EP1563080A1 - Methode d'expression inductible d'arni dans des cellules, les molecules d'acide nucleique pour sa mise en oeuvre et les cellules transformees par ces molecules - Google Patents

Methode d'expression inductible d'arni dans des cellules, les molecules d'acide nucleique pour sa mise en oeuvre et les cellules transformees par ces molecules

Info

Publication number
EP1563080A1
EP1563080A1 EP03786045A EP03786045A EP1563080A1 EP 1563080 A1 EP1563080 A1 EP 1563080A1 EP 03786045 A EP03786045 A EP 03786045A EP 03786045 A EP03786045 A EP 03786045A EP 1563080 A1 EP1563080 A1 EP 1563080A1
Authority
EP
European Patent Office
Prior art keywords
sequence
cells
rnai
nucleic acid
transcription
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03786045A
Other languages
German (de)
English (en)
Inventor
Annick Harel-Bellan
Lauriane Fritsch
Redha Sekhri
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1563080A1 publication Critical patent/EP1563080A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/30Vector systems comprising sequences for excision in presence of a recombinase, e.g. loxP or FRT

Definitions

  • the invention relates to the field of biology and more particularly to the preparation of double-stranded oligonucleotides for use in an RNA interference process (RNAi or RNAi).
  • RNAi RNA interference process
  • RNA interference also designated “SiRNA” or “RNAi” or co-suppression, has been demonstrated in plants, where it has been observed that the introduction of a long double-stranded RNA, corresponding to a gene, induces specific and efficient repression of the targeted gene.
  • the mechanism of this interference involves the degradation of double-stranded RNA into short duplexes of oligonucleotides of 20 to 22 nucleotides.
  • RNA interference has now been applied to mammals to specifically inhibit genes for applications in functional genetics. Indeed, siRNAs make it possible to identify the function of the genes revealed by the sequencing of the human genome, either in cell culture models, or in animal models in particular in mice. RNA interference is also useful in the therapeutic field for the treatment or prevention of cancers, infectious diseases and more generally of diseases involving a mutated heterologous or homologous gene (Elbashir, SM, Harborth, J., Lendec el, ., Yalcin, A., Weber, K., and Tuschl, T. (2001a). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells.
  • SiRNAs are short double-stranded RNA sequences, which can be introduced in the form of synthetic oligonucleotide or in the form of a plasmid allowing their transcription.
  • the implementation of plasmids has many advantages, in particular for functional genetics applications. It makes it possible to express double-stranded RNA in a stable manner in cells, and therefore more easily inhibits proteins with a long half-life.
  • siRNAs have a half-life of 3 days in mammalian cells. It also makes it possible to analyze long-term effects. On the other hand, it requires establishing lines expressing the construction in a stable manner, which has several drawbacks. In particular, it is necessary to compare stable lines with each other, which is generally difficult to interpret because the cell lines derive. On the other hand, it is impossible to study the proteins essential for the cell, since their inhibition will block the proliferation of cells and therefore prevent the establishment of the stable line. It is therefore essential to be able to induce expression of siRNA at will.
  • the invention aims precisely to overcome these drawbacks by providing a system for expressing an siRNA in a stable and inducible manner. This goal is achieved through the use of the CRE-lox system for the expression of a siRNA in mammalian cells.
  • the subject of the invention is therefore a method of expression of RNAi in cells comprising: - the introduction into eukaryotic cells of a nucleic acid molecule comprising the sense and antisense sequences of RNAi placed under the control of a single transcription promoter, said sense and antisense sequences being separated by a DNA sequence comprising a stop sequence for said transcription, said DNA sequence being flanked at each of its ends by a lox site,
  • said nucleic acid molecule comprises from 5 ′ to 3 ′, as shown in FIG. 1, a transcription promoter compatible with said cells, the sense sequence of RNAi, a first lox site, a DNA sequence comprising a transcription terminator, the second lox site and the antisense sequence of RNAi.
  • said nucleic acid molecule is a plasmid. It can also be a retrovirus.
  • the cells transfected with this nucleic acid molecule are mammalian cells.
  • the method is applicable to the transfection of cells in culture as well as directly in animals.
  • the invention makes it possible to reliably analyze human genes from a functional point of view, in cells in culture or in animals, in particular in mice. Indeed, there are systems allowing the inducible expression of CRE, in cells and in animals. In mice, CRE can also be expressed in a tissue-specific manner, allowing the inactivation of a gene specifically in these tissues. CRE can be contacted with lox sites via transfection of cells with a nucleic acid molecule comprising a regulatory sequence and the cre gene.
  • the DNA sequence separating the sense and antisense sequences from the AR i and comprising the transcription terminator is advantageously a gene for resistance to an antibiotic, such as neomycin, thus also making it possible to select the transfected cells.
  • the invention also relates to a nucleic acid molecule described above for the implementation of the method of inducible expression of RNAi in cells.
  • the invention also relates to a cell or a cell line transfected with a nucleic acid molecule described above and animals whose cells have been transfected with said nucleic acid molecule.
  • the invention finally relates to compositions, in particular pharmaceutical compositions comprising as active substance at least one molecule of nucleic acid above or cells transformed by this optionally combined in the composition with a compatible excipient.
  • FIG. 1 represents the strategy for the expression of siRNAs in an inducible manner according to the invention.
  • Figure 2 and Figure 3 show the induction of RNAi activity by CRE.
  • Figure 4 shows the inhibition of the GFP marker by RNAi.
  • FIG. 5 represents the inhibition of the GFP marker dependent on CRE during transfection in two stages.
  • FIG. 6 represents the inhibition by the RNAi of the GFP marker integrated into a cell line.
  • FIG. 7 represents the inhibition by the RNAi of the endogenous p53 gene with establishment of stable cell lines.
  • Figure 8 shows the in vitro activity of RNAi.
  • the plasmid plox siRNA includes a Pol II promoter controlling a gene for resistance to an antibiotic, neomycin.
  • the neomycin cassette is surrounded by lox sites.
  • a Pol III promoter (Hl) was inserted in the opposite direction to the Pol II promoter.
  • the H1 promoter introduced into the plasmid behind the second loxp region, with the restriction enzymes Nhel and Xbal, is obtained by PCR from the following primers:
  • This plasmid is inspired by the plasmid pSUPER, allowing the constitutive expression of siRNA and described by Brummelkamp et al.
  • Complementary antisense SiRNA 5 'CTTTCCAAAAAAGCAAGCTGACCCTGAAGTTCATG 3' (SEQ ID NO.
  • the psiRNA lox is obtained by inserting the entire DNA sequence of the siRNA directly after the H1 promoter at the Xbal site.
  • the sense and antisense siRNAs are separated by a loop.
  • COS-7 mammalian cells were transfected with polyfect (Qiagen) with 4 ⁇ g of siRNA expression vectors (plox siRNA, psiRNAlox or plox) as indicated and a vector expressing CRE recombinase or the corresponding empty vector (8 ⁇ g) as well as a Green Fluorescent Protein or GFP expression vector (500 ng).
  • a western blot was produced from the total extracts using an antibody directed against GFP (Santa cruz) or cellular tubulin (Sigma) in order to evaluate the quantity of proteins used for this test (figure 2).
  • Fibroblast cells (3T3) were transfected with 0.5 ⁇ g or 1 ⁇ g of plox siRNA expression vector, as indicated in FIG. 3, and a vector expressing CRE recombinase or the corresponding empty vector (8 ⁇ g) as well as 'a GFP expression vector (500 ng).
  • a western blot was produced from the total extracts using an antibody directed against GFP (Santa cruz) or cellular tubulin (Sigma) to assess the amount of protein used for this test (Figure 3).
  • siRNA In the absence of CRE, the two constituent parts of siRNA (sense strand and antisense) are separated by the neomycin gene which includes a transcription stop sequence for Pol III. Under these conditions, only the sense strand of siRNA is transcribed and the siRNA is inactive: the target protein is expressed normally as shown in FIG. 2 and in FIG. 3, 3 rd and 4 th line. In the presence of CRE, the plasmid undergoes a recombination process in the cell, giving a product in which the neomycin sequence is eliminated, and in which the two 1/2 siRNAs are no longer separated except by the remaining lox sequence, in which it there is no transcription stop sequence for Pol III.
  • siRNA is therefore transcribed in its entirety, with the residual lox sequence which serves as a “loop”.
  • This siRNA is active and the target protein is inhibited (compare lines 1 or 2 with lines 3 or 4, Figures 2 and 3).
  • the inhibition is well linked to the activity of siRNA, since in the presence of CRE, inhibition is observed only in the presence of complete siRNA, and not in the presence of the expression vector of empty siRNA (line 1) . Its activity is equivalent to that of a siRNA serving as a positive control, expressed in a constitutive manner (because the entire sequence from which it is transcribed is placed before the neomycin gene).
  • RNA of the COS-7 cells was extracted after 6Oh of transfection and then analyzed by northern blot with a 32P-labeled probe directed against the antisense strand of the siRNAs produced: 5 'CTTTCCAAAAAAGCAAGCTGACCCTGAAGTTCATG 3' (SEQ ID NO.
  • FIG. 4 shows that the inhibition is indeed linked to the expression of siRNA, induced by CRE.
  • Plasmid constructions were carried out according to the method presented in Example 1.
  • the plox vector was constructed by inserting, in the plasmid ploxNeo, the Pol III (H1) promoter as an Nhel-Xba insert.
  • the sequences corresponding to the sense and antisense strands siRNA were introduced as synthetic oligonucleotides using the Xbal or BamHI and Kpn restriction sites respectively.
  • This vector will be used in the following examples.
  • COS-7 mammalian cells were transfected in two stages. The first transfection was carried out with
  • siRNA expression vectors (plox siRNA, psiRNAlox or plox) and 2 ⁇ g of a vector expressing CRE recombinase or the corresponding empty vector. Twenty-four hours after this first transfection, the cells were transfected with 500 ng of an expression vector CMV-d2GFP (Clontech). A Western blot was carried out in accordance with Example 1.
  • Figure 5 shows that GFP is undetectable during a two-stage transfection during which the siRNA was able to form twenty-four hours before the transfection of the GFP expression vector.
  • HeLa 1002 cells (cell line derived from HeLa cells having an integrated transgene encoding doxocyclin-inducible GFP) were transfected with 300 ng of CMV read or CMV-RFP expression vectors, with 8 ⁇ g of vector expressing CRE recombinase or the corresponding empty vector and with 4 ⁇ g of siRNA expression vectors (plox siRNA, psiRNAlox or plox). Seventy-two hours after transfection, the cells were treated for twenty-four to seventy-two hours with Doxocycline (1 ⁇ g / ml) before observation under an Axiovert fluorescence microscope.
  • Doxocycline 1 ⁇ g / ml
  • FIG. 6 shows the activity of siRNA on the expression of a GFP marker gene integrated into the genome of the cell line and inducible by doxocycline.
  • the expression of the marker is observed in approximately 30% of the cells twenty-four hours after induction (FIG. 6A) and in 60% of the cells forty-eight hours after induction (FIG. 6B). Similar proportions are observed in transfection control cells (RFP positive) transfected with the empty vector plox (FIGS. 6A and 6B). Regardless of the expression of the CRE protein, no expression of the target protein GFP is observed in cells transfected with the psiRNA lox vector constitutively expressing siRNA.
  • plox siRNA expression vector directed against p53 was constructed according to the method presented in Example 2.
  • the sense and antisense siRNA sequences used are the following: Sense SiRNA:
  • U20S cells were transfected either with the empty plox vector or with a plox siRNA expression vector directed against the p53 gene (plox siRNA p53). Stable clones are established using the neomycin selection marker. These stable clones are then transfected either with a vector expressing CRE recombinase or with the corresponding empty vector pMC, then selected using a different selection marker (hygromycin). The expression of P53 was checked four weeks later by Western blot.
  • FIG. 7 shows three examples of clones transfected with the plox siRNA p53 vector exhibiting CRE-dependent p53 inhibition. No inhibition is observed in the ploxsiRNAp53 clones having been transfected with the empty vector pMC, as well as in the clones stably transfected with the empty vector plox.
  • Figure 7 shows stably transfected cell lines in which a target endogenous gene is inhibited.
  • the MCK-nlslacZ construct contains the sequence coding for nuclear ⁇ -galactosidase under the control of the muscle creatine kinase promoter.
  • the use of such an expression vector makes it possible to mark the nuclei of the transfected muscle fibers.
  • the other expression vectors used are: the CRE expression vector or the corresponding empty vector, the plox expression vector, the plox siRNA expression vector.
  • mice Five to ten week old actin-GFP transgenic mice (Ikawa et al.) Are anesthetized with 300 ⁇ l of 0.05% xyalazine-1.7% ketamine in 0.9% NaCl. After incision of the skin, 8 ⁇ g of DNA containing 3 ⁇ g of CRE expression vectors and / or siRNA and 2 ⁇ g of MCK- nlslacZ, are injected into the tibialis anterior muscle (TA) using '' 1 ml syringe fitted with a 27 gauge needle.
  • TA tibialis anterior muscle
  • Caliper electrode plates (Q-biogen, France) are immediately applied to each side of the muscle and a series of eight electrical pulses (2 Hz, 20 ms each ) is delivered using a standard square signal electroporator (ECM 830, Q-biogen). The electrical contact is ensured by the application of a conductive gel.
  • the TA muscles are dissected and fixed with 4% paraformaldehyde in buffer
  • Figure 8 shows that the combination of the CRE expressing plasmid and the siRNA GFP plox vector induces a marked decrease in GFP expression in the transfected fibers (the arrow indicates the positive LacZ nuclei). Expression of CRE in the presence of the plox control vector, as well as transfection of the ploxsiRNA vector in the absence of CRE, do not affect the expression of GFP in the transfected fibers.
  • FIG. 8 shows that the expression of siRNA induced by CRE can decrease the expression of a gene in vivo.

Landscapes

  • Genetics & Genomics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

La présente invention a pour objet une méthoded'expression d'ARNi dans des cellules comprenant : (i) l'introduction dans des cellules d'une molécule d'acide nucléique comprenant les séquences sens et antisens de l'ARNi placées sous le contrôle d'un promoteur de transcription unique, lesdites séquences sens et antisens étant séparées par une séquence d'ADN comprenant une séquence d'arrêt de ladite transcription, ladite séquence d'ADN étant encadrée à chacune de ses extrémités par un site lox, (ii) la mise en contact des sites lox avec Cre, pour obtenir par recombinaison site-spécifique l'élimination de la séquence d'ADN et de la séquence d'arrêt de la transcription de façon à ce que lesdites séquences sens et antisens ne soient plus séparées que par la séquence lox restante et ainsi permettre la transcription de l'ARNi dans son intégralité avec la séquence lox résiduelle comme boucle.

Description

METHODE D'EXPRESSION INDUCTIBLE D'ARNi DANS DES CELLULES, LES MOLECULES D'ACIDE NUCLEIQUE POUR SA MISE EN ŒUVRE ET LES CELLULES TRANSFORMEES PAR CES MOLECULES.
L'invention concerne le domaine de la biologie et plus particulièrement la préparation d'oligonucleotides double brin pour être utilisés dans un processus d'interférence ARN (RNAi ou ARNi) .
L'interférence ARN désigné aussi « SiRNA» ou « RNAi » ou encore co-suppression, a été mise en évidence dans les plantes, où il a été observé que l'introduction d'un long ARN double brin, correspondant à un gène, induit la répression spécifique et efficace du gène ciblé. Le mécanisme de cette interférence comporte la dégradation de l'ARN double brin en courts duplex d'oligonucleotides de 20 à 22 nucléotides.
L'interférence ARN a maintenant été appliquée aux mammifères pour inhiber spécifiquement des gènes pour des applications en génétique fonctionnelle. En effet, les siRNAs permettent d'identifier la fonction des gènes mis en évidence par le séquençage du génome humain, soit dans des modèles de culture cellulaire, soit dans des modèles animaux en particulier chez la souris. L'interférence ARN est aussi utile dans le domaine thérapeutique pour le traitement ou la prévention de cancers, de maladies infectieuses et plus généralement de maladies mettant en jeu un gène hétérologue ou homologue muté (Elbashir, S. M., Harborth, J., Lendec el, ., Yalcin, A., Weber, K. , and Tuschl, T. (2001a). Duplexes of 21-nucleotide RNAs médiate RNA interférence in cultured mammalian cells. Nature 411 , 494-498 ; Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. , and Tuschl, T. (2001b). Functional anatomy of siRNAs for ediating efficient RNAi in Drosophila melanogaster embryo lysate. Embo J 20, 6877-6888). Les siRNAs sont de courtes séquences d'ARN double brin, qui peuvent être introduites sous forme d'oligonuσléotide synthétique ou sous forme de plasmide permettant leur transcription. La mise en œuvre de plasmides présente de nombreux avantages, en particulier pour les applications de génétique fonctionnelle. Elle permet d'exprimer l'ARN double brin de manière stable dans les cellules, et donc d'inhiber plus facilement des protéines à longue demi-vie. En effet, les siRNA synthétiques ont une durée de demi-vie de 3 jours dans les cellules de mammifère. Elle permet aussi d'analyser des effets à long terme. Par contre, elle nécessite d'établir des lignées exprimant la construction de manière stable, ce qui présente plusieurs inconvénients. En particulier, il faut comparer des lignées stables entre elles, ce qui est en général difficile d'interprétation parce que les lignées cellulaires dérivent. D'autre part, il est impossible d'étudier les protéines indispensables pour la cellule, puisque leur inhibition bloquera la prolifération des cellules et empêchera donc l'établissement de la lignée stable. Il est donc indispensable de pouvoir induire à volonté l'expression du siRNA.
L'invention vise précisément à pallier ces inconvénients en offrant un système d'expression d'un siRNA de manière stable et inductible. Ce but est atteint grâce à l'emploi du système CRE-lox pour l'expression d'un siRNA dans des cellules de mammifères. L'invention a donc pour objet une méthode d'expression d'ARNi dans des cellules comprenant : - l'introduction dans des cellules eucaryotes d'une molécule d'acide nucléique comprenant les séquences sens et antisens de l'ARNi placées sous le contrôle d'un promoteur de transcription unique, lesdites séquences sens et antisens étant séparées par une séquence d'ADN comprenant une séquence d'arrêt de ladite transcription, ladite séquence d'ADN étant encadrée à chacune de ses extrémités par un site lox,
- la mise en contact des sites lox avec Cre, pour obtenir par recombinaison site-spécifique l'élimination de la séquence d'ADN et de la séquence d'arrêt de la transcription de façon à ce que lesdites séquences sens et antisens ne soient plus séparées que par la séquence lox restante et ainsi permettre la transcription de l'ARNi dans son intégralité avec la séquence lox résiduelle comme boucle.
Selon une forme particulière de mise en œuvre de la méthode de l'invention, ladite molécule d'acide nucléique comprend de 5' vers 3', comme montré à la figure 1, un promoteur de transcription compatible avec lesdites cellules, la séquence sens de l'ARNi, un premier site lox, une séquence d'ADN comprenant un terminateur de transcription, le second site lox et la séquence antisens de l'ARNi. Avantageusement, ladite molécule d'acide nucléique est un plasmide. Il peut aussi s'agir d'un rétrovirus.
Les cellules transfectées avec cette molécule d'acide nucléique sont des cellules de mammifères. La méthode s'applique aussi bien à la transfection de cellules en culture que directement chez l'animal.
En effet, l'invention permet d'analyser de manière fiable les gènes humains d'un point de vue fonctionnel, dans des cellules en culture ou dans des animaux, en particulier dans des souris. En effet, il existe des systèmes permettant l'expression inductible de CRE, dans les cellules et dans les animaux. Chez la souris, la CRE peut également être exprimée de manière tissu spécifique, permettant 1 ' inactivation d'un gène spécifiquement dans ces tissus. La CRE peut être mise en contact avec les sites lox via la transfection des cellules avec une molécule d'acide nucléique comprenant une séquence régulatrice et le gène cre. La séquence d'ADN séparant les séquences sens et antisens de l'AR i et comprenant le terminateur de transcription est avantageusement un gène de résistance à un antibiotique, comme la néomycine, permettant ainsi en outre de sélectionner les cellules transfectées. L'invention a également pour objet une molécule d'acide nucléique décrite ci-dessus pour la mise en œuvre de la méthode d'expression inductible d'ARNi dans des cellules.
L'invention se rapporte encore à une cellule ou une lignée de cellules transfectées par une molécule d'acide nucléique décrite précédemment et les animaux dont des cellules ont été transfectées par ladite molécule d'acide nucléique. L'invention a enfin pour objet des compositions notamment pharmaceutiques comprenant comme substance active au moins une molécule d'acide nucléique ci-dessus ou des cellules transformées par celle-ci éventuellement associées dans la composition à un excipient compatible.
D'autres avantages et caractéristiques de l'invention apparaîtront des exemples qui suivent et dans lesquels il sera fait référence aux dessins en annexe dans lesquels :
La figure 1 représente la stratégie pour l'expression de siRNAs de manière inductible selon l'invention.
La figure 2 et la figure 3 représentent l'induction de l'activité de l'ARNi par la CRE. La figure 4 représente l'inhibition du marqueur GFP par l'ARNi.
La figure 5 représente 1 ' inhibition du marqueur GFP dépendante de CRE au cours de transfection en deux étapes. La figure 6 représente l'inhibition par l'ARNi du marqueur GFP intégré dans une lignée cellulaire.
La figure 7 représente l'inhibition par l'ARNi du gène endogène p53 avec établissement de lignées cellulaires stables.
La figure 8 représente l'activité in vitro de l'ARNi.
EXEMPLE 1.
Le plasmide plox siRNA comporte un promoteur Pol II contrôlant un gène de résistance à un antibiotique, la néomycine. La cassette néomycine est entourée de sites lox. Dans un premier temps, un promoteur Pol III (Hl) a été inséré dans le sens opposé au promoteur Pol II. Le promoteur Hl introduit dans le plasmide derrière la deuxième région loxp, avec les enzymes de restriction Nhel et Xbal est obtenu par PCR à partir des amorces suivantes :
5 ' CTAGCTAGCCCATGGAATTCGAACGCTGACGTC 3 ' For ard ( SEQ ID NO. 1)
5 ' GCTCTAGAGTGGTCTCATACAGAACTTATAAGATTCCC 3 ' Reverse (SEQ ID NO. 2)
Ce plasmide est inspiré du plasmide pSUPER, permettant l'expression constitutive de siRNA et décrit par Brummelkamp et al.
Les séquences d'ADN correspondant au SiRNA sens ont ensuite été introduites immédiatement après le promoteur Hl au niveau du site Xbal . SiRNA sens :
5' CTAGACCCGCAAGCTGACCCTGAAGTTCATT 3' (SEQ ID NO. 3) SiRNA sens complémentaire : 5' CTAGAATGAACTTCAGGGTCAGCTTGCGGT 3' (SEQ ID NO. 4)
Enfin, les séquences d'ADN correspondant au siRNA anti-sens ont été introduites à la suite de la deuxième région loxp au niveau des sites Bamhl et Kpnl. SiRNA anti-sens :
5 ' GATCCATGAACTTCAGGGTCAGCTTGCTTTTTTGGAAAGGTAC 3 ' ( SEQ ID NO. 5)
SiRNA anti-sens complémentaire: 5 ' CTTTCCAAAAAAGCAAGCTGACCCTGAAGTTCATG 3 ' ( SEQ ID NO .
6)
Le psiRNA lox est obtenu en insérant la totalité de la séquence ADN du siRNA directement après le promoteur Hl au niveau du site Xbal. Les siRNA sens et anti-sens sont séparés par une boucle.
SiRNA:
5 ' CTAGTTTCCAAAAAAGCAAGCTGACCCTGAAGTTCATTCTCTTGAAATGAAC TTCAGGGTCAGCTTGCGGGT 3' (SEQ ID NO. 7)
SiRNA complémentaire : 5 ' CTAGACCCGCAAGCTGACCCTGAAGTTCATTTCAAGAGAATGAACTTCAGGG
TCAGCTTGCTTTTTTGGAAA 3' (SEQ ID NO. 8)
Des cellules de mammifères COS-7 ont été transfectées avec du polyfect (Qiagen) avec 4 μg de vecteurs d'expression des siRNA (plox siRNA, psiRNAlox or plox) comme indiqué et un vecteur exprimant la CRE recombinase ou le vecteur vide correspondant (8 μg) ainsi qu'un vecteur d'expression de la Green Fluorescent Protein ou GFP (500 ng) . Soixante heures après la transfection, un western blot a été réalisé à partir des extraits totaux en utilisant un anticorps dirigé contre la GFP (Santa cruz) ou la tubuline cellulaire (Sigma) afin d'évaluer la quantité de protéines utilisée pour ce test (figure 2). Des cellules fibroblastes (3T3) ont été transfectées avec 0,5 μg ou 1 μg de vecteur d'expression plox siRNA, comme indiqué dans la figure 3, et un vecteur exprimant la CRE recombinase ou le vecteur vide correspondant (8 μg) ainsi qu'un vecteur d'expression de la GFP (500 ng) . Soixante heures après la transfection, un western blot a été réalisé à partir des extraits totaux en utilisant un anticorps dirigé contre la GFP (Santa cruz) ou la tubuline cellulaire (Sigma) afin d'évaluer la quantité de protéines utilisée pour ce test (figure 3).
En absence de CRE, les deux parties constituantes du siRNA (brin sens et antisens) sont séparées par le gène néomycine qui comporte une séquence d'arrêt de transcription pour la Pol III. Dans ces conditions, seul le brin sens du siRNA est transcrit et le siRNA est inactif : la protéine cible est exprimée normalement comme montré à la figure 2 et à la figure 3, 3ème et 4eme ligne. En présence de CRE, le plasmide subit dans la cellule un processus de recombinaison, donnant un produit dans lequel la séquence néomycine est éliminée, et dans lequel les deux 1/2 siRNAs ne sont plus séparés que par la séquence lox restante, dans laquelle il n'y a pas de séquence d'arrêt de transcription pour la Pol III. Le siRNA est donc transcrit dans son intégralité, avec la séquence lox résiduelle qui sert de « boucle » . Ce siRNA est actif et la protéine cible est inhibée (comparer les lignes 1 ou 2 avec les lignes 3 ou 4, figures 2 et 3) . L'inhibition est bien liée à l'activité du siRNA, puisque en présence de CRE, l'inhibition n'est observée qu'en présence du siRNA complet, et pas en présence du vecteur d'expression du siRNA vide (ligne 1). Son activité est équivalente à celle d'un siRNA servant de contrôle positif, exprimé de manière constitutive (parce que l'intégralité de la séquence à partir de laquelle il est transcrit est placée avant le gène néomycine).
D'autre part, l'analyse par Northern montre le processing du précurseur et la synthèse du siRNA induite par la CRE (Figure 4). L'ARN total des cellules COS-7 a été extrait après 6Oh de transfection puis analysé par northern blot avec une sonde marquée au 32P dirigée contre le brin anti-sens des siRNAs produits : 5 ' CTTTCCAAAAAAGCAAGCTGACCCTGAAGTTCATG 3 ' ( SEQ ID NO .
9 )
La figure 4 montre que l'inhibition est bien liée à l'expression du siRNA, induite par la CRE.
EXEMPLE 2.
1 ) Méthodes .
Des constructions de plasmides ont été réalisées suivant la méthode présentée dans 1 ' exemple 1. Le vecteur plox a été construit en insérant, dans le plasmide ploxNeo, le promoteur Pol III (Hl) en tant qu ' insert Nhel- Xba. Les séquences correspondant aux brins sens et anti-sens siRNA ont été introduites comme oligonucleotides synthétiques en utilisant de façon respective les sites de restriction Xbal ou BamHl et Kpn.
SiRNA sens:
5 ' CTAGCCCCGCAAGCTGACCCTGAAGTTCATT 3 ' ( SEQ ID NO.10 ) SiRNA anti-sens :
5 ' GATCCATGAACTTCAGGGTCAGCTTGCTTTTGGTACCTAGACCC 3 ' ( SEQ ID NO.11)
Ce vecteur sera utilisé dans les exemples ultérieurs.
Des cellules de mammifères COS-7 ont été transfectées en deux étapes. La première transfection a été réalisée avec
1 μg de vecteurs d'expression des siRNA (plox siRNA, psiRNAlox ou plox) et 2 μg d'un vecteur exprimant la CRE recombinase ou le vecteur vide correspondant. Vingt-quatre heures après cette première transfection, les cellules ont été transfectées avec 500 ng d'un vecteur d'expression CMV- d2GFP (Clontech). Un Western blot a été réalisé conformément à l'exemple 1.
2)Résultats.
La figure 5 montre que la GFP est indétectable lors d'une transfection en deux étapes au cours de laquelle le siRNA a pu se former vingt-quatre heures avant la transfection du vecteur d'expression de la GFP.
EXEMPLE 3.
1 ) Méthodes . Des cellules HeLa 1002 (lignée cellulaire dérivée des cellules HeLa possédant un transgène intégré codant pour la GFP inductible par la doxocycline) ont été transfectées avec 300 ng de vecteurs d'expression CMV lue ou CMV-RFP, avec 8 μg de vecteur exprimant la CRE recombinase ou le vecteur vide correspondant et avec 4 μg de vecteurs d'expression des siRNA (plox siRNA, psiRNAlox ou plox). Soixante-douze heures après la transfection, les cellules ont été traitées pendant vingt-quatre à soixante-douze heures avec de la Doxocycline (1 μg/ml) avant observation sous un microscope à fluorescence Axiovert.
2) Résultats.
La figure 6 montre l'activité de siRNA sur l'expression d'un gène marqueur GFP intégré dans le génome de la lignée cellulaire et inductible par la doxocycline. L'expression du marqueur est observée dans environ 30 % des cellules vingt-quatre heures après induction (figure 6A) et dans 60 % des cellules quarante-huit heures après induction (figure 6B) . Des proportions similaires sont observées dans des cellules de contrôle de la transfection (RFP positives) transfectées avec le vecteur vide plox (figure 6A et 6B). Indépendamment de l'expression de la protéine CRE, aucune expression de la protéine cible GFP n'est observée dans les cellules transfectées avec le vecteur psiRNA lox exprimant le siRNA de façon constitutive. En absence de CRE, parmi les cellules transfectées avec le vecteur plox siRNA la proportion de cellules GFP positives est d'environ 30 % un jour après induction et d'environ 65 % deux jours après induction ; mais cette proportion est inférieure à 5 % en présence de CRE . EXEMPLE 4.
1 ) Méthodes .
Un vecteur d'expression plox siRNA dirigé contre p53 (plox siRNA p53) a été construit selon la méthode présentée dans l'exemple 2. Les séquences siRNA sens et anti-sens utilisées sont les suivantes: SiRNA sens:
5 ' GCATGAACCGGAGGCCCATT 3' (SEQ ID NO.12) SiRNA anti-sens: 5 ' GATCCATGGGCCTCCGGTTCATGC 3 ' ( SEQ ID NO.13)
Des cellules U20S ont été transfectées soit avec le vecteur vide plox soit avec un vecteur d'expression plox siRNA dirigé contre le gène p53 (plox siRNA p53). Des clones stables sont établis grâce au marqueur de sélection néomycine. Ces clones stables sont ensuite transfectés soit avec un vecteur exprimant la CRE recombinase soit avec le vecteur vide correspondant pMC, puis sélectionnés à l'aide d'un marqueur de sélection différent (hygromycine) . L'expression de la P53 a été contrôlée quatre semaines plus tard par Western blot.
2) Résultats.
La figure 7 montre trois exemples de clones transfectés avec le vecteur plox siRNA p53 présentant une inhibition de p53 dépendante de CRE. Aucune inhibition n'est observée dans les clones ploxsiRNAp53 ayant été transfectés avec le vecteur vide pMC, ainsi que dans les clones transfectés de façon stable avec le vecteur vide plox. La figure 7 montre des lignées cellulaires transfectées de façon stable dans lesquelles un gène endogène cible est inhibé .
EXEMPLE 5.
1 ) Méthodes . La construction MCK-nlslacZ contient la séquence codant pour la β-galactosidase nucléaire sous le contrôle du promoteur de la créatine kinase de muscle. L'utilisation d'un tel vecteur d'expression permet de marquer les noyaux des fibres musculaires transfectées. Les autres vecteurs d'expression utilisés sont : le vecteur d'expression de la CRE ou le vecteur vide correspondant, le vecteur d'expression plox, le vecteur d'expression plox siRNA.
Des souris transgéniques actine-GFP de cinq à dix semaines (Ikawa et al.) sont anesthésiées avec 300 μl de 0,05 % xyalazine-1,7 % ketamine dans NaCl 0,9 %. Après incision de la peau, 8 μg d'ADN contenant 3 μg de vecteurs d'expression de la CRE et/ou des siRNA et 2 μg de MCK- nlslacZ, sont injectés dans le muscle tibialis anterior (TA) à l'aide d'une seringue de 1 ml pourvue d'une aiguille de calibre 27. Des plaques d'électrode Caliper (Q-biogen, France) sont immédiatement appliquées de chaque côté du muscle et une série de huit pulsations électriques (2 Hz, 20 ms chacune) est délivrée à l'aide d'un électroporateur standard de signal carré (ECM 830, Q-biogen). Le contact électrique est assuré par l'application d'un gel conducteur.
Douze jours après l'injection, les muscles TA sont disséqués et fixés au paraformaldéhyde à 4 % dans du tampon
PBS (Phosphate Bu fer saline) puis incubés pendant deux - trois heures dans du 5-bromo-4-chloro-indol-β-galactoside 0,4 mg/ml, K3Fe(CN)6 4 M, K4Fe(CN)6 4 mM et MgC12 2mM, PBS à 37°C pour la coloration lacZ. Les régions LacZ positives sont ensuite disséquées sous microscope. Les images de fluorescence et en contraste de phase sont obtenues à 1 ' aide d'un microscope confocal Zeiss (LSM510, Zeiss). 2 ) Résultats.
La figure 8 montre que la combinaison du plasmide exprimant CRE et du vecteur plox siRNA GFP induit une diminution marquée de l'expression la GFP dans les fibres transfectées (la flèche indique les noyaux LacZ positifs). L'expression de CRE en présence du vecteur contrôle plox, ainsi que la transfection du vecteur ploxsiRNA en absence de CRE, n'affectent pas l'expression de la GFP dans les fibres transfectées. La figure 8 montre que l'expression du siRNA induite par la CRE peut diminuer l'expression d'un gène in vivo.

Claims

REVENDICATIONS
1) Méthode d'expression d'ARNi dans des cellules comprenant : - l'introduction dans des cellules eucaryotes d'une molécule d'acide nucléique comprenant les séquences sens et antisens de l'ARNi placées sous le contrôle d'un promoteur de transcription unique, lesdites séquences sens et antisens étant séparées par une séquence d'ADN comprenant une séquence d'arrêt de ladite transcription, ladite séquence d'ADN étant encadrée à chacune de ses extrémités par un site lox,
- la mise en contact des sites lox avec Cre, pour obtenir par recombinaison site-spécifique l'élimination de la séquence d'ADN et de la séquence d'arrêt de la transcription de façon à ce que lesdites séquences sens et antisens ne soient plus séparées que par la séquence lox restante et ainsi permettre la transcription de l'ARNi dans son intégralité avec la séquence lox résiduelle comme boucle.
2) Méthode selon la revendication 1, caractérisée en ce que ladite molécule d'acide nucléique comprend de 5' en 3 ' , un promoteur de transcription compatible avec lesdites cellules, la séquence sens de l'ARNi, un premier site lox, une séquence d'ADN comprenant un terminateur de transcription, le second site lox et la séquence antisens de l'ARNi.
3) Méthode selon l'une des revendications 1 ou 2 , caractérisée en ce que ladite molécule d'acide nucléique est un plasmide.
4) Méthode selon l'une quelconque des revendications 1 à 3, caractérisée en ce que les cellules transfectées sont des cellules de mammifères.
5) Méthode selon l'une quelconque des revendications précédentes, caractérisée en ce que la séquence d'ADN séparant les séquences sens et antisens de l'ARNi et comprenant le terminateur de transcription est avantageusement un gène de résistance à un antibiotique, comme la néomycine.
6) Méthode selon l'une quelconque des revendications précédentes, caractérisée en ce que les cellules sont également transfectées avec une molécule d'acide nucléique comprenant une séquence régulatrice et le gène cre.
7) Une molécule d'acide nucléique comme définie dans l'une quelconque des revendications 1 à 5.
8) Une cellule ou une lignée de cellules transfectées par une molécule d'acide nucléique selon la revendication 7.
9) Composition notamment pharmaceutique comprenant comme substance active au moins une molécule d'acide nucléique selon la revendication 7 ou une cellule ou lignée de cellules selon la revendication 8, éventuellement associée dans la composition à un excipient compatible.
EP03786045A 2002-11-21 2003-11-21 Methode d'expression inductible d'arni dans des cellules, les molecules d'acide nucleique pour sa mise en oeuvre et les cellules transformees par ces molecules Withdrawn EP1563080A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0214600A FR2847588B1 (fr) 2002-11-21 2002-11-21 METHODES D'EXPRESSION INDUCTIBLE D'ARNi DANS LES CELLULES, LES MOLECULES D'ACIDE NUCLEIQUE POUR SA MISE EN OEUVRE ET LES CELLULES TRANSFORMEES PAR CES MOLECULES
FR0214600 2002-11-21
PCT/FR2003/003447 WO2004048581A1 (fr) 2002-11-21 2003-11-21 METHODE D'EXPRESSION INDUCTIBLE D'ARNi DANS DES CELLULES, LES MOLECULES D'ACIDE NUCLEIQUE POUR SA MISE EN OEUVRE ET LES CELLULES TRANSFORMEES PAR CES MOLECULES

Publications (1)

Publication Number Publication Date
EP1563080A1 true EP1563080A1 (fr) 2005-08-17

Family

ID=32241491

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03786045A Withdrawn EP1563080A1 (fr) 2002-11-21 2003-11-21 Methode d'expression inductible d'arni dans des cellules, les molecules d'acide nucleique pour sa mise en oeuvre et les cellules transformees par ces molecules

Country Status (6)

Country Link
US (1) US20060234966A1 (fr)
EP (1) EP1563080A1 (fr)
AU (1) AU2003295051A1 (fr)
CA (1) CA2506763A1 (fr)
FR (1) FR2847588B1 (fr)
WO (1) WO2004048581A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8058509B2 (en) 2005-12-21 2011-11-15 Pioneer Hi-Bred International, Inc. Methods and compositions for in planta production of inverted repeats
US20090060889A1 (en) 2007-03-12 2009-03-05 Von Hofe Eric Ii-RNAi involved Ii suppression in cancer immunotherapy

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5948646A (en) * 1997-12-11 1999-09-07 Fordham University Methods for preparation of vaccines against cancer comprising heat shock protein-peptide complexes
AU2002343792A1 (en) * 2001-11-28 2003-06-10 Center For Advanced Science And Technology Incubation, Ltd. siRNA EXPRESSION SYSTEM AND PROCESS FOR PRODUCING FUNCTIONAL GENE-KNOCKDOWN CELLS AND THE LIKE USING THE SAME

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004048581A1 *

Also Published As

Publication number Publication date
AU2003295051A1 (en) 2004-06-18
FR2847588B1 (fr) 2006-07-28
WO2004048581A1 (fr) 2004-06-10
CA2506763A1 (fr) 2004-06-10
US20060234966A1 (en) 2006-10-19
FR2847588A1 (fr) 2004-05-28

Similar Documents

Publication Publication Date Title
EP1453962B1 (fr) Oligonucleotides inhibiteurs et leur utilisation pour reprimer specifiquement un gene codant pour un recepteur aux androgenes
US20040002077A1 (en) siRNA expression system and method for producing functional gene knock-down cell using the system
EP1462525B1 (fr) Systeme d'expression d'arnsi et procede de production de cellule knockdown a gene fonctionnel ou analogue utilisant ce systeme
JP5841332B2 (ja) 細胞増殖阻害剤
US20090053140A1 (en) METHODS OF IDENTIFYING GENES INVOLVED IN MEMORY FORMATION USING SMALL INTERFERING RNA(siRNA)
KR20210126014A (ko) CRISPR-Cas로 표적화된 핵 RNA 분열 및 폴리아데닐화
US20110229880A1 (en) Gene silencing
WO2005112620A2 (fr) Procédé à base de cre-lox pour interférence arn conditionnelle
WO2011114106A2 (fr) Silençage génique
EP1651762B1 (fr) PETITS ARN INTERFERENTS SPECIFIQUES DES SOUS-UNITES ALPHA, ALPHA' ET ß DE LA PROTEINE KINASE CK2 ET LEURS APPLICATIONS
EP1563080A1 (fr) Methode d'expression inductible d'arni dans des cellules, les molecules d'acide nucleique pour sa mise en oeuvre et les cellules transformees par ces molecules
EP1814998B1 (fr) Animaux modeles comprenant au moins un ko et un ki conditionnel
FR2835838A1 (fr) Oligonucleotides inhibiteurs et leur utilisation pour reprimer specifiquement un gene codant pour un facteur de transcription
AU2004256322B2 (en) siRNA expression system
FR2835837A1 (fr) Oligonucleotides inhibiteurs et leurs utilisation pour reprimer specifiquement un gene codant pour un facteur de croissance
US20140221466A1 (en) Microrna inhibitors
EP1678306A1 (fr) METHODE D'INDUCTION D'UNE ACTIVITE ARNi SPECIFIQUE DANS DES CELLULES ET ACIDES NUCLEIQUES POUR SA MISE EN OEUVRE
KR20110093840A (ko) 지방세포 형성의 조절을 위한 plac8 활성 억제제의 용도
FR2919616A1 (fr) Polynucleotides insulateurs derives de l'element d4z4 et leurs utilisations en transgenese
Metzakopian et al. Genome-wide CRISPR/Cas9 screen shows that loss of GET4 increases mitochondria-endoplasmic reticulum contact sites and is neuroprotective.
JP4877835B2 (ja) Rna干渉誘導エレメント及びその用途
WO2004039973A1 (fr) Construction d'animal knock-down au moyen du transfert d'un vecteur d'expression de l'arn double brin
WO2004072300A1 (fr) Systeme permettant de mettre au silence des genes de maniere inductible, localement et de façon reversible a l'aide d'une interference d'arn

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: SEKHRI, REDHA

Inventor name: FRITSCH, LAURIANE

Inventor name: HAREL-BELLAN, ANNICK

17Q First examination report despatched

Effective date: 20081013

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090224