EP1583608B1 - Element d'impact a reliefs de surface - Google Patents

Element d'impact a reliefs de surface Download PDF

Info

Publication number
EP1583608B1
EP1583608B1 EP03713087A EP03713087A EP1583608B1 EP 1583608 B1 EP1583608 B1 EP 1583608B1 EP 03713087 A EP03713087 A EP 03713087A EP 03713087 A EP03713087 A EP 03713087A EP 1583608 B1 EP1583608 B1 EP 1583608B1
Authority
EP
European Patent Office
Prior art keywords
collision
rotation
comminution device
axis
essentially
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03713087A
Other languages
German (de)
English (en)
Other versions
EP1583608A1 (fr
Inventor
Johannes Petrus Andreas J. Van Der Zanden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Passage de Douro bvba
Original Assignee
Passage de Douro bvba
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Passage de Douro bvba filed Critical Passage de Douro bvba
Publication of EP1583608A1 publication Critical patent/EP1583608A1/fr
Application granted granted Critical
Publication of EP1583608B1 publication Critical patent/EP1583608B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/14Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices
    • B02C13/18Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices with beaters rigidly connected to the rotor
    • B02C13/1807Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices with beaters rigidly connected to the rotor the material to be crushed being thrown against an anvil or impact plate
    • B02C13/185Construction or shape of anvil or impact plate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C13/00Disintegrating by mills having rotary beater elements ; Hammer mills
    • B02C13/14Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices
    • B02C13/18Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices with beaters rigidly connected to the rotor
    • B02C13/1807Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices with beaters rigidly connected to the rotor the material to be crushed being thrown against an anvil or impact plate
    • B02C13/1814Disintegrating by mills having rotary beater elements ; Hammer mills with vertical rotor shaft, e.g. combined with sifting devices with beaters rigidly connected to the rotor the material to be crushed being thrown against an anvil or impact plate by means of beater or impeller elements fixed on top of a disc type rotor

Definitions

  • the invention relates to the field of the acceleration of material, in particular a stream of granular or particulate material, with the aid of centrifugal force, with, in particular, the aim of causing the accelerated grains or particles to collide with a stationary collision member at such a velocity that they break.
  • the movement of a stream of material can be accelerated with the aid of centrifugal force.
  • the material is fed onto the central part (the circular feed surface of a receiving and distributing member) of a rapidly rotating rotor and is then picked up by one or more accelerator members which are carried by said rotor with the aid of a support member and are provided with an acceleration surface that extends from the outer edge of said feed surface in the direction of the outer edge of the rotor between the central feed and the take-off end of said accelerator member.
  • the fed material is picked up from the receiving and distributing member by the central feed, then accelerated along the acceleration surface under the influence of centrifugal force and thereafter, when the accelerated material leaves the accelerator member at the location of said take-off end, is propelled outwards at high velocity.
  • the material moves at virtually constant velocity along a virtually straight stream that is directed forwards.
  • the material moves in a spiral stream that is directed backwards, viewed in the direction of rotation; during this movement the (relative) velocity increases (progressively) along said spiral path as the material moves further away from the axis of rotation.
  • the accelerated material can now be collected by a stationary collision member that is arranged in the straight stream that the material describes, with the aim of causing the material to break during the collision.
  • the stationary collision member can, for example, be formed by an armoured ring that is arranged centrally around the rotor. The material strikes the stationary collision member at the velocity that it has when it leaves the rotor. The comminution process takes place during this single impact, the equipment being referred to as a single impact crusher.
  • the material is accelerated with the aid of accelerator members that are carried by a rotor and are provided with acceleration surfaces that are directed radially (or forwards or backwards) and propelled outwards at high velocity - at a take-off angle ( ⁇ ) of 35° to 40° - onto a stationary collision member in the form of an armoured ring made up of anvil elements, which is arranged around the rotor a relatively short distance away.
  • the collision surfaces of the stationary collision member are in general so arranged that the collision with said stationary collision member as far as possible takes place perpendicularly.
  • the armoured ring blocks are arranged against the outside wall of the crusher or against the outside wall of a supporting construction in which the armoured ring blocks are arranged and which supporting construction can be installed and removed as a unit with the armoured ring blocks.
  • the protruding relief serves for comminution and the edge behind, from which the elements protrude, for supporting the protruding elements (relief) and for the support of the collision member as such by the crusher housing.
  • the edge behind, and sometimes also the bottom edge and the top edge are often provided with holes, grooves or projections which act as fixing member.
  • a direct multiple impact crusher which has a very much higher comminution intensity than a single impact crusher.
  • a direct multiple impact crusher is disclosed in WO 98/16319, which was drawn up in the name of the Applicant.
  • the rotor of the direct multiple impact crusher can also be of symmetrical construction, which makes it possible to allow the rotor to operate in both directions.
  • a device of this type is disclosed in WO 01/21313, which was drawn up in the name of the Applicant and is of particular importance with regard to the invention.
  • the known symmetrical rotor is provided with guide members that are symmetrical with respect to a radial plane from the axis of rotation of said rotor - for example V-shaped where the point is oriented towards the axis of rotation - which symmetrical guide member is provided with two guide surfaces, one for each direction of rotation, and each guide surface is associated with the impact surface of a co-rotating impact member.
  • the impulse forces that are generated during the collision are directly related to the take-off velocity at which the material leaves the rotor; in other words, the faster the rotor turns in a specific set-up the higher is the collision velocity and, usually, the better is the crushing result.
  • the collision velocity is determined by the take-off velocity and the collision angle ( ⁇ ) by the take-off angle ( ⁇ ) (and, of course, the angle at which the impact surface is arranged or at which the impact takes place).
  • the take-off velocity is determined by the rotational velocity of the rotor and is made up of a radial velocity component and a velocity component that is oriented perpendicularly to the radial velocity component, i.e. transverse velocity component, the magnitudes of which velocity components are determined by the length, shape and positioning of the accelerator member and the coefficient of friction.
  • the take-off angle ( ⁇ ) is essentially determined by the magnitudes of radial and transverse velocity components and is usually hardly influenced by the rotational velocity.
  • the take-off angle ( ⁇ ) is 45°; if the radial velocity component is greater, the take-off angle ( ⁇ ) increases and if the transverse velocity component is greater the take-off angle ( ⁇ ) decreases.
  • a (knurled) armoured ring with projecting points has the advantage that the armoured ring can be arranged around the rotor blade a short radial distance away and nevertheless a sufficiently large collision angle can be achieved. As a result the crusher housing can be made compact with a small diameter.
  • the projecting points have the disadvantage that these partially disturb the impacts, as a result of which an excess of particles that are too fine and too coarse are produced; however, the major disadvantage is that as the projecting points wear away an ever smoother ring starts to form that, at the short radial distance from the rotor, leads to the impacts taking place at an increasingly acute angle, as a result of which the probability of breakage decreases substantially and at a given point in time there are glancing blows, which are no longer effective.
  • the armoured ring must therefore be replaced in good time, as a result of which a great deal (usually more than 60 - 70 %) of the wear material remains and has to be thrown away.
  • a collision member in the form of a stator, or constructed with a smooth annular impact surface has the advantage that the impacts are not disturbed by projecting points as is the case with an armoured ring, as a result of which the probability of breakage is not substantially affected when wear occurs along the impact surface; moreover, such an impact member is symmetrical and makes it possible to allow the rotor to rotate in two directions.
  • the known stator has the disadvantage that in order to achieve an effective collision angle, > 60° and preferably 70°, the impact surface has to be arranged a large radial distance away from the axis of rotation, which leads to a large diameter of the stator, which then also has to have a certain thickness in order to achieve a practical tool life.
  • the crusher housing is equipped with a stator it has to be constructed with an appreciably larger diameter than when it is equipped with an armoured ring with projecting points, or collision surface relief, which, as has been stated, has to be arranged a much smaller distance from the rotor because the projecting points are otherwise not effective.
  • the stationary collision member which usually is made up of a number of individual blocks that are positioned next to one another in an annular support member, is the relatively low tensile strength of the structural material from which the block is made, which usually has a high hardness (> 60-65 Rc) and is consequently brittle.
  • the pointed collision surface relief can consequently break off or crack easily when material collides with it here at high velocity. This applies in particular for relatively harder, coarser (> 50 mm) fragments which impinge at a velocity of > 50 m/sec.
  • the material can contain other types of foreign constituents, for example in the form of metal particles (impurities) which have passed into the feed stream and can cause severe damage.
  • the aim of the invention is, therefore, to provide a method as described above that does not have these disadvantages or at least displays these to a lesser extent.
  • Said aim is achieved by essentially combining a stator and an armoured ring to give a stationary annular collision member that is arranged around the rotor, as it were in the form of a stator that on the inside, which faces the axis of rotation, is provided all round with protruding collision surface reliefs, each of which is provided with at least one collision surface that is arranged transversely in the ejection stream that the material describes when it is propelled outwards from the rotor.
  • the method and device with the collision member with collision surface relief is described in detail in the appended claims, to which reference is made here.
  • material is understood to be a fragment, grain or a particle, or a stream of fragments, grains or particles, i.e. irregularly shaped (but also regularly shaped) material that usually is fed as a stream into and through the crusher, designated in general here as material or granular material.
  • the collision member continues to be functional when the protruding collision surface relief starts to wear away and the collision member as it were gradually changes from an armoured ring with protruding collision surface relief to a stator with a smooth collision surface.
  • the method of the invention makes use of the fact that the direction of the movement of the material - in the ostensible, i.e. apparent, sense - changes. Specifically, when the material is propelled outwards from the rotor (which is provided with an accelerator member) at a take-off location, said material moves along an inclined straight ejection stream directed forwards, the direction of which in the apparent sense shifts increasingly in the radial direction as the grains move further away from the axis of rotation, viewed from the axis of rotation and viewed from a stationary standpoint, but the direction, of course, never becomes completely radial and is further explained in WO 02/07887, which was drawn up in the name of the Applicant.
  • the optimum collision angle is approximately 70°, but usually may not be less than 60° because then a sort of glancing blow takes place, as a result of which the probability of breakage decreases substantially (and the wear increases substantially).
  • r3 the second radial distance from the axis of rotation to the base circle.
  • the take-off angle between the straight line having thereon the take-off location that is oriented perpendicularly to the radial line from the axis of rotation having thereon the take-off location and the straight line, from the take-off location, that is determined by the movement of said material along the straight ejection stream.
  • ⁇ ' the base angle (in degrees) between the straight line having thereon the ejection stream and the straight line, having thereon the location where the straight line having thereon the ejection stream intersects the base circle, that is oriented perpendicularly to the straight line from the axis of rotation having thereon the location where the straight line having thereon the ejection stream intersects the base circle.
  • the radial distance between the take-off location and the impact location (smooth ring)-indicated as the ratio r3/r1 - that is needed to achieve a base angle ( ⁇ ') of 60° and 70° respectively, against the smooth ring is: Take-off angle ( ⁇ ) Base angle ( ⁇ ') 60° 70° 30° 1.73 2.53 35° 1.64 2.40 40° 1.53 2.24 45° 1.41 2.07 50° 1.29 1.77
  • the take-off angle ( ⁇ ) is usually between 40° and 50°, depending on the configuration of the rotor.
  • ⁇ ' base angle
  • collision angle
  • the free radial distance must then be approximately equal to the diameter of the rotor.
  • the requisite free radial distance is appreciably less; ⁇ 50 % of the diameter of the rotor.
  • the take-off angle ( ⁇ ) is usually flatter, between 30° and 40°.
  • the collision member according to the invention is not provided with a smooth annular collision surface.
  • the accelerator unit can consist of a guide member having a guide surface for accelerating the material on the rotor in one step or of a combination of a guide member and a co-rotating impact member that is associated with the guide member and has an impact surface for accelerating the material on the rotor in two steps.
  • the take-off location is the location from which the accelerated material leaves the rotor and is propelled outwards.
  • the take-off location is usually determined by the outer edge of the guide member in the case of a single impact crusher. However, if the guide surface is curved (backwards) the material can leave this guide surface before it has reached the outer edge. In the case of a multiple impact crusher the material is propelled outwards from the rotor from the co-rotating impact member.
  • the material can leave said co-rotating impact surface at the location where it impinges and thus rebounds immediately; however, the material can also be retained by the co-rotating impact surface following the impact and also make a guiding movement along the co-rotating impact surface.
  • the material can then leave at the location of the outer edge of the co-rotating impact surface or from a location between the co-rotating impact location and the outer edge.
  • the take-off location can therefore be defined in several ways but can be calculated fairly precisely and is thus predetermined.
  • the outer edge of the accelerator member or the co-rotating impact member is often coincident with the outer edge of the rotor.
  • a collision member must be sought where both [1] the collision surfaces of the relief segment (armoured ring) are arranged at an optimum collision angle ( ⁇ ) and [2] the base circle where the ring segment (stator) starts also describes an optimum base angle ( ⁇ ') with the ejection stream.
  • the rotor can be rotated in two directions, for which purpose the relief segments must be made symmetrical with two collision surfaces (one for each direction of rotation). Such a symmetry doubles the tool life of the rotor and guarantees uniform wear around the stationary collision member, even if the material is not fed precisely onto the centre of the rotor.
  • both collision surfaces have to be properly oriented to the ejection stream, such that the collision surfaces oriented in opposing directions do not interfere with the impacts (or at least do so as little as possible).
  • a non-optimum configuration leads to the ejection stream striking these surfaces oriented in opposing directions at a very flat angle (glancing blow), which substantially reduces the probability of breakage and accelerates wear.
  • the invention therefore provides the option of a higher r3/rl ratio - depending on the take-off angle ( ⁇ ), the desired base angle ( ⁇ ') and the possibly symmetrical configuration - i.e. equal to or greater than 1.75 - 1.80 - 1.85 - 1.90 - 1.95 - 2.0 - 2.25 - 2.50 and higher.
  • the guideline is that in the case of a symmetrical configuration the optimum r3/r1 ratio is usually between 1.70 and 2.0, up to a maximum of 2.50. In the case of a non-symmetrical configuration the r3/r1 ratio can be chosen to be higher, from 1.70 to 2.50. Furthermore, the "thickness" of the relief segment plays a significant role here, especially in the case of a symmetrical configuration.
  • the material first impinges on the collision surface relief (collision surface) and when the collision surface relief, i.e. the relief segment, wears away an essentially smooth annular collision surface is produced all round that is essentially coincident with the base circle that the ring segment describes, after which said smooth annular collision surface of said ring segment gradually wears away further until the outer edge of the collision member, which is located a fourth radial distance (r4) away from said axis of rotation that is greater than said third radial distance (r3), has been reached.
  • the thickness of the relief segment (r3 - r2) and the thickness of the ring segment (r4 - r3) can be "freely" chosen, the guideline being that:
  • the invention provides the option that the collision member consists of [1] a collision part that is cast as a ring (consists of one piece) and [2] two or more collision parts that together form a ring.
  • the size of the collision parts - i.e. the segments that the collision parts span - can be the same but can also differ.
  • the height of the various collision parts also does not have to be the same.
  • the collision parts are provided with one or more collision surface reliefs that protrude in the direction of the axis of rotation, i.e. extend between the base circle and the inscribed circle.
  • the shape of the collision surface relief can be point-shaped (for example triangular and V-shaped), but can also be made with truncated points (for example truncated V-shaped or trapezium-shaped) or with round "points" (even semicircular or completely circular collision parts), it being possible to combine several shapes of collision surface reliefs.
  • the embodiment provides the option that the collision element is made with two or more collision surface reliefs which not have to be the same shape.
  • the individual collision parts can be placed in a holder or container - such that an annular collision member is formed - that can be placed as a complete unit with the holder in the crusher chamber, for example bearing on projections that have been fixed to the inside wall of the crusher chamber.
  • the holder can consist of a flat disc on which the collision parts are placed, but also of a sleeve, or sleeve with disc (channel), the collision parts being placed against the inside of the sleeve wall.
  • the collision parts can also be arranged (with no special facilities) against the inside wall of the crusher housing.
  • the collision member is arranged such that it is as free as possible, that is to say that there is an open (free) space between the collision member and the inside wall of the crusher housing, which space extends at least over the middle of the collision member over at least 75 % of the height of the collision member, and bears on the support member or the crusher housing only along (one of) the edges.
  • the spacer member can be borne by the collision member or by the crusher housing. This open space fills with own granular material when the collision member wears through, as a result of which an autogenous layer of own material, which protects the crusher wall against wear, deposits in this space.
  • the collision parts can be placed cold in contact with one another on a support member (for example a flat disc that is fixed to the crusher wall all round); the blocks then as it were clamp against one another all round and are not able to move forwards (or are able to do so only to a limited extent).
  • a support member for example a flat disc that is fixed to the crusher wall all round
  • the blocks can also be provided with a fixing member, for example in the form of fixing projections that drop into openings in an annular disc and optionally also with a disc on top of the ring such that the blocks are clamped between two discs, it being possible to "lock" the upper ring disc, for example by the cover, but optionally also with a different type of locking mechanism. It is also possible to provide the collision parts with hooks by means of which they can be mounted, or with other types of fixing members.
  • a fixing member for example in the form of fixing projections that drop into openings in an annular disc and optionally also with a disc on top of the ring such that the blocks are clamped between two discs, it being possible to "lock" the upper ring disc, for example by the cover, but optionally also with a different type of locking mechanism. It is also possible to provide the collision parts with hooks by means of which they can be mounted, or with other types of fixing members.
  • the rotor usually turns about an essentially vertical axis of rotation, but the invention provides the option that the rotor rotates about an axis of rotation that is not vertical.
  • the invention provides the option that the collision parts are provided with a connector member by means of which the collision parts are connected to one another, for example in that they hook into one another or with the aid of other types of connector members.
  • the connection is made along the bottom edge and/or top edge, i.e. away from the middle of the collision member so that the gap between the collision member and the inside wall of the crusher is free, i.e. stays free.
  • the invention provides the option that two or more collision members, i.e. rings, are placed on top of one another, one of the rings being oriented transversely to the ejection stream.
  • the rings can be replaced when one of the rings has worn out.
  • the rings can be placed on top of one another in such a way that the collision surface reliefs are aligned one another, but can also be staggered so that the collision surface reliefs are interspersed.
  • the collision parts can be provided with projections and openings for projections along the top (and bottom), so that the collision parts can be firmly stacked (with a bond).
  • the invention also provides the option that the blocks are stacked with a stagger in the vertical direction such that a horizontal seam that runs parallel to the plane of rotation is not produced.
  • the invention provides the option that a surface (plate) on which material is able to deposit protrudes along the bottom in front of the collision member, which material lies against some of the collision surfaces like a sloping wall so that some of the material impinges on own material and some impinges on the collision surfaces, i.e. semi-autogenously.
  • the autogenous plate can extend all round but also in one or more segments, by means of which the comminution intensity of the crushing process can be substantially controlled.
  • the invention provides the option that the collision parts are provided with a strengthening member in the form of, for example, a steel plate that is firmly joined along one side to at least one of the sides of the collision member (not the collision side) or to one of the sides of the individual collision parts (not the collision side).
  • the collision part then consists of a collision block that is provided with a strengthening plate along one of the sides.
  • the strengthening plate is made of a material that has an appreciably higher tensile strength than the material from which the collision block is made.
  • the collision block (collision part), which is usually brittle because of the high hardness, is held firmly together by the strengthening member and does not fracture (crack) when the collision part starts to wear through or if the granular material contains (harder) foreign constituents of a different type, for example in the form of metal particles, which can impinge with high force and can cause fracture of the collision parts.
  • the high tensile strength of the strengthening member also offers the option of providing this with extremely efficient connector members (for connecting the collision parts to one another), fixing members (for fixing the collision parts to the support member or the crusher housing) and ridge members (for keeping the collision parts some distance away from the inside wall of the crusher housing).
  • a strengthening member can be very important for the method according to the invention because the back of the collision member (collision parts) is not (completely) supported as is the case with the known collision members.
  • the collision parts can fracture if they are subjected to too severe stress by (coarse and hard) colliding (impinging) material, and when the collision parts start to wear, especially when holes form in the back wall.
  • the strengthening element prevents, (or at least reduces the risk of) the collision parts then starting to crack, as a result of which pieces can break off.
  • the firm bond between the strengthening member and the collision block along the attachment surface can be achieved with the aid of heat.
  • the collision block can be applied in the fluid state to (onto) the strengthening member, but can also be applied in another way, for example in the form of a spray.
  • the adhesion between the attachment side (of the collision block) and the attachment surface (of the accelerator block) can be achieved with the aid of heat treatment, the invention providing, inter alia, the following production methods:
  • the strengthening member and the collision block are cast immediately one after the other and specifically the strengthening member is cast using a first melt and the collision block is cast immediately thereafter, using a second melt, onto the attachment side at the point in time when the first melt is still in the fluid state, or at least the attachment side is at a temperature such that complete fusion of the first and second melt takes place along the attachment surface/side, wherein the alloys of the first and second melt are not identical, wherein the composition of the alloys is so chosen that when the collision element is subjected to thermal after-treatment the collision block develops the desired hardness and the strengthening member retains the desired tensile strength, wherein the attachment side describes an essentially straight surface, wherein, during the production of the accelerator member, the attachment side describes an essentially horizontal surface, wherein, after the strengthening member has been cast, the attachment side is first provided with a film of an agent that prevents oxidation occurring along the attachment side or at least prevents this as far as possible.
  • the collision block is cast onto a strengthening member in the form of a piece of plate material.
  • a strengthening member in the form of a piece of plate material.
  • the adhesion along the attachment side can also be achieved with the aid of sintering and with the aid of soldering.
  • the invention provides the option that the collision member is partially composed, at least along the collision surfaces, of hard metal or ceramic material, which can have been cast in as separate sections or are subsequently fixed in openings, for example by gluing.
  • hard metal is understood to be an alloy of at least one hard, wear-resistant constituent in the form of tungsten carbide or titanium carbide and at least one soft metal constituent in the form of cobalt, iron or nickel.
  • ceramic material is understood to be a material that at least partially consists of aluminium oxide (corundum - Al 2 O 3 ) and/or at least partially consists of silicon oxide (SiO 2 ), but here can also be understood to be materials such as carbides and silica sand.
  • the advantage of the collision member (collision element) with collision surface relief according to the invention is thus that the collision member can be arranged a shorter free radial distance away from the rotor than in the case of a stator ring, whilst a good probability of breakage can nevertheless be achieved which, because disturbing influences are avoided, is virtually constant as wear progresses, whilst a maximum quantity of the wear material is consumed and the collision member can consist of one piece, that is a (stator) ring with protruding relief (points), which is much easier to install, is self-supporting and makes it possible to use even more wear material effectively; the collision member can also consist of several collision parts, which is less expensive to produce (cast).
  • Figures 1 and 2 explain, diagrammatically, the method according to the invention for causing granular material to collide at least once with the aid of at least one collision member with the aim of comminuting the material, comprising:
  • Figures 3 to 8 explain, diagrammatically, the method in more detail.
  • apparent angle of movement ( ⁇ ") As the material moves further away from the axis of rotation (33) along the straight stream (32) the apparent angle of movement ( ⁇ ") becomes ever smaller.
  • the take-off angle ( ⁇ ) and the shift in the apparent angle of movement ( ⁇ ") can be calculated reasonably accurately and simulated with the aid of a computer (see US 5 860 605 that was drawn up in the name of the Applicant) or established with the aid of high speed video recordings.
  • the reason for the shift in the apparent angle of movement ( ⁇ ") is that the grain leaves the rotor (35) from the take-off location (34) a first distance (r1) away from said axis of rotation (33), as a result of which the polar coordinates of the axis of rotation (33) are not coincident with the polar coordinates of the take-off location (34).
  • the apparent angle of movement
  • the take-off angle (in degrees) between the straight line (39) having thereon the take-off location (37) that is oriented perpendicularly to the radial line (40) from the axis of rotation (36) having thereon the take-off location (37) and the straight line (41), from the take-off location (37), that is determined by the movement of the material along the straight ejection stream (42).
  • ⁇ ' the base angle (in degrees) between the straight line (41) having thereon the ejection stream (42) and the straight line (43), having thereon the location (44) where the straight line (41) having thereon the ejection stream (42) intersects the base circle (38), that is oriented perpendicularly to the straight line (45) from the axis of rotation (36) having thereon the location (44) where the straight line (41) having thereon the ejection stream (42) intersects the base circle (38).
  • the radial free distance must be chosen fairly large.
  • the ratio (r3/r1) must be set at ⁇ 2.4 for a take-off angle ( ⁇ ) of 37.5° (Figure 6), at ⁇ 4.5 for a base angle ( ⁇ ') of 80° ( Figure 6) and at ⁇ 1.5 for a base angle ( ⁇ ') of 60° ( Figure 5).
  • Figure 8 shows, diagrammatically, a rotor (46) and a collision member (47) where the material is brought into a straight ejection stream (49) from a take-off location (48) at a take-off angle ( ⁇ ), the straight line (50) that is coincident with the ejection stream (49) intersecting the base circle (51) at a base angle ( ⁇ ').
  • a shift (decrease) in the apparent angle of movement ( ⁇ "') takes place along the straight ejection stream (49) which makes it possible to arrange the collision member (47) centrally around the rotor (46) at such a distance away from the axis of rotation (52) that the base angle ( ⁇ ') is essentially predetermined, which makes it possible first to allow the material to impinge at a specific collision angle ( ⁇ ) on the collision surface (53) of the collision surface relief (54) and then, when the collision surface relief (54) has worn away, to allow it to impinge on the base collision surface (55) that essentially is coincident with the base circle (51) at said base angle ( ⁇ ').
  • Figures 9 to 22 show, diagrammatically a number of (seven) devices which are possible according to the method of the invention, but the invention is not restricted to these devices.
  • Figures 9 and 10 show, diagrammatically, a first device (56) according to the method of the invention for causing granular material to collide at least once with the aid of at least one stationary collision member (57), comprising:
  • the support member (75) consists of an annular plate that extends from the inside (87) of the crusher housing (58) in the direction of the axis of rotation (62) on which support member (75) the collision member (57) is arranged.
  • the collision member (57) is located partially some distance away from the inside wall (87) of the crusher housing (58) such that at least part of the side (80) of the collision member (57) that faces the inside wall (87) of the crusher housing (58) is not in contact with the inside wall (87), such that there is an open space (88) all round between the collision member (57) and the inside wall (87) of the crusher housing (58), which open space (88) can fill with own material when the collision member (57) wears through, such that the own material protects the inside wall (87) of the crusher housing (58) against wear when said collision member (57) wears through (see Figures 23 to 25).
  • the space (88) between the collision member (57) and the inside wall (87) extends all round from the plane (89) that is essentially coincident with the plane along which the ejection stream (68) moves in the direction of the edges (90)(91) of the collision member (57) along at least part of the side (80) of the collision member (57) that faces the inside wall (87).
  • the inside wall (87) of the crusher housing (58) is provided here with a spacer member (two spacer members (92)(93) here) in the form of a spacer rim that is located between the top edge (90) of the collision member (57) and the inside wall (87) and the bottom edge (91) of the collision member (57) and the inside wall (87) such that the side (80) of the collision member (57) that faces the inside wall (87) of the crusher housing (58) is at least partially some distance away from the inside wall (87).
  • a spacer member two spacer members (92)(93) here
  • the rotor (60) can be rotated in both directions (61), forwards and backwards, and the collision surface relief (84) is provided with two collision surfaces (85) for each of the directions of rotation (61).
  • the collision surface relief (84) is of mirror symmetrical construction with respect to a radial plane (94) from the axis of rotation (62) that intersects the collision surface relief (84) in the middle between the two collision surfaces (85).
  • the invention provides the option that the collision surface (85) is not of straight construction but, for example, has the shape of the evolvent of the ejection stream (68); the collision surface (85) can also be oriented obliquely downwards.
  • FIGs 11 and 12 shows a second device (95) according to the method of the invention that is essentially identical to the first device (56) from Figures 9 and 10, where the collision member (96) consists of a (collision) part and is provided with a number of symmetrical point-shaped (triangular) collision surface reliefs (97) that are of symmetrical construction and are each provided with two identical collision surfaces (98).
  • the collision member (96) is supported by a support member (99) that consists of an annular plate that extends from the inside (100) of the crusher housing (101) in the direction of the axis of rotation (102), on which support member (99) the collision member (96) is arranged.
  • FIGS 13 and 14 show a third device (103) according to the method of the invention that is essentially identical to the first device (56) from Figures 9 and 10, where the collision member (104) consists of a number of collision parts (105), each of which is provided with two identical symmetrical collision surface reliefs (106)(107) each of which is provided with two identical collision surfaces (108).
  • the collision member (104) is supported by a support member (109) that consists of a holder (here an upright edge (110) and a baseplate (111)) for the collision member (104), which support member (109) can be removed together with the collision member (104) and which support member (109) (holder) bears on a support member (112) in the form of an annular rim.
  • FIGs 15 and 16 show a fourth device (113) according to the method of the invention that is essentially identical to the first device (56) from Figures 9 and 10, where the crusher housing (114) is provided with three essentially identical collision members (115)(116)(117), each of which consists of a (collision) part and each of which is provided with a number of symmetrical collision surface reliefs (118), which collision members (115)(116)(117) extend in parallel next to one another (stacked on top of one another) around the axis of rotation (119), the collision surfaces (120) of the middle collision member (116) being oriented essentially transversely to the ejection stream (121), such that the collision members (115)(116)(117) can be replaced when one collision member (116) has worn out as a result of wear.
  • the crusher housing (114) is provided with three essentially identical collision members (115)(116)(117), each of which consists of a (collision) part and each of which is provided with a number of symmetrical collision
  • collision members (115)(116)(117) are so stacked that the collision surface reliefs (118)(122) are staggered, but the collision members (115)(116)(117) can, of course, also be stacked precisely directly above one another (or with an arbitrary relationship).
  • the invention provides the option of a stacked construction of collision members which consist of several collision parts that are stacked in a straight relationship or arbitrary relationship.
  • Such a stacked construction has the advantage that grains that deflect downwards or upwards to some extent are effectively collected by the adjacent collision members (115)(117); furthermore, the inside wall (123) of the crusher chamber (124) is effectively protected.
  • Figures 17 and 18 show a fifth device (125) according to the method of the invention that is essentially identical to the first device (56) from Figures 9 and 10, where the collision member (126) is made up of a number of symmetrical collision parts (127), each of which is provided along the side (128) that faces the inside wall (129) of the crusher housing (130) along the top edge (131) with two spacer members (132) in the form of spacer ridges protruding in the direction of the outer edge (129) which hold the collision part (127) some distance away from the inside wall (129).
  • the collision member (126) is made up of a number of symmetrical collision parts (127), each of which is provided along the side (128) that faces the inside wall (129) of the crusher housing (130) along the top edge (131) with two spacer members (132) in the form of spacer ridges protruding in the direction of the outer edge (129) which hold the collision part (127) some distance away from the inside wall (129).
  • the collision parts (127) are each provided along the back (the side (128) that faces the inside wall of the crusher housing (140)) with a strengthening member (135) in the form of a metal strengthening plate that is made of a structural material having a greater tensile strength than the structural material from which the collision part (127) (block) is made.
  • the strengthening member (135) and the collision member (127) (block) are firmly joined to one another along the attachment side (back (128)).
  • the collision part (127) with strengthening member is discussed further in Figures 26 to 36.
  • the spacer members (132) form part of the strengthening member (135).
  • the collision member (126) is supported by a support member (133) that consists of an annular plate that extends from the inside wall (129) of the crusher housing (130) in the direction of the axis of rotation (134), on which support member (133) the collision member (126) is arranged.
  • the space (137) between the collision member (126) and the inside wall (129) of the crusher housing (130) is essentially completely open all round (is interrupted only by the spacer members (132)), such that granular material is able to deposit in this space (137) when the collision member (126) wears through (see Figures 23 to 25), such that the granular material protects the inside wall (129) of the crusher housing (130) against colliding material.
  • Figures 19 and 20 show a sixth device (138) according to the method of the invention that is essentially identical to the first device (56) from Figures 9 and 10, where the collision member (139) consists of a number of collision parts (140) that are provided with a symmetrical collision surface relief (141) that here is of (semi-)circular construction.
  • the collision member (139) consists of a number of collision parts (140) that are provided with a symmetrical collision surface relief (141) that here is of (semi-)circular construction.
  • Figures 21 and 22 show a seventh device (142) according to the method of the invention that is essentially identical to the first device (56) from Figures 9 and 10, where the collision member (143) is made up of cylindrical collision parts (144), the cylinder axis (145) of which is essentially parallel to the axis of rotation (146) of the rotor (147).
  • the collision member (143) is made up of cylindrical collision parts (144), the cylinder axis (145) of which is essentially parallel to the axis of rotation (146) of the rotor (147).
  • FIGs 23, 24 and 25 show, diagrammatically, the wearing through of a collision member (148a)(148b)(148c) that has been arranged some distance (149) away from the inside wall (150) of the crusher housing (151).
  • the collision member (148a) is supported by a support member (152) that consists of an annular plate that extends from the inside wall (150) of the crusher housing (151) in the direction of the axis of rotation (not indicated here).
  • FIGS 26, 27 and 28 show, diagrammatically, a collision member (155) that is provided with a strengthening member (156) that is provided with a fixing member (157) (in the form of two hooks) for fixing said collision member (155) (collision part (159)) to the support member (158).
  • the collision part (159) consists of a collision block (160) that is provided with a strengthening member (156) that extends along at least part of one of the sides (here the back (161)) of the collision block (160) that does not face the axis of rotation (not indicated here) and is firmly joined to the collision block (160), which strengthening member (156) is made of a structural material that has an appreciably greater tensile strength than the structural material from which the collision block (160) is made.
  • the high tensile strength makes it possible to construct the fixing member (157) very simply (limited size/volume) and effectively, here in the form of two hooks by means of which the collision parts (159) are mounted on the support member (158), and the collision parts (159) are supported by an annular plate (162) (support member).
  • the annular plate (162) is provided with a number of spacer ridges (163) which prevent the collision parts being able to shift.
  • the open space (164) between the collision member (155) and the crusher wall (165) can fill with an autogenous bed, as is indicated in Figures 23 to 25.
  • Figures 29, 30 and 31 show, diagrammatically, a symmetrical collision part (166) that is provided along the back (171) with a strengthening member (167) and is constructed with two trapezium-shaped impact surfaces (168), which makes it possible to save wear material.
  • Figures 32 and 33 show, diagrammatically, a symmetrical collision member (169) that is provided along the back (170) with a strengthening member (172), which strengthening member (172) is provided along the bottom (173) with a protruding edge (174) that drops into a groove (175) in the support member (176) that here consists of an annular plate that extends from the inside wall (177) of the crusher housing (178) in the direction of the axis of rotation (not indicated here).
  • FIGS 34 and 35 show, diagrammatically, a cylindrical collision part (180), the cylinder axis (181) of which is essentially parallel to the axis of rotation (not indicated here), which collision part (180) is provided along the bottom (182) with a strengthening member (183) that is provided with a protruding projection (184) (round here, but can also be made square or some other shape) that drops into an opening (185) in the support member (186) that here consists of an annular plate that extends from the inside wall (187) of the crusher housing (188) in the direction of the axis of rotation (not indicated here). Behind each of the collision parts (180) there is also a spacer member (189) fixed to the inside wall (187) of the crusher housing (188) in the form of a protruding projection.
  • Figure 36 shows, diagrammatically, two collision parts (190)(191) that are joined to one another with the aid of a connector member (192) in the form of a hook connector by means of which the blocks (190)(191) are connected to one another such that they form a "fixed" ring that is not able to shift backwards (outwards).
  • Figure 37 shows, diagrammatically, a collision member (193) that is arranged in a bed (194) of own material that extends between the collision member (193) and the inside wall (195) of the crusher housing (196) (that is along the back) and along the bottom (197) and along the top (198) of the collision member (193).
  • the collision member (193) bears on projections (not indicated here) that essentially are also in said bed (194) of own material.

Landscapes

  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Crushing And Pulverization Processes (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Vibration Dampers (AREA)
  • Attitude Control For Articles On Conveyors (AREA)

Claims (91)

  1. Procédé pour faire entrer en collision une matière granulaire au moins une fois à l'aide d'au moins un membre de collision, dans le but de soumettre la matière à une comminution, comprenant le fait de :
    - alimenter la matière sur un rotor (1) que l'on peut faire tourner (2) autour d'un axe de rotation (3) dans au moins une direction, ladite alimentation ayant lieu à l'aide d'un membre d'alimentation à un endroit d'alimentation (4) proche dudit axe de rotation (3), ladite matière alimentée se déplaçant vers l'extérieur par rapport audit endroit d'alimentation (4) dans la direction du bord externe (5) dudit rotor (1), sous l'influence du mouvement rotatif dudit rotor (1) ;
    - soumettre ladite matière alimentée à une accélération dans au moins une étape à l'aide d'une unité d'accélération (6), ladite unité d'accélération (6) étant supportée par ledit rotor (1) et étant constituée d'au moins un membre faisant office d'accélérateur qui est muni d'au moins une surface d'accélération (7) qui s'étend dans la direction dudit bord externe (5) dudit rotor (1), ladite matière soumise à une accélération quittant ladite unité d'accélération (6) à un endroit de décollage (8) et étant éjectée vers l'extérieur par rapport audit rotor (1) en se déplaçant vers l'extérieur le long d'un courant d'éjection rectiligne (9) en formant un angle de décollage (α) qui est déterminé par le mouvement de ladite matière le long du dudit courant d'éjection rectiligne (9), ladite matière éjectée vers l'extérieur se déplaçant le long dudit courant d'éjection (9) dans une direction de plus en plus radiale au fur et à mesure que la matière s'éloigne dudit axe de rotation (3), lorsqu'on regarde à partir d'un point de vue stationnaire et à partir dudit axe de rotation (3), ledit endroit de décollage (8) étant disposé à une première distance radiale (r1) à l'écart dudit axe de rotation (3) ;
    - faire entrer la matière éjectée en collision à l'aide d'un membre de collision stationnaire (13) (14) qui est disposé à une distance radiale par rapport audit axe de rotation (3) supérieure à la distance à laquelle est situé ledit bord externe (5) dudit rotor (1) et qui s'étend d'une manière essentiellement régulière autour dudit axe de rotation (3), au moins entre deux plans radiaux par rapport audit axe de rotation (3), ledit membre de collision (13) (14) étant constitué par au moins une partie de collision (15) qui s'étend entre un cercle inscrit (16) possédant un rayon (r2), dont le centre coïncide avec ledit axe de rotation (3), qui touche les côtés (17) (18) dudit membre de collision (13) (14) à l'intérieur, r2 étant > r1, et un cercle circonscrit (19) possédant un rayon (r4), dont le centre coïncide essentiellement avec ledit axe de rotation (3), qui touche les côtés (22) (21) dudit membre de collision (13) (14) à l'extérieur, r4 étant > r2, avec, entre ledit cercle inscrit (16) et ledit cercle circonscrit (19), un cercle de base essentiellement imaginaire (22) possédant un rayon (r3), dont le centre coïncide essentiellement avec ledit axe de rotation (3), qui divise essentiellement ledit membre de collision (13) (14) en un segment annulaire (23) et en un segment (24) présentant un relief, r2 étant < r3 et r3 étant < r4, ledit segment annulaire (23) s'étendant de manière essentiellement complète autour de l'axe de rotation (3) entre le cercle de base (22) et le cercle circonscrit (19), ledit segment (24) présentant un relief étant muni d'au moins un relief superficiel de collision (25) (26) qui fait saillie dans la direction dudit axe de rotation (3) et étant muni d'au moins une surface de collision (27) (28) qui s'étend essentiellement entre ledit cercle de base (22) et le cercle inscrit (16), tout en étant orienté essentiellement en direction transversale par rapport au courant d'éjection (9) ;
    - caractérisé en ce que
    - la troisième distance radiale (r3) s'étendant entre ledit axe de rotation (3) et ledit cercle de base (22) par rapport à ladite première distance radiale (r1) s'étendant entre ledit axe de rotation (3) et ledit endroit de décollage (8) - c'est-à-dire le rapport r3/r1 - étant sélectionnée pour obtenir une valeur telle que la ligne qui coïncide avec le courant d'éjection (9) coupe ledit cercle de base (22) en formant un angle de base (β') qui est égal ou supérieur à 60°, lorsqu'on regarde à partir d'un point de vue stationnaire, le rapport r3/r1 étant au moins égal ou supérieur à 1,70.
  2. Procédé selon la revendication 1, dans lequel ledit angle de base est égal ou supérieur à 65°.
  3. Procédé selon la revendication 1, dans lequel ledit angle de base est égal ou supérieur à 70°.
  4. Procédé selon la revendication 1, dans lequel ledit rapport r3/r1 est essentiellement déterminé par l'équation : r 3 r 1 cos α cos β
    Figure imgb0007

    dans laquelle :
    r1 représente la première distance radiale s'étendant entre ledit axe de rotation et ledit endroit de décollage ;
    r3 représente la deuxième distance radiale s'étendant entre ledit axe de rotation et ledit cercle de base ;
    α représente l'angle de décollage (en degrés) formé entre la ligne droite sur laquelle est disposé ledit endroit de décollage, qui est orientée perpendiculairement à la ligne radiale s'étendant depuis ledit axe de rotation, sur laquelle est disposé ledit endroit de décollage, et la ligne droite, s'étendant depuis ledit endroit de décollage, qui est déterminée par le mouvement de ladite matière le long dudit courant d'éjection rectiligne ;
    β' représente l'angle de base (en degrés) formé entre la ligne droite le long de laquelle s'étend ledit courant d'éjection et la ligne droite sur laquelle est disposé l'endroit où la ligne droite, sur laquelle s'étend ledit courant d'éjection, coupe ledit cercle de base, qui est orienté perpendiculairement à la ligne droite s'étendant à partir dudit axe de rotation, sur laquelle est disposé l'endroit où la ligne droite, le long de laquelle s'étend ledit courant d'éjection, coupe ledit cercle de base.
  5. Procédé selon la revendication 1, dans lequel ledit rapport r3/r1 est au moins égal ou supérieur à 1,75.
  6. Procédé selon la revendication 1, dans lequel ledit rapport r3/r1 est au moins égal ou supérieur à 1,80.
  7. Procédé selon la revendication 1, dans lequel ledit rapport r3/r1 est au moins égal ou supérieur à 1,85.
  8. Procédé selon la revendication 1, dans lequel ledit rapport r3/r1 est au moins égal ou supérieur à 1,90.
  9. Procédé selon la revendication 1, dans lequel ledit rapport r3/r1 est au moins égal ou supérieur à 1,95.
  10. Procédé selon la revendication 1, dans lequel ledit rapport r3/r1 est au moins égal ou supérieur à 2,0.
  11. Procédé selon la revendication 1, dans lequel ledit rapport r3/r1 est au moins égal ou supérieur à 2,25.
  12. Procédé selon la revendication 1, dans lequel ledit rapport r3/r1 est au moins égal ou supérieur à 2,50.
  13. Procédé selon la revendication 1, dans lequel la distance radiale s'étendant entre ledit cercle de base et ledit cercle inscrit, c'est-à-dire (r3 - r2) est égale ou inférieure à la distance radiale s'étendant entre ledit cercle de base et ledit cercle circonscrit, c'est-à-dire (r4 - r3).
  14. Procédé selon la revendication 13, dans lequel le rapport (r4 - r3)/(r3 - r2) est égal ou supérieur à 1,1.
  15. Procédé selon la revendication 13, dans lequel le rapport (r4 - r3)/(r3 - r2) est au moins égal ou supérieur à 1,15.
  16. Procédé selon la revendication 13, dans lequel le rapport (r4 - r3)/(r3 - r2) est au moins égal ou supérieur à 1,20.
  17. Procédé selon la revendication 13, dans lequel le rapport (r4 - r3)/(r3 - r2) est au moins égal ou supérieur à 1,25.
  18. Procédé selon la revendication 1, dans lequel ladite unité d'accélération est munie au moins d'un premier membre faisant office d'accélérateur et d'un deuxième membre faisant office d'accélérateur qui est associé audit premier membre faisant office d'accélérateur pour accélérer ladite matière en deux phases, ledit premier membre faisant office d'accélérateur étant muni d'au moins une première surface d'accélération pour accélérer ladite matière alimentée dans une première phase à l'aide d'un guidage le long de ladite première surface d'accélération, de telle sorte que ladite matière guidée est amenée dans une voie en spirale orientée vers l'arrière, lorsqu'on regarde à partir d'un point de vue qui se déplace de manière conjointe avec ledit premier membre faisant office d'accélérateur, ledit deuxième membre faisant office d'accélérateur étant muni d'au moins une deuxième surface d'accélération qui est orientée essentiellement transversalement par rapport à ladite voie en spirale, pour accélérer ladite matière guidée dans une deuxième phase en heurtant ladite deuxième surface d'accélération, les divers aspects étant tels que ladite première phase d'accélération a lieu à une distance radiale par rapport audit rotor plus courte que la distance radiale à laquelle a lieu ladite deuxième phase d'accélération qui se déroule à une distance d'écartement radial notablement supérieure.
  19. Procédé selon la revendication 1, dans lequel ladite unité d'accélération est munie d'au moins un membre de guidage pour accélérer ladite matière en une phase, ledit membre de guidage étant muni d'au moins une surface de guidage qui s'étend au moins en partie dans la direction dudit bord externe dudit rotor.
  20. Procédé selon la revendication 1, dans lequel ledit axe de rotation n'est pas orienté à la verticale.
  21. Procédé selon la revendication 1, dans lequel ledit élément de collision est constitué d'un bloc de collision qui est muni d'un membre de renforcement qui s'étend le long d'au moins une partie d'un des côtés dudit bloc de collision qui n'est pas tourné vers ledit axe de rotation et qui est joint fermement audit bloc de collision, ledit membre de renforcement étant constitué d'une matière qui possède une résistance à la traction notablement supérieure à celle de ladite matière à partir de laquelle est réalisé ledit bloc de collision.
  22. Dispositif de comminution pour la mise en oeuvre du procédé selon l'une quelconque des revendications 1 à 21, pour faire entrer en collision une matière granulaire au moins une fois à l'aide d'au moins un membre de collision (57), comprenant :
    - un logement du concasseur (58) qui est muni d'une chambre du concasseur (59) ;
    - un rotor (60) qui est arrangé dans ladite chambre du concasseur (59), ledit rotor étant à même d'effectuer des rotations dans au moins une direction autour d'un axe de rotation (62) et étant supporté par un arbre (63) ;
    - un membre d'alimentation (64) pour alimenter ladite matière sur ledit rotor (60) à un endroit d'alimentation (65) proche dudit axe de rotation (62) ;
    - au moins une unité d'accélération (69) pour soumettre ladite matière alimentée à une accélération dans au moins une étape, ladite unité d'accélération (69) étant supportée par ledit rotor (60) et étant constituée d'au moins un membre faisant office d'accélérateur qui est muni d'au moins une surface d'accélération qui s'étend dans la direction du bord externe (66) dudit rotor (60) pour soumettre la matière à une accélération sous l'influence de la force centrifuge, ladite matière soumise à une accélération quittant ladite unité d'accélération (69) à un endroit de décollage (67) et étant éjectée vers l'extérieur par rapport audit rotor (60) en se déplaçant vers l'extérieur le long d'un courant d'éjection rectiligne (68) en formant un angle de décollage (α) qui est déterminé par le mouvement de ladite matière le long dudit courant d'éjection rectiligne (68), ledit endroit de décollage (67) étant disposé à une première distance radiale (r1) à l'écart dudit axe de rotation (62) ;
    - au moins un membre de collision stationnaire (57) qui est supporté par ledit logement du concasseur (58) à l'aide d'un membre de support (75) et qui est disposé à une distance radiale par rapport audit axe de rotation (62) supérieure à la distance à laquelle est situé ledit bord externe (66) dudit rotor (60) et qui s'étend d'une manière essentiellement régulière autour dudit axe de rotation (62), au moins entre deux plans radiaux par rapport audit axe de rotation (62), ledit membre de collision (57) étant constitué par au moins une partie de collision (76) qui s'étend entre un cercle inscrit (77) possédant un rayon (r2), dont le centre coïncide avec ledit axe de rotation (62), qui touche les côtés (78) dudit membre de collision (57) à l'intérieur, r2 étant > r1, et un cercle circonscrit (79) possédant un rayon (r4), dont le centre coïncide essentiellement avec ledit axe de rotation (62), qui touche les côtés (80) dudit membre de collision (57) à l'extérieur, r4 étant > r2, avec, entre ledit cercle inscrit (77) et ledit cercle circonscrit (79), un cercle de base essentiellement imaginaire (81) possédant un rayon (r3), dont le centre coïncide essentiellement avec ledit axe de rotation (62), qui divise essentiellement ledit membre de collision (57) en un segment annulaire (82) et en un segment (83) présentant un relief, r2 étant < r3 et r3 étant < r4, ledit segment annulaire (82) s'étendant de manière essentiellement complète autour de l'axe de rotation (62) entre ledit cercle de base (81) et ledit cercle circonscrit (79), ledit segment (83) présentant un relief étant muni d'au moins un relief superficiel de collision (84) qui fait saillie dans la direction dudit axe de rotation (62) et étant muni d'au moins une surface de collision (85) qui s'étend entre ledit cercle de base (81) et ledit cercle inscrit (77), tout en étant orienté essentiellement en direction transversale par rapport au courant d'éjection (68) ;
    - caractérisé en ce que
    - la troisième distance radiale (r3) s'étendant entre ledit axe de rotation (62) et le cercle de base (81) par rapport à ladite première distance radiale (r1) s'étendant entre ledit axe de rotation (62) et ledit endroit de décollage (67) - c'est-à-dire le rapport r3/r1 - étant sélectionné pour obtenir une valeur telle que la ligne qui coïncide avec le courant d'éjection (68) coupe ledit cercle de base (81) en formant un angle de base (β') qui est égal ou supérieur à 60°, lorsqu'on regarde à partir d'un point de vue stationnaire, le rapport r3/r1 étant au moins égal ou supérieur à 1,70.
  23. Dispositif de comminution selon la revendication 22, dans lequel ledit angle de base est égal ou supérieur à 65°.
  24. Dispositif de comminution selon la revendication 22, dans lequel ledit angle de base est égal ou supérieur à 70°.
  25. Dispositif de comminution selon la revendication 22, dans lequel ledit rapport r3/r1 est essentiellement déterminé par l'équation : r 3 r 1 cos α cos β
    Figure imgb0008

    dans laquelle :
    r1 représente la première distance radiale s'étendant entre ledit axe de rotation et ledit endroit de décollage ;
    r3 représente la deuxième distance radiale s'étendant entre ledit axe de rotation et ledit cercle de base ;
    α représente l'angle de décollage (en degrés) formé entre la ligne droite sur laquelle est disposé ledit endroit de décollage, qui est orientée perpendiculairement à la ligne radiale s'étendant depuis ledit axe de rotation, sur laquelle est disposé ledit endroit de décollage, et la ligne droite, s'étendant depuis ledit endroit de décollage, qui est déterminée par le mouvement de ladite matière le long dudit courant d'éjection rectiligne ;
    β' représente l'angle de base (en degrés) formé entre la ligne droite le long de laquelle s'étend ledit courant d'éjection et la ligne droite sur laquelle est disposé l'endroit où la ligne droite, sur laquelle s'étend ledit courant d'éjection, coupe ledit cercle de base, qui est orienté perpendiculairement à la ligne droite s'étendant à partir dudit axe de rotation, sur laquelle est disposé l'endroit où la ligne droite, le long de laquelle s'étend ledit courant d'éjection, coupe ledit cercle de base.
  26. Dispositif de comminution selon la revendication 22, dans lequel ledit rapport r3/r1 est au moins égal ou supérieur à 1,75.
  27. Dispositif de comminution selon la revendication 22, dans lequel ledit rapport r3/r1 est au moins égal ou supérieur à 1,80.
  28. Dispositif de comminution selon la revendication 22, dans lequel ledit rapport r3/r1 est au moins égal ou supérieur à 1,85.
  29. Dispositif de comminution selon la revendication 22, dans lequel ledit rapport r3/r1 est au moins égal ou supérieur à 1,90.
  30. Dispositif de comminution selon la revendication 22, dans lequel ledit rapport r3/r1 est au moins égal ou supérieur à 1,95.
  31. Dispositif de comminution selon la revendication 22, dans lequel ledit rapport r3/r1 est au moins égal ou supérieur à 2,0.
  32. Dispositif de comminution selon la revendication 22, dans lequel ledit rapport r3/r1 est au moins égal ou supérieur à 2,25.
  33. Dispositif de comminution selon la revendication 22, dans lequel ledit rapport r3/r1 est au moins égal ou supérieur à 2,50.
  34. Dispositif de comminution selon la revendication 22, dans lequel la distance radiale s'étendant entre ledit cercle de base et ledit cercle inscrit, c'est-à-dire (r3 - r2) est égale ou inférieure à la distance radiale s'étendant entre ledit cercle de base et ledit cercle circonscrit, c'est-à-dire (r4 - r3).
  35. Dispositif de comminution selon la revendication 22, dans lequel le rapport (r4 - r3)/(r3 - r2) est égal ou supérieur à 1,1.
  36. Dispositif de comminution selon la revendication 22, dans lequel le rapport (r4 - r3)/(r3 - r2) est au moins égal ou supérieur à 1,15.
  37. Dispositif de comminution selon la revendication 22, dans lequel le rapport (r4 - r3)/(r3 - r2) est au moins égal ou supérieur à 1,20.
  38. Dispositif de comminution selon la revendication 22, dans lequel le rapport (r4 - r3)/(r3 - r2) est au moins égal ou supérieur à 1,25.
  39. Dispositif selon la revendication 22, dans lequel ladite unité d'accélération est munie au moins d'un premier membre faisant office d'accélérateur et d'un deuxième membre faisant office d'accélérateur qui est associé audit premier membre faisant office d'accélérateur pour accélérer ladite matière en deux phases, ledit premier membre faisant office d'accélérateur étant muni d'au moins une première surface d'accélération pour accélérer ladite matière alimentée dans une première phase à l'aide d'un guidage le long de ladite première surface d'accélération, de telle sorte que ladite matière guidée est amenée dans une voie en spirale orientée vers l'arrière, lorsqu'on regarde à partir d'un point de vue qui se déplace de manière conjointe avec ledit premier membre faisant office d'accélérateur, ledit deuxième membre faisant office d'accélérateur étant muni d'au moins une deuxième surface d'accélération qui est orientée essentiellement transversalement par rapport à ladite voie en spirale, pour accélérer ladite matière guidée dans une deuxième phase en heurtant ladite deuxième surface d'accélération, les divers aspects étant tels que ladite première phase d'accélération a lieu à une distance radiale par rapport audit rotor, plus courte que la distance radiale à laquelle a lieu ladite deuxième phase d'accélération qui se déroule à une distance d'écartement radial notablement supérieure.
  40. Dispositif selon la revendication 22, dans lequel ladite unité d'accélération est munie d'au moins un membre de guidage pour accélérer ladite matière en une phase, ledit membre de guidage étant muni d'au moins une surface de guidage qui s'étend au moins en partie dans la direction dudit bord externe dudit rotor.
  41. Dispositif de comminution selon la revendication 22, dans lequel ledit membre de collision est constitué d'une seule pièce.
  42. Dispositif de comminution selon la revendication 22, dans lequel ledit membre de collision est constitué par au moins deux éléments de collision, chacun étant muni d'au moins un relief superficiel de collision.
  43. Dispositif de comminution selon la revendication 22, dans lequel ledit rotor est à même d'effectuer des rotations dans les deux directions, vers l'avant et vers l'arrière, et ledit relief superficiel de collision est muni de deux surfaces de collision pour chacune desdites directions de rotation.
  44. Dispositif de comminution selon la revendication 43, dans lequel ledit relief de collision est disposé en symétrie spéculaire par rapport à un plan radial s'étendant à partir dudit axe de rotation, qui coupe ledit relief superficiel de collision au milieu entre les deux surfaces de collision.
  45. Dispositif de comminution selon la revendication 22, dans lequel ledit relief superficiel de collision possède essentiellement une structure pointue.
  46. Dispositif de comminution selon la revendication 22, dans lequel ledit relief superficiel de collision possède essentiellement une structure angulaire dans une vue en coupe parallèle au plan de rotation.
  47. Dispositif de comminution selon la revendication 22, dans lequel ledit relief superficiel de collision possède essentiellement une structure de forme trapézoïdale dans une vue en coupe parallèle au plan de rotation.
  48. Dispositif de comminution selon la revendication 22, dans lequel ledit relief superficiel de collision possède essentiellement une structure en V dans une vue en coupe parallèle au plan de rotation.
  49. Dispositif de comminution selon la revendication 22, dans lequel ledit relief superficiel de collision possède essentiellement une structure comprenant une pointe essentiellement arrondie dans une vue en coupe parallèle au plan de rotation.
  50. Dispositif de comminution selon la revendication 22, dans lequel ledit relief superficiel de collision possède une structure essentiellement en forme de demi-cercle dans une vue en coupe parallèle au plan de rotation.
  51. Dispositif de comminution selon la revendication 22, dans lequel ledit relief superficiel de collision possède une structure essentiellement en forme de V tronqué dans une vue en coupe parallèle au plan de rotation.
  52. Dispositif de comminution selon la revendication 22, dans lequel ledit relief superficiel de collision possède une structure essentiellement de forme arrondie dans une vue en coupe parallèle au plan de rotation.
  53. Dispositif de comminution selon la revendication 22, dans lequel ladite surface de collision possède une structure non rectiligne.
  54. Dispositif de comminution selon la revendication 22, dans lequel ladite surface de collision n'est pas orientée à la verticale.
  55. Dispositif de comminution selon la revendication 22, dans lequel ladite surface de collision décrit une circonvolution dudit courant d'éjection.
  56. Dispositif de comminution selon la revendication 22, dans lequel l'angle de collision (β) formé entre le courant d'éjection et ladite surface de collision est supérieur ou égal à 70°.
  57. Dispositif de comminution selon la revendication 22, dans lequel ledit membre de collision est supporté par ledit logement du concasseur à l'aide d'un membre de support.
  58. Dispositif de comminution selon la revendication 22, dans lequel ledit membre de collision entre essentiellement en contact ferme avec ladite paroi interne dudit logement du concasseur.
  59. Dispositif de comminution selon la revendication 22, dans lequel ladite paroi interne du concasseur est munie d'une partie résistant à l'usure qui s'étend autour dudit axe de rotation et qui est disposée à un endroit situé entre ledit membre de collision et la paroi interne dudit logement du concasseur pour protéger ladite paroi interne en cas d'usure complète dudit membre de collision.
  60. Dispositif de comminution selon la revendication 22, dans lequel ledit membre de collision entre essentiellement en contact ferme avec ladite paroi de protection pour ledit logement du concasseur.
  61. Dispositif de comminution selon la revendication 22, dans lequel ledit cercle circonscrit est situé à une certaine distance à l'écart de la paroi interne dudit logement du concasseur.
  62. Dispositif de comminution selon la revendication 22, dans lequel ledit membre de collision est disposé, au moins en partie, à une certaine distance à l'écart de la paroi interne dudit logement du concasseur, de telle sorte qu'au moins une partie du côté dudit membre de collision, qui est tourné vers la paroi interne dudit logement du concasseur, n'entre pas en contact avec ladite paroi interne, de telle sorte qu'un espace libre subsiste sur toute la distance entre ledit membre de collision et ladite paroi interne dudit logement du concasseur, ledit espace libre pouvant être rempli avec de la matière propre lorsque ledit membre de collision subit une usure complète, de telle sorte que ladite matière propre protège la paroi interne dudit logement du concasseur contre l'usure.
  63. Dispositif de comminution selon la revendication 62, dans lequel ledit espace libre ménagé entre ledit membre de collision et ladite paroi interne s'étend sur toute la distance par rapport au plan qui coïncide essentiellement avec le plan le long duquel se déplace ledit courant d'éjection dans la direction des bords dudit membre de collision le long d'au moins une partie du côté dudit membre de collision, qui est tourné vers ladite paroi externe.
  64. Dispositif de comminution selon la revendication 62, dans lequel ledit espace libre ménagé entre ledit membre de collision et ladite paroi interne dudit logement du concasseur est ouvert de manière essentiellement complète, de telle sorte que de la matière granulaire peut venir se déposer dans cet espace lorsque ledit membre de collision subit une usure complète, si bien que ladite matière granulaire protège la paroi interne dudit logement du concasseur contre la matière entrant en collision.
  65. Dispositif de comminution selon la revendication 62, dans lequel ladite partie de collision est prévue le long du côté tourné vers le bord externe dudit logement du concasseur, comprenant au moins un membre faisant office d'écarteur sous la forme d'au moins une nervure d'écartement qui fait saillie dans la direction dudit bord externe et qui maintient ladite partie de collision à une certaine distance à l'écart de ladite paroi interne, ladite nervure étant disposée le long d'au moins un des bords de ladite partie de collision, qui est essentiellement parallèle au plan de rotation.
  66. Dispositif de comminution selon la revendication 62, dans lequel ladite paroi interne dudit logement du concasseur est munie d'un membre faisant office d'écarteur sous la forme d'un rebord d'écartement qui est disposé entre le bord supérieur dudit membre de collision et ladite paroi interne, de telle sorte que la paroi dudit membre de collision, qui est tournée vers la paroi interne dudit logement du concasseur, est disposée au moins en partie à une certaine distance à l'écart de ladite paroi interne.
  67. Dispositif de comminution selon la revendication 22, dans lequel ledit membre de support est constitué d'un support pour ledit membre de collision, ledit support pouvant être retiré de manière conjointe avec ledit membre de collision.
  68. Dispositif de comminution selon la revendication 22, dans lequel ledit membre de support est constitué d'une plaque annulaire qui s'étend depuis l'intérieur dudit logement du concasseur dans la direction dudit axe de rotation, ledit membre de collision étant arrangé sur ladite plaque.
  69. Dispositif de comminution selon la revendication 22, dans lequel ledit élément de collision est muni d'au moins un membre de liaison pour relier lesdits éléments de collision les uns aux autres.
  70. Dispositif de comminution selon la revendication 22, dans lequel ledit élément de collision est muni d'au moins un membre de fixation pour fixer ledit élément de collision audit membre de support, de telle sorte que l'on peut retirer ledit élément de collision.
  71. Dispositif de comminution selon la revendication 22, dans lequel ledit élément de collision est constitué d'un bloc de collision qui est muni d'un membre de renforcement qui s'étend le long d'au moins une partie d'un des côtés dudit bloc de collision qui n'est pas tourné vers ledit axe de rotation et qui est joint fermement audit bloc de collision, ledit membre de renforcement étant constitué d'une matière qui possède une résistance à la traction notablement supérieure à celle de ladite matière à partir de laquelle est réalisé ledit bloc de collision.
  72. Dispositif de comminution selon la revendication 71, dans lequel ledit membre de renforcement possède essentiellement la forme d'une plaque, au moins une partie d'un des côtés de la plaque étant joint fermement audit côté dudit bloc de collision.
  73. Dispositif de comminution selon la revendication 71, dans lequel ledit membre de renforcement est muni d'au moins un membre de fixation.
  74. Dispositif de comminution selon la revendication 71, dans lequel ledit membre de renforcement est muni d'au moins un membre de liaison.
  75. Dispositif de comminution selon la revendication 71, dans lequel ledit membre de renforcement est muni d'au moins un membre d'écartement.
  76. Dispositif de comminution selon la revendication 71, dans lequel ledit membre de renforcement s'étend le long du côté dudit membre de collision, qui est tourné vers la paroi interne de ladite chambre du concasseur.
  77. Dispositif de comminution selon la revendication 71, dans lequel ledit membre de renforcement s'étend le long d'un côté qui parallèle au plan de rotation.
  78. Dispositif de comminution selon la revendication 22, dans lequel ledit membre de collision est constitué d'une matière qui est plus dure que ladite matière de collision.
  79. Dispositif de comminution selon la revendication 71, dans lequel ledit bloc de collision est constitué d'une matière dont la dureté supérieure ou égale à Rc55.
  80. Dispositif de comminution selon la revendication 22, dans lequel ledit membre de collision est muni d'au moins une partie en métal dur.
  81. Dispositif selon la revendication 80, dans lequel par l'expression « métal dur », on entend un alliage d'au moins un constituant dur, résistant à l'usure sous la forme de carbure de tungstène ou de carbure de titane et d'au moins un constituant de métal mou sous la forme de cobalt, de fer ou de nickel.
  82. Dispositif de comminution selon la revendication 22, dans lequel ledit membre de collision est muni d'au moins une partie en céramique.
  83. Dispositif selon la revendication 82, dans lequel par l'expression « matière céramique », on entend une matière qui est constituée au moins en partie d'oxyde d'aluminium (Al2O3).
  84. Dispositif selon la revendication 82, dans lequel par l'expression « matière céramique », on entend une matière qui est constituée au moins en partie d'oxyde de silicium (SiO2).
  85. Dispositif de comminution selon la revendication 22, dans lequel ledit logement du concasseur est muni de deux membres de collision essentiellement identiques qui s'étendent parallèlement l'un à côté de l'autre autour dudit axe de rotation, les surfaces de collision d'un desdits membres de collision étant orientées essentiellement en direction transversale par rapport audit courant d'éjection, de telle sorte que lesdits membres de collision peuvent être remplacés lorsqu'un membre de collision est devenu hors d'usage suite à l'usure.
  86. Dispositif de comminution selon la revendication 22, dans lequel ledit membre de collision est arrangé dans un lit de matière propre qui s'étend au moins entre ledit membre de collision et ladite paroi interne dudit logement du concasseur.
  87. Dispositif de comminution selon la revendication 71, dans lequel ledit membre de renforcement et ledit bloc de collision sont joints fermement l'un à l'autre en moulant de manière successive ledit membre de renforcement et ledit bloc de collision l'un après l'autre conformément à un premier procédé de production dans lequel ledit membre de renforcement est moulé en utilisant une première masse fondue et ledit bloc de collision est moulé immédiatement après, en utilisant une deuxième masse fondue, sur le côté de fixation dudit membre de renforcement, au moment où ladite première masse fondue est toujours à l'état fluide, au moins au moment où ledit côté de fixation se trouve à une température telle qu'une fusion complète de ladite première masse fondue et de ladite deuxième masse fondue a lieu le long dudit côté de fixation, les alliages desdites première et deuxième masses fondues n'étant pas identiques, la composition desdits alliages étant sélectionnées de telle sorte que, lorsque ledit membre faisant office d'accélérateur est soumis à un traitement thermique ultérieur, ledit bloc de collision développe la dureté désirée et ledit membre de renforcement conserve la résistance désirée à la traction, ledit côté de fixation décrivant une surface essentiellement rectiligne, et au cours de la production dudit élément de collision, ledit côté de fixation décrit une surface essentiellement horizontale et, après le moulage du membre de renforcement, ledit côté de fixation est muni en premier lieu d'un film constitué d'un agent qui empêche la formation d'oxydation le long dudit côté de fixation ou empêche au moins ladite formation pour autant que possible.
  88. Dispositif de comminution selon la revendication 71, dans lequel ledit membre de renforcement et ledit bloc de collision sont joints fermement l'un à l'autre et via le moulage simultané dudit membre de renforcement et dudit bloc de collision conformément à un deuxième procédé de production dans lequel ledit élément de collision, ledit membre de renforcement et ledit bloc de collision sont moulés de manière simultanée en utilisant une masse fondue de composition identique, seul ledit bloc de collision étant soumis à un traitement thermique ultérieur de telle sorte que ledit bloc de collision acquiert une dureté supérieure, et ainsi une résistance à la traction inférieure à celle dudit membre de renforcement.
  89. Dispositif de comminution selon la revendication 71, dans lequel ledit membre de renforcement et ledit bloc de collision sont joints fermement l'un à l'autre par moulage dudit bloc de collision sur au moins un côté dudit membre de renforcement, ledit bloc de collision étant moulé sur un membre de renforcement présentant la forme d'une pièce de matière en tôle métallique, dans lequel, avant de mouler ledit bloc de collision, la tôle métallique est amenée à une température qui est approximativement égale à la température de ladite masse fondue, et dans lequel, au cours de la production dudit élément de collision, une couche supplémentaire de matière fondue est également appliquée sur le côté arrière de ladite tôle métallique, c'est-à-dire le côté opposé au côté de fixation dudit membre de renforcement, de telle sorte que la tôle métallique adopte virtuellement la même température que celle de ladite masse fondue, ladite couche supplémentaire étant ensuite éliminée, ledit côté arrière étant muni à cet effet d'un film constitué d'un agent qui empêche l'adhérence entre ledit côté arrière et ladite couche supplémentaire moulée pardessus.
  90. Dispositif de comminution selon la revendication 71, dans lequel ledit membre de renforcement et ledit bloc de collision sont joints fermement l'un à l'autre en faisant adhérer ledit membre de renforcement sur ledit bloc de collision, l'adhérence le long du côté de fixation étant obtenu à l'aide d'un frittage ou à l'aide d'un brasage.
  91. Dispositif de comminution selon la revendication 71, dans lequel ledit membre de renforcement et ledit bloc de collision sont joints fermement l'un à l'autre par moulage dudit membre de renforcement dans un moule, ledit membre de renforcement étant arrangé au préalable dans le moule, ledit moule étant ensuite rempli en y versant une matière en fusion de telle sorte que la matière en fusion vient se déposer par moulage sur au moins deux surfaces de ladite tôle, la possibilité existant de munir les surfaces de la tôle d'un agent, ou de traiter ces surfaces d'une quelconque autre manière, à l'avance, pour obtenir la meilleure adhérence possible, de telle sorte que, lors du remplissage en versant la matière fondue dans le moule, ledit membre de renforcement est amené à une température qui est essentiellement égale à celle de la masse fondue, si bien que l'on n'obtient aucune contrainte ou seulement des contraintes limitées le long du côté de fixation au cours du refroidissement, la composition desdits alliages, respectivement de la matière de structure dont est constitué le bloc de collision et la matière de structure dont est constitué le membre de renforcement, étant sélectionnée de telle sorte que, lorsque ledit élément de collision est soumis à un traitement thermique ultérieur, ledit bloc de collision développe la dureté désirée et ledit membre de renforcement conserve la résistance désirée à la traction.
EP03713087A 2002-06-28 2003-03-12 Element d'impact a reliefs de surface Expired - Lifetime EP1583608B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NL1020957 2002-06-28
NL1020957A NL1020957C2 (nl) 2002-06-28 2002-06-28 Botsorgaan met botsrelief.
PCT/NL2003/000188 WO2004002629A1 (fr) 2002-06-28 2003-03-12 Element d'impact a reliefs de surface

Publications (2)

Publication Number Publication Date
EP1583608A1 EP1583608A1 (fr) 2005-10-12
EP1583608B1 true EP1583608B1 (fr) 2006-06-14

Family

ID=29997578

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03713087A Expired - Lifetime EP1583608B1 (fr) 2002-06-28 2003-03-12 Element d'impact a reliefs de surface

Country Status (7)

Country Link
EP (1) EP1583608B1 (fr)
AT (1) ATE329692T1 (fr)
AU (1) AU2003221266A1 (fr)
DE (1) DE60306204T2 (fr)
ES (1) ES2266796T3 (fr)
NL (1) NL1020957C2 (fr)
WO (1) WO2004002629A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008056759A1 (de) * 2008-11-11 2010-07-08 Technische Universität Bergakademie Freiberg Ringpanzerung eines Rotorschleuderbrechers
WO2013127507A1 (fr) 2012-02-29 2013-09-06 DICHTER, Ingrid Élément de percussion pour broyeur à percussion à arbre vertical

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2991949A (en) * 1959-05-14 1961-07-11 Ohio Gravel Company Rock crushing machine
NL1016393C2 (nl) * 2000-07-02 2002-01-03 Johannes Petrus Andreas Zanden Molen met gestroomlijnde ruimte.

Also Published As

Publication number Publication date
WO2004002629A9 (fr) 2004-03-18
WO2004002629A1 (fr) 2004-01-08
EP1583608A1 (fr) 2005-10-12
ATE329692T1 (de) 2006-07-15
DE60306204T2 (de) 2007-05-03
ES2266796T3 (es) 2007-03-01
AU2003221266A1 (en) 2004-01-19
DE60306204D1 (de) 2006-07-27
NL1020957C2 (nl) 2003-12-30

Similar Documents

Publication Publication Date Title
US20030213861A1 (en) Crusher wear components
US7028936B2 (en) Wear bars for impellers
EP1583608B1 (fr) Element d&#39;impact a reliefs de surface
US20030025020A1 (en) Wear resistant center feed impact impeller
AU2003251279B2 (en) A holder for a wear part of a crusher
JPH07275727A (ja) 竪型衝撃式破砕機
JPS60150847A (ja) クラツシヤ及びインペラ・アセンブリ
US20070295844A1 (en) Vertical Shaft Impact Crusher
JP3558176B2 (ja) 竪型衝撃式破砕機の運転方法
SK13862000A3 (sk) Metací žľab s jednou alebo viac kapsami
JP2007504933A (ja) 材料を粉砕するための装置及び方法
EP1567272B1 (fr) Element accelerateur composite structurel
US3995782A (en) Pulverizing device
US7051964B2 (en) Strengthening plate and method for the use thereof
EP2572792B1 (fr) Support de tête d&#39;usure pour broyeur VSI et procédé de réduction de l&#39;usure du rotor de broyeur VSI
US9133531B2 (en) High energy treatment of cutter substrates having a wear resistant layer
JP2810217B2 (ja) 衝撃式破砕機
JP2810229B2 (ja) 衝撃式破砕機
JP2001062321A (ja) 竪型衝撃式破砕機のロータ
JP2928011B2 (ja) 衝撃式破砕機
JPS62237956A (ja) 破砕装置
WO2001017685A1 (fr) Rotor et taillant sur rotor
WO2003035262A1 (fr) Rotor etage
JPS62237954A (ja) 破砕装置
JPS62237955A (ja) 破砕装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050617

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060614

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60306204

Country of ref document: DE

Date of ref document: 20060727

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: MICHELI & CIE INGENIEURS-CONSEILS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060914

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061114

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2266796

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060915

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080225

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20080215

Year of fee payment: 6

Ref country code: LU

Payment date: 20080318

Year of fee payment: 6

Ref country code: NL

Payment date: 20080327

Year of fee payment: 6

Ref country code: SE

Payment date: 20080312

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060914

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090219

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090312

Year of fee payment: 7

Ref country code: GB

Payment date: 20090317

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090213

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090325

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061215

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060614

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090227

Year of fee payment: 7

EUG Se: european patent has lapsed
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090313

BERE Be: lapsed

Owner name: *PASSAGE DE DOURO B.V.B.A.

Effective date: 20100331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100312

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090313