EP1570298A1 - Procede et systeme de capteurs a capacite multicible destines a la detection d'ecart et d'angle d'objets cibles en zone proche - Google Patents

Procede et systeme de capteurs a capacite multicible destines a la detection d'ecart et d'angle d'objets cibles en zone proche

Info

Publication number
EP1570298A1
EP1570298A1 EP03785706A EP03785706A EP1570298A1 EP 1570298 A1 EP1570298 A1 EP 1570298A1 EP 03785706 A EP03785706 A EP 03785706A EP 03785706 A EP03785706 A EP 03785706A EP 1570298 A1 EP1570298 A1 EP 1570298A1
Authority
EP
European Patent Office
Prior art keywords
sensor element
characteristic signal
sensor
target objects
receiving antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03785706A
Other languages
German (de)
English (en)
Inventor
Stefan Lindenmeier
Johann-Friedrich Luy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
DaimlerChrysler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DaimlerChrysler AG filed Critical DaimlerChrysler AG
Publication of EP1570298A1 publication Critical patent/EP1570298A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/42Simultaneous measurement of distance and other co-ordinates
    • G01S13/422Simultaneous measurement of distance and other co-ordinates sequential lobing, e.g. conical scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/003Bistatic radar systems; Multistatic radar systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector

Definitions

  • Multi-target method and multi-target sensor device for the distance and angular location of target objects in the vicinity
  • the present invention relates generally to a multi-target method and a multi-target sensor device for the distance and angular location of target objects in the close range. More specifically, the present invention relates to a multi-purpose radar sensor device for the distance and angular location of targets in close range and a method for operating such a multi-purpose radar sensor device.
  • the position determination of target objects can be carried out using conventional radar technology, among other things.
  • the distance and direction (angle) of a target object to be detected should be determined.
  • To determine the direction of a narrow beam lobe is pivoted a radar ge ⁇ .
  • antennas or antenna groups with a high directivity are required, the dimensions of which are a multiple of the wavelength of the radar.
  • the radar described above is disadvantageous in that it is relatively expensive and requires a large amount of space due to large antenna apertures.
  • radar sensors for determining the position of a target object have been developed in the prior art, which provide an angular information via triangulation.
  • Ghost targets mean that after detecting the distances of several targets on several sensor elements, there are several solutions for how the individual distance values can be combined with one another in order to infer the position of the target objects.
  • FIG. 1 Such a problem of ghost target detection can be seen from FIG. 1, in which the ambiguous evaluation of the distance information which is present on the sensor elements is shown in the event that two sensor elements 1 and 2 are used.
  • the ghost targets lie at the intersection points of the arcs, which are drawn from the sensor elements 1 and 2 (as the center point) by the respective target objects to be detected.
  • the target objects are doubled.
  • the multi-target radar according to the invention for specifying the distance and direction of a plurality of target objects comprises at least one sensor element which emits a characteristic signal (e.g.
  • each sensor element of this type is therefore multi-targetable, provided that only one target object is contained in each distance range.
  • two or more sensor elements according to the invention in order to obtain clear angular statements for all target objects without exception, two or more sensor elements according to the invention can be used, which are attached at a distance from one another which is greater than the distance resolution of the sensor elements.
  • the sensor device is thus fully multi-target, since the restriction that each target object is at a different distance from the sensor element always applies to two sensor elements. Only a few sensor elements are required, which are simply constructed, since neither mechanical swiveling, nor antennas with a large aperture, nor many receivers are necessary.
  • all signal paths between their transmitters and receivers can be used with one another, as a result of which a multiplicity of reflection points trace the target object contours. This allows particularly advantageously that not only direction and distance, but also the spatial shape of target objects or objects is recognized.
  • the beam lobes of the transmission antennas can also be pivoted in order to further increase the uniqueness. You can send and receive with different antenna lobes one after the other. For example, a maximum and a zero can alternately be aimed at the target objects.
  • FIG. 2 shows a sensor element for determining the angle of incidence for a single target object according to the invention
  • FIG. 3 shows the superimposition of the waves from two different directions in a sensor element from FIG. 2;
  • FIG. 4A shows a sensor element according to the invention with a pulse generator for determining the angle of incidence in the case of a target object or a multiplicity of target objects;
  • 4B shows a sensor element according to the invention with a PN generator for determining the angle of incidence for a target object or a multiplicity of target objects;
  • 4C shows a signal response functions (eg impulse response) over the distance, the maxima of the signal response functions being at the locations of target object distances;
  • FIG. 5 shows a further embodiment of the present invention with an arrangement of three sensor elements for detecting an extended object and a punctiform object
  • Fig. 6 shows another embodiment of the present invention with a plurality of sensor elements attached to a vehicle, which according to Table 1 in Transmit multiplex operated;
  • Tig. 7 the measurement of the angle to one or more line objects with the swiveling of a transmitting lobe with a maximum in the swiveling angle direction, the lobe of the receiving antenna being omnidirectional;
  • FIG. 10 shows the measurement of the angle to one or more line objects with the pivoting of a split transmitting lobe with a dip in the direction of the pivoting angle, the split lobe of the receiving antenna also being gradually pivoted.
  • a sensor element 10 for determining the angle of incidence ⁇ (direction) according to the invention in a single target object (not shown) is shown.
  • the sensor element 10 has a transmitting antenna 11 and at least two receiving antennas 1 and 2.
  • Each of the receiving antennas 1 and 2 is connected to a respective quadrature detector 21 and 22 which detects the respective signals Ui and U 2 of the receiving antennas in-phase (I ) and quadrature (Q) signals demodulated.
  • the demodulated signals subjected to an A / D conversion in the respective converters 31 and 31 and fed via the bus 40 to the processing unit 50, in which the angle of incidence ⁇ of the wave reflected by the single target object is calculated on the basis of the phase difference between the receiving antennas based on the following formula:
  • FIG. 3 illustrates the superimposition of the waves from two different directions on a single sensor element, which is constructed according to FIG. 2.
  • the determination of the direction of the target objects is carried out by the additional measurement of
  • the arrangement according to the invention consists of a sensor element 10 which detects the distances of several (not shown) target objects via the running time measurement and for each detected distance a ⁇ _ and a 2 separately detects the phase difference between two adjacent receiving antennas 1 and 2, from which then one assigned to each distance
  • Angular statement ⁇ _ and 0. 2 is calculated. Ambiguous angle statements are only possible in cases where two or more target objects are at the same distance from one sensor element.
  • a signal which changes over time is transmitted to the environment by a pulse generator 60 or a PN generator 60 'via the transmission antenna 11 and is scattered back at a number of target objects.
  • the backscattered signal is received and according to amount and phase in the baseband by the circuit shown analog to the circuit 2 transported.
  • a complex signal response function is formed over the distance, the phase of the complex function values corresponding to the phase of the received signal.
  • the impulse response in the case of a pulse radar or the correlation function in the case of a PN (pseudo-noise code) radar results in a response function over the distance from the sensor, which has maxima at those distances from those in which there are reflection points, ie target objects.
  • the correlation preferably takes place via a predetermined delay, which is provided via the respective programmable delay elements 61.
  • the phase of the signal backscattered from the respective target object can be read from each of the maxima, since the phase has been transported through to the baseband. If one now compares the two response functions generated in the two reception paths, the phase difference ⁇ of the signals backscattered from this target object can be determined for each target object, that is to say for each maximum. This phase difference is also present between the receiving antennas.
  • Maxima at which the phase differences ⁇ i and ⁇ 2 of the reflected signals of the target objects 1 and 2 are determined, can be seen from FIG. 4C, in which the signal response functions are shown by way of example using the impulse response as the distance. As already explained above, the maxima are located at the target object distances.
  • the response function on the first reception path to and from the first target object is shown with a solid line.
  • the response function on the second reception path to and from the second target object is shown with a dashed line.
  • the maxima coincide with two target objects located at the same or approximately the same distance from the one sensor element, so that no clear detection of the angles of incidence ⁇ ] _ and ⁇ is possible.
  • FIG. 5 shows the detection of the contour line of an extended target object (eg bumper) and a “point-shaped” target object (eg lamppost) with three networked sensor elements 10, 10 'and 10 ".
  • each sensor element 10, 10 'and 10 is necessary in order to obtain clear statements about the position of the scattering points and is carried out analogously to the above-described embodiments of the invention.
  • the use of a plurality of sensor elements 10, 10' and 10" different viewpoints means that no incorrect angle information is created if several scattering points are at the same distance from a sensor element.
  • at least the number of scatter points which is also the number of sensor elements, can be detected on extended target objects (such as, for example, bumpers).
  • extended target objects such as, for example, bumpers
  • the networking of all sensor elements via their radio link means that at least the number of scattering points is detected on extended target objects (such as bumpers), which is equal to the number of possible pair combinations between all sensor elements, as in 5.
  • Another target such as B. a lamppost can be detected by the sensors at the same time.
  • the evaluation of the measurement results of the networked sensor elements takes place via a suitable programming of the processing unit, which receives the phase and distance information from each of the sensor elements, and the z. B. in the event of ambiguity (no distance between the detected maxima), the unusable information is filtered out and only the information of the conveniently located sensor element is evaluated.
  • these can transmit and receive past one another simultaneously in the form of PN code sensors, or in time division multiplexing, as described in Table 1 below by way of example.
  • the sensor elements A to H in Table 1 operated in time division multiplex can be attached to a vehicle as shown in FIG. 6 in order to cover all relevant detection directions.
  • FIGS. 7 to 10 Another embodiment of angle detection with small antenna groups will now be described with reference to FIGS. 7 to 10. Different forms of beam swiveling and the application of the principle of intelligent antennas are used for location from different points of view.
  • Subgroup can be controlled separately according to amplitude and phase, antenna beams of different types can be generated and swiveled.
  • the variety of possible antenna lobes means that the angular resolution of the system becomes higher by successively pivoting several types of transmitting antenna lobes and simultaneously pivoting the receiving lobes. So you can use four degrees of freedom to vary the type of angle measurement:
  • Shape of the transmitting antenna lobe (e.g. with maximum or with a dip in the direction of the swivel angle)
  • a fifth degree of freedom can be seen as the presence of further synchronized sensor elements which can transmit simultaneously in any combination.
  • the different spatial positions of the sensor elements are also used to increase the variability of the measurements.
  • a transmitting lobe is pivoted with a maximum in the direction of the pivot angle, the lobe of the receiving antenna being omnidirectional.
  • Measurement 1 produces maxima in the transmission or at least higher transmission values for those swivel angles ⁇ , which are aimed at target objects or scatter points on target objects.
  • Panning angles ⁇ which are aimed at target objects or scattering points on target objects, are now, as expected, minima. Since the interference effects due to the overlapping of the backscatter of other target objects are different in this measurement than in measurement 1, the influence of the interference effects on the
  • Measurement accuracy can be reduced if the results of measurement 1 and measurement 2 are processed together.
  • a target object is therefore preferably in the direction ⁇ if measurement 1 simultaneously indicates an increased value and measurement 2 shows a minimum.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

La présente invention concerne un procédé à capacité multicible destiné à la détection d'écart et d'angle d'objets cibles en zone proche, comportant les étapes suivantes : a) émission d'un signal caractéristique à l'aide d'une antenne d'émission (11) d'un premier élément capteur (10) ; b) réception du signal caractéristique réfléchi sur au moins deux antennes de réception adjacentes (1, 2) du premier élément capteur (10) ; c) mesure de la différence de durée de parcours du signal caractéristique réfléchi jusqu'aux deux antennes de réception adjacentes (1, 2) du premier élément capteur (10), de manière à déterminer les écarts entre les objets cibles et le premier élément capteur (10) ; et, d) mesure des différences de phase du signal caractéristique réfléchi entre les deux antennes de réception adjacentes (1, 2) du premier élément capteur (10), de manière à déterminer les angles entre les objets cibles et le premier élément capteur (10). L'invention concerne également un dispositif destiné à la mise en oeuvre du procédé selon l'invention.
EP03785706A 2002-12-12 2003-12-02 Procede et systeme de capteurs a capacite multicible destines a la detection d'ecart et d'angle d'objets cibles en zone proche Withdrawn EP1570298A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10258367 2002-12-12
DE10258367A DE10258367A1 (de) 2002-12-12 2002-12-12 Mehrzielfähiges Verfahren und mehrzielfähige Sensorvorrichtung für die Abstands- und Winkelortung von Zielobjekten im Nahbereich
PCT/EP2003/013546 WO2004053523A1 (fr) 2002-12-12 2003-12-02 Procede et systeme de capteurs a capacite multicible destines a la detection d'ecart et d'angle d'objets cibles en zone proche

Publications (1)

Publication Number Publication Date
EP1570298A1 true EP1570298A1 (fr) 2005-09-07

Family

ID=32477622

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03785706A Withdrawn EP1570298A1 (fr) 2002-12-12 2003-12-02 Procede et systeme de capteurs a capacite multicible destines a la detection d'ecart et d'angle d'objets cibles en zone proche

Country Status (6)

Country Link
US (1) US20060114146A1 (fr)
EP (1) EP1570298A1 (fr)
JP (1) JP2006510009A (fr)
AU (1) AU2003294763A1 (fr)
DE (1) DE10258367A1 (fr)
WO (1) WO2004053523A1 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004003235A1 (de) * 2004-01-21 2005-08-11 Valeo Schalter Und Sensoren Gmbh Verfahren und Detektionsvorrichtung zum Bestimmen der Position eines Gegenstandes in einem Raum
DE102004044130A1 (de) * 2004-09-13 2006-03-30 Robert Bosch Gmbh Monostatischer planarer Mehrstrahlradarsensor
DE102004051690A1 (de) * 2004-10-23 2006-04-27 Volkswagen Ag Kraftfahrzeug mit einem Parklückendetektor
EP1757956A1 (fr) * 2005-08-24 2007-02-28 Leica Geosystems AG Procédé permettant la mesure de distance aux cibles multiples selon la procédé de mesure de phase
DE102006039357B4 (de) * 2005-09-12 2018-06-28 Heinz Lindenmeier Antennendiversityanlage zum Funkempfang für Fahrzeuge
DE102005044884A1 (de) * 2005-09-20 2007-03-29 Siemens Ag Radarsystem
DE102006043953A1 (de) * 2006-09-14 2008-03-27 Valeo Schalter Und Sensoren Gmbh Verfahren zum Betreiben eines Kraftfahrzeug-Radarsystems und Kraftfahrzeug-Radarsystem
DE102007017478A1 (de) * 2007-04-13 2008-10-16 Lindenmeier, Heinz, Prof. Dr. Ing. Empfangsanlage mit einer Schaltungsanordnung zur Unterdrückung von Umschaltstörungen bei Antennendiversity
JP5290766B2 (ja) * 2007-04-27 2013-09-18 パナソニック株式会社 形状測定装置および形状測定方法
EP2037593A3 (fr) * 2007-07-10 2016-10-12 Delphi Delco Electronics Europe GmbH Installation de diversité d'antennes pour la réception radio à bande relativement large dans des véhicules
DE102007039914A1 (de) * 2007-08-01 2009-02-05 Lindenmeier, Heinz, Prof. Dr. Ing. Antennendiversityanlage mit zwei Antennen für den Funkempfang in Fahrzeugen
CN101779139B (zh) * 2007-08-08 2013-08-07 富士通天株式会社 雷达装置和方位角检测方法
DE102008003532A1 (de) * 2007-09-06 2009-03-12 Lindenmeier, Heinz, Prof. Dr. Ing. Antenne für den Satellitenempfang
JP5091651B2 (ja) * 2007-12-14 2012-12-05 日立オートモティブシステムズ株式会社 レーダ装置及びターゲットの方位角計測方法
DE102007060769A1 (de) * 2007-12-17 2009-06-18 Robert Bosch Gmbh Monostatischer Mehrstrahl-Radarsensor, sowie Verfahren
JP2009198402A (ja) * 2008-02-22 2009-09-03 Toyota Motor Corp 衝突検出装置
JP5428488B2 (ja) * 2008-04-25 2014-02-26 三菱電機株式会社 車両傾斜検知装置
JP5501578B2 (ja) * 2008-06-30 2014-05-21 三菱電機株式会社 レーダ装置
PT2209221T (pt) * 2009-01-19 2018-12-27 Fuba Automotive Electronics Gmbh Sistema de recepção para a soma de sinais de antena em fase
DE102009011542A1 (de) * 2009-03-03 2010-09-09 Heinz Prof. Dr.-Ing. Lindenmeier Antenne für den Empfang zirkular in einer Drehrichtung der Polarisation ausgestrahlter Satellitenfunksignale
DE102009023514A1 (de) * 2009-05-30 2010-12-02 Heinz Prof. Dr.-Ing. Lindenmeier Antenne für zirkulare Polarisation mit einer leitenden Grundfläche
JP2013140072A (ja) * 2012-01-04 2013-07-18 Mitsubishi Electric Corp 車両傾斜検知装置
US9285468B2 (en) * 2012-07-12 2016-03-15 GM Global Technology Operations LLC Extended angular resolution in sensor arrays using secondary echoes
WO2018156652A1 (fr) 2017-02-23 2018-08-30 Richard Bishel Système de guidage de véhicule
TWI637149B (zh) * 2017-06-12 2018-10-01 東盛精密科技有限公司 Distance measuring device and distance detecting method thereof
DE102018129876B3 (de) * 2018-11-27 2020-04-16 Valeo Schalter Und Sensoren Gmbh Verfahren zum Bestimmen einer geometrischen Eigenschaft eines Objekts mittels einer Geradengleichung, Computerprogrammprodukt, elektronische Recheneinrichtung sowie Ultraschallsensorvorrichtung
US11353578B2 (en) * 2019-02-28 2022-06-07 Zoox, Inc. Recognizing radar reflections using position information
WO2021011469A1 (fr) * 2019-07-12 2021-01-21 Artis Llc Capteur de temps de vol en microsecondes (mtof)
CN114706080B (zh) * 2021-04-23 2024-08-23 长城汽车股份有限公司 车辆底盘障碍物检测方法、装置及终端设备

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3518672A (en) * 1969-02-28 1970-06-30 Raytheon Co Radar transponder
US4931977A (en) * 1987-10-30 1990-06-05 Canadian Marconi Company Vectorial adaptive filtering apparatus with convergence rate independent of signal parameters
US5541608A (en) * 1995-03-29 1996-07-30 Itt Corporation Hybrid amplitude/phase comparison direction finding system
DE19526448A1 (de) * 1995-07-20 1997-01-30 Bosch Gmbh Robert Radarsystem, insbesondere Kraftfahrzeug-Radarsystem
DE19538309C2 (de) * 1995-10-14 1998-10-15 Volkswagen Ag Radarverfahren zur Messung von Abständen und Relativgeschwindigkeiten zwischen einem Fahrzeug und einem oder mehreren Hindernissen
DE19543813A1 (de) * 1995-11-24 1997-05-28 Bosch Gmbh Robert Radarsystem, insbesondere Kraftfahrzeug-Radarsystem
GB9613645D0 (en) * 1996-06-28 1996-08-28 Cambridge Consultants Vehicle radar system
DE19711467C2 (de) * 1997-03-20 2000-12-07 Mannesmann Vdo Ag Verfahren zur Bestimmung des senkrechten Abstandes zwischen einem Objekt und einer sich örtlich verändernden Einrichtung
US6184830B1 (en) * 1997-10-02 2001-02-06 Raytheon Company Compensation of direction finding estimates for polarimetric errors
DE19853683C1 (de) * 1998-11-20 2000-09-07 Bosch Gmbh Robert Abstandsermittlungsvorrichtung und -verfahren
DE10026032A1 (de) * 2000-05-25 2001-11-29 Bayerische Motoren Werke Ag Vorrichtung und Verfahren zur Abstands- und Geschwindigkeitsbestimmung
JP2005518172A (ja) * 2002-02-22 2005-06-16 ダイムラークライスラー・アクチェンゲゼルシャフト 少なくとも1個のアンテナをテストする方法及びシステム
US6750804B2 (en) * 2002-04-04 2004-06-15 Raytheon Company System and method for detecting and estimating the direction of near-stationary targets in monostatic clutter using phase information
JP2007501397A (ja) * 2003-08-05 2007-01-25 ハワイ大学 安全確保のデータ伝送およびサテライトネットワーククロスリンクのためのマイクロ波自動同調アンテナアレー

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004053523A1 *

Also Published As

Publication number Publication date
JP2006510009A (ja) 2006-03-23
DE10258367A1 (de) 2004-07-08
US20060114146A1 (en) 2006-06-01
AU2003294763A1 (en) 2004-06-30
WO2004053523A1 (fr) 2004-06-24

Similar Documents

Publication Publication Date Title
EP1570298A1 (fr) Procede et systeme de capteurs a capacite multicible destines a la detection d'ecart et d'angle d'objets cibles en zone proche
DE69700875T2 (de) Kollisionswarnsystem
EP3204788B1 (fr) Capteur radar formeur d'image avec formation numérique horizontale de faisceau et mesure verticale d'objet par comparaison de phases en cas d'émetteurs décalés les uns par rapport aux autres
EP3198678B1 (fr) Dispositif radar mimo pour déterminer de façon découplée un angle d'élévation et un angle d'azimut d'un objet et procédé pour faire fonctionner un dispositif radar mimo
DE69709100T2 (de) Radarsystem für fahrzeuge
DE69528807T2 (de) Verfahren und Vorrichtung zum Entdecken von Antwortgeräten
EP1340097B1 (fr) Dispositif radar et son procede de fonctionnement
DE60131519T2 (de) Präzisions- radarhöhenmesser mit lokalisierungsfähigkeit der koordinaten von bodenmerkmalen
EP3818390B1 (fr) Procédé pour déterminer au moins une information relative à au moins un objet cible détecté par un système radar en particulier d'un véhicule, système radar et système d'aide à la conduite
WO2007085517A1 (fr) Dispositif et procédé de repérage multidimensionnel d’objets cibles, notamment de transpondeurs rfid
EP3452847B1 (fr) Véhicule automobile comprenant au moins deux capteurs radars
EP1628140B1 (fr) Antenne de réception mono-impulsion interférometrique avec suppression du lobe latéral améliorée
DE69914233T2 (de) Fahrzeug-Radargerät zum korrekten Entdecken von Gegenständen
EP3227719A1 (fr) Capteur radar, système de capteur radar, ainsi que procédé permettant de déterminer la position d'un objet par formation numérique horizontale et verticale de faisceaux pour mesurer des objets réfléchis sous forme de points ou de surfaces
DE10354872A1 (de) Einrichtung zur Erfassung einer Richtung eines Ziels unter Verwendung einer Phasendifferenz von über mehrere Kanäle empfangenen Radiowellensignalen
WO2007033967A1 (fr) Systeme radar a monoimpulsions destine a des vehicules
DE112012001279T5 (de) Fahrzeugneigungs-Detektiervorrichtung
DE102018217173A1 (de) Reflektorsystem in einem radarzielsimulator zum testen einer funktionsfähigkeit eines radarsensors und verfahren zum testen einer funktionsfähigkeit eines radarsensors
DE60027418T2 (de) Verfahren zur anzeige ausser-axialer signale für monopulsradar
EP2005209B1 (fr) Procédé et dispositif de saisie d'un ou de plusieurs objets dans l'environnement d'un véhicule à moteur
DE102009027003A1 (de) Optimierung der Schaltreihenfolge bei geschalteten Antennenarrays
DE112020001356T5 (de) Radar-Vorrichtigung und Sende-/Empfangsgruppenantenne
DE112019005500T5 (de) Antennenvorrichtung, bewegbarer körper und zielbestimmungsverfahren
DE102021112000A1 (de) Radarvorrichtung für fahrzeug, steuerverfahren der radarvorrichtung und radarsystem für fahrzeug
WO2020225314A1 (fr) Système de radar multistatique cohérent, en particulier pour une utilisation dans un véhicule

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050421

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AG

17Q First examination report despatched

Effective date: 20070529

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070703