EP1558823A1 - System for joining mullions to transoms by frontal link - Google Patents

System for joining mullions to transoms by frontal link

Info

Publication number
EP1558823A1
EP1558823A1 EP02788558A EP02788558A EP1558823A1 EP 1558823 A1 EP1558823 A1 EP 1558823A1 EP 02788558 A EP02788558 A EP 02788558A EP 02788558 A EP02788558 A EP 02788558A EP 1558823 A1 EP1558823 A1 EP 1558823A1
Authority
EP
European Patent Office
Prior art keywords
insert
mullion
transom
jaw
mullions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02788558A
Other languages
German (de)
French (fr)
Other versions
EP1558823B1 (en
Inventor
Nicolò Ferro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alprogetti SRL
Original Assignee
Alprogetti SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alprogetti SRL filed Critical Alprogetti SRL
Publication of EP1558823A1 publication Critical patent/EP1558823A1/en
Application granted granted Critical
Publication of EP1558823B1 publication Critical patent/EP1558823B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/88Curtain walls
    • E04B2/96Curtain walls comprising panels attached to the structure through mullions or transoms
    • E04B2/965Connections of mullions and transoms

Definitions

  • This patent refers to a system for joining section bars used in fagades (both to mullions and transoms, be they structural or semi-structural) band frames, movable wails and in general wherever mullions are to be joined to transoms with mitred joints, without additional work.
  • section bars used in fagades (both to mullions and transoms, be they structural or semi-structural) band frames, movable wails and in general wherever mullions are to be joined to transoms with mitred joints, without additional work.
  • transom ends are milled once again, so as to obtain two projections, one on each side, directing the water into the above mentioned channel.
  • mullion and transom preparation costs are very high, given the number of adjustments to be performed: double milling or shearing of transoms, milling of mullions, double perforation of mullions (in order to create the holes in which both the screws for the side supports and those needed for joining the transoms to the mullions will be fastened).
  • a certain amount of labour is required both for the preparation of the section bars and the fastening of side supports in advance.
  • transoms are cut to the desired length. The ends are then closed with plastic plugs which act both as gaskets and dilatation compensators. Finally, transoms and mullions are joined together with metal bars which are placed horizontally between the two and fastened to them by means of screws. The metal bars are fitted into special transom channels or chambers, creating a typical cross-shaped joint where screws are essential to keep the structure tightly fastened.
  • the aim of this invention is to offer users a section bar linking system which does not require extra adjustments other than the cutting of mullions and transoms during the making of fagades, band frames and movable walls. Consequently, this invention also aims at enabling frontal assembly and disassembly of section bars at extremely low costs, thus offering great economic advantages.
  • section bars which is the subject matter of this invention and which is characterised by the use of section bars, an insert and spacers.
  • the section bars used for the making of transoms are provided with at least one channel (whose longitudinal axis is parallel to that of the section bars), developing vertically.
  • the section bars used for the making of mullions are provided with at least two grooves whose longitudinal axis is parallel to that of the section bars and symmetrical to the central beams.
  • each groove is provided with at least one coupling jaw, one holding jaw, and one inclined plane.
  • Each groove can be divided into two channels by a sufficiently flexible fin, whose longitudinal axis is parallel to that of the mullion, which has to be provided with at least one coupling and one holding jaw.
  • a projection creates the inclined plane, while at the end of the other channel a projection creates a housing.
  • the insert is provided with at least one connection beam perpendicular to its body.
  • the body of each insert is housed in at least one of the transom channels whereas the end supplied with the connection beam inevitably protrudes from the channel itself.
  • the connection beam may vary in shape but in all cases has to be provided with at least one coupling and one holding jaw.
  • the connection beam's end can be formed by a terminal, complementary or not to the above mentioned housing.
  • the insert may also be supplied with a guide beam placed perpendicularly to the insert's body and in the same direction as the connection beam. This guide beam may be provided with a terminal, preferably placed at its distal end and perpendicularly to the beam.
  • the insert body may be subdivided into two or more sections which are parallel to the transoms, joining at the mullion.
  • the insert is provided with two or more holes, threaded or not, at least one of which is to be located on the insert's body itself and another near the connection beam. These holes hold screws or dowels.
  • a metal profile spacer may be used, having a varied section structure.
  • the spacer which may host the vertical sealing gasket and act as a support for the shutters' retaining elements, is fixed to the mullion by means of joints, gaskets or any other simple fitting method. It may have diverse shapes and may or may not be provided with a coupling jaw to be inserted in at least one of the mullion's jaws. The spacer is inserted into a specific slot for fitting or in at least one of the channels.
  • Each transom end may be closed by a tight plug, formed by a body having the same profile as the transom, with a support protruding from it and facing oppositely to the transom end.
  • the support is provided with one or more slits whose clear span is the same size as that of the insert's body and may also be provided with horizontal holes.
  • - fig. 1 shows the cross section of a mullion according to the invention
  • - fig. 2 shows the cross section of a transom
  • - fig. 5 shows an enlarged cross section of a mullion's seat
  • - fig. 6 shows an enlarged longitudinal section of the extremity of the insert shown in fig. 4; - fig. 7 shows a section of part of the area where the mullion and insert are joined;
  • - fig. 9 shows the exploded perspective view of the transom, the insert and plug previously illustrated
  • - fig. 11 shows the exploded perspective view of the mullion, transom, insert and plug illustrated in the previous drawings; part of the mullion has been removed in order to better show how the insert is locked into the mullion;
  • - fig. 12 shows the cross section of a second mullion according to the invention
  • - fig. 14 shows an enlarged cross section of a second spacer
  • - fig. 15 shows an enlarged cross section of part of the mullion shown in fig. 12;
  • - fig. 17 shows a section of the mullion, transom, insert, plug and spacer shown in figures 12, 13, 14, now joined together;
  • - fig. 18 shows another cross section of the transom shown in fig. 13;
  • FIG. 19 shows the exploded perspective view of the mullion, transom, insert and plug shown in figures 12-18;
  • - fig. 20 shows a cross section of a third mullion according to the invention.
  • - fig. 21 shows the cross section of a third transom
  • - fig. 22 shows the cross section of a third spacer
  • - fig. 24 shows the enlarged cross section of part of the mullion shown in fig. 20;
  • - fig. 25 shows the enlarged view of a third insert, seen from above;
  • - fig. 26 shows a section of the mullion, transom, insert, plug and the two spacers shown in figures 20-25, joined together;
  • - fig. 27 shows another cross section of the transom shown in fig. 21;
  • - fig. 28 shows the cross section of a mullion and a spacer for internal walls
  • - fig. 29 shows the longitudinal section of a fourth insert
  • - fig. 30 shows the cross section of the spacer shown in fig. 28;
  • - fig. 31 shows the cross section of a transom and its corresponding insert for internal walls.
  • Insert 1 is formed by a body 1.1 and a connection beam 1.2 which is perpendicular to the body itself.
  • Body 1.1 of insert 1 is divided into two parts which are parallel to transoms 3, joined together near beam 1.2.
  • Connection beam 1.2 is provided with a coupling jaw 1.3 and a holding jaw 1.4.
  • Insert 1 is provided with four holes, two threaded holes 1.5 along body 1.1 and two non-threaded holes 1.6 near connection beam 1.2.
  • the section bars used to create transoms 3 have a box-like body 3.1 and two channels 3.2 whose longitudinal axis is parallel to that of transoms 3, developing vertically.
  • the two parts of body 1.1 of insert 1 are fitted into channels 3.2, whereas the extremity provided with connection beam 1.2 protrudes from channels 3.2.
  • the section bars used to create mullions 2 have a box-like body 2.1 and a double seat 2.2, whose longitudinal axis is parallel to that of the section bars and rigid edges.
  • the central beams 2.3 holding the section bar which blocks the glass or panel, are placed between the two seats 2.2.
  • each seat 2.2 is closed by fin 2.4, whose longitudinal axis is parallel to that of mullion 2.
  • Fin 2.4 is provided with a coupling jaw 2.5.
  • a holding jaw 2.6 is placed opposite to jaw 2.5 on the edge of seat 2.2 facing W
  • each seat 2.2 At the bottom of each seat 2.2 a projection creates inclined plane 2.7.
  • the edge facing central beams 2.3 of seat 2.2 is also inclined, thus forming another inclined plane, 2.8.
  • a third section bar is used both as an internal glass-holder and as a spacer, 5 4. It is formed by body 4.1 which is provided with two beams 4.2. Each beam is provided with a coupling jaw, 4.3.
  • a tight plug 5 closes the ends of each transom 3.
  • Each plug 5 is formed by a body 5.1 having the same profile as the tubular portion of transom 3 and a support 5.2 protruding from body 5.1 itself.
  • Plug 5 is crossed by two vertical lo slits 5.3 having a clear span of the same size as the two parts of body 1.1 of insert 1 and by two horizontal holes 5.4, if required.
  • transom 3 already equipped with plugs 5 and inserts 1 at its extremities, is brought close to mullion 2, frontally.
  • Connection beam 1.2 of each insert 1 is fitted into each of seats 2.2 until coupling jaw
  • connection beam 1.2 of each insert 1 is pushed against its corresponding inclined plane 2.8.
  • the tips of screws 6 use the second inclined plane 2.7 as a fulcrum to lever on plug 5, forcing it to
  • Both beams 4.2 are inserted in the same seat 2.2 of mullion 2 in which beam 1.2 of insert 1 is housed.
  • Jaws 4.3 couple with coupling jaw 2.5 and holding jaw 2.6 of seat 2.2 thus tightly fastening spacer 4 to mullion 2.
  • Spacer 4 is placed between one insert 1 and the insert above it. Its function is not only that of holding the glass, it also creates a vertical distance between one transom 3 and the other and supports them. Assembly time is therefore reduced since scribing on mullions 2 is no longer necessary. Assembly is sequential and upward oriented.
  • a first transom 3 is fastened to two contiguous mullions 2; then, spacers 4 are fitted into the two mullions 2 placed above the first two inserts 1 , then another transom 3 is fastened and the sequence continues until the fagade is completed.
  • insert 1 is provided with a terminal 1.7.
  • Insert 1 is also provided with a guiding beam 1.8 placed perpendicularly to body 1.1 and facing the same direction as connection beam 1.2.
  • This second beam 1.8 is also provided with a terminal 1.9, placed at its distal extremity and perpendicular to beam 1.8 itself.
  • the section bars used to create mullions 2 have each double seat 2.2 divided into two channels 2.9 and 2.10, and by fin 2.4, which in this case is thin and flexible. Coupling jaw 2.5 and holding jaw 2.6 are placed on fin 2.4 itself; coupling jaw 2.5 facing channel 2.9 and holding jaw 2.6 facing channel 2.10. At the bottom of channel 2.10, placed towards the middle of mullion 2, a projection creates inclined plane 2.7. At the bottom of channel 2.9, placed towards the external side of mullion 2, a projection 2.11 , together with the walls of channel 2.9, creates housing 2.12.
  • the section bar used as spacer 4 is formed by a body 4.1 and two beams 4.2 One of the two beams is provided with a coupling jaw 4.3 while the other beam ends with a fin 4.4 placed perpendicularly to the beam 4.2 itself. Housing 4.5 of body 4.1 holds a vertical gasket 8.
  • transom 3 already equipped with plugs 5 and inserts 1 at its extremities, is frontally brought close to mullion 2.
  • Connection beam 1.2 of each insert 1 is fitted into the most external channel 2.9 and guiding beam 1.8 into the second channel 2.10 until coupling jaw 1.3 clasps to coupling jaw 2.5.
  • the encumbrance of beam 1.2 determines its correct coupling with mullion 2.
  • Screws 6, which also pass through holes 5.4 of plug 5, are inserted into holes 1.6 close to connection beam and engrave holding jaw 2.6.
  • Beam 1.8 guides screws 6 into channel 2.10. The locking with screws 6 is therefore performed by using the more central channel 2.10 and not channel 2.9 where beam 1.2 is housed.
  • fin 2.4 does not bend and its jaw 2.5 does not detach from jaw 1.3 of connection beam 1.2.
  • Both beams 4.2 are inserted in the same channel 2.9 of mullion 2 in which beam 1.2 of insert 1 is housed.
  • Jaw 4.3 couples with coupling jaw 2.5 of fin
  • Spacer 9 is provided with two beams, 9.1 and 9.2.
  • Beam 9.2 is provided with a coupling jaw 9.3.
  • Beam 9.2 is fitted into the most peripheral channel 2.9 of mullion 2 and its coupling jaw 9.3 joins with coupling jaw 2.5 of channel 2.10.
  • spacer 10 which has the double function of creating a distance between transoms 3 and supporting the elements which fasten the doors. It is provided with two beams, 10.1 and 10.2 which are fitted into yet another channel 2.14 of mullion 2 having a different position, lateral, and a different function compared to that of channels 2.9 and 2.10 which serve to lock both insert 1 and spacer 9.
  • Spacer 10 is fastened to mullion 2 by means of gasket 11 which is provided with a relief 11.1 intended to occupy groove 2.15 within channel 2.14.
  • a fourth example of realisation of the joining system here described uses an insert 1 , a section bar suitable to create mullion 2, of a second section bar creating transom 3 and of a spacer 12. Also in this case the details differ in shape but they have the same characteristics as the ones previously described. Fin 2.4 of mullion 2 is not provided with the inclined plane 2.7, the transom is only provided with one channel 3.2 and spacer 12 has two beams, 12.1 and 12.2, one of which is provided with a coupling jaw 9.3. Beam 12.2 of spacer 12 externally embraces mullion 2. Coupling jaw 12.3 of beam 12.1 of spacer 12 joins with holding jaw 2.6 of channel 2.10.

Abstract

The system for joining mullions to transoms by frontal link here described uses: transoms ( 3 ) with channels whose longer axis is the vertical axis and mullions provided with at least two seats; each seat is provided with at least one coupling jaw, one holding jaw and one inclined plane; an insert joins the mullion to the transoms; it is formed by a body and a connection beam provided with a coupling jaw. The body of the insert is housed in at least one of the above mentioned channels of the transom; the insert is provided with holes in which screws and dowels are inserted; a spacer is placed between one insert and the one above it in order to separate the transoms vertically; the coupling jaw on the insert joins with the coupling jaw on the mullion; the above mentioned screws engrave the holding jaw of the mullion thus producing horizontal grooves; the dowels prevent the insert from moving within the transom.

Description

System for joining mullions to transoms by frontal link.
Application field
This patent refers to a system for joining section bars used in fagades (both to mullions and transoms, be they structural or semi-structural) band frames, movable wails and in general wherever mullions are to be joined to transoms with mitred joints, without additional work. State of the art
A great number of systems for joining mullions to transoms by means of metal or plastic section bars are available. The most advanced systems provide for non-sequential joining of section bars by frontal insertion of transoms into mullions. This allows transom preparation before assembly, with a subsequent reduction in costs. Costs are further decreased also because this particular method enables an easier assembly process compared to that of sequential joining systems.
Unfortunately, the frontal joining systems known today, although effective, have relatively high assembly and disassembly costs. In order to decrease these costs many new solutions have been devised, with the aim of reducing preparation of the parts to be linked to the minimum. We have thus passed from the preparation of mullions - to create notches where transoms are to be inserted - to the adjustment of the transoms themselves. The latter, after having been cut to the desired length, are milled or sheared in order to remove a portion of their outer wall, close to the ends. The transoms are then frontally inserted into side supports which have been fastened to the mullions by means of screws and are tightly locked to them with additional screws. Additionally, in order to favour the discharge of condensation water through the mullion's gutter, transom ends are milled once again, so as to obtain two projections, one on each side, directing the water into the above mentioned channel. It is clear that mullion and transom preparation costs are very high, given the number of adjustments to be performed: double milling or shearing of transoms, milling of mullions, double perforation of mullions (in order to create the holes in which both the screws for the side supports and those needed for joining the transoms to the mullions will be fastened). Moreover, a certain amount of labour is required both for the preparation of the section bars and the fastening of side supports in advance. Alternative frontal fastening methods include the use of linking elements which make it possible to skip part of the section bar preparation process. According to these new methods, transoms are cut to the desired length. The ends are then closed with plastic plugs which act both as gaskets and dilatation compensators. Finally, transoms and mullions are joined together with metal bars which are placed horizontally between the two and fastened to them by means of screws. The metal bars are fitted into special transom channels or chambers, creating a typical cross-shaped joint where screws are essential to keep the structure tightly fastened. Apart from the transoms' low resistance to torsion stress, it is however necessary to pierce or shear both the mullions and the transoms, which makes preparation of the various parts expensive, although to a lesser extent. Summary of the invention The aim of this invention is to offer users a section bar linking system which does not require extra adjustments other than the cutting of mullions and transoms during the making of fagades, band frames and movable walls. Consequently, this invention also aims at enabling frontal assembly and disassembly of section bars at extremely low costs, thus offering great economic advantages.
These and other aims are achieved by the system which is the subject matter of this invention and which is characterised by the use of section bars, an insert and spacers. The section bars used for the making of transoms are provided with at least one channel (whose longitudinal axis is parallel to that of the section bars), developing vertically.
The section bars used for the making of mullions are provided with at least two grooves whose longitudinal axis is parallel to that of the section bars and symmetrical to the central beams. In its cross-section each groove is provided with at least one coupling jaw, one holding jaw, and one inclined plane. Each groove can be divided into two channels by a sufficiently flexible fin, whose longitudinal axis is parallel to that of the mullion, which has to be provided with at least one coupling and one holding jaw. At the end of at least one channel, a projection creates the inclined plane, while at the end of the other channel a projection creates a housing.
The insert is provided with at least one connection beam perpendicular to its body. The body of each insert is housed in at least one of the transom channels whereas the end supplied with the connection beam inevitably protrudes from the channel itself. The connection beam may vary in shape but in all cases has to be provided with at least one coupling and one holding jaw. The connection beam's end can be formed by a terminal, complementary or not to the above mentioned housing. The insert may also be supplied with a guide beam placed perpendicularly to the insert's body and in the same direction as the connection beam. This guide beam may be provided with a terminal, preferably placed at its distal end and perpendicularly to the beam. The insert body may be subdivided into two or more sections which are parallel to the transoms, joining at the mullion. The insert is provided with two or more holes, threaded or not, at least one of which is to be located on the insert's body itself and another near the connection beam. These holes hold screws or dowels.
Fitted into the holes, the screws and dowels prevent the insert from moving vertically. Nevertheless, in order to prevent heavy glass panes or panels or minute loads from causing a downward slip of the transom, a metal profile spacer may be used, having a varied section structure. The spacer, which may host the vertical sealing gasket and act as a support for the shutters' retaining elements, is fixed to the mullion by means of joints, gaskets or any other simple fitting method. It may have diverse shapes and may or may not be provided with a coupling jaw to be inserted in at least one of the mullion's jaws. The spacer is inserted into a specific slot for fitting or in at least one of the channels.
Each transom end may be closed by a tight plug, formed by a body having the same profile as the transom, with a support protruding from it and facing oppositely to the transom end. The support is provided with one or more slits whose clear span is the same size as that of the insert's body and may also be provided with horizontal holes.
By using the above described insert for the fixing of transoms to mullions, apart from transom cutting, all other adjustments are avoided. Transoms are previously cut to the desired length in the workshop and, if required, their ends are covered with the plugs in which the inserts are placed. Consequently, the persons in charge of assembling fagades, band frames, movable walls etc., will simply have to fix the inserts to the mullions and the transoms. Assembly therefore becomes quick and easy, drastically reducing the costs and time usually required to carry out these operations. Short description of drawings Further characteristics and advantages of the present invention will be clearer from the description of some preferred, but not unique, embodiments of the invention showing - for information only, and without any limitation - the details of the system on the drawings enclosed herewith, where:
- fig. 1 shows the cross section of a mullion according to the invention; - fig. 2 shows the cross section of a transom;
- fig. 3 shows the enlarged cross section of a spacer;
- fig. 4 shows an insert seen from above;
- fig. 5 shows an enlarged cross section of a mullion's seat;
- fig. 6 shows an enlarged longitudinal section of the extremity of the insert shown in fig. 4; - fig. 7 shows a section of part of the area where the mullion and insert are joined;
- fig. 8 shows the transom, insert and plug seen from above;
- fig. 9 shows the exploded perspective view of the transom, the insert and plug previously illustrated;
- fig. 10 shows the same details described in the previous drawing, assembled together;
- fig. 11 shows the exploded perspective view of the mullion, transom, insert and plug illustrated in the previous drawings; part of the mullion has been removed in order to better show how the insert is locked into the mullion;
- fig. 12 shows the cross section of a second mullion according to the invention;
- fig. 13 shows the cross section of a second transom;
- fig. 14 shows an enlarged cross section of a second spacer; - fig. 15 shows an enlarged cross section of part of the mullion shown in fig. 12;
- fig. 16 shows and enlarged view of a second insert, seen from above;
- fig. 17 shows a section of the mullion, transom, insert, plug and spacer shown in figures 12, 13, 14, now joined together; - fig. 18 shows another cross section of the transom shown in fig. 13;
- fig. 19 shows the exploded perspective view of the mullion, transom, insert and plug shown in figures 12-18;
- fig. 20 shows a cross section of a third mullion according to the invention;
- fig. 21 shows the cross section of a third transom; - fig. 22 shows the cross section of a third spacer;
- fig. 23 shows the cross section of a fourth spacer;
- fig. 24 shows the enlarged cross section of part of the mullion shown in fig. 20;
- fig. 25 shows the enlarged view of a third insert, seen from above; - fig. 26 shows a section of the mullion, transom, insert, plug and the two spacers shown in figures 20-25, joined together;
- fig. 27 shows another cross section of the transom shown in fig. 21;
- fig. 28 shows the cross section of a mullion and a spacer for internal walls;
- fig. 29 shows the longitudinal section of a fourth insert; - fig. 30 shows the cross section of the spacer shown in fig. 28;
- fig. 31 shows the cross section of a transom and its corresponding insert for internal walls.
Detailed description of four preferential methods of realisation A first example of realisation of the joining system here described, particularly suitable for continuous fagades, foresees the use of insert 1 , of a section bar which will create mullion 2, of a second section bar creating transom 3 and of spacer 4.
Insert 1 is formed by a body 1.1 and a connection beam 1.2 which is perpendicular to the body itself. Body 1.1 of insert 1 is divided into two parts which are parallel to transoms 3, joined together near beam 1.2. Connection beam 1.2 is provided with a coupling jaw 1.3 and a holding jaw 1.4. Insert 1 is provided with four holes, two threaded holes 1.5 along body 1.1 and two non-threaded holes 1.6 near connection beam 1.2. The section bars used to create transoms 3 have a box-like body 3.1 and two channels 3.2 whose longitudinal axis is parallel to that of transoms 3, developing vertically. The two parts of body 1.1 of insert 1 are fitted into channels 3.2, whereas the extremity provided with connection beam 1.2 protrudes from channels 3.2. The section bars used to create mullions 2 have a box-like body 2.1 and a double seat 2.2, whose longitudinal axis is parallel to that of the section bars and rigid edges. The central beams 2.3 holding the section bar which blocks the glass or panel, are placed between the two seats 2.2. On the side facing beams 2.3, each seat 2.2 is closed by fin 2.4, whose longitudinal axis is parallel to that of mullion 2. Fin 2.4 is provided with a coupling jaw 2.5. A holding jaw 2.6 is placed opposite to jaw 2.5 on the edge of seat 2.2 facing W
7
the external side of mullion 2. At the bottom of each seat 2.2 a projection creates inclined plane 2.7. The edge facing central beams 2.3 of seat 2.2 is also inclined, thus forming another inclined plane, 2.8. A third section bar is used both as an internal glass-holder and as a spacer, 5 4. It is formed by body 4.1 which is provided with two beams 4.2. Each beam is provided with a coupling jaw, 4.3.
A tight plug 5 closes the ends of each transom 3. Each plug 5 is formed by a body 5.1 having the same profile as the tubular portion of transom 3 and a support 5.2 protruding from body 5.1 itself. Plug 5 is crossed by two vertical lo slits 5.3 having a clear span of the same size as the two parts of body 1.1 of insert 1 and by two horizontal holes 5.4, if required.
At the time of assembly, transom 3, already equipped with plugs 5 and inserts 1 at its extremities, is brought close to mullion 2, frontally. Connection beam 1.2 of each insert 1 is fitted into each of seats 2.2 until coupling jaw
15 1.3 clasps to coupling jaw 2.5. The coupling of jaws 1.3 and 2.5 avoids that the group formed by transom 3 and insert 1 should detach from mullion 2. In order to lock insert 1 and prevent the group formed by insert 1 and transom 2 from sliding vertically along mullion 2, screws 6 are inserted in holes 1.6 placed close to connection beam 1.2. These screws, which may also pass
20 through holes 5.4 of plug 5, engrave jaw 2.6, creating horizontal grooves which prevent the above mentioned vertical sliding. By inserting screws 6 into seat 2.2, connection beam 1.2 of each insert 1 is pushed against its corresponding inclined plane 2.8. At the same time, the tips of screws 6 use the second inclined plane 2.7 as a fulcrum to lever on plug 5, forcing it to
25 press against mullion 2, thus preventing water leakage and therefore ensuring a tight system. Two dowels 7 prevent insert 1 from moving within channels 3.2 of transom 3. Dowels 7 are inserted in threaded holes 1.5 of body 1.1 of insert 1 engraving the walls of transom 3. Spacer 4, formed by a glass-holding section bar, prevents insert 1 from
30 moving vertically when transom 3 has to support heavy or sudden loads. Both beams 4.2 are inserted in the same seat 2.2 of mullion 2 in which beam 1.2 of insert 1 is housed. Jaws 4.3 couple with coupling jaw 2.5 and holding jaw 2.6 of seat 2.2 thus tightly fastening spacer 4 to mullion 2. Spacer 4 is placed between one insert 1 and the insert above it. Its function is not only that of holding the glass, it also creates a vertical distance between one transom 3 and the other and supports them. Assembly time is therefore reduced since scribing on mullions 2 is no longer necessary. Assembly is sequential and upward oriented. After locking mullions 2 in the desired position, a first transom 3 is fastened to two contiguous mullions 2; then, spacers 4 are fitted into the two mullions 2 placed above the first two inserts 1 , then another transom 3 is fastened and the sequence continues until the fagade is completed.
A second example of realisation of the joining system here described, also suitable for continuous fagades, still foresees the use of an insert 1 , of a section bar which will create mullion 2, of a second section bar creating transom 3 and of a spacer 4.
In this second example, apart from a coupling jaw 1.3 and a holding jaw 1.4 opposite to it, insert 1 is provided with a terminal 1.7. Insert 1 is also provided with a guiding beam 1.8 placed perpendicularly to body 1.1 and facing the same direction as connection beam 1.2. This second beam 1.8 is also provided with a terminal 1.9, placed at its distal extremity and perpendicular to beam 1.8 itself.
The section bars used to create mullions 2 have each double seat 2.2 divided into two channels 2.9 and 2.10, and by fin 2.4, which in this case is thin and flexible. Coupling jaw 2.5 and holding jaw 2.6 are placed on fin 2.4 itself; coupling jaw 2.5 facing channel 2.9 and holding jaw 2.6 facing channel 2.10. At the bottom of channel 2.10, placed towards the middle of mullion 2, a projection creates inclined plane 2.7. At the bottom of channel 2.9, placed towards the external side of mullion 2, a projection 2.11 , together with the walls of channel 2.9, creates housing 2.12. The section bar used as spacer 4, is formed by a body 4.1 and two beams 4.2 One of the two beams is provided with a coupling jaw 4.3 while the other beam ends with a fin 4.4 placed perpendicularly to the beam 4.2 itself. Housing 4.5 of body 4.1 holds a vertical gasket 8. At the time of assembly, transom 3, already equipped with plugs 5 and inserts 1 at its extremities, is frontally brought close to mullion 2. Connection beam 1.2 of each insert 1 is fitted into the most external channel 2.9 and guiding beam 1.8 into the second channel 2.10 until coupling jaw 1.3 clasps to coupling jaw 2.5. The encumbrance of beam 1.2 determines its correct coupling with mullion 2. In fact, it has to be greater than the distance between the lateral extremity of jaw 2.5 and the edge of channel 2.9 (net measure) thus forcing the fin to bend when connection beam 1.2 is inserted into channel 2.9. When jaws 1.3 and 2.5 clasp together, fin 2.4 returns to its original position simultaneously pushing beam 1.2 against the edge of channel 2.9 opposite to that of fin 2.4 and forcing the support area 1.4 of connection beam 1.2 against rigid edge 2.13. Eventually, terminal 1.7 places itself into housing 2.12 placed between the edges of channel 2.9 and projection 2.11.
The coupling of jaws 1.3 and 2.5 avoids that insert 1 should detach from mullion 2. The contact between the support area 1.4 and the edge 2.13 of channel 2.9 and the contact between terminal 1.7 and the walls of housing
2.12 prevents insert 1 - and therefore transom 3 - from rotating along one of its longitudinal axes.
Screws 6, which also pass through holes 5.4 of plug 5, are inserted into holes 1.6 close to connection beam and engrave holding jaw 2.6. Beam 1.8 guides screws 6 into channel 2.10. The locking with screws 6 is therefore performed by using the more central channel 2.10 and not channel 2.9 where beam 1.2 is housed. By inserting screws 6, fin 2.4 does not bend and its jaw 2.5 does not detach from jaw 1.3 of connection beam 1.2. Both beams 4.2 are inserted in the same channel 2.9 of mullion 2 in which beam 1.2 of insert 1 is housed. Jaw 4.3 couples with coupling jaw 2.5 of fin
2.4. Fin 4.4 of the other beam 4.2 places itself in housing 2.12 thus tightly fastening spacer 4 to mullion 2.
A third example of realisation of the joining system here described, also suitable for continuous fagades, still foresees the use of an insert 1 , of a section bar which will create mullion 2, of a second section bar creating transom 3 and of a spacer 9. These details differ in shape but they have the same characteristics as the ones previously described.
The only variations are the absence of the two terminals 1.7 and 1.9, the shape of spacer 9 and its housing onto mullion 2. Spacer 9 is provided with two beams, 9.1 and 9.2.. Beam 9.2 is provided with a coupling jaw 9.3.
Beam 9.2 is fitted into the most peripheral channel 2.9 of mullion 2 and its coupling jaw 9.3 joins with coupling jaw 2.5 of channel 2.10. The other beam
9.1 fits into the other channel 2.10. A second spacer may be used, spacer 10, which has the double function of creating a distance between transoms 3 and supporting the elements which fasten the doors. It is provided with two beams, 10.1 and 10.2 which are fitted into yet another channel 2.14 of mullion 2 having a different position, lateral, and a different function compared to that of channels 2.9 and 2.10 which serve to lock both insert 1 and spacer 9. Spacer 10 is fastened to mullion 2 by means of gasket 11 which is provided with a relief 11.1 intended to occupy groove 2.15 within channel 2.14.
A fourth example of realisation of the joining system here described, particularly suitable for interior movable walls, uses an insert 1 , a section bar suitable to create mullion 2, of a second section bar creating transom 3 and of a spacer 12. Also in this case the details differ in shape but they have the same characteristics as the ones previously described. Fin 2.4 of mullion 2 is not provided with the inclined plane 2.7, the transom is only provided with one channel 3.2 and spacer 12 has two beams, 12.1 and 12.2, one of which is provided with a coupling jaw 9.3. Beam 12.2 of spacer 12 externally embraces mullion 2. Coupling jaw 12.3 of beam 12.1 of spacer 12 joins with holding jaw 2.6 of channel 2.10.
When fixing insert 1 , two dowels 13 are used to prevent insert 1 -and thereafter transom 3 - from moving vertically. These dowels are inserted in holes 1.6 placed close to connection beam 1.2 where they engrave jaw 2.6 of fin 2.4. The fitting of the dowels 13 ends when their tips come into contact with terminal 1.9 of guide beam 1.8, thus creating an end-stop. In this case the inclined plane 2.7 is not foreseen. In fact, since the tightness of the internal walls is not necessary, no plugs are used and the fulcrum function previously described for inclined plane 2.7 is senseless.

Claims

1 - System for joining mullions to transoms by frontal link, characterised by the use of:
- section bars used to obtain transoms (3) having a body (3.1) and at least one channel (3.2) whose longer axis is the vertical axis and whose longitudinal axis is parallel to that of transoms (3);
- section bars used to obtain mullions (2) having at least two seats (2.2) whose longitudinal axis is parallel to that of mullions (2), symmetrical to central beams (2.3); in cross section each seat (2.2) is provided with at least one coupling jaw (2.5), one holding jaw (2.6) and one inclined plane (2.7);
- inserts (1) each of which is formed by a body (1.1) and at least one connection beam (1.2) perpendicular to its body; the body (1.1) of each insert is housed in at least one of the transom channels (3.2) whereas the end supplied with the connection beam (1.2) protrudes from the channel (3.2) itself; the connection beam (1.2) is provided with at least one coupling (1.3) and one holding jaw (1.4); each insert is provided with two or more holes, threaded or not, at least one of which (1.5) is to be located on the insert's body itself and at least another (1.6) close to the connection beam (1.2); these holes (1.5, 1.6) hold screws or dowels (6, 7, 13); - spacers (4, 9, 10, 12), formed by section bars which are fixed to the mullion (2) by means of joints, gaskets (11) or any other simple fitting method.
2 - Joining system, according to claim 1 , provided with a holding jaw (2.6) on the edge (2.13) of seat (2.2) of mullion (2).
3 - Joining system, according to claim 1, in which each double seat (2.2) of mullion (2) is divided into two channels (2.9, 2.10) by a thin and flexible fin
(2.4), whose longitudinal axis is parallel to that of mullion (2); coupling jaw (2.5) and holding jaw (2.6) are placed on fin (2.4) itself; coupling jaw (2.5) facing channel (2.9) and holding jaw (2.6) facing the other channel (2.10); at the bottom of channel (2.10), positioned towards the middle of the mullion (2), a projection creates inclined plane (2.7); at the bottom of channel (2.9), placed towards the external side of the mullion (2), a projection (2.11), together with the walls of channel (2.9), creates a housing (2.12).
4 - Joining system, according to claim 1 , in which body (1.1) of insert (1) is divided into two parts which are parallel to transoms (3), joined together near beam (1.2).
5 - Joining system, according to claim 1 , in which each insert (1) is also provided with a guiding beam (1.8) placed perpendicularly to body (1.1) and facing the same direction as connection beam (1.2).
6 - Joining system, according to claims 1 and 3 in which the extremity of connection beam (1.2) is constituted by a terminal (1.7); this terminal may be complementary or not to the geometry of the above mentioned housing (2.12) of mullion (2).
7 - Joining system, according to claims 1 and 5 in which the distal extremity of guiding beam (1.8) is constituted by a terminal (1.9). 8 - Joining system, according to claim 1 , in which a tight plug (5) closes the ends of each transom (3); each plug (5) is formed by a body (5.1) having the same profile as transom (3) and a support (5.2) protruding from body (5.1) itself; this support (5.2) is crossed by one or more vertical slits (5.3) having a clear span of the same size as body (1.1) of insert (1) and by horizontal holes (5.4).
9 - Joining system, according to claims 1 , 2 and 3, in which the above mentioned screws (6) or dowels (13), passing through the holes (1.6) placed close to the connection beam (1.2) of the insert (1) engrave a holding jaw (2.6) of the mullion (2) thus creating horizontal seats; one or more dowels (7) inserted into the threaded holes (1.5) of the body (1.1) of the insert (1) engrave transom (3) walls.
10 - Joining system, according to claims 1 and 3, in which at least one coupling jaw (1.3) of the insert (1) joins with at least one coupling jaw (2.5) of the mullion (2). 11 - Joining system, according to claim 1 , in which the spacer (4, 9, 12) is inserted into the seat (2.2) or in at least one of the channels (2.9, 2.10) meant to be joined with the insert (1).
12 - Joining system, according to claim 1 , in which the spacer (10) is inserted into a channel (2.14) of the mullion (2) which is not meant to be joined with the insert (1).
13 - Joining system, according to claims 1 and 11 , in which the spacer (4, 9, 12) is provided with at least one coupling jaw (4.3, 9.3, 12.3) which joins with at least one coupling jaw (2.5) of the mullion (2).
14 - Joining system, according to claims 1 and 12, in which the spacer (10) is fastened to the mullion (2) by means of a gasket (11) provided with a relief
(11.1) which fits into a groove (2.15) of the mullion (2) itself.
15 - Joining system, according to claim 1 , comprising the following phases of assembly:
- the section bars used to obtain the mullions (2) are fixed in the desired position;
- an insert (1) is fitted into each end of the transom (3) which may be provided with plugs (5) or not;
- the group formed by the transom (3) and the inserts (1) is brought close to two contiguous mullions (2) frontally; - the connection beam (1.2) of each insert (1) is fitted into a seat (2.2) or channel (2.9) of the mullion (2) until the coupling jaw (1.3) of each insert (1) couples with the jaw (2.5) of the mullion (2);
- a first transom (3) is fastened to two contiguous mullions (2) by means of screws (6) or dowels (13) which pass through the holes (1.6) placed close to the connection beam (1.2) of the inserts (1) and through the holes (5.4) of the plugs (5) engraving the holding jaws (2.6) of the mullions (2), thus creating horizontal seats;
- each insert (1) is fastened to the transom (3) by means of screws or dowels (7), which pass through additional holes (1.5) obtained in the body (1.1) of the insert (1) itself; - appropriate spacers (4, 9, 10, 12) are fitted into the two mullions (2) above the first two insets (1) or into special channels (2.14) meant for this purpose;
- subsequent transoms (3) are then fastened as described above; assembly is sequential and upward oriented and continues until the fagade, band frame or movable wall is completed.
EP02788558A 2002-11-08 2002-11-08 System for joining mullions to transoms by frontal link Expired - Lifetime EP1558823B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IT2002/000707 WO2004042159A1 (en) 2002-11-08 2002-11-08 System for joining mullions to transoms by frontal link

Publications (2)

Publication Number Publication Date
EP1558823A1 true EP1558823A1 (en) 2005-08-03
EP1558823B1 EP1558823B1 (en) 2007-01-17

Family

ID=32310112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02788558A Expired - Lifetime EP1558823B1 (en) 2002-11-08 2002-11-08 System for joining mullions to transoms by frontal link

Country Status (9)

Country Link
US (1) US20060016137A1 (en)
EP (1) EP1558823B1 (en)
AT (1) ATE351949T1 (en)
AU (1) AU2002353528A1 (en)
CA (1) CA2505398A1 (en)
DE (1) DE60217735T2 (en)
ES (1) ES2280601T3 (en)
PT (1) PT1558823E (en)
WO (1) WO2004042159A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7779584B2 (en) 2005-03-08 2010-08-24 Muridal Inc. Curtain wall system
AU2007211867B2 (en) * 2006-09-08 2013-04-04 Capral Limited Interconnection of a mullion with a window frame or door frame or like frame
AU2007234570B2 (en) * 2006-12-13 2013-07-04 Capral Limited Mullion fixing
AU2007234566B2 (en) * 2006-12-13 2013-07-04 Capral Limited Interconnection of a mullion with a window frame or door frame
DE102009026105B4 (en) * 2009-07-06 2022-03-03 Hydro Extruded Solutions As System for connecting mullions and transoms and use
CA2724952A1 (en) * 2009-12-11 2011-06-11 Groupe Lessard Inc. System and method for refurbishing an existing curtain wall
US9163400B2 (en) * 2011-02-23 2015-10-20 Oldcastle Buildingenvelope, Inc. Method and system for improved curtain wall sealing
US20130186031A1 (en) * 2012-01-20 2013-07-25 Advanced Building Systems, Inc. Holeless Curtain Wall Mullion Connection
US9567746B1 (en) * 2015-10-15 2017-02-14 Arconic Inc. Curtain wall system with anti-rolling shear block
US9683367B1 (en) 2016-02-23 2017-06-20 Advanced Building Systems, Inc. Curtain wall mullion anchoring system
BE1024285B1 (en) * 2016-05-24 2018-01-15 Claeys Stephanie Catharina R. CURTAIN WALL AND SET AND METHOD FOR BUILDING SUCH CURTAIN WALL
US10787817B1 (en) 2017-04-17 2020-09-29 Henry H. Bilge System for mounting adjustable covering panels to a wall
US10407917B1 (en) 2017-04-17 2019-09-10 Henry H. Bilge System for mounting wall panels to a wall
US10253507B1 (en) 2017-04-17 2019-04-09 Henry H. Bilge System for mounting wall panels to a wall
US10260240B1 (en) * 2017-04-17 2019-04-16 Henry H. Bilge System for mounting wall panels to a wall
US10370843B2 (en) 2017-09-06 2019-08-06 Advanced Building Systems, Inc. Advanced curtain wall mullion anchoring system
CN107938901A (en) * 2017-12-28 2018-04-20 江苏龙升节能科技股份有限公司 Glass curtain wall beam structure
US10443235B2 (en) 2018-01-09 2019-10-15 Advanced Building Systems, Inc. Advanced curtain wall top-down renovation
CN116838018A (en) * 2018-05-30 2023-10-03 深圳市华宇新材科技有限公司 Furred ceiling fossil fragments and slide rail integrated system
IT201900000703A1 (en) * 2019-01-16 2020-07-16 L M Dei F Lli Monticelli S R L GASKET AND UPRIGHT-CROSS GROUP INCLUDING THIS GASKET.
EA038220B1 (en) * 2019-12-19 2021-07-26 Совместное Общество С Ограниченной Ответственностью "Алюминтехно" Suspended facade system with detachable horizontal and vertical profiles
US20220389706A1 (en) * 2021-06-08 2022-12-08 Permasteelisa North America Corp. Curtain wall and drainage cavity for curtain wall unit
KR102496417B1 (en) * 2022-02-18 2023-02-06 원경의 Curtain wall structure with excellent seismic resistance and preventing glass from falling due to earthquake
KR102505990B1 (en) * 2022-02-18 2023-03-03 원경의 Glass fall prevention bracket and curtain wall structure equipped with the same to prevent glass from falling due to earthquake while having excellent seismic resistance

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3734550A (en) * 1971-09-16 1973-05-22 Engineered Products Inc Building construction assembly
US4621472A (en) * 1982-09-30 1986-11-11 H. H. Robertson Company Glazed structural system and components therefor
FI76616C (en) * 1984-05-25 1991-08-07 Schuermann & Co Heinz FASAD ELLER TAK SOM EN METALL-GLAS-KONSTRUKTION.
FR2570770B1 (en) * 1984-09-26 1987-01-09 Alcan Aluminium France METHOD OF ASSEMBLING AND CONNECTING PART OF CROSS-PROFILE ELEMENTS, SUCH AS CROSS-BRANCHES AND UPRIGHTS OF A FRAME STRUCTURE
US4974385A (en) * 1989-05-11 1990-12-04 Naturalite/Epi, Inc. Purlin and rafter interconnection system
GB2234992A (en) * 1989-08-16 1991-02-20 Don Reynolds Limited Expansion joint in curtain walling
BE1003563A3 (en) * 1989-10-30 1992-04-21 Reynaers Buelens Maria Constan Curtain pelmet, connection piece and profiles for such curtain pelmet
US5309689A (en) * 1992-06-23 1994-05-10 Kawneer Company, Inc. Slide on cover for framing system
FR2694953B1 (en) * 1992-08-18 1994-11-18 Aluvar Sa Connection piece for mounting a cross member on a curtain wall stiffener.
US5481839A (en) * 1992-09-09 1996-01-09 Kawneer Company, Inc. Glazed panel wall construction and method for assembly thereof
US5369924A (en) * 1993-04-30 1994-12-06 Neudorf; Peter Structural curtainwall system and components therefor
DE19700696B4 (en) * 1997-01-13 2008-07-31 SCHÜCO International KG Facade or glass roof in fire protection version
DE20100747U1 (en) * 2001-01-15 2001-03-08 Schueco Int Kg Transom / post construction
DE10101720A1 (en) * 2001-01-15 2002-07-18 Schueco Int Kg Riegel post-construction

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004042159A1 *

Also Published As

Publication number Publication date
EP1558823B1 (en) 2007-01-17
DE60217735T2 (en) 2007-10-31
CA2505398A1 (en) 2004-05-21
ATE351949T1 (en) 2007-02-15
WO2004042159A1 (en) 2004-05-21
DE60217735D1 (en) 2007-03-08
US20060016137A1 (en) 2006-01-26
ES2280601T3 (en) 2007-09-16
PT1558823E (en) 2007-04-30
AU2002353528A1 (en) 2004-06-07

Similar Documents

Publication Publication Date Title
EP1558823B1 (en) System for joining mullions to transoms by frontal link
US8621793B2 (en) Glazing system
US6032423A (en) Curtain wall having mullion structure
EP0117361B1 (en) Picture framing system
GB2159230A (en) T-connector for a crossbar junction in a facade
GB1587379A (en) Framing system
EP0766774B1 (en) A cruciform joint of glazing bars
EP0722023A2 (en) Uprights and transoms made of sectional bars connected together
EP0445866B1 (en) Series of metal sections for the construction of continuous façades
GB2209046A (en) A composite frame section
HU216266B (en) Profile ledge and method for producing same, heat-insulating glass and its frame structure keeping distance
IE54848B1 (en) Improvements in joints for connecting together hollow frame members
EP0079873B1 (en) Interior fitting
EP0496187B1 (en) Section member assembly for making continuous building glazed walls
EP3844363B1 (en) Frame connector
GB2049775A (en) Insulating Frame Members
WO2002101166A1 (en) System and method for joining mullions to transoms
US3472543A (en) Method and structure for tightening secured matched abutting tubular stiles and rails by the contraction of the joined tubular members on a gusset
GB2102908A (en) Mitre corner connection
US20140255081A1 (en) Profile Connector
EP0549554A1 (en) A method of assembling window and glass-door casements
GB2288422A (en) Joining a transom to a mullion of a frame
EP1188873A1 (en) Curtain walling
EP1380701B1 (en) Joint for connecting together two sections and system for forming a frame of a facade or a roof of a building using this joint
GB2397610A (en) Connector

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050527

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAX Requested extension states of the european patent have changed

Extension state: SI

Payment date: 20050527

Extension state: RO

Payment date: 20050527

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: RO SI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60217735

Country of ref document: DE

Date of ref document: 20070308

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20070418

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070412

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: R. A. EGLI & CO. PATENTANWAELTE

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2280601

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

26N No opposition filed

Effective date: 20071018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20071119

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20071116

Year of fee payment: 6

Ref country code: CH

Payment date: 20071115

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20071231

Year of fee payment: 6

Ref country code: SE

Payment date: 20071114

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20071105

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081121

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20081121

Year of fee payment: 7

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20090508

BERE Be: lapsed

Owner name: ALPROGETTI S.R.L.

Effective date: 20081130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090508

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071108

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070117

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20110127 AND 20110202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110310

REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091109

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20161117 AND 20161123

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: PERMASTEELISA SPA, IT

Effective date: 20170627

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20181116

Year of fee payment: 17

Ref country code: GB

Payment date: 20181121

Year of fee payment: 17

Ref country code: FR

Payment date: 20181121

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20191108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191130

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191108

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191108