generated and accelerated from a neutral working gas for propulsion purposes, particularly a noble gas. For the generation and acceleration of ions, in particular two construction principles have prevailed.
  • the positively charged ions are transformed from a plasma by means of a lattice arrangement in which a first lattice adjacent to the plasma chamber lies at an anode potential and a second lattice displaced in the beam exit direction lies at a more negative cathode potential.
  • a lattice arrangement in which a first lattice adjacent to the plasma chamber lies at an anode potential and a second lattice displaced in the beam exit direction lies at a more negative cathode potential.
  • Space charge effects limit the ion current density of such an accelerator arrangement to low values.
  • Another design provides for a plasma chamber which is interspersed on the one hand by an electric field for the acceleration of positively charged ions in the direction of a jet exit opening and on the other hand by a magnetic field for guiding electrons which serve to ionize a neutral working gas.
  • accelerator arrangements with an annular plasma chamber in which the magnetic field proceeds predominantly radially and electrons under the influence of the electric and magnetic fields are reflected on closed drift paths have been in use for some time and magnetic fields move on closed drift paths.
  • Such an accelerator arrangement is for example from the US 5,847,493 known.
  • the magnetic field shows a special structure with a longitudinal direction parallel to the longitudinal field in longitudinal sections of the second kind and predominantly to the longitudinal direction perpendicular, in particular radial course in longitudinal sections of the first kind, which in particular one show as cusp course of the magnetic field.
  • the arrangement is preferably constructed in multiple stages with alternating successive longitudinal sections of the first and second type.
  • Such ion accelerator arrangements are known, for example DE 100 14 033 A1 or DE 198 28 704 A1 , At one of the DE 101 30 464 A1 known plasma accelerator arrangement are provided on the inner wall radially inwardly projecting electrodes.
  • JP 61 066 868 A an RF ion generator is shown with excitation coil disposed on the sidewalls of a plasma chamber.
  • a permanent magnet assembly generates a magnetic field with field lines curved around the coil turns to keep plasma away from the coil turns.
  • the US Pat. No. 6,060,836 A describes a plasma generator with an axially protruding into a plasma chamber waveguide, which RF power of a magnetron is fed and carries its inner conductor at an end projecting into the chamber, a permanent magnet assembly.
  • the present invention has for its object to further improve the efficiency of an ion accelerator arrangement.
  • the invention is based on the itself from the DE 100 14 033 A1 known magnetic field structure, which in the ionization (or plasma) chamber in the longitudinal direction of the arrangement in a section of the second type has a field direction parallel to the longitudinal direction and in a section of the first kind a stronger, in particular predominant field component perpendicular to the longitudinal direction.
  • the magnetic field continuously and monotonically transitions from a first-type portion to a second-type adjacent portion and vice versa, the adjacent first and second-type portions being longitudinally spaced apart or immediately adjacent to one another.
  • the longitudinal direction of an ion accelerator arrangement coincides substantially with the mean direction of movement of the accelerated ions or an axis of symmetry of the ionization chamber.
  • the working gas in this section available volume is reduced compared to a design with constant wall distance and at the same time the working gas in the middle between the opposite Concentrated wall surfaces.
  • the distance of opposing wall surfaces in the section of the second type not only to each other but also with respect to a particular to the longitudinal direction parallel center line or center area reduced relative to the wall distance in an adjacent longitudinal section of the first kind.
  • the minimum wall distance in a section of the second type is advantageously at least 15%, preferably at least 20%, in particular at least 25% less than the maximum wall distance in a neighboring section of the first kind.
  • the opposing wall surfaces may be made of insulating material insulating or metallic or partially metallic, in particular in the way that in the section or sections of the second type is a metallic wall surface which forms an intermediate electrode at a fixed or sliding potential and in the longitudinal direction by insulating Wall sections is limited, and the wall surfaces in the first-type sections are electrically insulating.
  • the ion accelerator arrangement in the longitudinal course of the plasma chamber is constructed in a plurality of stages such that several sections of the first type alternate with sections of the second type, wherein preferably the longitudinal components are alternately opposite in sections of the second type separated sections of the second type, the longitudinal component the magnetic field thus reverses when passing through a section of the first kind.
  • a multi-stage magnetic field structure is known per se from the prior art.
  • the invention essential reduction of the wall distance can then in only one, several or all sections be given second kind.
  • the quantitative extent of the relative reduction can also vary from section to section.
  • a reduction of the wall distance is present at least in the section of the second type which follows in the longitudinal direction of the anode, and / or if the quantity is quantitatively varied over several sections, the reduction in this section is greatest.
  • the anode is preferably arranged on the end of the ionization chamber opposite the longitudinal direction of the ion outlet opening.
  • the cathode is advantageously designed as a primary electron source from which primary electrons are conducted through the ion exit opening into the plasma chamber and / or which electrons serve to neutralize an ion or plasma jet emerging from the ionization chamber, and laterally offset outside the ionization chamber and against the outlet opening arranged.
  • the ion accelerator arrangement according to the invention can serve both for delivering a positively charged ion beam and, in particular in the preferred application in the propulsion of a spacecraft, for emitting a neutral plasma jet.
  • the accelerated ions can be used in particular for the treatment of solid surfaces and near-surface layers.
  • FIG. 1 sketched arrangement of the prerequisite for the present invention magnetic field profile is schematically sketched in an ionization chamber IK.
  • the ionization chamber is assumed to be rotationally symmetrical about a central longitudinal axis SA, which lies in the longitudinal direction LR of the arrangement.
  • radially inner magnet assembly MGi and a radially outer magnet assembly MGe generate a magnetic field having at least a longitudinal portion MA1 N first type and at least one adjacent thereto in the longitudinal direction of the longitudinal section MA2 N of two species in the ionization chamber IK.
  • the magnetic field in the ionization chamber in the longitudinal direction alternately successively comprises a plurality of longitudinal sections of the first and second types as in the in Fig. 2 sketched example and as in Fig. 1 indicated by a further longitudinal section MA2 N + 1 .
  • the magnetic field shows a field direction parallel to the longitudinal axis SA, whereas in the longitudinal section MA1 N of the first type the magnetic field has a larger radial component, that is to say perpendicular to the longitudinal axis.
  • the longitudinal section MA1 N first type is chosen in the example so that the radial field component significantly outweighs.
  • Longitudinal sections of the first and second types can be defined directly adjacent to each other, but in the sketched example for clear delimitation with predominant longitudinal component in the section MA2 N and predominant radial component in the longitudinal section MA1 N but spaced by an unspecified transition section.
  • the magnetic field structure described so far is in itself, for. B. off DE 10014033 A1 As well as magnet arrangements for generating such a magnetic field structure.
  • the field distribution of the magnetic field in Fig. 1 is merely schematic and not quantitative.
  • both opposing wall surfaces WF2i N , WF2e N are preferably displaced radially with respect to the longitudinally adjacent wall surfaces WF1i N, WF1e N radially toward the center of the ionization chamber.
  • a concentration of the working gas in particular also of the non-ionized atoms in the radially inner region, is enforced in section MA2 N , where a higher electron density and therefore higher ionization probability are present due to lower magnetic flux.
  • the course of the wall surfaces in the longitudinal direction can in each case be parallel to the longitudinal axis SA with a step or ramp as a transition.
  • a course which is not parallel to the longitudinal axis SA is preferred, which is closer to the field line course of the magnetic field in this longitudinal section than a wall course parallel to SA.
  • the wall surface WF2i N and / or WF2e N may be curved towards the radial center of the ionization chamber with a minimum wall distance D2L, which increases in the longitudinal direction of the adjacent portion MA1 N first type.
  • the course of the wall surface WF2i N and / or WF2e N can be continuously monotonically curved or such a shape, for. B. be approximated with several straight part progressions.
  • the wall surfaces WF1i N and / or WF1e N may have a straight or curved course in the longitudinal direction, wherein these surfaces for the sake of simplified production typically a parallel straight line to the longitudinal axis is usually favorable.
  • the radial wall distance in the longitudinal section MA2 N second type or not parallel to SA wall of the local minimum radial distance D2L is preferably at least 15%, preferably at least 20%, in particular at least 25% less than the wall distance in the adjacent longitudinal section of the first kind or for non-SA parallel course of the local maximum wall distance D1M, ie D2L ⁇ 0.85 D1M or 0.80 D1M or 0.75 D1M.
  • the wall surfaces of the chamber wall may consist of electrically insulating material or of electrically conductive material or else partially of electrically conductive material, in particular non-magnetizable metal.
  • the metallic wall surfaces can then advantageously form, as parts of the electrode arrangement, intermediate electrodes at intermediate electrical potentials between the potentials of an anode and a cathode, wherein the intermediate potentials can be predeterminable or, in the case of isolated, non-contacted intermediate electrodes, adjust slidably during operation.
  • WF2e N can also be provided in particular that metallic Are on a substantially cylindrical insulating chamber shell or inserted and fixed electrodes and facing away from the chamber shell, the ionization chamber and the opposite wall surface facing surfaces form the wall surfaces WF2i N or WF2e N.
  • Fig. 2 is a longitudinally multi-level arrangement sketched, in which in itself, z. B. off DE 100 14 033 A1 known manner in the longitudinal direction a plurality of longitudinal sections of the first and second type alternately follow one another, wherein two to an intermediate portion of the first kind (MA1 N in Fig. 1 ) adjacent sections of the second kind (MA2 N , MA2 N + 1 in Fig. 1 ) show opposite longitudinal components of the magnetic field. While in Fig. 1 an annular chamber geometry is provided about a central longitudinal center axis SA and an inner and an outer magnet arrangement Mgi, Mge, is shown in the drawing Fig.
  • the magnet arrangement consists in this case again in a known manner only of a surrounding the chamber envelope outer magnet assembly MG. Both wall surfaces facing one another then belong to the same chamber wall which is closed around the central longitudinal axis SAZ and laterally surrounding the ionization chamber.
  • the ionization chamber shows a jet outlet opening, from which a usually slightly divergent ion or plasma jet PB exits with an average ion movement in the longitudinal direction LR.
  • a cathode KA which is at cathode potential and emits electrons, is arranged as part of the electrode arrangement.
  • a part IE of these electrons is passed through the electric field of the electrode assembly in the ionization chamber and serves there in a known Way for the ionization of the working gas and in particular also the generation of secondary electrons.
  • Another part NE of the electrons emitted by the cathode can serve to neutralize a positively charged particle flow PB.
  • no external electron source is provided for generating primary electrons for gas ionization and / or for neutralizing a plasma jet having excess positive charge.
  • the cathode can then be given in particular by a housing part which surrounds the outlet opening of the ionization chamber and is located at the cathode potential.
  • An anode A0 as part of the electrode arrangement is arranged at the end of the ionization chamber opposite the outlet opening AU in the longitudinal direction LR and is at anode potential.
  • a neutral working gas for driving purposes preferably a heavy noble gas such as xenon (Xe) can be introduced into the ionization chamber, for which purpose an anode-side central supply line is entered in the sketch.
  • Xe xenon
  • a typical distribution of a plasma consisting of electrons and positive gas ions is shown in crossed hatching in the ionization chamber.
  • the magnet arrangement forms a magnetic field in the ionization chamber IKZ, which in the longitudinal direction alternately has successively longitudinal sections MA11, MA12 of the first type and longitudinal sections MA21, MA22, MA23 of the second type.
  • the distance of opposite wall surfaces which is equal in this case to the diameter of the ionization chamber in all longitudinal sections of the first type and in optionally present transition sections is constant DZ.
  • the ionization chamber in the longitudinal section MA21 is narrowed to a minimum diameter D21 L by a concave curvature surrounding the central longitudinal axis with a wall surface WF21.
  • the wall surface WF21 is assumed to be electrically insulating.
  • the diameter of the ionization chamber is reduced to a value D22L, whereby larger dimensioning of D22L compared to D21 L may allow for any expansion of the plasma in the second compared to the first stage, and wall losses affecting the electrical efficiency are kept low can.
  • the wall surface WF22 or the total diameter constriction at this distance is metallic and forms a first intermediate electrode A1 at a fixed intermediate potential.
  • an electrode A2 of small radial thickness is provided, which does not reduce the diameter D23L in this section, or does not appreciably reduce it to DZ, and which uncontactively adopts an intermediate potential during operation.
  • the electrode arrangement may also differ in the subdivision in the longitudinal direction from the division of the magnetic field into longitudinal sections of the first and second types.
  • the wall surfaces in the sections of the second type can be shaped in various other ways and in this case be insulating, electrically conductive or else only partially conductive in an electrically conductive manner.
  • the dimensions of the individual longitudinal sections and / or the intermediate electrodes may vary from stage to stage. characteristics known ion accelerator arrangements can be combined with the features essential to the invention.
  • the cross section of the ionization chamber can also deviate from the rotationally symmetrical shape and assume an elongated shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)
  • Electron Sources, Ion Sources (AREA)

Description

  • Die Erfindung betrifft eine Ionenbeschleuniger-Anordnung der im Oberbegriff des Patentanspruchs 1 angegebenen Art.
  • Ionenbeschleuniger-Anordnungen sind beispielsweise im Einsatz zur Oberflächenbehandlung, insbesondere in der Halbleitertechnologie, oder als Antrieb für Raumflugkörper. Ionen werden typischerweise aus einem neutralen Arbeitsgas für Antriebszwecke, insbesondere einem Edelgas erzeugt und beschleunigt. Zur Erzeugung und Beschleunigung von Ionen haben sich insbesondere zwei Bauprinzipien durchgesetzt.
  • Bei den Gitterbeschleunigern werden aus einem Plasma die positiv geladenen Ionen mittels einer Gitteranordnung, bei welcher ein erstes, an die Plasma-kammer angrenzendes Gitter auf ein Anodenpotential und ein in Strahlaustrittsrichtung versetztes zweites Gitter auf einem negativeren Kathodenpotential liegen. Eine derartige Anordnung ist beispielsweise aus der US 3613370 bekannt. Durch Raumladungseffekte ist die Ionenstromdichte einer solchen Beschleunigeranordnung auf niedrige Werte begrenzt.
  • Eine andere Bauform sieht eine Plasmakammer vor, welche zum einen von einem elektrischen Feld zur Beschleunigung positiv geladener Ionen in Richtung einer Strahlaustrittsöffnung und zum anderen von einem Magnetfeld zur Führung von Elektronen, welche zur Ionisation eines neutralen Arbeitsgases dienen, durchsetzt ist. Seit längerer Zeit gebräuchlich sind insbesondere Beschleunigeranordnungen mit einer ringförmigen Plasmakammer, in welcher das Magnetfeld vorwiegend radial verläuft und Elektronen unter dem Einfluss derelektrischen und magnetischen Felder sich auf geschlossenen Driftbahnen belektrischen und magnetischen Felder sich auf geschlossenen Driftbahnen bewegen. Eine derartige Beschleunigeranordnung ist beispielsweise aus der US 5 847 493 bekannt.
  • Bei einem neuen Typ einer Ionenbeschleuniger-Anordnung mit elektrischen und magnetischen Feldern in einer Plasmakammer zeigt das Magnetfeld eine besondere Struktur mit überwiegend zur Längsrichtung parallelem Feldverlauf in Längsabschnitten zweiter Art und überwiegend zur Längsrichtung senkrechtem, insbesondere radialem Verlauf in Längsabschnitten erster Art, welche insbesondere einen auch als cusp bezeichneten Verlauf des Magnetfelds zeigen. Die Anordnung ist vorzugsweise mehrstufig aufgebaut mit alternierend aufeinanderfolgenden Längsabschnitten erster und zweiter Art. Derartige lonenbeschleuniger-Anordnungen sind beispielsweise bekannt aus DE 100 14 033 A1 oder DE 198 28 704 A1 . Bei einer aus der DE 101 30 464 A1 bekannten Plasmabeschleuniger-Anordnung sind an der Innenwand radial nach innen vorstehende Elektroden vorgesehen.
  • In JP 61 066 868 A ist ein RF-Ionengenerator mit an den Seitenwänden einer Plasmakammer angeordneter Anregungsspule gezeigt. Eine Permanentmagnetanordnung erzeugt ein Magnetfeld mit um die Spulenwindungen gekrümmten Feldlinien, um Plasma von den Spulenwindungen fern zu halten. Die US 6 060 836 A beschreibt einen Plasmagenerator mit einem achsial in eine Plasma-Kammer ragenden Hohlleiter, welchem HF-Leistung eines Magnetrons eingespeist ist und dessen in Innenleiter an einem in die Kammer ragenden Ende eine Permanentmagnetanordnung trägt.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, den Wirkungsgrad einer Ionenbeschleuniger-Anordnung weiter zu verbessern.
  • Die Erfindung ist im Patentanspruch 1 beschrieben. Die abhängigen Ansprüche enthalten vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung.
  • Die Erfindung geht aus von der an sich aus der DE 100 14 033 A1 bekannten Magnetfeldstruktur, welche in der lonisations-(oder Plasma-)Kammer in Längsrichtung der Anordnung in einem Abschnitt zweiter Art eine überwiegend zur Längsrichtung parallele Feldrichtung und in einem Abschnitt erster Art eine demgegenüber stärkere, insbesondere überwiegende Feldkomponente senkrecht zur Längsrichtung aufweist. Das Magnetfeld geht kontinuierlich und monoton von einem Abschnitt erster Art in einen diesem benachbarten Abschnitt zweiter Art über und umgekehrt, wobei die benachbarten Abschnitte erster und zweiter Art in Längsrichtung beabstandet sein oder unmittelbar aneinander anschließen können. Die Längsrichtung einer Ionenbeschleuniger-Anordnung fällt im wesentlichen mit der mittleren Bewegungsrichtung der beschleunigten Ionen bzw. einer Symmetrieachse der Ionisationskammer zusammen.
  • Durch die Verringerung des Abstands zwischen einander senkrecht zur Längsrichtung gegenüberstehender Wandflächen der die lonisationskammer begrenzenden Wände in dem Längsabschnitt zweiter Art wird das dem Arbeitsgas in diesem Abschnitt zur Verfügung stehende Volumen gegenüber einer Ausführung mit gleichbleibendem Wandabstand reduziert und zugleich das Arbeitsgas in der Mitte zwischen den gegenüberstehenden Wandflächen konzentriert.
  • Es zeigt sich überraschenderweise, dass hierdurch der Gesamtwirkungsgrad der Anordnung, in welchen insbesondere der Ionisationswirkungsgrad und der elektrische Wirkungsgrad eingehen, deutlich ansteigt.
  • Vorzugsweise ist der Abstand gegenüberstehender Wandflächen in dem Abschnitt zweiter Art nicht nur zueinander sondern auch bezüglich einer insbesondere zur Längsrichtung parallelen Mittellinie oder Mittelfläche verringert gegenüber dem Wandabstand in einem benachbarten Längsabschnitt erster Art.
  • Der minimale Wandabstand in einem Abschnitt zweiter Art ist vorteilhafterweise um wenigstens 15 %, vorzugsweise um wenigstens 20 %, insbesondere um wenigstens 25 % geringer als der maximale Wandabstand in einem benachbarten Abschnitt erster Art. Vorteilhafterweise ist wenigstens eine, vorzugsweise beide der sich gegenüberstehenden Wandflächen in einem Abschnitt zweiter Art zur Ionisationskammer hin versetzt, insbesondere in Form einer Wölbung mit einer in Längsrichtung kontinuierlich verlaufenden, vorzugsweise monoton gekrümmten Wandfläche.
  • Die einander gegenüberstehenden Wandflächen können isolierend aus dielektrischem Material bestehen oder metallisch oder teilweise metallisch sein, insbesondere in der Art, dass in dem Abschnitt bzw. Abschnitten zweiter Art eine metallische Wandfläche vorliegt, welche eine Zwischenelektrode auf festem oder gleitendem Potential bildet und in Längsrichtung durch isolierende Wandabschnitte begrenzt ist, und die Wandflächen in den Abschnitten erster Art elektrisch isolierend sind.
  • Vorteilhafterweise ist die Ionenbeschleuniger-Anordnung im Längsverlauf der Plasma-Kammer mehrstufig aufgebaut in der Art, dass mehrere Abschnitte erster Art alternierend mit Abschnitten zweiter Art aufeinanderfolgen, wobei vorzugsweise die Längskomponenten in durch einen Abschnitt erster Art getrennten Abschnitten zweiter Art abwechselnd entgegengesetzt sind, die Längskomponente des Magnetfelds somit bei Durchlaufen eines Abschnitts erster Art umkehrt. Eine derartige mehrstufige Magnetfeldstruktur ist aus dem Stand der Technik an sich bekannt. Die erfindungswesentliche Verringerung des Wandabstands kann dann in nur einem, mehreren oder allen Abschnitten zweiter Art gegeben sein. Bei Vorliegen der Verringerung des Wandabstands in mehreren oder allen Abschnitten zweiter Art gegenüber benachbarten Abschnitten erster Art kann dabei auch das quantitative Ausmaß der relativen Verringerung von Abschnitt zu Abschnitt variieren. Vorzugsweise liegt eine Verringerung des Wandabstands wenigstens in dem in Längsrichtung der Anode nächsten Abschnitt zweiter Art vor und/oder ist bei quantitativer Variation über mehrere Abschnitte die Verringerung in diesem Abschnitt am stärksten.
  • Die Anode ist vorzugsweise am in Längsrichtung der Ionen-Austrittsöffnung entgegengesetzten Ende der Ionisationskammer angeordnet. Die Kathode ist vorteilhafterweise als Primärelektronenquelle ausgebildet, aus welcher Primärelektronen durch die Ionen-Austrittsöffnung in die Plasmakammer geleitet werden und/oder welche Elektronen zur Neutralisierung eines aus der lonisationskammer austretenden lonen- oder Plasmastrahls dienen, und vorzugsweise außerhalb der Ionisationskammer und gegen die Austrittsöffnung seitlich versetzt angeordnet.
  • Die erfindungsgemäße Ionenbeschleuniger-Anordnung kann sowohl zur Abgabe eines positiv geladenen lonenstrahls als auch, insbesondere in der bevorzugten Anwendung im Antrieb eines Raumfahrzeugs zur Abgabe eines neutralen Plasmastrahls dienen. In anderer Anwendung können die beschleunigten Ionen insbesondere zur Behandlung von Festkörperoberflächen und oberflächennahen Schichten eingesetzt sein.
  • Die Erfindung ist nachfolgend anhand bevorzugter Ausführungsbeispiele unter Bezugnahme auf die Abbildungen noch eingehend veranschaulicht. Dabei zeigt:
  • Fig. 1
    einen Magnetfeldverlauf in einer Ionisationskammer,
    Fig. 2
    eine mehrstufige Anordnung.
  • Bei der in Fig. 1 skizzierten Anordnung ist der für die vorliegende Erfindung vorausgesetzte Magnetfeldverlauf in einer Ionisationskammer IK schematisch skizziert. Die lonisationskammer sei als ringförmig rotationssymmetrisch um eine Mittel-Längsachse SA, welche in Längsrichtung LR der Anordnung liegt, angenommen. Eine bezüglich der Ionisationskammer radial innen liegende Magnetanordnung MGi und eine radial außen liegende Magnetanordnung MGe erzeugen in der Ionisationskammer IK ein Magnetfeld, welches wenigstens einen Längsabschnitt MA1N erster Art und wenigstens einen diesem in Längsrichtung benachbarten Längsabschnitt MA2N zweier Art aufweist. Vorzugsweise weist das Magnetfeld in der lonisationskammer in Längsrichtung alternierend aufeinanderfolgend mehrere Längsabschnitte erster und zweiter Art auf wie in dem in Fig. 2 skizzierten Beispiel und wie in Fig. 1 durch einen weiteren Längsabschnitt MA2N+1 angedeutet.
  • Im Längsabschnitt zweiter Art MA2N zeigt das Magnetfeld eine überwiegend zur Längsachse SA parallele Feldrichtung, wogegen im Längsabschnitt MA1N erster Art das Magnetfeld eine demgegenüber größere radiale, d. h. senkrecht zur Längsachse gerichtete Komponente besitzt. Der Längsabschnitt MA1N erster Art ist im Beispiel so gewählt, dass die radiale Feldkomponente deutlich überwiegt. Längsabschnitte erster und zweiter Art können unmittelbar aneinander anschließend definiert sein, sind im skizzierten Beispiel zur klaren Abgrenzung mit überwiegender Längskomponente im Abschnitt MA2N und überwiegender Radialkomponente im Längsabschnitt MA1N aber durch einen nicht näher bezeichneten Übergangsabschnitt beabstandet. Im Längsabschnitt MA2N zweiter Art nimmt der Betrag des magnetischen Flusses von den seitlichen Kammerwänden zur Mitte hin ab, ebenso wie im Längsabschnitt erster Art der magnetische Fluss an den Kammerwänden größer ist als in der Mitte zwischen gegenüberliegenden Wandflächen. Die soweit beschriebene Magnetfeldstruktur ist an sich, z. B. aus DE 10014033 A1 bekannt, ebenso Magnetanordnungen zur Erzeugung einer solchen Magnetfeldstruktur. Die Feldverteilung des Magnetfeldes in Fig. 1 ist lediglich schematisch und nicht quantitativ zu verstehen.
  • Wesentlich für die vorliegende Erfindung ist nun, dass im Bereich des Längsabschnitts MA2N zweiter Art der radiale Abstand der einander senkrecht zur Längsachse SA gegenüberstehenden Wandflächen WF2iN, WF2eN geringer ist als der radiale Wandabstand von Wandflächen WF1iN, WF1eN im Längsabschnitt MA1N erster Art. Die lichte radiale Weite der Ionisationskammer ist damit im Längsabschnitt MA2N zweiter Art gegenüber dem Längsabschnitt MA1N erster Art reduziert. Vorzugsweise sind im Abschnitt MA2N beide gegenüberstehenden Wandflächen WF2iN, WF2eN gegenüber den in Längsrichtung benachbarten Wandflächen WF1iN, WF1eN radial zur Mitte der Ionisationskammer hin verschoben. Gegenüber einer Kammergeometrie mit in Abschnitten erster und zweiter Art gleichem radialem Wandabstand wird dadurch im Abschnitt MA2N eine Konzentration des Arbeitsgases, insbesondere auch der nicht ionisierten Atome im radialen inneren Bereich erzwungen, wo aufgrund geringeren magnetischen Flusses eine höhere Elektronendichte und damit höhere lonisationswahrscheinlichkeit vorliegt.
  • Der Verlauf der Wandflächen in Längsrichtung kann in beiden Abschnitten jeweils parallel zur Längsachse SA sein mit einer Stufe oder Rampe als Übergang. Bevorzugt ist aber zumindest im Längsabschnitt MA2N zweiter Art ein nicht zur Längsachse SA paralleler Verlauf, welcher dem Feldlinienverlauf des Magnetfelds in diesen Längsabschnitt besser angenähert ist als ein zu SA paralleler Wandverlauf. Die Wandfläche WF2iN und/oder WF2eN kann zur radialen Mitte der Ionisationskammer hin gewölbt sein mit einem minimalen Wandabstand D2L, welcher in Längsrichtung zum benachbarten Abschnitt MA1N erster Art hin zunimmt. Der Verlauf der Wandfläche WF2iN und/oder WF2eN kann kontinuierlich monoton gekrümmt oder einer solchen Form, z. B. mit mehreren geraden Teilverläufen angenähert sein.
  • In entsprechender Weise können die Wandflächen WF1iN und/oder WF1eN einen in Längsrichtung geraden oder gekrümmten Verlauf aufweisen, wobei bei diesen Flächen der vereinfachten Herstellung halber typischerweise ein zur Längsachse paralleler gerader Verlauf im Regelfall günstig ist.
  • Der radiale Wandabstand im Längsabschnitt MA2N zweiter Art bzw. bei nicht zu SA parallelem Wandverlauf der dortige minimale radiale Wandabstand D2L ist vorzugsweise um wenigstens 15 %, vorzugsweise um wenigstens 20 %, insbesondere um wenigstens 25 % geringer als der Wandabstand im benachbarten Längsabschnitt erster Art bzw. bei nicht zu SA parallelem Verlauf der dortige maximale Wandabstand D1M, d. h. D2L ≤ 0,85 D1M bzw. 0,80 D1M bzw. 0,75 D1M.
  • Die Wandflächen der Kammerwand können aus elektrisch isolierendem Material oder aus elektrisch leitendem Material oder auch teilweise aus elektrisch leitendem Material, insbesondere nicht magnetisierbarem Metall bestehen. In einer bevorzugten Ausführungsform sind die Wandflächen WF2iN, WF2eN metallisch und die Wandflächen WF1N, WF1eN isolierend. Die metallischen Wandflächen können dann vorteilhafterweise als Teile der Elektrodenanordnung Zwischenelektroden auf elektrischen Zwischenpotentialen zwischen den Potentialen einer Anode und einer Kathode bilden, wobei die Zwischenpotentiale vorgebbar sein können oder bei isolierten, nicht kontaktierten Zwischenelektroden sich im Betrieb gleitend einstellen. Bei metallischen Wandflächen WF2iN, WF2eN kann insbesondere auch vorgesehen sein, dass metallische Elektroden auf eine im wesentlichen zylindrische isolierende Kammerhülle auf oder eingesetzt und fixiert sind und durch ihre der Kammerhülle abgewandten, der Ionisationskammer und der gegenüberliegenden Wandfläche zugewandten Flächen die Wandflächen WF2iN bzw. WF2eN bilden.
  • In Fig. 2 ist eine in Längsrichtung mehrstufige Anordnung skizziert, bei welcher in an sich, z. B. aus DE 100 14 033 A1 bekannter Weise in Längsrichtung mehrere Längsabschnitte erster und zweiter Art alternierend aufeinanderfolgen, wobei zwei zu einem dazwischenliegenden Abschnitt erster Art (MA1N in Fig. 1) benachbarte Abschnitte zweiter Art (MA2N, MA2N+1 in Fig. 1) entgegengesetzte Längskomponenten des Magnetfelds zeigen. Während in Fig. 1 eine ringförmige Kammergeometrie um eine zentrale Mittel-Längsachse SA und eine innere und eine äußere Magnetanordnung Mgi, Mge vorgesehen sind, ist in der Skizze nach Fig. 2 eine bevorzugte Kammergeometrie mit einfach zusammenhängender Querschnittsfläche der die Mittellängsachse SAZ enthaltenden Ionisationskammer IKZ, welche insbesondere im wesentlichen drehsymmetrisch um die zur Längsrichtung parallele Mittellängsachse SAZ sein kann, zugrunde gelegt. Die Magnetanordnung besteht in diesem Fall in wiederum an sich bekannter Weise lediglich aus einer die Kammerhülle umgebenden äußeren Magnetanordnung MG. Beide einander gegenüberstehenden Wandflächen gehören dann zu derselben um die Mittellängsachse SAZ geschlossenen und die lonisationskammer seitlich umgebenden Kammerwand. Die lonisationskammer zeigt eine Strahlaustrittsöffnung, aus welcher ein im Regelfall leicht divergierender lonen- oder Plasmastrahl PB mit mittlerer Ionenbewegung in Längsrichtung LR austritt. Außerhalb der lonisationskammer bei der Austrittsöffnung AU und seitlich gegen diese versetzt ist als Teil der Elektrodenanordnung eine Kathode KA, welche auf Kathodenpotential liegt und Elektronen emittiert, angeordnet. Ein Teil IE dieser Elektronen wird durch das elektrische Feld der Elektrodenanordnung in die lonisationskammer geleitet und dient dort in bekannter Weise zur Ionisation des Arbeitsgases und dabei insbesondere auch der Erzeugung von Sekundärelektronen. Ein anderer Teil NE der von der Kathode emittierten Elektronen kann zur Neutralisierung eines positiv geladenen Teilchenstroms PB dienen.
  • In anderer vorteilhafter Ausführungsform ist keine externe Elektronenquelle zur Erzeugung von Primärelektronen für die Gasionisation und/oder für die Neutralisation eines Plasmastrahls mit überschüssiger positiver Ladung vorgesehen. Die Kathode kann dann insbeosndere durch einen die Austrittsöffnung der lonisationskammer umgebenden, auf Kathodenpotential liegendem Gehäuseteil gegeben sein.
  • Eine Anode A0 als Teil der Elektrodenanordnung ist an dem der Austrittsöffnung AU in Längsrichtung LR entgegengesetzten Ende der Ionisationskammer angeordnet und liegt auf Anodenpotential. Ein neutrales Arbeitsgas, für Antriebszwecke vorzugsweise ein schweres Edelgas wie Xenon (Xe) ist in die lonisationskammer einleitbar, wofür in der Skizze eine anodenseitige zentrale Zuleitung eingetragen ist. Eine typische Verteilung eines aus Elektronen und positiven Gasionen bestehenden Plasmas ist in gekreuzter Schraffur in der lonisationskammer eingezeichnet.
  • Die Magnetanordnung bildet in der lonisationskammer IKZ ein Magnetfeld aus, welches in Längsrichtung alternierend aufeinanderfolgend Längsabschnitte MA11, MA12 erster Art und Längsabschnitte MA21, MA22, MA23 zweiter Art aufweist. Es sei angenommen, dass, wie skizziert, der in diesem Fall dem Durchmesser der Ionisationskammer gleiche Abstand gegenüberliegender Wandflächen in allen Längsabschnitten erster Art sowie in gegebenenfalls vorliegenden Übergangsabschnitten konstant gleich DZ sei.
  • In dem skizzierten Beispiel, welches der Anschaulichkeit halber mehrere Gestaltungsvarianten für die Längsabschnitte MA21, MA22, MA23 zweiter Art vereint zeigt, ist die Ionisationskammer im Längsabschnitt MA21 durch eine die zentrale Längsachse ringförmig umgebende Einwölbung mit einer Wandfläche WF21 auf einen minimalen Durchmesser D21 L eingeengt. Die Wandfläche WF21 sei als elektrisch isolierend angenommen. Im Längsabschnitt MA22 ist der Durchmesser der Ionisationskammer bis auf einen Wert D22L reduziert, wobei durch größere Bemessung von D22L gegenüber D21 L einer eventuell auftretenden Aufweitung des Plasmas in der zweiten gegenüber der ersten Stufe Rechnung getragen werden kann und den elektrischen Wirkungsgrad beeinträchtigende Wandverluste gering gehalten werden können. Die Wandfläche WF22 oder die gesamte Durchmesserverengung in diesem Abstand sei metallisch und bilde eine erste Zwischenelektrode A1 auf einem festen Zwischenpotential. Im Abschnitt MA23 schließlich ist eine Elektrode A2 geringer radialer Dicke vorgesehen, welche den Durchmesser D23L in diesem Abschnitt nicht oder nicht nennenswert gegenüber DZ reduziert, und welche unkontaktiert im Betrieb gleitend ein Zwischenpotential einnimmt. Die Elektrodenanordnung kann auch in der Unterteilung in Längsrichtung von der Unterteilung des Magnetfelds in Längsabschnitte erster und zweiter Art abweichen.
  • Die vorstehend und die in den Ansprüchen angegebenen sowie die den Abbildungen entnehmbaren Merkmale sind sowohl einzeln als auch in verschiedener Kombination vorteilhaft realisierbar. Die Erfindung ist nicht auf die beschriebenen Ausführungsbeispiele beschränkt, sondern im Rahmen fachmännischen Könnens in mancherlei Weise abwandelbar. Insbesondere können die Wandflächen in den Abschnitten zweiter Art auf verschiedene andere Weisen geformt und dabei isolierend, elektrisch leitend oder auch in sich nur teilflächenweise elektrisch leitend sein. Die Abmessungen der einzelnen Längsabschnitte und/oder der Zwischenelektroden können von Stufe zu Stufe variieren. Merkmale bekannter Ionenbeschleuniger-Anordnungen können mit den erfindungswesentlichen Merkmalen kombiniert werden. Der Querschnitt der lonisationskammer kann auch von der drehsymmetrischen Form abweichen und eine langgestreckte Form annehmen.

Claims (9)

  1. Ionenbeschleuniger-Anordnung mit einer Ionisationskammer (IK), einer Elektrodenanordnung und einer Magnetanordnung (MG), wobei
    - die Ionisationskammer in einer Längsrichtung (LR) eine Ionen-Austrittsöffnung aufweist und quer zur Längsrichtung durch wenigstens eine Seitenwand begrenzt ist und dass über eine von der Austrittsöffnung beabstandete Zuleitungsöffnung Arbeitsgas in die Ionisationskammer einleitbar ist,
    - die Elektrodenanordnung wenigstens eine Kathode (KA) und eine Anode (A0) enthält und in der Ionisationskammer ein elektrisches Feld zur Beschleunigung von positiv geladenen Arbeitsgas-Ionen in Richtung der Austrittsöffnung erzeugt,
    - die Magnetanordnung in der Ionisationskammer ein Magnetfeld erzeugt, welches in Längsrichtung wenigstens einen Längsabschnitt zweiter Art (MA2N) mit im wesentlichen zur Längsrichtung paralleler Magnetfeldrichtung und einen diesem benachbarten Längsabschnitt erster Art (MA1N) mit demgegenüber höherem Anteil der Feldkomponente senkrecht zur Längsrichtung aufweist,
    - der Wandabstand zwischen einander gegenüberstehenden Wandflächen in dem Längsabschnitt zweiter Art (MA2N) geringer ist als in dem Längsabschnitt erster Art (MA1N),
    dadurch gekennzeichnet, dass im Längsabschnitt zweiter Art der Wandverlauf in Längsrichtung eine monoton gekrümmte Wölbung zur lonisationskammer hin aufweist.
  2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, dass der minimale Wandabstand im Längsabschnitt zweiter Art um wenigstens 15 %, insbesondere um wenigstens 25 % geringer ist als der maximale Wandabstand im Längsabschnitt erster Art.
  3. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass Längsabschnitte erster und zweiter Art alternierend aufeinanderfolgen.
  4. Anordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in einem Längsabschnitt erster Art eine Richtungsumkehr der Längskomponente des Magnetfelds eintritt.
  5. Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Kammerwand in einem Längsabschnitt zweiter Art zumindest teilweise durch eine Zwischenelektrode gebildet ist.
  6. Anordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Anode an dem in Längsrichtung der Austrittsöffnung entgegengesetzten Ende der Ionisationskammer angeordnet ist.
  7. Anordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Kathode als Primärelektronenquelle ausgebildet und außerhalb der Ionisationskammer seitlich gegen die Austrittsöffnung versetzt angeordnet ist.
  8. Anordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Kathode als Primärelektronenquelle ausgebildet und außerhalb der Ionisationskammer seitlich gegen die Austrittsöffnung versetzt angeordnet ist.
  9. Anordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass keine externe Elektronenquelle als Neutralisator oder Primärelektronenquelle vorgesehen ist.
EP03782395A 2003-01-11 2003-12-13 Ionenbeschleuniger-anordnung Expired - Lifetime EP1586221B8 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10300776A DE10300776B3 (de) 2003-01-11 2003-01-11 Ionenbeschleuniger-Anordnung
DE10300776 2003-01-11
PCT/EP2003/014210 WO2004064461A1 (de) 2003-01-11 2003-12-13 Ionenbeschleuniger-anordnung

Publications (3)

Publication Number Publication Date
EP1586221A1 EP1586221A1 (de) 2005-10-19
EP1586221B1 true EP1586221B1 (de) 2012-09-12
EP1586221B8 EP1586221B8 (de) 2012-10-24

Family

ID=32694882

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03782395A Expired - Lifetime EP1586221B8 (de) 2003-01-11 2003-12-13 Ionenbeschleuniger-anordnung

Country Status (8)

Country Link
US (1) US7247992B2 (de)
EP (1) EP1586221B8 (de)
JP (1) JP4741245B2 (de)
CN (1) CN100369529C (de)
AU (1) AU2003290039A1 (de)
DE (1) DE10300776B3 (de)
RU (1) RU2278484C2 (de)
WO (1) WO2004064461A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE529058C2 (sv) * 2005-07-08 2007-04-17 Plasma Surgical Invest Ltd Plasmaalstrande anordning, plasmakirurgisk anordning, användning av en plasmakirurgisk anordning och förfarande för att bilda ett plasma
KR101094919B1 (ko) * 2005-09-27 2011-12-16 삼성전자주식회사 플라즈마 가속기
US8006939B2 (en) * 2006-11-22 2011-08-30 Lockheed Martin Corporation Over-wing traveling-wave axial flow plasma accelerator
US7870720B2 (en) 2006-11-29 2011-01-18 Lockheed Martin Corporation Inlet electromagnetic flow control
DE102006059264A1 (de) * 2006-12-15 2008-06-19 Thales Electron Devices Gmbh Plasmabeschleunigeranordnung
GB2480997A (en) 2010-06-01 2011-12-14 Astrium Ltd Plasma thruster
CN102767497B (zh) * 2012-05-22 2014-06-18 北京卫星环境工程研究所 基于空间原子氧的无燃料航天器推进系统及推进方法
CN102767496B (zh) * 2012-05-22 2014-12-03 北京卫星环境工程研究所 化学-电磁混合可变比冲的推进器
CN103835905B (zh) * 2014-03-03 2016-06-15 哈尔滨工业大学 多级会切磁场等离子体推动器的变截面通道
US9480140B2 (en) 2014-11-21 2016-10-25 Applied Materials, Inc. Material modification by neutral beam source with selected collision angle
US9253868B1 (en) * 2014-11-21 2016-02-02 Applied Materials, Inc. Neutral beam source with plasma sheath-shaping neutralization grid
DE102016206039A1 (de) * 2016-04-12 2017-10-12 Airbus Ds Gmbh Entladungskammer eines Ionenantriebs, Ionenantrieb mit einer Entladungskammer und eine Blende zur Anbringung in einer Entladungskammer eines Ionenantriebs
CN105756875B (zh) * 2016-05-12 2018-06-19 哈尔滨工业大学 电离加速一体化空间碎片等离子体推进器
RU2651578C1 (ru) * 2017-01-16 2018-04-23 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Высоковольтная система электропитания сверхвысокочастотного генератора
DE102017204590B3 (de) 2017-03-20 2018-08-02 Airbus Defence and Space GmbH Cusp-Feld-Triebwerk
RU2764823C1 (ru) * 2020-11-16 2022-01-21 Общество С Ограниченной Отвественностью «Эдвансд Пропалшн Системс» Двунаправленный волновой плазменный двигатель для космического аппарата

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3613370A (en) * 1969-11-26 1971-10-19 Nasa Ion thruster
DE3264478D1 (en) * 1981-02-16 1985-08-08 Comp Generale Electricite Capacitor discharge excited gas laser
FR2500220B1 (fr) * 1981-02-16 1986-01-10 Comp Generale Electricite Laser a gaz excite par decharge de condensateurs
JPS6166868A (ja) * 1984-09-11 1986-04-05 Toshiba Corp Rf型イオン・エンジン
JPH0817116B2 (ja) * 1992-12-24 1996-02-21 核融合科学研究所長 プラズマ電磁加速器
US5599745A (en) * 1995-06-07 1997-02-04 Micron Technology, Inc. Method to provide a void between adjacent conducting lines in a semiconductor device
RU2092983C1 (ru) * 1996-04-01 1997-10-10 Исследовательский центр им.М.В.Келдыша Плазменный ускоритель
JP2959508B2 (ja) * 1997-02-14 1999-10-06 日新電機株式会社 プラズマ発生装置
DE19828704A1 (de) 1998-06-26 1999-12-30 Thomson Tubes Electroniques Gm Plasmabeschleuniger-Anordnung
DE10014033C2 (de) * 2000-03-22 2002-01-24 Thomson Tubes Electroniques Gm Plasma-Beschleuniger-Anordnung
DE10130464B4 (de) * 2001-06-23 2010-09-16 Thales Electron Devices Gmbh Plasmabeschleuniger-Anordnung

Also Published As

Publication number Publication date
US7247992B2 (en) 2007-07-24
RU2004123675A (ru) 2006-01-27
DE10300776B3 (de) 2004-09-02
CN1736131A (zh) 2006-02-15
RU2278484C2 (ru) 2006-06-20
CN100369529C (zh) 2008-02-13
JP4741245B2 (ja) 2011-08-03
EP1586221B8 (de) 2012-10-24
US20050212442A1 (en) 2005-09-29
AU2003290039A1 (en) 2004-08-10
EP1586221A1 (de) 2005-10-19
WO2004064461A1 (de) 2004-07-29
JP2006513537A (ja) 2006-04-20

Similar Documents

Publication Publication Date Title
EP1586221B1 (de) Ionenbeschleuniger-anordnung
EP1269020B1 (de) Plasma-beschleuniger-anordnung
DE10130464B4 (de) Plasmabeschleuniger-Anordnung
DE69219625T2 (de) Plasmatriebwerk mit geschlossener elektronenlaufbahn
DE602004013401T2 (de) Plasmabeschleuniger mit geschlossener Elektronenbahn
DE69414421T2 (de) Plasmabeschleuniger mit geschlossener elektronenlaufbahn
DE3429591A1 (de) Ionenquelle mit wenigstens zwei ionisationskammern, insbesondere zur bildung von chemisch aktiven ionenstrahlen
DE10014034C2 (de) Plasma-Beschleuniger-Anordnung
DE3328423A1 (de) Negative ionenquelle
EP1442640B1 (de) Plasmabeschleuniger-anordnung
DE3881579T2 (de) Ionenquelle.
DE3603356C2 (de)
DE10300728B3 (de) Ionenbeschleuniger-Anordnung
DE2527609C3 (de) Ionenquelle
EP2103198B1 (de) Plasmabeschleunigeranordnung
DE3700875C2 (de)
DE1809899A1 (de) Elektronenbeschleuniger
DE2904049A1 (de) Ionenquelle
DE3045468A1 (de) Elektronen-ionenquelle
DE2228117A1 (de) Hohlkathoden-duoplasmatron-ionenquelle
CH650104A5 (de) Mit bombardierung durch elektronen arbeitende ionenquelle.
DE2362723A1 (de) Quelle zur erzeugung einfach und/oder mehrfach geladener ionen
DE862331C (de) Vorrichtung mit einer Gluehkathodenstromrichterroehre mit einer Gas- und/oder Dampffuellung
DE1277941B (de) Gasentladungseinrichtung zur Erzeugung eines Hoechstfrequenzrauschspektrums
DE1102302B (de) Vorrichtung mit magnetischen Spiegeln zur Erzeugung hoher Plasmatemperaturen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050811

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KORNFELD, GUENTER

Inventor name: COUSTOU, GREGORY

Inventor name: KOCH, NORBERT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: THALES AIR SYSTEMS & ELECTRON DEVICES GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50314493

Country of ref document: DE

Representative=s name: BAUR & WEBER PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50314493

Country of ref document: DE

Representative=s name: GERHARD WEBER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50314493

Country of ref document: DE

Effective date: 20121108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130613

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50314493

Country of ref document: DE

Representative=s name: BAUR & WEBER PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314493

Country of ref document: DE

Effective date: 20130613

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50314493

Country of ref document: DE

Representative=s name: BAUR & WEBER PATENTANWAELTE PARTG MBB, DE

Effective date: 20130911

Ref country code: DE

Ref legal event code: R082

Ref document number: 50314493

Country of ref document: DE

Representative=s name: BAUR & WEBER PATENTANWAELTE PARTG MBB, DE

Effective date: 20121010

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314493

Country of ref document: DE

Owner name: THALES ELECTRONIC SYSTEMS GMBH, DE

Free format text: FORMER OWNER: THALES ELECTRON DEVICES GMBH, 89077 ULM, DE

Effective date: 20121010

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314493

Country of ref document: DE

Owner name: THALES ELECTRONIC SYSTEMS GMBH, DE

Free format text: FORMER OWNER: THALES AIR SYSTEMS & ELECTRON DEVICES GMBH, 89077 ULM, DE

Effective date: 20130911

Ref country code: DE

Ref legal event code: R082

Ref document number: 50314493

Country of ref document: DE

Representative=s name: BAUR & WEBER PATENTANWAELTE, DE

Effective date: 20130911

Ref country code: DE

Ref legal event code: R081

Ref document number: 50314493

Country of ref document: DE

Owner name: THALES ELECTRONIC SYSTEMS GMBH, DE

Free format text: FORMER OWNER: THALES ELECTRON DEVICES GMBH, 89077 ULM, DE

Effective date: 20120912

Ref country code: DE

Ref legal event code: R082

Ref document number: 50314493

Country of ref document: DE

Representative=s name: BAUR & WEBER PATENTANWAELTE, DE

Effective date: 20121010

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20181219

Year of fee payment: 16

Ref country code: FR

Payment date: 20181218

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181231

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50314493

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191213

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231