EP1570277B1 - Herstellungsverfahren eines sockels zur testdurchführung integrierten schaltungen und ein solcher sockel - Google Patents

Herstellungsverfahren eines sockels zur testdurchführung integrierten schaltungen und ein solcher sockel Download PDF

Info

Publication number
EP1570277B1
EP1570277B1 EP03796616A EP03796616A EP1570277B1 EP 1570277 B1 EP1570277 B1 EP 1570277B1 EP 03796616 A EP03796616 A EP 03796616A EP 03796616 A EP03796616 A EP 03796616A EP 1570277 B1 EP1570277 B1 EP 1570277B1
Authority
EP
European Patent Office
Prior art keywords
socket
depositing
interconnect structure
contact elements
fabricating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP03796616A
Other languages
English (en)
French (fr)
Other versions
EP1570277A2 (de
Inventor
Igor K. Khandros
Gaetan L. Mathieu
Carl V. Reynolds
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FormFactor Inc
Original Assignee
FormFactor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FormFactor Inc filed Critical FormFactor Inc
Publication of EP1570277A2 publication Critical patent/EP1570277A2/de
Application granted granted Critical
Publication of EP1570277B1 publication Critical patent/EP1570277B1/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R3/00Apparatus or processes specially adapted for the manufacture or maintenance of measuring instruments, e.g. of probe tips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/04Housings; Supporting members; Arrangements of terminals
    • G01R1/0408Test fixtures or contact fields; Connectors or connecting adaptors; Test clips; Test sockets
    • G01R1/0433Sockets for IC's or transistors
    • G01R1/0483Sockets for un-leaded IC's having matrix type contact fields, e.g. BGA or PGA devices; Sockets for unpackaged, naked chips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • G01R1/07364Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch
    • G01R1/07378Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card with provisions for altering position, number or connection of probe tips; Adapting to differences in pitch using an intermediate adapter, e.g. space transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2863Contacting devices, e.g. sockets, burn-in boards or mounting fixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01055Cesium [Cs]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/4913Assembling to base an electrical component, e.g., capacitor, etc.
    • Y10T29/49144Assembling to base an electrical component, e.g., capacitor, etc. by metal fusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49147Assembling terminal to base
    • Y10T29/49149Assembling terminal to base by metal fusion bonding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49169Assembling electrical component directly to terminal or elongated conductor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49174Assembling terminal to elongated conductor
    • Y10T29/49179Assembling terminal to elongated conductor by metal fusion bonding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49194Assembling elongated conductors, e.g., splicing, etc.
    • Y10T29/49195Assembling elongated conductors, e.g., splicing, etc. with end-to-end orienting
    • Y10T29/49197Assembling elongated conductors, e.g., splicing, etc. with end-to-end orienting including fluid evacuating or pressurizing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • Y10T29/49208Contact or terminal manufacturing by assembling plural parts
    • Y10T29/4921Contact or terminal manufacturing by assembling plural parts with bonding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • Y10T29/49208Contact or terminal manufacturing by assembling plural parts
    • Y10T29/4921Contact or terminal manufacturing by assembling plural parts with bonding
    • Y10T29/49211Contact or terminal manufacturing by assembling plural parts with bonding of fused material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49204Contact or terminal manufacturing
    • Y10T29/49224Contact or terminal manufacturing with coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/532Conductor
    • Y10T29/53209Terminal or connector
    • Y10T29/53213Assembled to wire-type conductor
    • Y10T29/53217Means to simultaneously assemble multiple, independent conductors to terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble
    • Y10T29/5313Means to assemble electrical device
    • Y10T29/53265Means to assemble electrical device with work-holder for assembly

Definitions

  • This invention is directed to a socket for an integrated circuit. More particularly, the socket is a test or burn-in socket for connecting an integrated circuit to a tester for final testing or a burn-in board for burn-in.
  • Testing of semiconductor chips is an important operation in semiconductor manufacturing. Different types of tests are performed at different stages of a semiconductor chip manufacturing process. For example, initial tests can be performed on a wafer scale when semiconductor chips have been fabricated on a wafer, but have not yet been diced and packaged. These initial tests may help to identify defective chips prior to performing more expensive and time consuming packaging steps. After the initial testing, a wafer is diced and individual semiconductor chips are packaged. More exacting tests and burn-in operations are then performed on a chip scale to evaluate individual semiconductor chips or groups of multiple chips.
  • WO 96/15458 A1 proposes a method for forming resilient contact elements having a bonded wire and a contact structure having contact tips.
  • the resilient contact elements are formed on a sacrificial substrate.
  • a masking layer having openings therein is used to form the contact structure, while the tips are formed by embossing the sacrificial substrate.
  • Each one of the contact elements is separated from the sacrificial substrate.
  • the contact element may then be used attached to an interposer of a probe card assembly for testing a semiconductor waver.
  • resilient contact elements are attached to a space transformer and extending upward.
  • the upper section of the contact elements is needle-like and guided in through holes up to the bottom side of an IC to be tested and having BGA contacts corresponding to the tip's pitch pattern of the contact elements.
  • the through holes allow vertical movement of the contact elements while they fix the lateral movement.
  • Embodiments of the present invention provide a method including the steps of fabricating elements (e.g., cavities) in a sacrificial substrate, fabricating a contact structure utilizing the elements in the sacrificial substrate, fabricating an interconnect structure utilizing the contact structure, and fabricating a testing board utilizing the interconnect structure.
  • Other embodiments of the present invention provide a burn-in socket manufactured by this method.
  • the system includes a socket.
  • the socket includes a board, an interconnect structure manufactured to be insertable into the socket, the interconnect structure being coupled to the board.
  • the interconnect structure includes a substrate and first and second pads coupled to the substrate and coupled to each other through vias running through the substrate, the second pads coupling the interconnect structure to the board.
  • the interconnect structure also includes resilient contacts coupled to the first pads, the resilient contacts interacting with the integrated circuit during the testing.
  • the socket also includes a support structure coupled to the board that secures contact between the integrated circuit board and the resilient contacts during the testing.
  • Embodiments of the invention provide an interconnect structure that is inexpensively manufactured and easily insertable into a socket.
  • the interconnect structure is manufactured by forming a sacrificial substrate with cavities that is covered by a masking material having openings corresponding to the cavities.
  • a first plating process is performed by depositing conductive material, followed by coupling wires within the openings and performing another plating process by depositing more conductive material.
  • the interconnect structure is completed by first removing the masking material and sacrificial substrate. Ends of the wires are coupled opposite now-formed contact structures to a board.
  • a support device is coupled to the board to hold a tested integrated circuit.
  • FIGs. 1A-1B show side and bottom views, respectively, of a semiconductor chip 100 (e.g., an integrated circuit (IC)) that is to be tested according to embodiments of the present invention.
  • Semiconductor chip 100 can be packaged or unpackaged.
  • Semiconductor chip 100 can be, but is not limited to, a flip-chip semiconductor with solder ball contacts 102 (e.g., "controlled collapse chip connection” (also known as "C4")). In general, any type of semiconductor chip and contacts can be used.
  • FIGs. 2-6 illustrate a process of making an interconnect structure (e.g., a tile) 514 ( FIG. 5 ) for a socket 600 ( FIG. 6 ).
  • an interconnect structure e.g., a tile
  • FIGs. 2A-2B show cross-sectional and bottom views, respectively, of a sacrificial substrate 200 according to the present invention.
  • Sacrificial substrate 200 can be any material into which elements (e.g., cavities) 202 can be formed. As its name implies, sacrificial substrate 200 can be dissolved, etched away, or otherwise removed from a final structure.
  • a copper or aluminum sheet or foil can be used for sacrificial substrate 200.
  • silicon, ceramic, titanium-tungsten, and the like can be used for the sacrificial substrate 200.
  • cavities 202 are formed in the sacrificial substrate 200.
  • cavities 200 can be formed by embossing, etching, or the like. As will be seen, cavities 200 correspond to contacts 102 on semiconductor chip 100.
  • FIGs. 3A-3B show cross-sectional and bottom views, respectively, of sacrificial substrate 200 with a masking material 300 applied.
  • masking material 300 can be a photoresist material.
  • openings 302 are formed in masking material 300. These openings 302 expose cavities 202 that were formed in FIG. 2 .
  • FIGs. 4A-4D show additional processing steps according to embodiments of the present invention.
  • a conductive material 400 is deposited or plated in openings 302.
  • conductive material 400 can be a hard, metallic, and/or electrically conductive material.
  • conductive material 400 can be a rhodium material and a palladium cobalt alloy.
  • conductive material 400 forms a contact tip 402 that is used to contact semiconductor chip 100 during testing.
  • contact tip 402 can have one or more extensions as required by different specifications and embodiments.
  • contact tip 402 can be made of a plurality of layered materials, for example a soft gold layer, a nickel layer, and a hard gold layer.
  • an non-exhaustive list of other materials can include: silver, palladium, platinum, rhodium, conductive nitrides, conductive carbides, tungsten, titanium, molybdenum, rhenium, indium, osmium, refractory metals, or the like.
  • conductive material 400 will be used, and this term is meant to include one or more materials, and if more than one material, layered materials.
  • Conductive material 400 can be deposited in openings 302 using any suitable method. In various embodiments, the deposition method can be electroplating, physical or chemical vapor deposition, sputtering, or the like. The layers that form the contact tip 402 may be deposited in a like manner.
  • a release material can be deposited in openings 302 before depositing conductive material 400.
  • Use of a release material facilitates eventual removal of a contact structure 506 ( FIG. 5B ) formed by conductive material 400 from sacrificial substrate 200.
  • a release layer can be a layer of aluminum.
  • a seed layer consisting of a conductive material can also be deposited in openings 302 before depositing conductive material 400.
  • the seed layer can be deposited as a blanket layer over the entire sacrificial substrate 200 prior to depositing masking material 300. The seed layer can facilitate electroplating, if electroplating is used to deposit conductive material 400.
  • FIG. 4B shows a wire 404 being bonded in each opening 302 to conductive material 400 according to embodiments of the present invention.
  • Wire 404 can be bonded using well known wire bonding techniques.
  • wire bonding technique is found in U.S. Patent No. 5,601,740 to Eldridge et al. .
  • wire 404 can be made of a relatively soft, readily shapeable material, while in other embodiments other types of materials can be used. Examples of materials that can be used for wire 404 include gold, aluminum, copper, platinum, lead, tin, indium, their alloys, or the like.
  • the diameter of wire 404 can be in the range 6.35 to 254 ⁇ m (0.25 to 10 mils). It is to be appreciated, wire 404 can have other shaped cross-sections, such as rectangular or any other shape.
  • FIG. 4C shows wires 404 and conductive material 400 being plated with a second conductive material 406.
  • conductive material 406 is harder than a material making up wire 404 to strengthen the contact structure 506 ( FIG. 5B ).
  • suitable materials include, nickel, copper, solder, iron, cobalt; tin, boron, phosphorous, chromium, tungsten, molybdenum, bismuth, indium, cesium, antimony, gold, lead, tin, silver, rhodium, palladium, platinum, ruthenium, their alloys, or the like.
  • conductive material 406 can be 5 to 254 ⁇ m (0.2 to 10 mils) thick.
  • Conductive material 406 can be deposited on wire 404 using any suitable method.
  • deposition methods include electroplating, physical or chemical vapor deposition, sputtering, or the like.
  • Example methods for wire bonding a wire and then over plating the wire are described in U.S. Patent No. 5,476,211 to Khandros , U.S. Patent No. 5,917,707 to Khandros et al. , and U.S. Patent No. 6,336,269 to Eldridge et al. .
  • FIG. 4D illustrates the process after masking material 300 has been removed.
  • FIGs. 5A-5B show additional processing steps according to embodiments of the present invention.
  • FIG. 5A shows free ends 500 of wires 404 having conductive coating 406 being coupled to a wiring substrate 502 through use of coupling material 504.
  • the coupling can be done by wiring, soldering, brazing, or the like.
  • the step of coupling free end 500 of wires 404 having conductive coating 406 includes heating, wires 404 and contact structure 506 ( FIG. 5B ) can also be heat treated.
  • U.S. Patent No. 6,150,186 to Chen et al. which is incorporated herein by reference in its entirety, and which discloses methods for heat treating spring contact structures.
  • Wiring substrate 502 can be a ceramic substrate with pads 508 and 510 on opposite sides of wiring substrate 502. The pads 508 and 510 can be coupled through the use of vias 512 that run through wiring substrate 502. In other embodiments, wiring substrate 502 can be a printed circuit board or a printed wiring board. As also shown in FIG. 5B , sacrificial substrate 200 is removed, which can be done by etching, dissolving, or the like, the material forming sacrificial substrate 200. Another term for the wiring substrate 502 having contact elements 506, the pads 508, 510 and vias 512 is an interconnect structure 514.
  • interconnect structure 514 can be used to make a test or burn-in socket 600 ( FIG. 6 ).
  • interconnect structure 514 can be a modular interconnect structure, a drop-in interconnect structure, a plug-in interconnect structure, or the like, that is easily inserted into the socket 600, or any other socket.
  • interconnect structure 514 can be inexpensive and can be performed separately on a interconnect structure. In this way, defective interconnect structures can be identified and removed prior to formation of the socket.
  • This process has further advantages in that a interconnect structure with contact elements arranged at a fine pitch of less than 40 mils, including about 10 mils or less, can be made inexpensively and mass produced. Accordingly, this process is a reliable and inexpensive technique for producing a fine pitch socket.
  • FIG. 6 shows a socket 600 in which interconnect structure 514 is coupled and electrically wired to a board 602 (e.g., a test board or socket board) according to embodiments of the present invention.
  • board 602 can include a support structure 604 with a hinged closing device 606 for holding integrated circuit (IC) 100 during testing.
  • board 602 can be a test board or burn-in board.
  • Interconnect structure 514 can electrically connected to board 602 in any suitable manner, such as by soldering 608, pins (not shown), or any other type of contact.
  • the pins can form a friction fit with corresponding holes (not shown).
  • board 602 can be a socket board that is itself plugged into or otherwise attached to a larger test system (not shown).
  • FIG. 7 shows an embodiment with multiple interconnect structures 700 coupled to board 702 according to the present invention. Although shown with multiple IC's 100, in other embodiments one IC 100 with many ball contacts 102 can be tested. In this embodiment, an array of spring contacts 704 for contacting IC 100 is built by coupling a plurality of interconnect structures 700 to board 702 in various configurations depending on the configuration of ball contacts 102. As discussed above, in various embodiments board 702 can be a test board or burn in board, and a plurality of support structures similar to 604 (not shown in FIG. 7 for convenience) can be secured to board 702 around interconnect structures 700.
  • FIG. 8 shows a method 800 for making sockets according to embodiments of the present invention.
  • a sacrificial substrate is formed with any type or amount of elements formed in the substrate as desired. For example, cavities can be formed as depicted in FIG. 2 .
  • plated wires are formed based on the sacrificial substrate. This can be done through the various methods as described with respect to FIGs. 3-4 .
  • an interconnect structure is formed based on the plated wires. This can be done through the various methods described with respect to FIG. 5 .
  • a socket is formed based on the interconnect structure. Thus can be done through the various methods described with respect to FIGs. 6 and 7 .
  • FIG. 9 shows a flowchart depicting a more detailed method 900 for making sockets according to embodiments of the present invention.
  • cavities e.g. elements or cavities 202
  • a sacrificial substrate e.g., substrate 200
  • a masking material e.g., masking material 300
  • openings e.g., openings 302
  • conductive material e.g., conductive material 400
  • wires e.g., wires 404 are coupled to the conductive material.
  • a second conductive material e.g., conducting material 406 is deposited or plated on the wires and the first conductive material.
  • the masking material is removed.
  • a coupling material e.g., coupling material 504 is used to couple tips (e.g., tips 500) of the wires having the conductive material to a wiring substrate (e.g., wiring substrate 502).
  • the sacrificial substrate is removed to form an interconnect structure (e.g., interconnect structure 514 or 700).
  • the interconnect structure is coupled to a board (e.g., board 602 or 702) to form a socket (e.g., socket 600).

Claims (30)

  1. Verfahren zum Herstellen eines Sockels (600) mit einem Schaltungsaufbau (514), welches folgende Schritte aufweist:
    Herstellen federnd elastischer Kontaktelemente (400, 404) auf einem Opfersubstrat (200), welches Aushöhlungen (202) zur Bildung von Spitzen (402) der Kontaktelemente aufweist, wobei das Herstellen von Kontaktelementen aufweist:
    Ablegen eines Abdeckmaterials (300) auf dem Opfersubstrat (200);
    Bilden von Öffnungen (302) in dem Abdeckmaterial (300) entsprechend den Elementen (400, 404) und Exponieren der Aushöhlungen (202);
    Ablegen eines ersten leitfähigen Materials (400) in den Öffnungen (302);
    Verbinden eines Drahtes (404) mit dem leitenden Material (400) in jeder der Öffnungen (302);
    Ablegen von zweitem leitfähigem Material (406) über den Drähten (404); und
    Entfernen des Abdeckmaterials (300);
    Herstellen eines Schaltungsaufbaues (514) durch Anbringen der freien Enden der Drähte (404) der Kontaktelemente (400, 404) an einem Verdrahtungssubstrat (502), welches elektrische Leitstrecken abstützt, und zwar durch Verbinden der elektrischen Leitstrecken mit den freien Enden gegenüber den Spitzen und dann Entfernen des Opfersubstrats (200); und
    Herstellen eines Sockels (600), der eine Sockelplatte (602) hat und ausgestaltet ist, um ein Halbleiterplättchen (100), welches zu Testzwecken von einem Wafer geschnitten ist, zu halten, wobei das Herstellen des Sockels (600) das Anbringen des Schaltungsaufbaus (514) an die Sockelplatte (602) aufweist.
  2. Verfahren nach Anspruch 1, wobei der Schritt der Herstellung von Kontaktelementen die folgenden Schritte aufweist:
    Herstellen von Mehrfachaushöhlungen (202) in dem Opfersubstrat (200) für jedes Kontaktelement (400, 404); und
    Vorsehen des leitfähigen Materials (400) in den Aushöhlungen zur Bildung von Spitzen der Kontaktelemente (400, 404).
  3. Verfahren nach Anspruch 2, ferner mit dem Schritt des Ausarbeitens oder Ätzens des Opfersubstrates (200) zur Durchführung des Schrittes der Herstellung von Aushöhlungen.
  4. Verfahren nach Anspruch 1, ferner mit dem Schritt des Bildens des Opfersubstrates (200) aus Kupfer oder Aluminium oder Silizium oder Keramik oder Titan-Wolfram.
  5. Verfahren nach Anspruch 1, ferner mit dem Schritt des Nutzens von lichtbeständigem Material als Abdeckmaterial (300).
  6. Verfahren nach Anspruch 1, ferner mit dem Schritt des Verwendens von hartmetallischem Material oder Rhodiummaterial als das erste leitfähige Material (400).
  7. Verfahren nach Anspruch 1, wobei der Schritt des Ablegens von erstem leitfähigem Material folgende Schritte aufweist:
    Ablegen einer weichen Goldschicht;
    Ablegen einer Nickelschicht und
    Ablegen einer harten Goldschicht.
  8. Verfahren nach Anspruch 1, wobei der Schritt des Ablegens von erstem leitfähigem Material den Schritt des Verwendens des Elektroplattierens oder Aufdampfens oder Sputterns aufweist, um das Ablegen durchzuführen.
  9. Verfahren nach Anspruch 1, ferner mit dem Schritt des Ablegens eines Abgabemateriales in den Öffnungen (302) vor der Durchführung des Schrittes des Ablegens von erstem leitfähigem Material.
  10. Verfahren nach Anspruch 9, wobei der Schritt des Ablegens eines Abgabematerials den Schritt des Verwendens von Aluminium als das Ablegematerial aufweist.
  11. Verfahren nach Anspruch 1, ferner mit dem Schritt des Ablegens einer Impfschicht in der Öffnung (302) vor der Durchführung des Schrittes des Ablegens von erstem leitfähigem Material.
  12. Verfahren nach Anspruch 1, ferner mit dem Schritt des Ablegens einer Impfschicht über das Opfersubstrat (200) vor der Durchführung des Schrittes des Ablegens von Abdeckmaterial.
  13. Verfahren nach Anspruch 1, wobei der Schritt des Verbindens eines Drahtes den Schritt der Verwendung von weichem, formbarem Material oder Gold oder Aluminium oder Kupfer oder Platin oder Blei oder Zinn oder Indium oder einer Legierung für diesen Draht (404) aufweist.
  14. Verfahren nach Anspruch 1, ferner mit dem Schritt des Verwendens eines härteren Materials für das zweite leitfähige Material (406) als das Material, welches für den Draht (404) verwendet wird, um einen Kontaktaufbau zu verstärken.
  15. Verfahren nach Anspruch 1, wobei der Schritt des Verbindens den Schritt des Verwendens von Verdrahtungs- oder Löt- oder Wärmetechniken aufweist, um die freien Enden der Drähte (404) mit dem Verdrahtungssubstrat (502) zu verbinden.
  16. Verfahren nach Anspruch 1, ferner mit den Schritten des Bildens des Verdrahtungssubstrates (502) durch:
    Verbinden erster und zweiter Auflagen (508, 510) mit gegenüberliegenden Seiten eines Substrates; und
    Zusammenschalten der ersten und zweiten Auflage (508, 510) mit Durchkontaktierungen (512), welche zur Bildung der elektrischen Leitstrecken durch das Substrat hindurch laufen.
  17. Verfahren nach Anspruch 16, wobei der Schritt des Bildens des Verdrahtungssubstrates (502) den Schritt des Verwendens eines keramischen Materials aufweist, um das Substrat zu bilden.
  18. Verfahren nach Anspruch 1, ferner mit dem Schritt des Verbindens eines Stützaufbaus (604) mit der Sockelplatte (602), um das Halbleiterplättchen (100) vollständig innerhalb des Sockels (600) zu halten, welcher die Sockelplatte aufweist.
  19. Verfahren nach Anspruch 1, ferner mit folgendem Schritt:
    Anbringen eines Stützaufbaues (604) an der Sockelplatte (602), um das Halbleiterplättchen (100) in dem Sockel (600) während des Testens gegen die Kontaktelemente (400, 404) zu halten, wobei der Stützaufbau durch ein Drehgelenk mit der Sockelplatte verbunden ist.
  20. Verfahren nach Anspruch 1, wobei der Schritt des Herstellens eines Schaltungsaufbaues das Herstellen einer Vielzahl von Schaltungsaufbauten (514) aufweist, wobei jeder Schaltungsaufbau ein Verdrahtungssubstrat (502) mit den federnd elastischen Kontaktelementen (400, 404) aufweist und wobei der Schritt des Herstellens eines Sockels das Ausgestalten der Sockelplatte (602) zum Abstützen einer Vielzahl von Halbleiterplättchen (100) aufweist, die aus einem Wafer geschnitten sind, um gleichzeitig die Vielzahl von Schaltungsaufbauten zu kontaktieren.
  21. Verfahren nach Anspruch 1, ferner mit folgenden Schritten:
    Aufnehmen des Schaltungsaufbaues (514) in einer Aushöhlung, die von dem Sockel (600) gebildet ist, wobei der Sockel ein Bodenteil und zwei Seitenteile (604) aufweist, die an dem Bodenteil angebracht sind, um die Aushöhlung zu bilden; und
    Halten des Halbleiterplättchens (100) in der Aushöhlung des Sockels, um während des Testens mit den Spitzen der Kontaktelemente (400, 404) Kontakt sicherzustellen, wobei ein Oberteil (606) verwendet wird, das an einem Seitenteil (604) des Sockels durch ein Drehgelenk angebracht ist.
  22. Verfahren nach Anspruch 21, wobei das Halbleiterplättchen (100) eine integrierte Schaltung aufweist, die auf einem in einem Gebinde aufgenommenen Werkzeug vorgesehen ist.
  23. Verfahren nach Anspruch 1, ferner mit folgendem Schritt:
    Durchführen des Brennens beim Testen des Halbleiterplättchens (100), wobei das Halbleiterplättchen von der Sockelplatte (602) abgestützt wird.
  24. Verfahren nach Anspruch 1, mit folgenden Schritten:
    Vorsehen eines Halbleiterplättchens (100) in dem Sockel (600), so dass bei Anordnung des Halbleiterplättchens in dem Sockel elektrische Verbinder (102) des Halbleiterplättchens die federnd elastischen Kontaktelemente (400, 404) kontaktieren können; und
    Durchführen des Brennens beim Testen der Testvorrichtung, wobei das Halbleiterplättchen (100) in dem Sockel (600) gehalten wird.
  25. Verfahren nach Anspruch 1, ferner mit folgenden Schritten:
    Vorsehen der federnd elastischen Kontaktelemente (400, 404) auf einer Vielzahl der Verdrahtungssubstrate (502); und
    Ineingrifftreten mit einer Vielzahl von Halbleiterplättchen (100), deren jedes in einem Gebinde vorgesehen ist nach dem Zerschneiden aus einem Wafer, so dass jedes der Halbleiterplättchen (100) die federnd elastischen Kontaktelemente (400, 404) auf einem der Verdrahtungssubstrate (502) kontaktiert.
  26. System zum Anwenden einer integrierten Schaltung (100) mit:
    einem Sockel (600) mit einer Sockelplatte (602) und einer Ausgestaltung zum Haltern der integrierten Schaltung (100);
    wobei ein Schaltungsaufbau (514) hergestellt ist, um in den Sockel (600) einführbar zu sein, wobei der Schaltungsaufbau mit der Sockelplatte (602) verbunden ist, und mit:
    einem Verdrahtungssubstrat (502),
    ersten und zweiten Auflagen (508, 510), die mit dem Verdrahtungssubstrat (502) verbunden sind und miteinander über Durchkontaktierungen (512) verbunden sind, welche durch das Verdrahtungssubstrat laufen,
    wobei die zweiten Auflagen (510) den Schaltungsaufbau (514) mit der Sockelplatte (602) verbinden und
    federnd elastische Kontaktelemente (400, 404, 502) mit den ersten Auflagen (508) verbunden sind, die federnd elastischen Kontaktelemente während des Testens mit der integrierten Schaltung (100) wechselwirken, wobei jedes Kontaktelement einen an einem Ende an den ersten Auflagen (508) angebrachten Draht (404) aufweist und
    ein Stützaufbau (604) während des Testens den Kontakt zwischen der integrierten Schaltung (100) und den federnd elastischen Kontaktelementen (400, 404, 502) sicherstellt;
    dadurch gekennzeichnet, dass
    ein leitfähiges Material (406) über den Drähten jedes federnd elastischen Kontaktelementes abgelegt ist und
    das andere Ende der Drähte (404) jedes federnd elastischen Kontaktelementes mit einem Kontaktaufbau (506) einschließlich Kontaktspitzen (402) verbunden ist.
  27. System nach Anspruch 26, wobei der Schaltungsaufbau (514) ein modularer Schaltungsaufbau ist, welcher in den Sockel (600) hinein eingeführt ist.
  28. System nach Anspruch 26, wobei der Schaltungsaufbau (514) ein Drop-In-Schaltungsaufbau ist, der in den Sockel (600) hinein abgesenkt ist.
  29. System nach Anspruch 26, wobei der Schaltungsaufbau (514) ein Plug-In-Schaltungsaufbau ist, welcher in den Sockel (600) eingesteckt ist.
  30. System nach Anspruch 26, wobei der Sockel (600) eine Vielzahl der Schaltungsaufbauten (514) aufweist.
EP03796616A 2002-12-06 2003-12-02 Herstellungsverfahren eines sockels zur testdurchführung integrierten schaltungen und ein solcher sockel Expired - Fee Related EP1570277B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US310791 2002-12-06
US10/310,791 US6920689B2 (en) 2002-12-06 2002-12-06 Method for making a socket to perform testing on integrated circuits
PCT/US2003/038463 WO2004053976A2 (en) 2002-12-06 2003-12-02 Method of making a socket to perform testing on integrated circuits and such a socket

Publications (2)

Publication Number Publication Date
EP1570277A2 EP1570277A2 (de) 2005-09-07
EP1570277B1 true EP1570277B1 (de) 2010-02-10

Family

ID=32468118

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03796616A Expired - Fee Related EP1570277B1 (de) 2002-12-06 2003-12-02 Herstellungsverfahren eines sockels zur testdurchführung integrierten schaltungen und ein solcher sockel

Country Status (9)

Country Link
US (3) US6920689B2 (de)
EP (1) EP1570277B1 (de)
JP (1) JP2006509215A (de)
KR (1) KR20050085387A (de)
CN (1) CN100538369C (de)
AU (1) AU2003298856A1 (de)
DE (1) DE60331243D1 (de)
TW (1) TWI362711B (de)
WO (1) WO2004053976A2 (de)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020004320A1 (en) * 1995-05-26 2002-01-10 David V. Pedersen Attaratus for socketably receiving interconnection elements of an electronic component
US8033838B2 (en) 1996-02-21 2011-10-11 Formfactor, Inc. Microelectronic contact structure
US6887723B1 (en) * 1998-12-04 2005-05-03 Formfactor, Inc. Method for processing an integrated circuit including placing dice into a carrier and testing
US6812718B1 (en) 1999-05-27 2004-11-02 Nanonexus, Inc. Massively parallel interface for electronic circuits
US7382142B2 (en) 2000-05-23 2008-06-03 Nanonexus, Inc. High density interconnect system having rapid fabrication cycle
JP2001174482A (ja) * 1999-12-21 2001-06-29 Toshiba Corp 電気的特性評価用接触針、プローブ構造体、プローブカード、および電気的特性評価用接触針の製造方法
US7952373B2 (en) 2000-05-23 2011-05-31 Verigy (Singapore) Pte. Ltd. Construction structures and manufacturing processes for integrated circuit wafer probe card assemblies
US7694246B2 (en) * 2002-06-19 2010-04-06 Formfactor, Inc. Test method for yielding a known good die
US6920689B2 (en) * 2002-12-06 2005-07-26 Formfactor, Inc. Method for making a socket to perform testing on integrated circuits
KR100443999B1 (ko) * 2003-02-28 2004-08-21 주식회사 파이컴 인쇄회로기판용 상호 접속체, 이의 제조방법 및 이를구비한 상호 접속 조립체
US7114961B2 (en) 2003-04-11 2006-10-03 Neoconix, Inc. Electrical connector on a flexible carrier
US7244125B2 (en) * 2003-12-08 2007-07-17 Neoconix, Inc. Connector for making electrical contact at semiconductor scales
US8584353B2 (en) 2003-04-11 2013-11-19 Neoconix, Inc. Method for fabricating a contact grid array
US7758351B2 (en) 2003-04-11 2010-07-20 Neoconix, Inc. Method and system for batch manufacturing of spring elements
US20050227510A1 (en) * 2004-04-09 2005-10-13 Brown Dirk D Small array contact with precision working range
US7347698B2 (en) * 2004-03-19 2008-03-25 Neoconix, Inc. Deep drawn electrical contacts and method for making
US7383632B2 (en) 2004-03-19 2008-06-10 Neoconix, Inc. Method for fabricating a connector
US20060038576A1 (en) * 2004-08-19 2006-02-23 Pooya Tadayon Sort interface unit having probe capacitors
US7172431B2 (en) * 2004-08-27 2007-02-06 International Business Machines Corporation Electrical connector design and contact geometry and method of use thereof and methods of fabrication thereof
JP4792465B2 (ja) * 2005-08-09 2011-10-12 株式会社日本マイクロニクス 通電試験用プローブ
US7172450B1 (en) * 2006-01-11 2007-02-06 Qualitau, Inc. High temperature open ended zero insertion force (ZIF) test socket
US7982290B2 (en) 2006-01-12 2011-07-19 Palo Alto Research Center, Inc. Contact spring application to semiconductor devices
US7528618B2 (en) * 2006-05-02 2009-05-05 Formfactor, Inc. Extended probe tips
KR100817054B1 (ko) 2006-07-13 2008-03-26 삼성전자주식회사 패키지 테스트용 소켓, 테스트 소켓용 러버 및 테스트소켓용 가이드
US7731503B2 (en) * 2006-08-21 2010-06-08 Formfactor, Inc. Carbon nanotube contact structures
KR100703043B1 (ko) * 2006-09-21 2007-04-09 (주)에이펙스 검사용 프로브 기판 및 그 제조 방법
KR100816843B1 (ko) * 2006-10-31 2008-03-26 삼성전기주식회사 인쇄회로기판
US8149007B2 (en) * 2007-10-13 2012-04-03 Formfactor, Inc. Carbon nanotube spring contact structures with mechanical and electrical components
CN101316014B (zh) * 2007-10-17 2012-02-01 番禺得意精密电子工业有限公司 电连接装置及其组装方法
KR101004911B1 (ko) * 2008-08-12 2010-12-28 삼성전기주식회사 마이크로 전자기계적 부품 제조방법
CN101750525B (zh) * 2008-12-22 2012-07-04 京元电子股份有限公司 测试插座的制作方法及其所使用的弹性测试探针
US20100252317A1 (en) * 2009-04-03 2010-10-07 Formfactor, Inc. Carbon nanotube contact structures for use with semiconductor dies and other electronic devices
US8272124B2 (en) * 2009-04-03 2012-09-25 Formfactor, Inc. Anchoring carbon nanotube columns
JP5333029B2 (ja) * 2009-08-10 2013-11-06 Jsr株式会社 電気接続部材および電気接続部材の製造方法
US8476538B2 (en) * 2010-03-08 2013-07-02 Formfactor, Inc. Wiring substrate with customization layers
US8215966B2 (en) * 2010-04-20 2012-07-10 Tyco Electronics Corporation Interposer connector assembly
US8274798B2 (en) * 2010-07-28 2012-09-25 Unimicron Technology Corp. Carrier substrate and method for making the same
DE102010054782A1 (de) * 2010-12-16 2012-06-21 Epcos Ag Gehäustes elektrisches Bauelement
CN102175946A (zh) * 2011-03-07 2011-09-07 世盟科信(北京)国际科技发展有限公司 用于生产测试的治具
JP5809509B2 (ja) 2011-09-29 2015-11-11 新光電気工業株式会社 スプリング端子付配線基板及びその実装構造とソケット
US8491315B1 (en) * 2011-11-29 2013-07-23 Plastronics Socket Partners, Ltd. Micro via adapter socket
US8641428B2 (en) 2011-12-02 2014-02-04 Neoconix, Inc. Electrical connector and method of making it
US9680273B2 (en) 2013-03-15 2017-06-13 Neoconix, Inc Electrical connector with electrical contacts protected by a layer of compressible material and method of making it
US10788531B2 (en) * 2014-10-29 2020-09-29 Modus Test, Llc Reduced cost package device simulator, manufacturing method and method of use
DE102017107142A1 (de) * 2017-04-03 2018-10-04 Tkr Spezialwerkzeuge Gmbh Kontaktbuchse
US11828775B1 (en) 2020-05-13 2023-11-28 Microfabrica Inc. Vertical probe arrays and improved methods for making using temporary or permanent alignment structures for setting or maintaining probe-to-probe relationships
US11821918B1 (en) 2020-04-24 2023-11-21 Microfabrica Inc. Buckling beam probe arrays and methods for making such arrays including forming probes with lateral positions matching guide plate hole positions
US11768227B1 (en) 2019-02-22 2023-09-26 Microfabrica Inc. Multi-layer probes having longitudinal axes and preferential probe bending axes that lie in planes that are nominally parallel to planes of probe layers

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5917707A (en) * 1993-11-16 1999-06-29 Formfactor, Inc. Flexible contact structure with an electrically conductive shell
US5772451A (en) * 1993-11-16 1998-06-30 Form Factor, Inc. Sockets for electronic components and methods of connecting to electronic components
US5806181A (en) * 1993-11-16 1998-09-15 Formfactor, Inc. Contact carriers (tiles) for populating larger substrates with spring contacts
US5974662A (en) * 1993-11-16 1999-11-02 Formfactor, Inc. Method of planarizing tips of probe elements of a probe card assembly
US6085978A (en) * 1994-08-17 2000-07-11 Metrologic Instruments, Inc. Holographic laser scanners of modular construction and method and apparatus for designing and manufacturing the same
KR100324059B1 (ko) 1994-11-15 2002-04-17 이고르 와이. 칸드로스 초소형 전자 부품용 상호 접속 요소
US5949246A (en) * 1997-01-28 1999-09-07 International Business Machines Test head for applying signals in a burn-in test of an integrated circuit
US6292003B1 (en) * 1998-07-01 2001-09-18 Xilinx, Inc. Apparatus and method for testing chip scale package integrated circuits
US6256882B1 (en) * 1998-07-14 2001-07-10 Cascade Microtech, Inc. Membrane probing system
JP4513145B2 (ja) * 1999-09-07 2010-07-28 ソニー株式会社 半導体装置の製造方法および研磨方法
US6489788B2 (en) * 2000-01-20 2002-12-03 Earl Sausen Contactor assembly for common grid array devices
JP4590032B2 (ja) * 2000-01-24 2010-12-01 東京エレクトロン株式会社 プローブの製造方法
DE10102649B4 (de) * 2000-03-30 2006-05-24 International Business Machines Corp. System und Verfahren für die Realisierung von Transaktionen mit Unterstützung durch ein Verzeichniszugriffs-LDAP-Protokoll
US6462575B1 (en) * 2000-08-28 2002-10-08 Micron Technology, Inc. Method and system for wafer level testing and burning-in semiconductor components
US6920689B2 (en) 2002-12-06 2005-07-26 Formfactor, Inc. Method for making a socket to perform testing on integrated circuits

Also Published As

Publication number Publication date
TWI362711B (en) 2012-04-21
AU2003298856A8 (en) 2004-06-30
US6920689B2 (en) 2005-07-26
WO2004053976A3 (en) 2004-08-05
US20080132095A1 (en) 2008-06-05
US20040107568A1 (en) 2004-06-10
AU2003298856A1 (en) 2004-06-30
EP1570277A2 (de) 2005-09-07
CN1745307A (zh) 2006-03-08
WO2004053976A2 (en) 2004-06-24
TW200423277A (en) 2004-11-01
US20050167816A1 (en) 2005-08-04
CN100538369C (zh) 2009-09-09
DE60331243D1 (de) 2010-03-25
JP2006509215A (ja) 2006-03-16
KR20050085387A (ko) 2005-08-29
US7330039B2 (en) 2008-02-12

Similar Documents

Publication Publication Date Title
EP1570277B1 (de) Herstellungsverfahren eines sockels zur testdurchführung integrierten schaltungen und ein solcher sockel
US7621044B2 (en) Method of manufacturing a resilient contact
US6640432B1 (en) Method of fabricating shaped springs
US7482822B2 (en) Apparatus and method for limiting over travel in a probe card assembly
EP0839323B1 (de) Mikroelektronisches federkontaktelement
KR100443999B1 (ko) 인쇄회로기판용 상호 접속체, 이의 제조방법 및 이를구비한 상호 접속 조립체
US6184053B1 (en) Method of making microelectronic spring contact elements
EP1092338B1 (de) Zusammenbau von elektronischen komponenten mittels federpackungen
US6215196B1 (en) Electronic component with terminals and spring contact elements extending from areas which are remote from the terminals
EP1523229A2 (de) Zusammenbau von elektronischen Komponenten mittels Federpackungen
WO1998050953A1 (en) Electronic component having resilient contact elements at areas remote from corresponding terminals
JP2006509215A5 (de)
KR20090012242A (ko) 전자 부품을 구비한 프로브 구조
KR20090108608A (ko) 회전형 접촉 요소 및 이 회전형 접촉 요소의 제조 방법
US7458816B1 (en) Shaped spring
US20090278561A1 (en) Probe card having redistributed wiring probe needle structure and probe card module using the same
WO2001080315A2 (en) Shaped springs and methods of fabricating and using shaped springs
KR100312872B1 (ko) 초소형전자스프링접촉요소
EP1468776A2 (de) Herstellung von Verbindungen und Ansatzstücken unter Verwendung von Opfersubstrat

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050630

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORMFACTOR, INC.

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR IE IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: REYNOLDS, CARL, V.

Inventor name: MATHIEU, GAETAN, L.

Inventor name: KHANDROS, IGOR, K.

17Q First examination report despatched

Effective date: 20081001

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IE IT

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60331243

Country of ref document: DE

Date of ref document: 20100325

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20101111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101222

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101229

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101202

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110103

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60331243

Country of ref document: DE

Effective date: 20120703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111202