EP1546063A1 - Method for producing inverse opaline structures - Google Patents

Method for producing inverse opaline structures

Info

Publication number
EP1546063A1
EP1546063A1 EP03798883A EP03798883A EP1546063A1 EP 1546063 A1 EP1546063 A1 EP 1546063A1 EP 03798883 A EP03798883 A EP 03798883A EP 03798883 A EP03798883 A EP 03798883A EP 1546063 A1 EP1546063 A1 EP 1546063A1
Authority
EP
European Patent Office
Prior art keywords
core
shell
shell particles
inverse
polymers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03798883A
Other languages
German (de)
French (fr)
Inventor
Holger Winkler
Götz HELLMANN
Tilmannn Ruhl
Peter Spahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of EP1546063A1 publication Critical patent/EP1546063A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/04Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by dissolving-out added substances
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F257/00Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00
    • C08F257/02Macromolecular compounds obtained by polymerising monomers on to polymers of aromatic monomers as defined in group C08F12/00 on to polymers of styrene or alkyl-substituted styrenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F289/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds not provided for in groups C08F251/00 - C08F287/00
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1225Basic optical elements, e.g. light-guiding paths comprising photonic band-gap structures or photonic lattices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/80Optical properties, e.g. transparency or reflexibility

Definitions

  • the invention relates to the use of core-shell particles as a template for producing inverse opal-like structures and a method for producing inverse opal-like structures.
  • Three-dimensional photonic structures are generally understood to mean systems which have a regular, three-dimensional modulation of the dielectric constant (and therefore also of the refractive index). If the periodic modulation length corresponds approximately to the wavelength of the (visible) light, the structure interacts with the light in the manner of a three-dimensional diffraction grating, which manifests itself in angle-dependent color phenomena.
  • An example of this is the nature of the E delstein O pal d ar, which consists of a densely packed spherical packing made of silicon dioxide spheres and cavities in between that are filled with air or water. The inverse structure to this arises from the fact that regular spherical hollow volumes are arranged in the densest packing in a solid material.
  • TiO 2 in particular is a suitable material for the formation of a photonic structure because it has a high refractive index.
  • Three-dimensional inverse structures can be created by template synthesis:
  • Capillary effects are filled with a gaseous or liquid precursor or a solution of a precursor.
  • the precursor is (thermally) converted into the desired material.
  • the templates are removed, leaving the inverse structure.
  • Many such methods are known in the literature. For example, SiO 2 spheres can be arranged in the densest packing, the hollow volumes are filled with solutions containing tetraethyl orthotitanate. After several tempering steps, the balls are removed in an etching process with HF, leaving the inverse structure of titanium dioxide (V. Colvin et al. Adv. Mater. 2001, 13, 180).
  • De La Rue et al. (De La Rue et al. Synth. Metals, 2001, 116, 469) describe the preparation of inverse, consisting of TiO 2 opals according to the following method: A dispersion of 400 nm polystyrene balls is dried on a filter paper under an IR lamp. The filter cake is suctioned off with ethanol, transferred into a glove box and infiltrated by means of a water jet pump with tetraethyl orthotitanate. Carefully remove the filter paper from the latex-ethoxide composite and transfer the composite to a tube furnace. The calcination takes place in the tube furnace at 575 ° C. for 8 hours in an air stream, whereby titanium dioxide is formed from the ethoxide and the latex particles are burned out. An inverse TiO 2 opal structure remains.
  • Martinelli et al. (M. Martinelli et al. Optical Mater. 2001, 17, 11) describe the production of inverse TiO 2 opals using 780 nm and 3190 nm polystyrene spheres.
  • a regular arrangement in the densest spherical packing is achieved by centrifuging the aqueous spherical dispersion at 700-1000 rpm for 24-48 hours and then decanting, followed by air drying.
  • the regularly arranged balls are moistened with ethanol on a filter on a Buchner funnel and then dropwise provided with an ethanolic solution of tetraethyl orthotitanate.
  • the sample is dried in a vacuum desiccator for 4 to 12 hours. This filling procedure is repeated 4 to 5 times.
  • the polystyrene balls are then burned out at 600 ° C - 800 ° C for 8 - 10 hours.
  • Stein et al. (A. Stein et al. Science, 1998, 281, 538) describe the synthesis of inverse TiO 2 opals from polystyrene spheres with a diameter of 470 nm as a template. These are made in a 28 hour process, subjected to centrifugation and air dried. Then the latices template are applied to a filter paper.
  • Ethanol is sucked into the latex template via a Büchner funnel, which is connected to a vacuum pump. Then tetraethyl orthotitanate is added dropwise with suction. After drying in a vacuum desiccator for 24 h, the latices are burned out at 575 ° C for 12 h in an air stream.
  • Vos et al. (WL Vos et al. Science, 1998, 281, 802) produce inverse TiO 2 opals by using polystyrene spheres with diameters of 180-1460 nm as templates.
  • a sedimentation technique is used to set the densest spherical packing of the spheres, which is supported by centrifugation for up to 48 h.
  • an ethanolic solution of tetra-n-propoxy orthotitanate is added to it in a glove box. After about 1 h, the infiltrated material is brought into the air to allow the precursor to react to form TiO. This procedure is repeated eight times to ensure complete filling with TiO 2 .
  • the material is then calcined at 450 ° C.
  • core-shell particles of this type are outstandingly suitable as templates for producing inverse opal structures.
  • a first object of the present invention is therefore the use of the core-shell particles, the shell of which forms a matrix and whose core is essentially solid and has an essentially monodisperse size distribution as a template for producing inverse opal structures.
  • Another object of the present invention is a method for producing inverse opal structures, characterized in that: a) a dispersion of core-shell particles, the shell of which forms a matrix and the core of which is essentially solid, is dried, b) optionally or more precursors more suitable
  • Wall materials are added and, c) the cores are subsequently removed.
  • the templates can be processed by melting processes.
  • the shell is connected to the core via an intermediate layer.
  • the core-shell particles have an average particle diameter in the range from about 5 nm to about 2000 nm. It can be particularly preferred if the core-shell particles have an average particle diameter in the range from about 5 to 20 nm, preferably 5 to 10 nm.
  • the nuclei can be called "quantum dots"; they show the corresponding effects known from the literature.
  • the core-shell particles have an average particle diameter in the range of approximately 50-500 nm.
  • Particles in the range from 100 to 500 nm are particularly preferably used, since with particles in this order of magnitude (depending on the refractive index contrast which can be achieved in the photonic structure) the reflections of different wavelengths of visible light differ significantly from one another and thus those for optical effects in the visible range particularly important opalescence particularly pronounced occurs in different colors. In a variant of the present invention, however, it is also preferred to use multiples of this preferred particle size, which then lead to reflections corresponding to the higher orders and thus to a broad play of colors.
  • the intermediate layer is a preferred one
  • Embodiment of the invention around a layer of crosslinked or at least partially crosslinked polymers.
  • Intermediate layer via free radicals, for example induced by UV radiation, or preferably via di- or oligofunctional monomers.
  • Preferred intermediate layers of this embodiment contain 0.01 to 100% by weight, particularly preferably 0.25 to 10
  • di- or oligo-functional monomers % By weight, di- or oligo-functional monomers.
  • Preferred di- or oligo-functional monomers are in particular isoprene and allyl methacrylate (ALMA).
  • AMA allyl methacrylate
  • Such an intermediate layer of crosslinked or at least partially crosslinked polymers preferably has a thickness in the range of
  • Refractive index of the core or the refractive index of the cladding is Refractive index of the core or the refractive index of the cladding.
  • copolymers which contain a crosslinkable monomer are used as the intermediate layer, the person skilled in the art does not have any problems in selecting suitable copolymerizable monomers in a suitable manner.
  • corresponding copolymerizable monomers can be selected from a so-called Q-e scheme (cf. textbooks of macromolecular chemistry).
  • Monomers such as methyl methacrylate and methyl acrylate can preferably be polymerized with ALMA.
  • shell polymers are directly, via a appropriate functionalization of the core, grafted onto the core.
  • the surface functionalization of the core forms the intermediate layer according to the invention.
  • the type of surface functionalization depends mainly on the material of the core. silica
  • Surfaces can be suitably modified, for example, with silanes which have correspondingly reactive end groups, such as epoxy functions or free double bonds.
  • a styrene functionalized on the aromatic, such as bromostyrene can be used for surface modification, for example.
  • the growth of the shell polymers can then be achieved via this functionalization.
  • the intermediate layer can also cause the cladding to adhere to the core via ionic interactions or complex bonds. 5
  • the shell of these core-shell particles consists of essentially uncrosslinked organic polymers which are preferably grafted onto the core via an at least partially crosslinked intermediate layer.
  • the jacket can either consist of thermoplastic or elastomeric polymers.
  • the core can consist of various materials. It is only essential in the sense of the present invention that the core and, in one variant of the invention, preferably also the intermediate layer and jacket, can be removed under conditions in which the wall material is stable. The choice of suitable core / cladding / interlayer wall material combinations does not pose any difficulties for the person skilled in the art.
  • the core consists of an organic polymer, which is preferably crosslinked. 5
  • the cores consist of an inorganic material, preferably a metal or semimetal or a metal chalcogenide or
  • Metal pnictide As chalcogenides in the sense of the present
  • Invention denotes those compounds in which an element of the 16th
  • Group of the periodic table is the electronegative binding partner; as pnictide those in which an element of the 15th group of the periodic table is the electronegative binding partner.
  • Preferred cores consist of metal chalcogenides, preferably metal oxides, or metal pnictides, preferably nitrides or phosphides. Metal in the sense of these terms and also all elements, which can appear as an electropositive partner in comparison to the counterions, like the classic metals of the subgroups or the main group metals of the first and second main group, but also all of them Elements of the third main group, as well as silicon,
  • Germanium, tin, lead, phosphorus, arsenic, antimony and bismuth Germanium, tin, lead, phosphorus, arsenic, antimony and bismuth.
  • the preferred metal chalcogenides and metal pnictides include, in particular, silicon dioxide, aluminum oxide, gallium nitride, boron and
  • the starting material for the production of the core-shell particles to be used according to the invention is preferably monodisperse silicon dioxide cores, which can be obtained, for example, by the process described in US Pat. No. 4,911,903.
  • the cores are produced by hydrolytic polycondensation of tetraalkoxysilanes in an aqueous-ammoniacal medium, initially producing a sol of primary particles and then bringing the SiO 2 particles obtained to the desired particle size by continuous, controlled metering in of tetraalkoxysilane , This process can be used to produce monodisperse SiO 2 cores with average particle diameters between 0.05 and 10 ⁇ m with a standard deviation of 5%.
  • Monodisperse cores made of non-absorbent metal oxides such as TiO 2 are also used as the starting material. ZrO 2 , Zn0 2 , SnO 2 or Al 2 O 3 or metal oxide mixtures can be used.
  • the wall of the inverse opal structures obtainable according to the invention is preferably formed from an inorganic material, preferably a metal chalcogenide or metal pnictide.
  • this material is also referred to as wall material.
  • chalcogenides are compounds in which an element of the 16th group of the periodic table is the electronegative binding partner; as pnictide those in which an element of the 15th group of the periodic table is the electronegative binding partner.
  • Preferred wall materials are
  • Metal chalcogenides preferably metal oxides, or metal pnictides, preferably nitrides or phosphides.
  • Metal in the sense of these terms are all elements that can appear as electropositive partners compared to the counterions, such as the classic metals of the subgroups, such as titanium and zirconium in particular, or the main group metals of the first and second main group, but also all elements the third main group, as well as silicon, germanium, tin, lead, phosphorus, arsenic, antimony and bismuth.
  • To the preferred metal chalcogenides include in particular silicon dioxide, aluminum oxide and particularly preferably titanium dioxide.
  • precursors which are liquid, sinterable or soluble and which can be converted into stable solids by a sol-gel-analogous conversion can be used as starting material (precursor) for the production of the inverse opals according to this variant of the invention.
  • Sinterable precursors are understood to mean ceramic or pre-ceramic particles, preferably nanoparticles, which - as is customary in ceramics - can be processed by sintering, possibly with the elimination of volatile by-products, into a molded part - the inverse opal.
  • Precursors of this type are known to the person skilled in the art from the relevant ceramic literature (e.g. H.P. Baldus, M. Jansen, Angew. Chem.
  • gaseous precursors that can be infiltrated into the template structure using a known CVD-analog method can also be used.
  • solutions of one or more esters of a corresponding inorganic acid with a lower alcohol such as, for example, tetraethoxysilane, tetrabutoxytitanium, tetrapropoxyzircon or mixtures thereof, are used.
  • the wall of the inverse opal is formed from the polymers of the shell of the core-shell particles, which are preferably crosslinked with one another.
  • the addition of precursors in step b) can be omitted or replaced by the addition of crosslinking agents.
  • the cores consist of an inorganic material described above.
  • a dispersion of the core-shell particles described above is dried in a first step.
  • the Drying under conditions that allow the formation of a "positive" opal structure, which then serves as a template in the further process. This can be done, for example, by carefully removing the dispersant, by slow sedimentation, or by applying a mechanical force to a pre-dried mass of the core-shell particles.
  • the mechanical action of force can, according to the invention, be such a force action that occurs in the usual processing steps of polymers.
  • the mechanical force is applied either: by uniaxial pressing or
  • the shaped bodies according to the invention are preferably films. Films according to the invention can preferably also be produced by calendering, film blowing or flat film extrusion.
  • the various possibilities of processing polymers under the influence of mechanical forces are well known to the person skilled in the art and can be found, for example, in the standard textbook Adolf Franck, "Plastic Compendium”; Vogel-Verlag; 1996 are taken.
  • the processing of core-shell particles by the action of mechanical force, as is preferred here, is also described in detail in the international patent application WO 2003025035.
  • the precursor is therefore a solution of an ester of an inorganic ortho acid with a lower alcohol, preferably tetraethoxysilane, tetrabutoxytitanium, tetrapro- poxyzircon or mixtures thereof.
  • a lower alcohol preferably tetraethoxysilane, tetrabutoxytitanium, tetrapro- poxyzircon or mixtures thereof.
  • Lower alcohols such as methanol, ethanol, n-propanol, iso-propanol or n-butanol are particularly suitable as solvents for the precursors.
  • the precursors or, alternatively, the crosslinking agent it is advantageous to allow the precursors or, alternatively, the crosslinking agent to act for some time on the core-shell particle template structure under a protective gas cushion before the condensation of the wall material, in order to bring about a uniform penetration into the cavities.
  • the template structure is mixed with the precursors or the crosslinking agent under reduced pressure, preferably in a static vacuum at p ⁇ 1 mbar.
  • the wall material is formed from the precursors either by adding water and / or by heating the reaction mixture.
  • heating in air is usually sufficient.
  • step c) The cores can be removed in step c) in various ways.
  • the cores can be removed by removing them or by burning them out.
  • step c) is a calcination of the wall material, preferably at temperatures above 200 ° C., particularly preferably above 400 ° C. If, according to the variant of the invention described above, a precursor is used to form the Used wall, it is particularly preferred if the entire core-shell particles are removed together with the cores.
  • the cores are made of suitable inorganic materials, they can be removed by etching. This procedure is particularly preferred when the sheath polymers are to form the wall of the inverse opal structure.
  • silicon dioxide cores can preferably be removed using HF, in particular dilute HF solution. With this procedure, it can again be preferred if, before the removal of the cores, the jacket is crosslinked, as described above.
  • the cavities of the inverse opal structure are to be impregnated again with liquid or gaseous materials, it can also be preferred if the jacket is not or only very slightly crosslinked.
  • the impregnation can consist, for example, of storing liquid crystals, as described, for example, in Ozaki et al., Adv. Mater. 2002, 14, 514 and Sato et al., J. Am. Chem. Soc. 2002, 124, 10950.
  • Those obtainable according to the invention are suitable on the one hand for the use described above as a photonic material, preferably with the impregnation mentioned, but on the other hand also for the production of porous surfaces, membranes, separators, filters and porous supports. These materials can also be used, for example, as fluidized beds in fluidized bed reactors.
  • the shell of the core-shell particles according to the invention contains one or more polymers and / or copolymers or polymer precursors and, if appropriate, auxiliaries and additives, the composition of the shell being able to be selected such that it is essentially dimensionally stable and tack-free in a non-swelling environment at room temperature.
  • the person skilled in the art gains the freedom of their relevant properties, such as. B. to determine their composition, the particle size, the mechanical data, the glass transition temperature, the melting point and the weight ratio of core: shell and thus also the application properties of the core / shell particles, which ultimately also affect the properties of the inverse produced Impact opal structure.
  • Polymers and / or copolymers which may be contained in the core material or which are made up of them are high molecular weight compounds which correspond to the specification given above for the core material. Both polymers and copolymers of polymerizable unsaturated monomers are suitable, as are polycondensates and copolycondensation products of monomers with at least two reactive groups, such as, for. B. high molecular weight aliphatic, aliphatic / aromatic or fully aromatic polyesters, polyamides, polycarbonates, polyureas and polyurethanes, but also aminoplast and phenoplast resins, such as. B. melamine / formaldehyde, urea / formaldehyde and phenol / formaldehyde condensates.
  • epoxy prepolymers are usually used, for example by reaction of bisphenol A or other bisphenols, resorcinol, hydroquinone, hexanediol, or other aromatic or aliphatic di- or polyols, or phenol-formaldehyde Condensates, or their mixtures with one another with epichlorohydrin, or other di- or polyepoxides are obtained, mixed with other compounds capable of condensation directly or in solution and allowed to harden.
  • the polymers of the core material are expediently crosslinked (co) polymers, since these usually only show their glass transition at high temperatures.
  • crosslinked polymers can either already in the course of
  • Copolycondensation may have been crosslinked or they may be completed the actual (co) polymerization or (co) polycondensation have been post-crosslinked in a separate process step.
  • the shell material as for the core material, in principle polymers of the classes already mentioned are suitable, provided that they are selected or constructed in such a way that they correspond to the specification given above for the shell polymers.
  • Polymers that meet the specifications for a sheath material are also found in the groups of polymers and copolymers of polymerizable unsaturated monomers, as well as the polycondensates and copolycondensates of monomers with at least two reactive groups, such as.
  • Some other examples may illustrate the wide range of polymers suitable for making the sheath.
  • polymers such as polyethylene, polypropylene, polyethylene oxide, polyacrylates, polymethacrylates, polybutadiene, polymethyl methacrylate, polytetrafluoroethylene, polyoxymethylene, polyesters, polyamides, polyepoxides, polyurethane, rubber, polyacrylonitrile and polyisoprene are suitable, for example.
  • sheath is comparatively high-index, are suitable for the
  • Coat for example, polymers with a preferably aromatic basic structure such as polystyrene, polystyrene copolymers such as. B. SAN, aromatic-aliphatic polyesters and polyamides, aromatic polysulfones and polyketones, polyvinyl chloride, polyvinylidene chloride, and, with a suitable choice of a high-index core material, also polyacrylonitrile or polyurethane.
  • polystyrene polystyrene copolymers
  • B. SAN aromatic-aliphatic polyesters and polyamides, aromatic polysulfones and polyketones, polyvinyl chloride, polyvinylidene chloride, and, with a suitable choice of a high-index core material, also polyacrylonitrile or polyurethane.
  • Core-shell particles the core consists of cross-linked polystyrene and the shell of a polyacrylate, preferably polyethyl acrylate, polybutyl acrylate, polymethyl methacrylate and / or a copolymer thereof.
  • Wall of the inverse opal structure formed by sheath polymers it is preferred if the weight ratio of core to mantel in the range from 5: 1 to 1:10, in particular in the range from 2: 1 to 1: 5 and particularly preferably in the range is less than 1: 1.
  • the core-shell particles which can be used according to the invention can be produced by various processes.
  • a preferred way of obtaining the particles is a process for the production of core-shell particles, by a) surface treatment of monodisperse cores, and b) application of the shell from organic polymers to the treated cores.
  • the monodisperse cores are obtained in a step a) by emulsion polymerization.
  • a crosslinked polymeric intermediate layer is preferably applied to the cores in step a) Emulsion polymerization or applied by ATR polymerization, which preferably has reactive centers to which the jacket can be covalently attached.
  • ATR-Polymerization stands here for Atomic Transfer Radicalic Polymerization, as for example in K. Matyjaszewski, Practical Atom Transfer Radical Polymerization, Polym. Mater. Be. Closely. 2001, 84. Encapsulation of inorganic materials using ATRP is described, for example, in T.
  • the liquid reaction medium in which the polymerizations or copolymerizations can be carried out consists of the solvents, dispersants or diluents customarily used in polymerizations, in particular in processes of emulsion polymerization.
  • the selection is made in such a way that the emulsifiers used to homogenize the core particles and shell precursors can develop sufficient effectiveness.
  • Aqueous media, in particular water, are favorable as a liquid reaction medium for carrying out the process according to the invention.
  • Thermally activatable polymerization initiators that decompose either thermally or photochemically, form radicals, and thus trigger the polymerization.
  • thermally activatable polymerization initiators preference is given to those between 20 and 180 ° C., in particular between 20 and
  • Polymerization initiators are particularly preferred Peroxides, such as dibenzoyl peroxide, di-tert-butyl peroxide, peresters,
  • Peroxides such as H 2 O 2 , salts of peroxosulfuric acid and peroxodisulfuric acid, azo compounds, boralkyl compounds and homolytically decomposing hydrocarbons.
  • Photoinitiators which are used depending on the requirements of the polymerized material in amounts between 0.01 and 15 wt .-%, based on the polymerizable components can be used singly or, more advantageously to exploit synergistic effects, in combination w ⁇ applied together.
  • redox systems are used, such as salts of peroxodisulfuric acid and peroxosulfuric acid in combination with low-valent sulfur compounds, especially ammonium peroxodisulfate in combination with 5 sodium dithionite.
  • Polyaddition products are obtained analogously by reaction with compounds which have at least two, preferably three reactive groups, such as, for. B. epoxy, cyanate, isocyanate, or isothiocyanate 0 groups, with compounds that carry complementary reactive groups.
  • isocyanates react with alcohols to form urethanes, with amines to form urea derivatives, while epoxides react with these complementaries to form hydroxyethers or hydroxyamines.
  • polyaddition reactions can advantageously be carried out in an inert solvent or dispersant. It is also possible to use aromatic, aliphatic or mixed aromatic-aliphatic polymers, e.g. B. polyester, polyurethane,
  • dispersion aids are used to produce the stable dispersions required for these polymerization-polycondensation or polyaddition processes.
  • Water-soluble, high-molecular organic compounds with polar groups such as polyvinyl pyrrolidone, copolymers of vinyl propionate or acetate and vinyl pyrrolidone, partially saponified copolymer list of an acrylic ester and acrylonitrile, polyvinyl alcohols with different residual acetate content, cellulose ethers, 0 gelatin, block copolymers are preferably used as dispersants , modified starch, low molecular weight, carbon and / or sulfonic acid group-containing polymers or mixtures of these substances.
  • polar groups such as polyvinyl pyrrolidone, copolymers of vinyl propionate or acetate and vinyl pyrrolidone, partially saponified copolymer list of an acrylic ester and acrylonitrile, polyvinyl alcohols with different residual acetate content, cellulose ethers, 0 gelatin, block copolymers are preferably used as dispersants , modified starch, low molecular weight
  • Particularly preferred protective colloids are polyvinyl alcohols with a residual acetate content of less than 35, in particular 5 to 39 mol% and / or vinylpyrrolidone-oleyl propionate copolymers with a vinyl ester content of less than 35, in particular 5 to 30% by weight.
  • Nonionic or ionic emulsifiers can be used.
  • Preferred emulsifiers are, where appropriate, ethoxylated or propoxylated, longer-chain alkanols or alkylphenols with different degrees of ethoxylation or propoxylation (for example adducts with 0 to 50 mol of alkylene oxide) or their neutralized based, sulfated, sulfonated or phosphated derivatives.
  • Neutralized dialkylsulfosuccinic acid esters or alkyldiphenyloxide disulfonates are also particularly suitable.
  • Combinations of these emulsifiers with the protective colloids mentioned above are particularly advantageous since they give particularly finely divided dispersions.
  • reaction conditions such as temperature, pressure,
  • the reaction time and the use of suitable catalyst systems, which influence the degree of polymerization in a known manner, and the selection of the monomers used for their preparation - according to type and proportion - can be set to the desired combinations of properties of the required polymers.
  • the particle size can be set, for example, via the selection and amount of the initiators and other parameters, such as the reaction temperature. The appropriate setting of these parameters does not pose any difficulties for the person skilled in the field of polymerization.
  • Monomers which lead to polymers with a high refractive index are generally those which either have aromatic partial structures or those which have heteroatoms with a high atomic number, such as, for example, B. halogen Atoms, in particular bromine or iodine atoms, sulfur or metal ions, ie have atoms or groupings of atoms which increase the polarizability of the polymers.
  • Monomers or monomer mixtures are obtained which do not contain the mentioned partial structures and / or atoms with a high atomic number or only in a small proportion.
  • Group b): Acrylates which have aromatic side chains, such as, for. B. Phenyl (meth) acrylate ( abbreviation for the two compounds phenyl acrylate and phenyl methacrylate), phenyl vinyl ether, benzyl (meth) acrylate, benzyl vinyl ether, and compounds of the formulas:
  • Such compounds are suitable which contain sulfur bridges in parts of oxygen bridges, such as, for. B .:
  • R represents hydrogen or methyl.
  • the phenyl rings of these monomers can carry further substituents. Such substituents are suitable for modifying the properties of the polymers produced from these monomers within certain limits. They can therefore be used in a targeted manner, in particular in order to optimize the properties of the moldings according to the invention that are relevant in terms of application technology.
  • Suitable substituents are in particular halogen, NO 2 , alkyls with one to twenty carbon atoms, preferably methyl, alkoxides with one to twenty carbon atoms, carboxyalkyls with one to twenty carbon atoms, carbonylalkyls with one to twenty carbon atoms, or - OCOO alkyls with one to twenty carbon atoms.
  • the alkyl chains of these radicals can in turn optionally be substituted or by double-bonded ones Heteroatoms or assemblies, such as. B. -O-, -S-, -NH-, -COO-, -OCO- or -OCOO- in non-adjacent positions.
  • the refractive index of polymers can also be increased by polymerizing in monomers containing carboxylic acid groups and converting the “acidic” polymers thus obtained into the corresponding salts with metals of higher atomic weight, such as, for example, B. preferably with K, Ca, Sr, Ba, Zn, Pb, Fe, Ni, Co, Cr, Cu, Mn, Sn or Cd.
  • the abovementioned monomers which make a high contribution to the refractive index of the polymers produced therefrom, can be homopolymerized or copolymerized with one another. They can also be copolymerized with a certain proportion of monomers that make a lower contribution to the refractive index.
  • Such copolymerizable monomers with a lower refractive index contribution are, for example, acrylates, methacrylates, vinyl ethers or vinyl esters with purely aliphatic radicals.
  • bifunctional or polyfunctional compounds which are compatible with the above can also be used as crosslinking agents for producing crosslinked polymer cores from free-radically produced polymers mentioned monomers are copolymerizable, or they can subsequently react with the polymers with crosslinking.
  • Group 1 bisacrylates, bismethacrylates and bisvinyl ethers of aromatic or aliphatic di- or polyhydroxy compounds, in particular of butanediol (butanediol di (meth) acrylate, butanediol bis-vinyl ether), hexanediol (hexanediol di (meth) acrylate, hexanediol bis- vinyl ether), pentaerythritol, hydroquinone, bis-hydroxyphenylmethane, bis-hydroxyphenyl ether, bis-hydroxymethyl-benzene, bisphenol A or with ethylene oxide spacers, propylene oxide spacers, or mixed ethylene oxide-propylene oxide spacers.
  • butanediol butanediol di (meth) acrylate, butanediol bis-vinyl ether
  • hexanediol hexanediol di
  • crosslinkers in this group are e.g. B. di- or polyvinyl compounds, such as divinybenzene, or also methylene-bisacrylamide, triallyl cyanurate, divinylethylene urea, trimethylolpropane tri- (meth) acrylate, trimethylolpropane tricinyl ether, pentaerythritol tetra (meth) acrylate, pentaerythritol tetra vinyl ethers, and crosslinkers with two or more different reactive ends, such as. B. (Meth) allyl (meth) acrylates of the formulas:
  • Group 2 reactive crosslinking agents which have a crosslinking action, but mostly have a postcrosslinking action, e.g. B. with heating or drying, and which are copolymerized into the core or shell polymers as copolymers.
  • Examples include: N-methylol- (meth) acrylamide, acrylamidoglycolic acid, and their ethers and / or esters with C 1 to C 6 alcohols, diacetone acrylamide (DAAM), glycidyl methacrylate (GMA), methacryloyloxypropyltrimethoxysilane (MEMO), vinyl trimethoxysilane, m-isopropenyl benzyl isocyanate (TMI).
  • DAAM diacetone acrylamide
  • GMA glycidyl methacrylate
  • MEMO methacryloyloxypropyltrimethoxysilane
  • TMI m-isopropenyl benzyl isocyanate
  • Group 3 Carboxylic acid groups which have been incorporated into the polymer by copolymerization of unsaturated carboxylic acids are crosslinked like polyvalent metal ions.
  • Acrylic acid, methacrylic acid, maleic anhydride, itaconic acid and veneric acid are preferably used as unsaturated carboxylic acids.
  • Mg, Ca, Sr, Ba, Zn, Pb, Fe, Ni, Co, Cr, Cu, Mn, Sn, Cd are suitable as metal ions.
  • Ca, M g and Zn, Ti and Zr are particularly preferred.
  • monovalent metal ions such as Well or K.
  • Group 4 Post-crosslinked additives. This is understood to mean additives which are functionalized to a degree or higher and which react irreversibly with the polymer (by addition or preferably condensation reactions) to form a network. Examples of these are compounds which have at least two of the following reactive groups per molecule: epoxy, aziridine, isocyanate acid chloride, carbodiimide or carbonyl groups, furthermore, for. B. 3.4-Dihydroxy-imidazolinone and its derivatives (®Fixapret @ brands from BASF).
  • postcrosslinkers with reactive groups such as. B. epoxy and isocyanate groups, complementary, reactive G groups in the polymer to be crosslinked.
  • reactive groups such as. B. epoxy and isocyanate groups
  • isocyanates react with alcohols to form urethanes, with amines to form urea derivatives, while epoxides react with these complementary groups to form hydroxyethers or hydroxyamines.
  • Post-crosslinking is also understood to mean photochemical curing, an oxidative, or an air- or moisture-induced curing of the systems.
  • the above-mentioned monomers and crosslinking agents can be combined with one another in a targeted manner and (co) polymerized, so that an optionally crosslinked (co) polymer is obtained with the desired refractive index and the required stability criteria and mechanical properties.
  • the coating of organic polymers is applied by grafting, preferably by emulsion polymerization or ATR polymerization.
  • grafting preferably by emulsion polymerization or ATR polymerization.
  • the methods and monomers described above can be used accordingly.
  • a receiver In a 5 l double-jacket reactor heated to 75 ° C. with a double propeller stirrer, argon protective gas inlet and reflux condenser, a receiver is heated to 4 ° C. and consists of 1519 g demineralized water, 2.8 g 1,4-butanediol diacrylate (MERCK), 25.2 g of styrene (from MERCK) and 1030 mg of sodium dodecyl sulfate (from MERCK) are added and dispersed with vigorous stirring.
  • MERCK 1,4-butanediol diacrylate
  • styrene from MERCK
  • sodium dodecyl sulfate from MERCK
  • reaction is dissolved by successively injecting 350 mg of sodium dithionite (MERCK), 1.75 g of ammonium peroxodisulfate (MERCK) and again 350 mg of sodium dithionite (MERCK), each in about 20 ml of water. started. The injection takes place by means of disposable syringes.
  • MERCK sodium dithionite
  • MERCK ammonium peroxodisulfate
  • MERCK sodium dithionite
  • a monomer emulsion consisting of 56.7 g of 1,4-butanediol diacrylate (from MERCK), 510.3 g of styrene (from MERCK), 2.625 g of sodium dodecyl sulfate (from MERCK), 0.7 g of KOH and 770 g of water are metered in continuously over a period of 120 min via the wobble piston pump.
  • a third monomer emulsion consisting of 200 g of ethyl acrylate (from MERCK), 0.550 g of sodium dodecyl sulfate (from MERCK) and 900 g of water continuously over a period of 240 min
  • the template is introduced into the double jacket reactor as a protective gas cushion for about one minute.
  • the reactor is heated to 95 ° C. and a steam distillation is carried out in order to remove residual, unreacted monomers from the latex dispersion.
  • the result is a dispersion of core-shell particles in which the shell has a weight fraction of approx. 22%.
  • the polystyrene core is cross-linked, the intermediate layer is also cross-linked (p (MMA-co-ALMA)) and is used to graft the jacket from uncrosslinked ethyl acrylate.
  • the templating structure i.e. H.
  • 5 g of the latex dispersion are poured into a flat glass bowl with a diameter of 7 cm and dried in the air, producing colorful, iridescent tinsel.
  • Such a tinsel is evacuated in a round bottom flask with the oil rotary vane pump.
  • a precursor solution consisting of 5 ml of tetra-n-butyl orthotitanate in 5 ml of absolute ethanol is then added in a static vacuum so that the dissolved precursor, driven by capillary forces, can penetrate the cavities of the template.
  • An argon cushion is placed over the solution in which the impregnated template is located. This arrangement is left static for a few hours before the impregnated tinsel in the argon protective gas stream removed and calcined in a corundum boat in a tube furnace at 500 ° C.
  • Figure 1 Scanning electron micrograph of the inverse opal structure made of titanium dioxide (Example 2).
  • the regular arrangement of the identical hollow volumes can be seen over a large area.
  • the hollow volumes are connected to one another by channels, which results in the possibility of filling via the liquid or gas phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Moulding By Coating Moulds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

The invention relates to the use of core-shell particles, whose shell forms a matrix and whose core is essentially solid and has an, in essence, monodisperse size distribution. These core-shell particles are used as templates for producing inverse opaline structures. The invention also relates to a method for producing inverse opaline structures while using core-shell particles of this type.

Description

Verfahren zur Herstellung inverser opalartiger Strukturen Process for the production of inverse opal structures
Die Erfindung betrifft die Verwendung von Kern-Mantel-Partikeln als Templat zur Herstellung inverser opalartiger Strukturen und ein Verfahren zur Herstellung inverser opalartiger Strukturen.The invention relates to the use of core-shell particles as a template for producing inverse opal-like structures and a method for producing inverse opal-like structures.
Unter dreidimensionalen photonischen Strukturen werden i. a. Systeme verstanden, die eine regelmäßige, dreidimensionale Modulation der Dielektrizitätskonstanten (und dadurch auch des Brechungsindex) aufweisen. Entspricht die periodische Modulationslänge in etwa der Wellenlänge des (sichtbaren) Lichtes, so tritt die Struktur mit dem Licht nach Art eines dreidimensionalen Beugungsgitters in Wechselwirkung, was sich in winkelabhängigen Farberscheinungen äußert. Ein Beispiel hierfür stellt d er i n d er N atur v orkommende E delstein O pal d ar, d er a us einer dichtest gepackten Kugelpackung aus Siliciumdioxidkugeln besteht und dazwischen liegenden Hohlräumen, die mit Luft oder Wasser gefüllt sind. Die hierzu inverse Struktur entsteht gedanklich dadurch, dass in einem massiven Material regelmäßige sphärische Hohlvolumina in einer dichtesten Packung angeordnet werden. Ein Vorteil von derartigen inversen Strukturen gegenüber den normalen Strukturen ist das Entstehen von photonischen Bänderlücken bei bereits viel geringeren Dielektrizitätskonstantenkontrasten (K. Busch et al. Phys. Rev. Letters E, 198, 50, 3896). Insbesondere TiO2 ist ein geeignetes Material zur Ausbildung einer photonischen Struktur, weil es über einen hohen Brechungsindex verfügt.Three-dimensional photonic structures are generally understood to mean systems which have a regular, three-dimensional modulation of the dielectric constant (and therefore also of the refractive index). If the periodic modulation length corresponds approximately to the wavelength of the (visible) light, the structure interacts with the light in the manner of a three-dimensional diffraction grating, which manifests itself in angle-dependent color phenomena. An example of this is the nature of the E delstein O pal d ar, which consists of a densely packed spherical packing made of silicon dioxide spheres and cavities in between that are filled with air or water. The inverse structure to this arises from the fact that regular spherical hollow volumes are arranged in the densest packing in a solid material. One advantage of such inverse structures over the normal structures is the formation of photonic band gaps with already much lower dielectric constant contrasts (K. Busch et al. Phys. Rev. Letters E, 198, 50, 3896). TiO 2 in particular is a suitable material for the formation of a photonic structure because it has a high refractive index.
Dreidimensionale inverse Strukturen können durch eine Templatsynthese hergestellt werden:Three-dimensional inverse structures can be created by template synthesis:
• Als Struktur gebende Template werden monodisperse Kugeln in einer dichtesten Kugelpackung angeordnet.• As a structure-giving template, monodisperse spheres are arranged in the densest spherical packing.
• Die Hohlvolumina zwischen den Kugeln werden durch Ausnutzung von• The hollow volumes between the balls are determined by using
Kapillareffekten mit einem gasförmigen oder flüssigen Precursor oder einer Lösung eines Precursors befüllt.Capillary effects are filled with a gaseous or liquid precursor or a solution of a precursor.
• Der Precursor wird (thermisch) in das gewünschte Material umgesetzt. • Die Template werden entfernt, wobei die inverse Struktur zurückbleibt. In der Literatur sind viele solcher Verfahren bekannt. Beispielsweise können SiO2-Kugeln in eine dichteste Packung arrangiert werden, die Hohlvolumina mit Tetraethylorthotitanat enthaltenden Lösungen befüllt werden. Nach mehreren Temperschritten werden in einem Ätzprozess mit HF die Kugeln entfernt, wobei die inverse Struktur aus Titandioxid zurückbleibt (V. Colvin et al. Adv. Mater. 2001 , 13, 180).• The precursor is (thermally) converted into the desired material. • The templates are removed, leaving the inverse structure. Many such methods are known in the literature. For example, SiO 2 spheres can be arranged in the densest packing, the hollow volumes are filled with solutions containing tetraethyl orthotitanate. After several tempering steps, the balls are removed in an etching process with HF, leaving the inverse structure of titanium dioxide (V. Colvin et al. Adv. Mater. 2001, 13, 180).
De La Rue et al. (De La Rue et al. Synth. Metals, 2001 , 116, 469) beschreiben die Herstellung von inversen, aus TiO2 bestehenden Opalen nach folgender Methodik: Eine Dispersion von 400 nm großen Polystyrolkugeln wird auf einem Filterpapier unter einer IR-Lampe getrocknet. Der Filterkuchen wird mit Ethanol abgesaugt, in eine Glovebox überführt und mittels e iner W asserstrahlpumpe m it T etraethylorthotitanat infiltriert. Das Filterpapier von dem Latex-Ethoxid-Komposit vorsichtig entfernt und der Komposit in einen Rohrofen überführt. In dem Rohrofen findet bei 575 °C die 8 h dauernde Calzinierung in einem Luftstrom statt, wodurch aus dem Ethoxid Titandioxid gebildet wird und die Latexpartikel herausgebrannt werden. Es bleibt eine inverse Opalstruktur aus TiO2 zurück.De La Rue et al. (De La Rue et al. Synth. Metals, 2001, 116, 469) describe the preparation of inverse, consisting of TiO 2 opals according to the following method: A dispersion of 400 nm polystyrene balls is dried on a filter paper under an IR lamp. The filter cake is suctioned off with ethanol, transferred into a glove box and infiltrated by means of a water jet pump with tetraethyl orthotitanate. Carefully remove the filter paper from the latex-ethoxide composite and transfer the composite to a tube furnace. The calcination takes place in the tube furnace at 575 ° C. for 8 hours in an air stream, whereby titanium dioxide is formed from the ethoxide and the latex particles are burned out. An inverse TiO 2 opal structure remains.
Martinelli et al. (M. Martinelli et al. Optical Mater. 2001 , 17, 11) beschreiben die Herstellung von invesen TiO2-Opalen mittels Verwendung von 780 nm und 3190 nm großen Polystyrolkugeln. Eine regelmäßige Anordnung in einer dichtesten Kugelpackung wird durch 24 -48-stündiges Zentrifugieren der wässrigen Kugeldispersion bei 700 - 1000 U/min und nachfolgendes Dekantieren, gefolgt von Lufttrocknung erreicht. Die regelmäßig angeordneten Kugeln werden auf einem Filter auf einem Büchnertrichter mit Ethanol angefeuchtet und dann tropfenweise mit einer ethanolischen Lösung von Tetraethylorthotitanat versehen. Nach einsickern der Titanatlösung wird die Probe in einem Vakuumexsikkator über 4 - 12 Stunden getrocknet. Diese Befüllungsprozedur wird 4 bis 5-mal wiederholt. Die Polystyrolkugeln werden anschließend bei 600 °C - 800 °C über 8 - 10 Stunden herausgebrannt. Stein et al. (A. Stein et al. Science, 1998, 281 , 538) beschreiben die Synthese von inversen TiO2-Opalen ausgehend von Polystyrolkugeln eines Durchmessers von 470 nm als Template. Diese werden in einem 28-stündigem Prozess hergestellt, einer Zentrifugierung unterzogen und Luft getrocknet. Danach werden die LaticesTemplate auf ein Filterpapier aufgebracht. In das Latextemplate wird über einen Büchnertrichter, der an eine Vakuumpumpe angeschlossen ist, Ethanol eingesogen. Danach erfolgt tropfenweise Zugabe von Tetraethylorthotitanat unter Absaugen. Nach Trocknen im Vakuum Exsikkator über 24 h werden die Latices bei 575 °C über 12 h im Luftstrom herausgebrannt.Martinelli et al. (M. Martinelli et al. Optical Mater. 2001, 17, 11) describe the production of inverse TiO 2 opals using 780 nm and 3190 nm polystyrene spheres. A regular arrangement in the densest spherical packing is achieved by centrifuging the aqueous spherical dispersion at 700-1000 rpm for 24-48 hours and then decanting, followed by air drying. The regularly arranged balls are moistened with ethanol on a filter on a Buchner funnel and then dropwise provided with an ethanolic solution of tetraethyl orthotitanate. After the titanate solution has soaked in, the sample is dried in a vacuum desiccator for 4 to 12 hours. This filling procedure is repeated 4 to 5 times. The polystyrene balls are then burned out at 600 ° C - 800 ° C for 8 - 10 hours. Stein et al. (A. Stein et al. Science, 1998, 281, 538) describe the synthesis of inverse TiO 2 opals from polystyrene spheres with a diameter of 470 nm as a template. These are made in a 28 hour process, subjected to centrifugation and air dried. Then the latices template are applied to a filter paper. Ethanol is sucked into the latex template via a Büchner funnel, which is connected to a vacuum pump. Then tetraethyl orthotitanate is added dropwise with suction. After drying in a vacuum desiccator for 24 h, the latices are burned out at 575 ° C for 12 h in an air stream.
Vos et al. (W. L. Vos et al. Science, 1998, 281 , 802) stellen inverse TiO2- Opale her, indem sie Polystyrolkugeln mit Durchmessern von 180 - 1460 nm als Template verwenden. Zur Einstellung der dichtesten Kugelpackung der Kugeln wird eine Sedimentationstechnik verwendet, die mit Zentrifugieren über einen Zeitraum von bis zu 48 h unterstützt wird. Nach langsamen Evakuieren zur Trocknung der Templatstruktur wird diese in einer Glovebox mit einer ethanolischen Lösung von Tetra-n- propoxyorthotitanat versetzt. Nach ca. 1 h wird das infiltrierte Material an die Luft gebracht, um den Precursor zu TiO reagieren zu lassen. Diese Prozedur wird achtmal wiederholt, um eine vollständige Füllung mit TiO2 zu gewährleisten. Danach wird das Material bei 450 °C calziniert.Vos et al. (WL Vos et al. Science, 1998, 281, 802) produce inverse TiO 2 opals by using polystyrene spheres with diameters of 180-1460 nm as templates. A sedimentation technique is used to set the densest spherical packing of the spheres, which is supported by centrifugation for up to 48 h. After slowly evacuating to dry the template structure, an ethanolic solution of tetra-n-propoxy orthotitanate is added to it in a glove box. After about 1 h, the infiltrated material is brought into the air to allow the precursor to react to form TiO. This procedure is repeated eight times to ensure complete filling with TiO 2 . The material is then calcined at 450 ° C.
Die Herstellung photonischer Strukturen aus inversen Opalen ist nach den in der Literatur beschriebenen Verfahren sehr aufwendig und zeitintensiv: • langwierige/aufwendige Herstellung des Templates, bzw. der Anordnung der die templatisierende Struktur bildenden Kugeln in eine dichteste KugelpackungThe production of photonic structures from inverse opals is very complex and time-consuming according to the processes described in the literature: • lengthy / complex production of the template, or the arrangement of the balls forming the templating structure in a densest packing
• langwierige/aufwendige, weil oft mehrfach zu erfolgende Befüllung der Kavitäten der Templatstruktur mit Precursoren• Lengthy / complex, because the cavities of the template structure are often filled with precursors because they have to be repeated several times
• langwierige/aufwendige Prozedur zur Entfernung der Template• lengthy / complex procedure for removing the template
• nur begrenzte bzw. keine Möglichkeit zur Herstellung größerer photonischer Strukturen mit inverser Opalstruktur und Übertragung von der Laborsynthese in die technische Produktion. Die Nachteile erschweren die Herstellung der erwünschten photonischen Materialien mit inverser Opalstruktur. Es besteht folglich Bedarf nach einem einfach zu realisierenden Herstellungsverfahren, das auch in den technischen Maßstab übertragbar ist.• only limited or no possibility of producing larger photonic structures with inverse opal structure and transfer from laboratory synthesis to technical production. The disadvantages make it difficult to produce the desired photonic materials with an inverse opal structure. There is therefore a need for an easy-to-implement manufacturing process that is also transferable to the technical scale.
Kern-Mantel-Partikeln, deren Mantel eine Matrix bildet und deren Kern im wesentlichen fest ist und eine im wesentlichen monodisperse Größenverteilung aufweist, sind in der älteren Deutschen Patentanmeldung DE 10145450.3 beschriebenCore-shell particles, the shell of which forms a matrix and the core of which is essentially solid and has an essentially monodisperse size distribution, are described in the earlier German patent application DE 10145450.3
Überraschend wurde gefunden, dass sich derartige Kern-Mantel-Partikel hervorragend als Template zur Herstellung inverser Opalstrukturen eignen.Surprisingly, it was found that core-shell particles of this type are outstandingly suitable as templates for producing inverse opal structures.
Ein erster Gegenstand der vorliegenden Erfindung ist daher die Verwendung der Kern-Mantel-Partikeln, deren Mantel eine Matrix bildet und deren Kern im wesentlichen fest ist und eine im wesentlichen monodisperse Größenverteilung aufweist als Template zur Herstellung inverser Opalstrukturen.A first object of the present invention is therefore the use of the core-shell particles, the shell of which forms a matrix and whose core is essentially solid and has an essentially monodisperse size distribution as a template for producing inverse opal structures.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung inverser Opalstrukturen, dadurch gekennzeichnet, dass, a) eine Dispersion aus Kern-Mantel-Partikeln, deren Mantel eine Matrix bildet und deren Kern im wesentlichen fest ist, getrocknet wird, b) optional ein oder mehrere Precursoren geeigneterAnother object of the present invention is a method for producing inverse opal structures, characterized in that: a) a dispersion of core-shell particles, the shell of which forms a matrix and the core of which is essentially solid, is dried, b) optionally or more precursors more suitable
Wandmaterialen zugegeben werden und, c) anschließend die Kerne entfernt werden.Wall materials are added and, c) the cores are subsequently removed.
Die erfindungsgemäße Verwendung von Kern-Mantel-Partikeln führt dabei insbesondere zu folgenden Vorteilen:The use of core-shell particles according to the invention leads in particular to the following advantages:
- beim Trocknen von Dispersionen aus Kern-Mantel-Partikeln kann die Rißbildung im Templat (= Anordnung der Kugeln)) beim Trocknen verringert oder sogar ganz verhindert werden, - es können großflächige Bereiche hoher Ordnung im Templat erhalten werden,when drying dispersions from core-shell particles, the crack formation in the template (= arrangement of the balls) can be reduced or even completely prevented when drying, large areas of high order can be obtained in the template,
- beim Trocknungsprozeß auftretende Spannungen können durch die elastische Beschaffenheit des Mantels ausgeglichen werden,- Tensions occurring during the drying process can be compensated for by the elastic nature of the jacket,
- wenn Polymere den Mantel bilden, können diese ineinander verschlaufen und so die regelmäßige Kugelanordnung im Templat mechanisch stabilisieren,- If polymers form the sheath, they can intertwine and thus mechanically stabilize the regular arrangement of balls in the template,
- ist der Mantel - vorzugsweise durch Aufpfropfung - über eine Zwischenschicht fest mit dem Kern verbunden, so können die Template über Schmelzprozesse verarbeitet werden.- If the sheath - preferably by grafting - is firmly connected to the core via an intermediate layer, the templates can be processed by melting processes.
Erfindungsgemäß ist es daher insbesondere bevorzugt, wenn in den Kern- Mantel-Partikeln der Mantel mit dem Kern über eine Zwischenschicht verbunden ist.According to the invention, it is therefore particularly preferred if in the core-shell particles the shell is connected to the core via an intermediate layer.
Zur Erzielung des erfindungsgemäßen optischen oder photonischen Effektes ist es wünschenswert, dass die Kern-Mantel-Partikel einen mittleren Teilchendurchmesser im Bereich von etwa 5 nm bis etwa 2000 nm aufweisen. Dabei kann es insbesondere bevorzugt sein, wenn die Kern-Mantel-Partikel einen mittleren Teilchendurchmesser im Bereich von etwa 5 b is 20 nm, vorzugsweise 5 b is 1 0 nm, a ufweisen. I n diesem Fall können die Kerne als "Quantum dots" bezeichnet werden; sie zeigen die entsprechenden aus der Literatur bekannten Effekte. Zur Erzielung von Farbeffekten im Bereich des sichtbaren Lichtes ist es von besonderem Vorteil, wenn die Kern-Mantel-Partikel einen mittleren Teilchendurchmesser im Bereich von etwa 50 - 500 nm aufweisen. Insbesondere bevorzugt werden Partikel im Bereich von 100 - 500 nm eingesetzt, da bei Teilchen in diesem Größenordnungsbereich (in Abhängigkeit des in der photonischen Struktur erzielbaren Brechungsindexkontrastes) die Reflektionen verschiedener Wellenlängen des sichtbaren Lichtes sich deutlich voneinander unterscheiden und so die für optische Effekte im sichtbaren Bereich besonders wichtige Opaleszenz besonders ausgeprägt in verschiedensten Farben auftritt. In einer Variante der vorliegenden Erfindung ist es jedoch auch bevorzugt, vielfache dieser bevorzugten Teilchengröße einzusetzen, die dann zu Reflexen entsprechend der höheren Ordnungen und damit zu einem breiten Farbenspiel führen.In order to achieve the optical or photonic effect according to the invention, it is desirable that the core-shell particles have an average particle diameter in the range from about 5 nm to about 2000 nm. It can be particularly preferred if the core-shell particles have an average particle diameter in the range from about 5 to 20 nm, preferably 5 to 10 nm. In this case the nuclei can be called "quantum dots"; they show the corresponding effects known from the literature. To achieve color effects in the visible light range, it is particularly advantageous if the core-shell particles have an average particle diameter in the range of approximately 50-500 nm. Particles in the range from 100 to 500 nm are particularly preferably used, since with particles in this order of magnitude (depending on the refractive index contrast which can be achieved in the photonic structure) the reflections of different wavelengths of visible light differ significantly from one another and thus those for optical effects in the visible range particularly important opalescence particularly pronounced occurs in different colors. In a variant of the present invention, however, it is also preferred to use multiples of this preferred particle size, which then lead to reflections corresponding to the higher orders and thus to a broad play of colors.
Bei der Zwischenschicht handelt es sich in einer bevorzugtenThe intermediate layer is a preferred one
Ausführungsform der Erfindung um eine Schicht vernetzter oder zumindest teilweise vernetzter Polymere. Dabei kann die Vernetzung derEmbodiment of the invention around a layer of crosslinked or at least partially crosslinked polymers. The networking of
Zwischenschicht über freie Radikale, beispielsweise induziert durch UV- Bestrahlung, oder vorzugsweise über di- bzw. oligofunktionelle Monomere erfolgen. Bevorzugte Zwischenschichten dieser Ausführungsform enthalten 0,01 bis 100 Gew.-%, insbesondere bevorzugt 0,25 bis 10Intermediate layer via free radicals, for example induced by UV radiation, or preferably via di- or oligofunctional monomers. Preferred intermediate layers of this embodiment contain 0.01 to 100% by weight, particularly preferably 0.25 to 10
Gew.-%, di- bzw. oligofunktionelle Monomere. Bevorzugte di- bzw. oligofunktionelle Monomere sind insbesondere Isopren und Allylmeth- acrylat (ALMA). Eine solche Zwischenschicht vernetzter oder zumindest teilweise vernetzter Polymere hat vorzugsweise eine Dicke im Bereich von% By weight, di- or oligo-functional monomers. Preferred di- or oligo-functional monomers are in particular isoprene and allyl methacrylate (ALMA). Such an intermediate layer of crosslinked or at least partially crosslinked polymers preferably has a thickness in the range of
10 bis 20 nm. Fällt die Zwischenschicht dicker aus, so wird der10 to 20 nm. If the intermediate layer turns out thicker, the
Brechungsindex der Schicht so gewählt, dass er entweder demRefractive index of the layer chosen so that it either the
Brechungsindex des Kernes oder dem Brechungsindex des Mantels entspricht.Refractive index of the core or the refractive index of the cladding.
Werden als Zwischenschicht Copolymere eingesetzt, die, wie oben beschrieben, ein vernetzbares Monomer enthalten, so bereitet es dem Fachmann keinerlei Probleme, entsprechende copolymerisierbare Monomere geeignet auszuwählen. Beispielsweise können entsprechende copolymerisierbare Monomere aus einem sogenannten Q-e-Schema ausgewählt werden (vgl. Lehrbücher der Makromolekularen Chemie). So können mit ALMA vorzugsweise Monomere, wie Methylmethacrylat und Acrylsäuremethylester polymerisiert werden.If copolymers which contain a crosslinkable monomer, as described above, are used as the intermediate layer, the person skilled in the art does not have any problems in selecting suitable copolymerizable monomers in a suitable manner. For example, corresponding copolymerizable monomers can be selected from a so-called Q-e scheme (cf. textbooks of macromolecular chemistry). Monomers such as methyl methacrylate and methyl acrylate can preferably be polymerized with ALMA.
In einer anderen, ebenfalls bevorzugten Ausführungsform der vorliegenden Erfindung, werden Mantelpolymere direkt, über eine entsprechende Funktionalisierung des Kernes, an den Kern aufgepfropft. Die Oberflächenfunktionalisierung des Kernes bildet dabei die erfindungsgemäße Zwischenschicht. Die Art der Oberflächenfunktionalisierung richtet sich dabei hauptsächlich nach dem Material des Kernes. Siliciumdioxid-In another, likewise preferred embodiment of the present invention, shell polymers are directly, via a appropriate functionalization of the core, grafted onto the core. The surface functionalization of the core forms the intermediate layer according to the invention. The type of surface functionalization depends mainly on the material of the core. silica
Oberflächen können beispielsweise mit Silanen, die entsprechend reaktive Endgruppen tragen, wie Epoxyfunktionen oder freien Doppelbindungen, geeignet modifiziert werden. Bei polymeren Kernen kann zur Oberflächenmodifizierung beispielsweise ein am Aromaten funktionalisiertes Styrol, wie Bromstyrol, eingesetzt werden. Über diese ' Funktionalisierung kann dann das Aufwachsen der Mantelpolymeren erreicht werden. Insbesondere kann die Zwischenschicht auch über ionische Wechselwirkungen oder Komplexbindungen eine Haftung des Mantels am Kern bewirken. 5Surfaces can be suitably modified, for example, with silanes which have correspondingly reactive end groups, such as epoxy functions or free double bonds. In the case of polymeric cores, a styrene functionalized on the aromatic, such as bromostyrene, can be used for surface modification, for example. The growth of the shell polymers can then be achieved via this functionalization. In particular, the intermediate layer can also cause the cladding to adhere to the core via ionic interactions or complex bonds. 5
In einer bevorzugten Ausführungsform besteht der Mantel dieser Kern- Mantel-Partikel aus im wesentlichen unvemetzten organischen Polymeren, die bevorzugt über eine zumindest teilweise vernetzte Zwischenschicht auf den Kern aufgepfropft sind. 0In a preferred embodiment, the shell of these core-shell particles consists of essentially uncrosslinked organic polymers which are preferably grafted onto the core via an at least partially crosslinked intermediate layer. 0
Dabei kann der Mantel entweder aus thermoplastischen oder aus elastomeren Polymeren bestehen. Der Kern kann aus den verschiedensten Materialien bestehen. Wesentlich ist im Sinne der vorliegenden ° Erfindung nur, dass Kern und in einer Erfindungsvariante vorzugsweise auch Zwischenschicht und Mantel sich unter Bedingungen bei denen das Wandmaterial stabil ist, entfernen lassen. Die Auswahl geeigneten Kern/Mantel/Zwischenschicht-Wandmaterial-Kombinationen bereitet dem 0 Fachmann dabei keinerlei Schwierigkeiten.The jacket can either consist of thermoplastic or elastomeric polymers. The core can consist of various materials. It is only essential in the sense of the present invention that the core and, in one variant of the invention, preferably also the intermediate layer and jacket, can be removed under conditions in which the wall material is stable. The choice of suitable core / cladding / interlayer wall material combinations does not pose any difficulties for the person skilled in the art.
Weiter ist es in einer Erfindungsvariante insbesondere bevorzugt, wenn der Kern aus einem organischen Polymer, das vorzugsweise vernetzt ist, besteht. 5 In einer anderen, weiter unten näher erläuterten Erfindungsvariante bestehen die Kerne aus einem anorganischen Material, vorzugsweise einem Metall oder Halbmetall oder einem Metallchalcogenid oderFurthermore, in a variant of the invention, it is particularly preferred if the core consists of an organic polymer, which is preferably crosslinked. 5 In another variant of the invention explained in more detail below, the cores consist of an inorganic material, preferably a metal or semimetal or a metal chalcogenide or
Metallpnictid. Als Chalcogenide werden im Sinne der vorliegendenMetal pnictide. As chalcogenides in the sense of the present
Erfindung solche Verbindungen bezeichnet, in denen ein Element der 16.Invention denotes those compounds in which an element of the 16th
Gruppe des Periodensystems der elektronegative Bindungspartner ist; als Pnictide solche, in denen ein Element der 15. Gruppe des Periodensystems der elektronegative Bindungspartner ist. Bevorzugte Kerne bestehen aus Metallchalcogeniden, vorzugsweise Metalloxiden, oder Metallpnictiden, vorzugsweise Nitriden oder Phosphiden. Metall im Sinne d ieser B egriffe s ind d abei a lle E lemente, d ie i m V ergleich z u d en Gegenionen als elektropositiver Partner auftreten können, wie die klassischen Metalle der Nebengruppen, beziehungsweise die Hauptgruppenmetalle der ersten und zweiten Hauptgruppe, genauso jedoch auch alle Elemente der dritten Hauptgruppe, sowie Silicium,Group of the periodic table is the electronegative binding partner; as pnictide those in which an element of the 15th group of the periodic table is the electronegative binding partner. Preferred cores consist of metal chalcogenides, preferably metal oxides, or metal pnictides, preferably nitrides or phosphides. Metal in the sense of these terms and also all elements, which can appear as an electropositive partner in comparison to the counterions, like the classic metals of the subgroups or the main group metals of the first and second main group, but also all of them Elements of the third main group, as well as silicon,
Germanium, Zinn, Blei, P hosphor, Arsen, Antimon u nd B ismuth. Zu d en bevorzugten Metallchalcogeniden und Metallpnictiden gehören insbesondere Silciumdioxid, Aluminiumoxid, Galliumnitrid, Bor- undGermanium, tin, lead, phosphorus, arsenic, antimony and bismuth. The preferred metal chalcogenides and metal pnictides include, in particular, silicon dioxide, aluminum oxide, gallium nitride, boron and
Aluminiumnitrid sowie Silicium- und Phosphomitrid. Als Ausgangsmaterial für die Herstellung der erfindungsgemäß einzusetzenden Kern-Mantel- Partikel werden in einer Variante der vorliegenden Erfindung bevorzugt monodisperse Kerne aus Siliciumdioxid eingesetzt, die beispielsweise nach dem in US 4 911 903 beschriebenen Verfahren erhalten werden können. Die Kerne werden dabei durch hydrolytische Polykondensation von Tetraalkoxysilanen in einem wäßrig-ammoniakalischen Medium hergestellt, wobei man zunächst ein S ol von P rimärteilchen e rzeugt u nd anschließend durch ein kontinuierliches, kontrolliertes Zudosieren von Tetraalkoxysilan die erhaltenen SiO2-Partikel auf die gewünschte Teilchengröße bringt. Mit diesem Verfahren sind monodisperse SiO2- Kerne mit mittleren Teilchendurchmessern zwischen 0,05 und 10 μm bei einer Standardabweichung von 5 % herstellbar. Als Ausgangsmaterial sind auch monodisperse Kerne aus nichtabsorbierenden Metalloxiden wie TiO2, ZrO2, Zn02, SnO2 oder AI2O3 oder M etalloxidgemischen einsetzbar. I hre Herstellung ist beispielsweise in EP 0 644 914 beschrieben. Weiterhin ist das Verfahren gemäß EP 0 216 278 zur Herstellung monodisperser SiO2- Kerne ohne weiteres und mit gleichem Ergebnis auf andere Oxide übertragbar. Zu einem Gemisch aus Alkohol, Wasser und Ammoniak, dessen Temperatur mit einem Thermostaten auf 30 bis 40 °C genau eingestellt wird, werden unter intensiver Durchmischung Tetraethoxysilan, Tetrabutoxytitan, Tetrapro-poxy-zirkon oder deren Gemische in einem Guss zugegeben und die erhaltene Mischung für weitere 20 Sekunden intensiv gerührt, wobei sich eine Suspension von monodispersen Kerne im Nanometerbereich ausbildet. Nach einer Nachreaktionszeit von 1 bis 2 Stunden werden die Kerne auf die übliche Weise, z.B. durch Zentrifugieren, abgetrennt, gewaschen und getrocknet.Aluminum nitride as well as silicon and phosphomitride. In a variant of the present invention, the starting material for the production of the core-shell particles to be used according to the invention is preferably monodisperse silicon dioxide cores, which can be obtained, for example, by the process described in US Pat. No. 4,911,903. The cores are produced by hydrolytic polycondensation of tetraalkoxysilanes in an aqueous-ammoniacal medium, initially producing a sol of primary particles and then bringing the SiO 2 particles obtained to the desired particle size by continuous, controlled metering in of tetraalkoxysilane , This process can be used to produce monodisperse SiO 2 cores with average particle diameters between 0.05 and 10 μm with a standard deviation of 5%. Monodisperse cores made of non-absorbent metal oxides such as TiO 2 are also used as the starting material. ZrO 2 , Zn0 2 , SnO 2 or Al 2 O 3 or metal oxide mixtures can be used. Their production is described for example in EP 0 644 914. Furthermore, the method according to EP 0 216 278 for the production of monodisperse SiO 2 cores can be transferred to other oxides without further notice and with the same result. Tetraethoxysilane, tetrabutoxytitanium, tetrapropoxy-zirconium or their mixtures are added in one pour with vigorous mixing to a mixture of alcohol, water and ammonia, the temperature of which is adjusted with a thermostat to between 30 and 40 ° C. intensively stirred for a further 20 seconds, a suspension of monodisperse nuclei in the nanometer range being formed. After a reaction time of 1 to 2 hours, the cores are separated off, washed and dried in the customary manner, for example by centrifugation.
Die Wand der erfindungsgemäß erhältlichen inversen Opalstrukturen wird in einer Ausführungsform der vorliegenden Erfindung vorzugsweise aus einem anorganischen Material, vorzugsweise einem Metallchalcogenid oder Metallpnictid gebildet. In der vorliegenden Beschreibung wird dieses Material auch als Wandmaterial bezeichnet. Als Chalcogenide werden im Sinne der vorliegenden Erfindung solche Verbindungen bezeichnet, in denen ein Element der 16. Gruppe des Periodensystems der elektronegative Bindungspartner ist; als Pnictide solche, in denen ein Element der 15. Gruppe des Periodensystems der elektronegative Bindungspartner ist. Bevorzugte Wandmaterialien sindIn one embodiment of the present invention, the wall of the inverse opal structures obtainable according to the invention is preferably formed from an inorganic material, preferably a metal chalcogenide or metal pnictide. In the present description, this material is also referred to as wall material. For the purposes of the present invention, chalcogenides are compounds in which an element of the 16th group of the periodic table is the electronegative binding partner; as pnictide those in which an element of the 15th group of the periodic table is the electronegative binding partner. Preferred wall materials are
Metallchalcogenide, vorzugsweise Metalloxide, oder Metailpnictide, vorzugsweise Nitride oder Phosphide. Metall im Sinne dieser Begriffe sind dabei alle Elemente, die im Vergleich zu den Gegenionen als elektropositiver Partner auftreten können, wie die klassischen Metalle der Nebengruppen, wie insbesondere Titan und Zirconium, beziehungsweise die Hauptgruppenmetalle der ersten und zweiten H auptgruppe, genauso jedoch auch alle Elemente der dritten Hauptgruppe, sowie Silicium, Germanium, Zinn, Blei, Phosphor, Arsen, Antimon u nd B ismuth. Zu d en bevorzugten Metallchalcogeniden gehören insbesondere Silciumdioxid, Aluminiumoxid und besonders bevorzugt Titandioxid.Metal chalcogenides, preferably metal oxides, or metal pnictides, preferably nitrides or phosphides. Metal in the sense of these terms are all elements that can appear as electropositive partners compared to the counterions, such as the classic metals of the subgroups, such as titanium and zirconium in particular, or the main group metals of the first and second main group, but also all elements the third main group, as well as silicon, germanium, tin, lead, phosphorus, arsenic, antimony and bismuth. To the preferred metal chalcogenides include in particular silicon dioxide, aluminum oxide and particularly preferably titanium dioxide.
Als Ausgangsmaterial (Precursor) für die Herstellung der inversen Opale gemäß dieser Erfindungsvariante lassen sich prinzipiell alle denkbaren Precursoren, die flüssig, sinterfähig oder löslich sind, und sich über eine Sol-Gel-analoge Umsetzung in stabile Festkörper umwandein lassen, einsetzen. Unter sinterfähigen Precursoren werden dabei keramische oder pre-keramische Partikel, vorzugsweise Nanopartikel, verstanden, die sich - wie in der Keramik üblich - durch Sintern, ggf. unter Abspaltung leicht flüchtiger Nebenprodukte, zu einem Formteil - dem inversen Opal - verarbeiten lassen. Aus der einschlägigen Keramikliteratur (z.B. H.P. Baldus, M. Jansen, Angew. Chem. 1997, 109, 338-354) sind dem Fachmann derartige Precursoren bekannt. Des weiteren sind auch gasförmige Precursoren, die über eine an sich bekannte CVD-analoge Methodik in die Templatstruktur infiltrierbar sind, einsetzbar. In einer bevorzugten Variante der vorliegenden Erfindung werden Lösungen eines oder mehrerer Ester einer entsprechenden anorganischen Säure mit einem niederen Alkohol, wie beispielsweise Tetraethoxysilan, Tetrabutoxytitan, Tetrapropoxyzirkon oder deren Gemische eingesetzt.In principle, all conceivable precursors which are liquid, sinterable or soluble and which can be converted into stable solids by a sol-gel-analogous conversion can be used as starting material (precursor) for the production of the inverse opals according to this variant of the invention. Sinterable precursors are understood to mean ceramic or pre-ceramic particles, preferably nanoparticles, which - as is customary in ceramics - can be processed by sintering, possibly with the elimination of volatile by-products, into a molded part - the inverse opal. Precursors of this type are known to the person skilled in the art from the relevant ceramic literature (e.g. H.P. Baldus, M. Jansen, Angew. Chem. 1997, 109, 338-354). In addition, gaseous precursors that can be infiltrated into the template structure using a known CVD-analog method can also be used. In a preferred variant of the present invention, solutions of one or more esters of a corresponding inorganic acid with a lower alcohol, such as, for example, tetraethoxysilane, tetrabutoxytitanium, tetrapropoxyzircon or mixtures thereof, are used.
In einer zweiten ebenfalls bevorzugten Erfindungsvariante wird die Wand des inversen Opals aus den Polymeren des Mantels der Kern-Mantel- Partikel gebildet, die vorzugsweise miteinander vernetzt werden. In dieser Erfindungsvariante kann die Zugabe von Precursoren im Schritt b) entfallen oder durch die Zugabe von Vernetzungsmittel ersetzt werden. In dieser Erfindungsvariante kann es bevorzugt sein, wenn die Kerne aus einem oben beschriebenen anorganischen Material bestehen.In a second likewise preferred variant of the invention, the wall of the inverse opal is formed from the polymers of the shell of the core-shell particles, which are preferably crosslinked with one another. In this variant of the invention, the addition of precursors in step b) can be omitted or replaced by the addition of crosslinking agents. In this variant of the invention, it can be preferred if the cores consist of an inorganic material described above.
In dem erfindungsgemäßen Verfahren zu Herstellung einer inversen Opalstruktur wird in einem ersten Schritt eine Dispersion der oben beschriebenen Kern-Mantel-Partikel getrocknet. Dabei erfolgt die Trocknung unter Bedingungen, die eine Ausbildung einer "positiven" Opalstruktur ermöglichen, die dann im weiteren Verfahren als Templat dient. Dies kann beispielsweise durch vorsichtiges Entfernen des Dispersionsmittels, durch langsames Sedimentiereri lassen oder durch Anwendung einer mechanischen Kraft auf eine vorgetrocknete Masse der Kern-Mantel-Partikel erfolgen.In the method according to the invention for producing an inverse opal structure, a dispersion of the core-shell particles described above is dried in a first step. The Drying under conditions that allow the formation of a "positive" opal structure, which then serves as a template in the further process. This can be done, for example, by carefully removing the dispersant, by slow sedimentation, or by applying a mechanical force to a pre-dried mass of the core-shell particles.
Bei der mechanischen Krafteinwirkung kann es sich erfindungsgemäß um eine solche Krafteinwirkung handeln, die bei üblichen Verarbeitungsschritten von Polymeren erfolgt. In bevorzugten Varianten der vorliegenden Erfindung erfolgt die mechanische Krafteinwirkung entweder: durch uniaxiales Pressen oderThe mechanical action of force can, according to the invention, be such a force action that occurs in the usual processing steps of polymers. In preferred variants of the present invention, the mechanical force is applied either: by uniaxial pressing or
Krafteinwirkung während eines Spritzgußvorganges oder während eines Transferpressvorganges, - während einer (Co-) Extrusion oder während eines Kalandriervorganges oder während eines Blasvorganges. Erfolgt die Krafteinwirkung durch uniaxiales Pressen, so handelt es s ich bei den erfindungsgemäßen Formkörpern vorzugsweise um Filme. Erfindungsgemäße Filme können dabei vorzugsweise auch durch Kalandrieren, Folienblasen oder Flachfolienextrusion hergestellt werden. Die verschiedenen Möglichkeiten der Verarbeitung von Polymeren unter Einwirkung mechanischer Kräfte sind dem Fachmann wohl bekannt und können beispielsweise dem Standardlehrbuch Adolf Franck, "Kunststoff- Kompendium"; Vogel-Verlag; 1996 entnommen werden. Die Verarbeitung von Kern-Mantel-Partikeln durch mechanische Krafteinwirkung, wie sie hier bevorzugt ist, ist im übrigen ausführlich in der Internationalen Patentanmeldung WO 2003025035 beschrieben.Force application during an injection molding process or during a transfer press process, - during a (co-) extrusion or during a calendering process or during a blowing process. If the force is exerted by uniaxial pressing, the shaped bodies according to the invention are preferably films. Films according to the invention can preferably also be produced by calendering, film blowing or flat film extrusion. The various possibilities of processing polymers under the influence of mechanical forces are well known to the person skilled in the art and can be found, for example, in the standard textbook Adolf Franck, "Plastic Compendium"; Vogel-Verlag; 1996 are taken. The processing of core-shell particles by the action of mechanical force, as is preferred here, is also described in detail in the international patent application WO 2003025035.
Anschließend wird zu dem Templat, wie oben beschrieben, vorzugsweise ein Precursor geeigneter Wandmaterialen zugegeben. In einer bevorzugten Variante des erfindungsgemäßen Verfahrens zur Herstellung inverser Opalstrukturen handelt es sich bei dem Precursor daher um eine Lösung eines Esters einer anorganischen ortho-Säure mit einem niederen Alkohol, vorzugsweise um Tetraethoxysilan, Tetrabutoxytitan, Tetrapro- poxyzirkon oder deren Gemische. Als Lösungsmittel für die Precursoren eignen sich insbesondere niedere Alkohole, wie Methanol, Ethanol, n- Propanol, iso-Propanol oder n-Butanol.Then, as described above, a precursor of suitable wall materials is preferably added to the template. In a preferred variant of the method according to the invention for producing inverse opal structures, the precursor is therefore a solution of an ester of an inorganic ortho acid with a lower alcohol, preferably tetraethoxysilane, tetrabutoxytitanium, tetrapro- poxyzircon or mixtures thereof. Lower alcohols such as methanol, ethanol, n-propanol, iso-propanol or n-butanol are particularly suitable as solvents for the precursors.
Wie sich gezeigt hat, ist es vorteilhaft die Precursoren oder alternativ das Vernetzungsmittel vor der Kondensation des Wandmaterials für einige Zeit unter einem Schutzgaspolster auf die Templatstruktur aus Kern-Mantel- Partikeln einwirken zu lassen, um ein gleichmäßiges Eindringen in die Hohlräume zu bewirken. Aus dem gleichren Grund ist es vorteilhaft, wenn die Templatstruktur unter vermindertem Druck vorzugsweise im statischen Vakuum bei p < 1 mbar mit den Precursoren oder dem Vernetzungsmittel versetzt wird.As has been shown, it is advantageous to allow the precursors or, alternatively, the crosslinking agent to act for some time on the core-shell particle template structure under a protective gas cushion before the condensation of the wall material, in order to bring about a uniform penetration into the cavities. For the same reason, it is advantageous if the template structure is mixed with the precursors or the crosslinking agent under reduced pressure, preferably in a static vacuum at p <1 mbar.
Die Bildung des Wandmaterials aus den Precursoren erfolgt entweder durch Zugabe von Wasser und/oder durch Erhitzen des Reaktionsansatzes. Bei den Alkoxidprecursoren ist hierzu in der Regel Erhitzen an Luft ausreichend. Unter Umständen kann es vorteilhaft sein, das imprägnierte Templat mit einer kleinen Menge eines Lösemittels kurz zu waschen, um an der Oberfläche adsorbierten Precursor wegzuwaschen. Mit diesem Schritt kann verhindert werden, dass sich auf der Oberfläche des Templates eine dicke Schicht des Wandmateriales bildet, die als diffuser Streuer wirken kann. Aus dem gleichen Grund kann es vorteilhaft sein, die imprägnierte Struktur noch vor dem Calzinieren unter milden Bedingungen zu Trocknen.The wall material is formed from the precursors either by adding water and / or by heating the reaction mixture. For the alkoxide precursors, heating in air is usually sufficient. It may be advantageous to briefly wash the impregnated template with a small amount of a solvent in order to wash away the precursor adsorbed on the surface. This step prevents a thick layer of wall material from forming on the surface of the template, which can act as a diffuse spreader. For the same reason, it may be advantageous to dry the impregnated structure under mild conditions before calcining.
Die Entfernung der Kerne in Schritt c) kann auf verschiedenen Wegen erfolgen. Beispielsweise können die Kerne durch Herauslösen oder durch Ausbrennen entfernt werden. In einer bevorzugten Variante des erfindungsgemäßen Verfahrens handelt es sich bei Schritt c) um eine Calcinierung des Wandmaterials, vorzugsweise bei Temperaturen oberhalb 200 °C, insbesondere bevorzugt oberhalb 400 °C. Wird nach der oben beschriebenen Erfindungsvariante ein Precursor zur Ausbildung der Wand eingesetzt, so ist es insbesondere bevorzugt, wenn gemeinsam mit den Kernen die gesamten Kern-Mantel-Partikel entfernt werden.The cores can be removed in step c) in various ways. For example, the cores can be removed by removing them or by burning them out. In a preferred variant of the method according to the invention, step c) is a calcination of the wall material, preferably at temperatures above 200 ° C., particularly preferably above 400 ° C. If, according to the variant of the invention described above, a precursor is used to form the Used wall, it is particularly preferred if the entire core-shell particles are removed together with the cores.
Wenn die Kerne aus geeigneten anorganischen Materialien bestehen, können diese durch Ätzen entfernt werden. Dieses Vorgehen ist insbesondere dann bevorzugt, wenn die Mantel-Polymere die Wand der inversen Opalstruktur bilden sollen. Vorzugsweise können zum Beispiel Siliciumdioxidkerne m it HF, insbesondere verdünnter HF-Lösung entfernt werden. Bei diesem Vorgehen kann es wiederum bevorzugt sein, wenn vor der Entfernung der Kerne, wie oben beschrieben, eine Vernetzung des Mantels erfolgt.If the cores are made of suitable inorganic materials, they can be removed by etching. This procedure is particularly preferred when the sheath polymers are to form the wall of the inverse opal structure. For example, silicon dioxide cores can preferably be removed using HF, in particular dilute HF solution. With this procedure, it can again be preferred if, before the removal of the cores, the jacket is crosslinked, as described above.
Wenn die Hohlräume der inversen Opalstruktur wieder mit flüssigen oder gasförmigen Materialien imprägniert werden sollen, kann es jedoch auch bevorzugt sein, wenn der Mantel nicht oder nur sehr wenig vernetzt wird. Das Imprägnieren kann dabei beispielsweise in einer Einlagerung von Füssigkristallen bestehen, wie sie beispielsweise in Ozaki et al., Adv. Mater. 2002, 14, 514 und Sato et al., J. Am. Chem. Soc. 2002, 124, 10950 beschrieben ist.However, if the cavities of the inverse opal structure are to be impregnated again with liquid or gaseous materials, it can also be preferred if the jacket is not or only very slightly crosslinked. The impregnation can consist, for example, of storing liquid crystals, as described, for example, in Ozaki et al., Adv. Mater. 2002, 14, 514 and Sato et al., J. Am. Chem. Soc. 2002, 124, 10950.
Die erfindungsgemäß erhältlichen eignen sich zum einen für die oben beschriebene Verwendung als photonisches Material, vorzugsweise mit der erwähnten Imprägnierung, zum anderen aber auch zur Herstellung von porösen Oberflächen, Membranen, Separatoren, Filtern und porösen Trägern. Verwendbar sind diese Materialien beispielsweise auch als Wirbelschichten in Wirbelschichtreaktoren.Those obtainable according to the invention are suitable on the one hand for the use described above as a photonic material, preferably with the impregnation mentioned, but on the other hand also for the production of porous surfaces, membranes, separators, filters and porous supports. These materials can also be used, for example, as fluidized beds in fluidized bed reactors.
Aufgrund der hier ausgeführten Überlegungen ist es zweckmäßig, wenn der Mantel der erfindungsgemäßen Kern-Mantel-Partikel ein oder mehrere Polymere und/oder Copolymere oder Polymer-Vorprodukte und gegebenenfalls Hilfs- und Zusatzstoffe enthält, wobei die Zusammensetzung des Mantels so gewählt werden kann, dass sie in nichtquellender Umgebung bei Raumtemperatur im wesentlichen formbeständig und klebfrei ist. Mit der Verwendung von Polymersubstanzen als Mantelmaterial und ggf. Kernmaterial gewinnt der Fachmann die Freiheit deren relevante Eigenschaften, wie z. B. ihre Zusammensetzung, die Teilchengröße, d ie mechanischen Daten, die Glasübergangstemperatur, den Schmelzpunkt und das Gewichtsverhältnis von Kem:Mantel und damit auch die anwendungstechnischen Eigenschaften der Kern/Mantel-Partikel festzulegen, die sich letztlich auch auf die Eigenschaften der daraus hergestellten inversen Opalstruktur auswirken.On the basis of the considerations set out here, it is expedient if the shell of the core-shell particles according to the invention contains one or more polymers and / or copolymers or polymer precursors and, if appropriate, auxiliaries and additives, the composition of the shell being able to be selected such that it is essentially dimensionally stable and tack-free in a non-swelling environment at room temperature. With the use of polymer substances as a sheath material and possibly core material, the person skilled in the art gains the freedom of their relevant properties, such as. B. to determine their composition, the particle size, the mechanical data, the glass transition temperature, the melting point and the weight ratio of core: shell and thus also the application properties of the core / shell particles, which ultimately also affect the properties of the inverse produced Impact opal structure.
Polymere und/oder Copolymere, die in dem Kernmaterial enthalten sein können oder a us d enen e s b esteht, s ich h ochmolekulare V erbindungen, die der oben für das Kernmaterial gegebenen Spezifikation entsprechen. Geeignet sind sowohl Polymerisate und Copolymerisate polymerisierbarer ungesättigten Monomerer als auch Polykondensate und Copolykonden- sate von Monomeren mit mindestens zwei reaktiven Gruppen, wie z. B. hochmolekulare aliphatische, aliphatisch/aromatische oder vollaromatische Polyester, Polyamide, Polycarbonate, Polyhamstoffe und Polyurethane, aber auch Aminoplast- und Phenoplast-Harze, wie z. B. Melamin/Form- aldehyd-, Hamstoff/Formaldehyd- und Phenol/Formaldehyd-Kondensate.Polymers and / or copolymers which may be contained in the core material or which are made up of them are high molecular weight compounds which correspond to the specification given above for the core material. Both polymers and copolymers of polymerizable unsaturated monomers are suitable, as are polycondensates and copolycondensation products of monomers with at least two reactive groups, such as, for. B. high molecular weight aliphatic, aliphatic / aromatic or fully aromatic polyesters, polyamides, polycarbonates, polyureas and polyurethanes, but also aminoplast and phenoplast resins, such as. B. melamine / formaldehyde, urea / formaldehyde and phenol / formaldehyde condensates.
Zur Herstellung von Epoxidharzen, die ebenfalls als Kernmaterial geeignet sind, werden üblicherweise Epoxid-Präpolymerisate, die beispielsweise durch Reaktion von Bisphenol A oder anderen Bisphenolen, Resorcin, Hydrochinon, Hexandiol, oder anderen aromatischen oder aliphatischeh Di- oder Polyolen, oder Phenol-Formaldehyd-Kondensaten, oder deren Mischungen untereinander mit Epichlorhydrin, oder anderen Di- oder Polyepoxiden erhalten werden, mit weiteren zur Kondensation befähigten Verbindungen direkt oder in Lösung vermischt und aushärten gelassen.For the production of epoxy resins, which are also suitable as core material, epoxy prepolymers are usually used, for example by reaction of bisphenol A or other bisphenols, resorcinol, hydroquinone, hexanediol, or other aromatic or aliphatic di- or polyols, or phenol-formaldehyde Condensates, or their mixtures with one another with epichlorohydrin, or other di- or polyepoxides are obtained, mixed with other compounds capable of condensation directly or in solution and allowed to harden.
Zweckmäßigerweise sind die Polymeren des Kernmaterials in einer bevorzugten Erfindungsvariante vernetzte (Co-)Polymere, da diese üblicherweise erst bei hohen Temperaturen ihren Glasübergang zeigen.In a preferred variant of the invention, the polymers of the core material are expediently crosslinked (co) polymers, since these usually only show their glass transition at high temperatures.
Diese vernetzten Polymeren können entweder bereits im Verlauf derThese crosslinked polymers can either already in the course of
Polymerisation bzw. Polykondensation oder Copolymerisation bzw.Polymerization or polycondensation or copolymerization or
Copolykondensation vernetzt worden sein, oder sie können nach Abschluß der eigentlichen (Co-)Polymerisation bzw. (Co-)Polykondensation in einem gesonderten Verfahrensschritt nachvernetzt worden sein.Copolycondensation may have been crosslinked or they may be completed the actual (co) polymerization or (co) polycondensation have been post-crosslinked in a separate process step.
Eine detaillierte Beschreibung der chemischen Zusammensetzung geeigneter Polymere folgt weiter unten.A detailed description of the chemical composition of suitable polymers follows below.
Für das Mantelmaterial eignen sich, wie für das Kernmaterial, im Prinzip Polymere der oben bereits genannten Klassen, sofern sie so ausgewählt bzw. aufgebaut werden, dass sie der oben für die Mantelpolymeren gegebenen Spezifikation entsprechen.For the shell material, as for the core material, in principle polymers of the classes already mentioned are suitable, provided that they are selected or constructed in such a way that they correspond to the specification given above for the shell polymers.
Polymere, die den Spezifikationen für ein Mantel material genügen, finden sich ebenfalls in den Gruppen der Polymerisate und Copolymerisate polymerisierbarer ungesättigter Monomerer, als auch der Polykondensate und Copolykondensate von Monomeren mit mindestens zwei reaktiven Gruppen, wie z. B. der hochmolekularen aliphatischen, aiiphatisch/ aromatischen oder vollaromatischen Polyester und Polyamide.Polymers that meet the specifications for a sheath material are also found in the groups of polymers and copolymers of polymerizable unsaturated monomers, as well as the polycondensates and copolycondensates of monomers with at least two reactive groups, such as. B. the high molecular weight aliphatic, aiiphatic / aromatic or fully aromatic polyesters and polyamides.
Unter Berücksichtigung der obigen Bedingungen für die Eigenschaften der Mantelpolymeren (= Matrixpolymeren) sind für ihre Herstellung im Prinzip ausgewählte Bausteine aus allen Gruppen organischer Filmbildner geeignet.Taking into account the above conditions for the properties of the shell polymers (= matrix polymers), selected building blocks from all groups of organic film formers are in principle suitable for their production.
Einige weitere Beispiele mögen die breite Palette der für die Herstellung der Mantel geeigneten Polymeren veranschaulichen.Some other examples may illustrate the wide range of polymers suitable for making the sheath.
Soll der Mantel vergleichsweise niedrig brechend sein, so eignen sich beispielsweise Polymerisate wie Polyethylen, Polypropylen, Polyethylenoxid, Polyacrylate, Polymethacrylate, Polybutadien, Polymethylmethacrylat, Polytetrafluorethylen, Polyoxymethylen, Polyester, Polyamide, Polyepoxide, Polyurethan, Kautschuk, Polyacrylnitril und Polyisopren.If the sheath is to have a comparatively low refractive index, polymers such as polyethylene, polypropylene, polyethylene oxide, polyacrylates, polymethacrylates, polybutadiene, polymethyl methacrylate, polytetrafluoroethylene, polyoxymethylene, polyesters, polyamides, polyepoxides, polyurethane, rubber, polyacrylonitrile and polyisoprene are suitable, for example.
Soll der Mantel vergleichsweise hochbrechend sein, so eignen sich für denIf the sheath is comparatively high-index, are suitable for the
Mantel beispielsweise Polymerisate mit vorzugsweise aromatischer Grundstruktur wie Polystyrol, Polystyrol-Copolymerisate wie z. B. SAN, aromatisch-aliphatische Polyester und Polyamide, aromatische Polysulfone und Polyketone, Polyvinylchlorid, Polyvinylidenchlorid, sowie bei geeigneter Auswahl eines hochbrechenden Kernmaterials auch Polyacrylnitril oder Polyurethan.Coat, for example, polymers with a preferably aromatic basic structure such as polystyrene, polystyrene copolymers such as. B. SAN, aromatic-aliphatic polyesters and polyamides, aromatic polysulfones and polyketones, polyvinyl chloride, polyvinylidene chloride, and, with a suitable choice of a high-index core material, also polyacrylonitrile or polyurethane.
In einer erfindungsgemäß besonders bevorzugten Ausführungsform vonIn a particularly preferred embodiment of
Kern-Mantel-Partikeln besteht der Kern aus vernetztem Polystyrol und der Mantel aus einem Polyacrylat, vorzugsweise Polyethylacrylat, Polybutyl- acrylat, Polymethylmethacrylat und/oder einem Copolymeren davon.Core-shell particles, the core consists of cross-linked polystyrene and the shell of a polyacrylate, preferably polyethyl acrylate, polybutyl acrylate, polymethyl methacrylate and / or a copolymer thereof.
Im Hinblick auf die Verarbeitbarkeit der Kern-Mantel-Partikel zu inversenInverse with regard to the processability of the core-shell particles
Opalstrukturen ist es dann, wenn das Wandmaterial aus einer Precursor-It is opal structures when the wall material is made of a precursor
Lösung resultiert, von Vorteil, wenn d as G ewichtsverhältnis von Kern zuSolution results, an advantage if the weight ratio of core to
Mantel im Bereich von 20:1 bis 1 ,4:1 , vorzugsweise im Bereich von 6:1 bisSheath in the range from 20: 1 to 1.4: 1, preferably in the range from 6: 1 to
2:1 und insbesondere bevorzugt im B ereich 5 :1 b is 3 ,5:1 I iegt. W ird d ie2: 1 and particularly preferably in the range 5: 1 to 3.5: 1. Will the
Wand der inversen Opalstruktur von Mantel-Polymeren gebildet so ist es bevorzugt, wenn das Gewichtsverhältnis von Kern zu M antel i m B ereich von 5:1 bis 1 :10, insbesondere im Bereich von 2:1 bis 1 :5 und besonders bevorzugt im Bereich kleiner 1 :1 liegt.Wall of the inverse opal structure formed by sheath polymers, it is preferred if the weight ratio of core to mantel in the range from 5: 1 to 1:10, in particular in the range from 2: 1 to 1: 5 and particularly preferably in the range is less than 1: 1.
Die erfindungsgemäß verwendbaren Kern-Mantel-Partikel lassen sich nach verschiedenen Verfahren herstellen.The core-shell particles which can be used according to the invention can be produced by various processes.
Eine bevorzugte Möglichkeit, die Partikel zu erhalten, ist ein Verfahren zur Herstellung von Kern-Mantel-Partikeln, durch a) Oberflächenbehandlung monodisperser Kerne, und b) Aufbringen des Mantels aus organischen Polymeren auf die behandelten Kerne. In einer Verfahrensvariante werden die monodispersen Kerne in einem Schritt a) durch Emulsionspolymerisation erhalten.A preferred way of obtaining the particles is a process for the production of core-shell particles, by a) surface treatment of monodisperse cores, and b) application of the shell from organic polymers to the treated cores. In a process variant, the monodisperse cores are obtained in a step a) by emulsion polymerization.
In einer bevorzugten Verfahrensvariante wird auf die Kerne in Schritt a ) eine vernetzte polymere Zwischenschicht, vorzugsweise durch Emulsionspolymerisation oder durch ATR-Polymerisation, aufgebracht, die vorzugsweise reaktive Zentren aufweist, an die der Mantel kovalent angebunden werden kann. ATR-Polymerisation steht hier für Atomic Transfer Radicalic Polymerisation, wie sie beispielsweise in K. Matyjaszewski, Practical Atom Transfer Radical Polymerization, Polym. Mater. Sei. Eng. 2001 , 84 beschrieben wird. Die Einkapselung anorganischer Materalien mittel ATRP wird beispielsweise in T. Werne, T. E. Patten, Atom Transfer Radical Polymerization from Nanoparticles: A Tool for the Preparation of Well-Defined Hybrid Nanostructures and for Understanding the Chemistry of Controlled/"Living" Radical Polymerization from Surfaces, J. Am. Chem. Soc. 2001 , 123, 7497-7505 und WO 00/11043 beschrieben. Die Durchführung sowohl dieser Methode als auch die Durchführung von Emulsionspolymerisationen sind dem Fachmann für Polymerherstellung geläufig und beispielsweise in den o.g. Literaturstellen beschrieben.In a preferred process variant, a crosslinked polymeric intermediate layer is preferably applied to the cores in step a) Emulsion polymerization or applied by ATR polymerization, which preferably has reactive centers to which the jacket can be covalently attached. ATR-Polymerization stands here for Atomic Transfer Radicalic Polymerization, as for example in K. Matyjaszewski, Practical Atom Transfer Radical Polymerization, Polym. Mater. Be. Closely. 2001, 84. Encapsulation of inorganic materials using ATRP is described, for example, in T. Werne, TE Patten, Atom Transfer Radical Polymerization from Nanoparticles: A Tool for the Preparation of Well-Defined Hybrid Nanostructures and for Understanding the Chemistry of Controlled / "Living" Radical Polymerization from Surfaces, J. Am. Chem. Soc. 2001, 123, 7497-7505 and WO 00/11043. The implementation of both this method and the implementation of emulsion polymerizations are familiar to the person skilled in the art of polymer production and are described, for example, in the abovementioned references.
Das flüssige Reaktionsmedium, in dem die Polymerisationen oder Copolymerisationen ausgeführt werden können, besteht aus den bei Polymerisationen, insbesondere bei Verfahren der Emulsionspolymerisation, üblicherweise eingesetzten Lösungs-, Dispergier- oder Verdünnungsmitteln. Hierbei wird die Auswahl so getroffen, dass die zur Homogenisierung der Kernpartikel und Mantel-Vorprodukte eingesetzten Emulgatoren eine ausreichende Wirksamkeit entfalten können. Günstig als flüssiges Reaktionsmedium zur Durchführung des erfindungsgemäßen Verfahrens sind wässrige Medien, insbesondere Wasser.The liquid reaction medium in which the polymerizations or copolymerizations can be carried out consists of the solvents, dispersants or diluents customarily used in polymerizations, in particular in processes of emulsion polymerization. The selection is made in such a way that the emulsifiers used to homogenize the core particles and shell precursors can develop sufficient effectiveness. Aqueous media, in particular water, are favorable as a liquid reaction medium for carrying out the process according to the invention.
Zur Auslösung der Polymerisation eignen sich beispielsweiseTo initiate the polymerization, for example, are suitable
Polymerisationsinitiatoren, die entweder thermisch oder photochemisch zerfallen, Radikale bilden, und so die Polymerisation auslösen. Dabei sind unter den thermisch aktivierbaren Polymerisationsinitiatoren solche bevorzugt, d ie zwischen 20 u nd 1 80 ° C, i nsbesondere zwischen 20 undPolymerization initiators that decompose either thermally or photochemically, form radicals, and thus trigger the polymerization. Among the thermally activatable polymerization initiators, preference is given to those between 20 and 180 ° C., in particular between 20 and
80 °C zerfallen. Besonders bevorzugte Polymerisationsinitiatoren sind Peroxide, wie Dibenzoylperoxid Di-tert.-Butylperoxid, Perester,Disintegrate at 80 ° C. Polymerization initiators are particularly preferred Peroxides, such as dibenzoyl peroxide, di-tert-butyl peroxide, peresters,
Percarbonate, Perketale, Hydroperoxide, aber auch anorganischePercarbonates, perketals, hydroperoxides, but also inorganic
Peroxide, wie H2O2, Salze der Peroxoschwefelsäure und Peroxo- dischwefelsäure, Azoverbindungen, Boralkylverbindungen sowie homolytisch zerfallende Kohlenwasserstoffe. Die Initiatoren und/oderPeroxides, such as H 2 O 2 , salts of peroxosulfuric acid and peroxodisulfuric acid, azo compounds, boralkyl compounds and homolytically decomposing hydrocarbons. The initiators and / or
Photoinitiatoren, die je nach den Anforderungen an das polymerisierte Material in Mengen zwischen 0,01 und 15 Gew.-%, bezogen auf die polymerisierbaren Komponenten eingesetzt werden, können einzeln oder, zur Ausnutzung vorteilhafter synergistischer Effekte, in Kombination ι w miteinander angewendet werden. Daneben kommen Redoxsysteme zur Anwendung, wie z.B. Salze der Peroxodischwefelsäure und Peroxoschwefelsäure in Kombination mit niedervalenten Schwefelverbindungen, im speziellen Ammoniumperoxodisulfat in Kombination mit 5 Natriumdithionit.Photoinitiators, which are used depending on the requirements of the polymerized material in amounts between 0.01 and 15 wt .-%, based on the polymerizable components can be used singly or, more advantageously to exploit synergistic effects, in combination w ι applied together. In addition, redox systems are used, such as salts of peroxodisulfuric acid and peroxosulfuric acid in combination with low-valent sulfur compounds, especially ammonium peroxodisulfate in combination with 5 sodium dithionite.
Auch für die Herstellung von Polykondensationsprodukten sind entsprechende Verfahren beschrieben worden. So ist es möglich, die Ausgangsmaterialien für die Herstellung von Polykondensationsprodukten 0 in inerten Flüssigkeiten zu dispergieren und, vorzugsweise unter Auskreisen niedermolekularer Reaktionsprodukte wie Wasser oder - z. B. bei Einsatz von Dicarbonsäure-di-niederalkylestem zur Herstellung von Polyestern oder Polyamiden - niederen Alkanolen, zu kondensieren. 5Appropriate processes have also been described for the production of polycondensation products. Thus, it is possible to disperse the starting materials for the production of polycondensation products in inert liquids and, preferably with low molecular weight reaction products such as water or - e.g. B. when using dicarboxylic acid di-lower alkyl esters for the production of polyesters or polyamides - lower alkanols to condense. 5
Polyadditionsprodukte werden analog durch Umsetzung durch Verbindungen erhalten, die mindestens zwei, vorzugsweise drei reaktive Gruppen wie z. B. Epoxid-, Cyanat-, Isocyanat-, oder Isothiocyanat- 0 gruppen aufweisen, mit Verbindungen, die komplementäre reaktive Gruppen tragen. So reagieren Isocyanate beispielsweise mit Alkoholen zu Urethanen, mit Aminen zu Harnstoffderivaten, während Epoxide mit diesen Komplementären zu Hydroxyethem bzw. Hydroxyaminen reagieren. Wie die Polykondensationen können auch Polyadditionsreaktionen vorteilhaft 5 in einem inerten Lösungs- oder Dispergiermittel ausgeführt werden. Es ist auch möglich, aromatische, aliphatische oder gemischte aromatischaliphatische Polymere, z. B. Polyester, Polyurethane,Polyaddition products are obtained analogously by reaction with compounds which have at least two, preferably three reactive groups, such as, for. B. epoxy, cyanate, isocyanate, or isothiocyanate 0 groups, with compounds that carry complementary reactive groups. For example, isocyanates react with alcohols to form urethanes, with amines to form urea derivatives, while epoxides react with these complementaries to form hydroxyethers or hydroxyamines. Like the polycondensation reactions, polyaddition reactions can advantageously be carried out in an inert solvent or dispersant. It is also possible to use aromatic, aliphatic or mixed aromatic-aliphatic polymers, e.g. B. polyester, polyurethane,
Polyamide, Polyhamstoffe, Polyepoxide oder auch Lösungspolymerisate, in einem Dispergiermittel, wie z. B. in Wasser, Alkoholen, Tetrahydrofuran,Polyamides, polyureas, polyepoxides or solution polymers, in a dispersant, such as. B. in water, alcohols, tetrahydrofuran,
Kohlenwasserstoffen zu dispergieren oder zu emulgieren (Sekundärdispersion) und in dieser feinen Verteilung nachzukondensieren, zu vernetzen und auszuhärten.To disperse or emulsify hydrocarbons (secondary dispersion) and to condense, crosslink and cure in this fine distribution.
, J Zur Herstellung der für diese Polymerisations-Polykondensations- oder Polyadditionsverfahren benötigten stabilen Dispersionen werden in der Regel Dispergierhilfsmittel eingesetzt. , J As a rule, dispersion aids are used to produce the stable dispersions required for these polymerization-polycondensation or polyaddition processes.
5 Als Dispergierhilfsmittel werden vorzugsweise wasserlösliche hochmolekulare organische Verbindungen mit polaren Gruppen, wie Polyvinyl- pyrrolidon, Copolymerisate aus Vinylpropionat oder -acetat und Vinyl- pyrrolidon, teilverseifte Copolymeriste aus einem Acrylester und Acrylnitril, Polyvinylalkohole mit unterschiedlichem Restacetat-Gehalt, Zelluloseether, 0 Gelatine, Blockcopolymere, modifizierte Stärke, niedermolekulare, carbon- und/oder sulfonsäuregruppenhaltigen Polymerisate oder Mischungen dieser Stoffe verwendet.5 Water-soluble, high-molecular organic compounds with polar groups, such as polyvinyl pyrrolidone, copolymers of vinyl propionate or acetate and vinyl pyrrolidone, partially saponified copolymer list of an acrylic ester and acrylonitrile, polyvinyl alcohols with different residual acetate content, cellulose ethers, 0 gelatin, block copolymers are preferably used as dispersants , modified starch, low molecular weight, carbon and / or sulfonic acid group-containing polymers or mixtures of these substances.
5 Besonders bevorzugte Schutzkolloide sind Polyvinylalkohole mit einem Restacetat-Gehalt von unter 35, insbesondere 5 bis 39 Mol.-% und/oder Vinylpyrrolidon-Λ inylpropionat-Copolymere mit einem Vinylestergehalt von unter 35, insbesondere 5 bis 30 Gew.-%. 0 5 Particularly preferred protective colloids are polyvinyl alcohols with a residual acetate content of less than 35, in particular 5 to 39 mol% and / or vinylpyrrolidone-oleyl propionate copolymers with a vinyl ester content of less than 35, in particular 5 to 30% by weight. 0
Es können nichtionische oder auch ionische Emulgatoren, gegebenenfalls auch als Mischung, verwendet werden. Bevorzugte Emulgatoren sind gegebenenfalls ethoxylierte oder propoxylierte, Iängerkettige Alkanole oder Alkylphenole mit unterschiedlichen Ethoxylierungs- bzw. Propoxylierungs- 5 graden (z. B. Addukte mit 0 bis 50 mol Alkylenoxid) bzw. deren neutrali- sierte, sulfatierte, sulfonierte oder phosphatierte Derivate. Auch neutralisierte Dialkylsulfobernsteinsäureester oder Alkyldiphenyloxid- disulfonate sind besonders gut geeignet.Nonionic or ionic emulsifiers, optionally also as a mixture, can be used. Preferred emulsifiers are, where appropriate, ethoxylated or propoxylated, longer-chain alkanols or alkylphenols with different degrees of ethoxylation or propoxylation (for example adducts with 0 to 50 mol of alkylene oxide) or their neutralized based, sulfated, sulfonated or phosphated derivatives. Neutralized dialkylsulfosuccinic acid esters or alkyldiphenyloxide disulfonates are also particularly suitable.
Besonders vorteilhaft sind Kombinationen dieser Emulgatoren mit den oben genannten Schutzkolloiden, da mit ihnen besonders feinteilige Dispersionen erhalten werden.Combinations of these emulsifiers with the protective colloids mentioned above are particularly advantageous since they give particularly finely divided dispersions.
Auch spezielle Verfahren zur Herstellung monodisperser Polymerteilchen sind in der Literatur (z. B. R.C. Backus, R.C. Williams, J. Appl, Physics 19, S. 1186, (1948) bereits beschrieben worden und können mit Vorteil insbesondere zur Herstellung der Kerne eingesetzt werden. Hierbei ist lediglich darauf zu achten, dass die oben angegebenen Teilchengrößen eingehalten werden. Anzustreben ist weiter eine möglichst hohe Einheitlichkeit der Polymerisate. Insbesondere die Teilchengröße kann dabei über die Auswahl geeigneter Emulgatoren und/oder Schutzkolloide bzw. entsprechender Mengen dieser Verbindungen eingestellt werden.Special processes for producing monodisperse polymer particles have also already been described in the literature (for example BRC Backus, RC Williams, J. Appl, Physics 19, p. 1186, (1948) and can advantageously be used in particular for producing the cores all that is required is to ensure that the polymers are as uniform as possible, in particular by selecting suitable emulsifiers and / or protective colloids or corresponding amounts of these compounds.
Durch die Einstellung der Reaktionsbedingungen, wie Temperatur, Druck,By setting the reaction conditions, such as temperature, pressure,
Reaktionsdauer und Einsatz geeigneter Katalysatorsysteme, die in bekannter Weise den Polymerisationsgrad beeinflussen, und die Auswahl der zu ihrer Herstellung eingesetzten Monomeren - nach Art und Mengenanteil - lassen sich gezielt die gewünschten Eigenschaftskombinationen der benötigten Polymeren einstellen. Dabei kann die Teilchengröße beispielsweise über die Auswahl und Menge der Initiatoren und andere Parameter., wie die Reaktionstemperatur, eingestellt werden. Die entsprechende Einstellung dieser Parameter bereitet dem Fachmann auf dem Gebiet der Polymerisation keinerlei Schwierigkeiten.The reaction time and the use of suitable catalyst systems, which influence the degree of polymerization in a known manner, and the selection of the monomers used for their preparation - according to type and proportion - can be set to the desired combinations of properties of the required polymers. The particle size can be set, for example, via the selection and amount of the initiators and other parameters, such as the reaction temperature. The appropriate setting of these parameters does not pose any difficulties for the person skilled in the field of polymerization.
Monomere, die zu Polymeren mit hohem Brechungsindex führen, sind in der Regel solche, die entweder aromatische Teilstrukturen aufweisen, oder solche, die über Heteroatome mit hoher Ordnungszahl, wie z. B. Halogen- atome, insbesondere Brom- oder Jodatome, Schwefel oder Metallionen, verfügen, d. h. über Atome oder Atomgruppierungen, welche die Polari- sierbarkeit der Polymeren erhöhen.Monomers which lead to polymers with a high refractive index are generally those which either have aromatic partial structures or those which have heteroatoms with a high atomic number, such as, for example, B. halogen Atoms, in particular bromine or iodine atoms, sulfur or metal ions, ie have atoms or groupings of atoms which increase the polarizability of the polymers.
Polymere mit niedrigem Brechungsindex werden demgemäss ausPolymers with a low refractive index are accordingly made
Monomeren oder M onomerengemischen e rhalten, welche die genannten Teilstrukturen und/oder Atome hoher Ordnungszahl nicht oder nur in geringem Anteil enthalten.Monomers or monomer mixtures are obtained which do not contain the mentioned partial structures and / or atoms with a high atomic number or only in a small proportion.
ι u Eine Übersicht über die Brechungsindices verschiedener gängiger Homopolymerisate findet sich z. B. in Ulimanns Encyklopädie der technischen Chemie, 5. Auflage, Band A21 , Seite 169. Beispiele für radikalisch polymerisierbare Monomere, die zu Polymeren mit hohem 5 Brechungsindex führen, sind: ι u An overview of the refractive indices of various common homopolymers can be found e.g. B. in Ulimann's Encyclopedia of Industrial Chemistry, 5th edition, volume A21, page 169. Examples of free-radically polymerizable monomers which lead to polymers with a high refractive index are:
Gruppe a): Styrol, im Phenylkem alkylsubstituierte Styrole, α-Methyl- styrol, Mono- und Dichlorstyrol, Vinylnaphthalin, Isopropenylnaphthalin, Isopropenylbiphenyl, Vinylpyridin, Isopropenylpyridin, Vinylcarbazol, Vinyl- anthracen, N-Benzyl-methacrylamid, p-Hydroxymethacrylsäureanilid.Group a): styrene, alkyl-substituted styrenes in the phenyl nucleus, α-methylstyrene, mono- and dichlorostyrene, vinylnaphthalene, isopropenylnaphthalene, isopropenylbiphenyl, vinylpyridine, isopropenylpyridine, vinylcarbazole, vinylanthracene, N-benzylmethacrylamide, p-hydroxymethacrylamide, p-hydroxymethacrylamide.
Gruppe b): Acrylate, die aromatische Seitenketten a ufweisen, wie z . B . Phenyl-(meth)acrylat (= abgekürzte Schreibweise für die beiden Verbin- düngen Phenylacrylat und Phenylmethacrylat), Phenylvinylether, Benzyl- (meth)acrylat, Benzylvinylether, sowie Verbindungen der Formeln:Group b): Acrylates which have aromatic side chains, such as, for. B. Phenyl (meth) acrylate (= abbreviation for the two compounds phenyl acrylate and phenyl methacrylate), phenyl vinyl ether, benzyl (meth) acrylate, benzyl vinyl ether, and compounds of the formulas:
In der obigen und in weiter unten folgenden Formeln sind zur 5 Verbesserung der Übersichtlichkeit und Vereinfachung der Schreibung Kohlenstoffketten nur durch die zwischen den Kohlenstoffatomen bestehenden Bindungen dargestellt. Diese Schreibweise entspricht der Darstellung aromatischer cyclischer Verbindungen, wobei z. B. das Benzol durch ein Sechseck mit alternierend Einfach- und Doppelbindungen dargestellt wird.In the above formulas and in the formulas below, 5 are to improve clarity and simplify the spelling Carbon chains are only represented by the bonds between the carbon atoms. This notation corresponds to the representation of aromatic cyclic compounds, z. B. the benzene is represented by a hexagon with alternating single and double bonds.
Ferner sind solche Verbindungen geeignet, die ansteile von Sauerstoffbrücken Schwefelbrücken enthalten, wie z. B.:Furthermore, such compounds are suitable which contain sulfur bridges in parts of oxygen bridges, such as, for. B .:
In den obigen Formeln steht R für Wasserstoff oder Methyl. Die Phenylringe dieser Monomeren können weitere Substituenten tragen. Solche Substituenten sind geeignet, die Eigenschaften der aus diesen Monomeren erzeugten Polymerisate innerhalb gewisser Grenzen zu modifizieren. Sie können daher gezielt benutzt werden, um insbesondere die anwendungstechnisch relevanten Eigenschaften der erfindungsgemäßen Formkörper zu optimieren.In the above formulas, R represents hydrogen or methyl. The phenyl rings of these monomers can carry further substituents. Such substituents are suitable for modifying the properties of the polymers produced from these monomers within certain limits. They can therefore be used in a targeted manner, in particular in order to optimize the properties of the moldings according to the invention that are relevant in terms of application technology.
Geeignete Substituenten sind insbesondere Halogen, NO2, Alkyle mit einem bis zwanzig C-Atomen, vorzugsweise Methyl, Alkoxide mit einem bis zwanzig C-Atomen, Carboxyalkyle mit einem bis zwanzig C-Atomen, Carbonylalkyle mit einem bis zwanzig C-Atomen, oder -OCOO-Alkyle mit einem bis zwanzig C-Atomen. Die Alkylketten dieser Reste können ihrerseits gegebenenfalls substituiert sein, oder durch zweibindige Heteroatome oder Baugruppen, wie z. B. -O-, -S-, -NH-, -COO-, -OCO- oder -OCOO- in nicht benachbarten Stellungen unterbrochen sein.Suitable substituents are in particular halogen, NO 2 , alkyls with one to twenty carbon atoms, preferably methyl, alkoxides with one to twenty carbon atoms, carboxyalkyls with one to twenty carbon atoms, carbonylalkyls with one to twenty carbon atoms, or - OCOO alkyls with one to twenty carbon atoms. The alkyl chains of these radicals can in turn optionally be substituted or by double-bonded ones Heteroatoms or assemblies, such as. B. -O-, -S-, -NH-, -COO-, -OCO- or -OCOO- in non-adjacent positions.
Gruppe c): Monomere, die über Heteroatome verfügen, wie z. B. Vinylchlorid, Acrylnitril, Methacrylnitril, Acrylsäure, Methacrylsäure, Acrylamid und Methacrylamid oder metallorganische Verbindung, wie z. B.Group c): monomers which have heteroatoms, such as, for. B. vinyl chloride, acrylonitrile, methacrylonitrile, acrylic acid, methacrylic acid, acrylamide and methacrylamide or organometallic compound, such as. B.
Gruppe d): Eine Erhöhung des Brechungsindex von Polymeren gelingt auch durch Einpolymerisieren Carbonsäuregruppen enthaltender Mono- merer und Überführung der so erhaltenen "sauren" Polymeren in die entsprechenden Salze mit Metallen höheren Atomgewichts, wie z. B. vorzugsweise mit K, Ca, Sr, Ba, Zn, Pb, Fe, Ni, Co, Cr, Cu, Mn, Sn oder Cd.Group d): The refractive index of polymers can also be increased by polymerizing in monomers containing carboxylic acid groups and converting the “acidic” polymers thus obtained into the corresponding salts with metals of higher atomic weight, such as, for example, B. preferably with K, Ca, Sr, Ba, Zn, Pb, Fe, Ni, Co, Cr, Cu, Mn, Sn or Cd.
Die oben genannten Monomeren, die einen hohen Beitrag zum Brechungsindex der daraus hergestellten Polymeren leisten, können homopolymerisiert oder untereinander copolymerisiert werden. Sie können auch mit einem gewissen Anteil von Monomeren, die einen geringeren Beitrag zum Brechungsindex leisten, copolymerisiert werden. Solche copolymerisierbaren Monomere mit niedrigerem Brechungsindex-Beitrag sind beispielsweise Acrylate, Methacrylate, Vinylether oder Vinylester mit rein aliphatischen Resten.The abovementioned monomers, which make a high contribution to the refractive index of the polymers produced therefrom, can be homopolymerized or copolymerized with one another. They can also be copolymerized with a certain proportion of monomers that make a lower contribution to the refractive index. Such copolymerizable monomers with a lower refractive index contribution are, for example, acrylates, methacrylates, vinyl ethers or vinyl esters with purely aliphatic radicals.
Als vernetzende Mittel zur Herstellung vernetzter Polymerkerne aus radikalisch erzeugten Polymerisaten können darüberhinaus auch alle bi- oder polyfunktionellen Verbindungen eingesetzt werden, die mit den oben genannten M onomeren copolymerisierbar s ind, oder d ie n achträglich m it den Polymeren unter Vernetzung reagieren können.In addition, all bifunctional or polyfunctional compounds which are compatible with the above can also be used as crosslinking agents for producing crosslinked polymer cores from free-radically produced polymers mentioned monomers are copolymerizable, or they can subsequently react with the polymers with crosslinking.
Im Folgenden sollen Beispiele geeigneter Vernetzer vorgestellt werden, die zur Systematisierung in Gruppen eingeteilt werden:In the following, examples of suitable crosslinkers are presented, which are divided into groups for systematization:
Gruppe 1 : Bisacrylate, Bismethacrylate und Bisvinylether von aromatischen oder aliphatischen di- oder Polyhydroxyverbindungen, insbesondere von Butandiol (Butandiol-di(meth)acrylat, Butandiol-bis-vinylether), Hexandiol (Hexandiol-di(meth)acrylat, Hexandiol-bis-vinylether), Penta- erythrit, Hydrochinon, Bis-hydroxyphenylmethan, Bis-hydroxyphenylether, Bis-hydroxymethyl-benzol, Bisphenol A oder mit Ethylenoxidspacem, Propylenoxidspacem, oder gemischten Ethlenoxid-Propylenoxidspacem.Group 1: bisacrylates, bismethacrylates and bisvinyl ethers of aromatic or aliphatic di- or polyhydroxy compounds, in particular of butanediol (butanediol di (meth) acrylate, butanediol bis-vinyl ether), hexanediol (hexanediol di (meth) acrylate, hexanediol bis- vinyl ether), pentaerythritol, hydroquinone, bis-hydroxyphenylmethane, bis-hydroxyphenyl ether, bis-hydroxymethyl-benzene, bisphenol A or with ethylene oxide spacers, propylene oxide spacers, or mixed ethylene oxide-propylene oxide spacers.
Weitere Vemetzer dieser Gruppe sind z. B. Di- oder Polyvinylverbin- dungen, wie Divinybenzol, oder auch Methylen-bisacrylamid, Triallyl- cyanurat, Divinylethylenharnstoff, Trimethylolpropan-tri-(meth)acrylat, Trimethylolpropantricinylether, Pentaerythrit-tetra-(meth)acrylat, Penta- erythrit-tetra-vinylether, sowie Vernetzer mit zwei oder mehreren verschiedenen reaktiven Enden, wie z. B. (Meth)allyl-(meth)acrylate der Formeln:Other crosslinkers in this group are e.g. B. di- or polyvinyl compounds, such as divinybenzene, or also methylene-bisacrylamide, triallyl cyanurate, divinylethylene urea, trimethylolpropane tri- (meth) acrylate, trimethylolpropane tricinyl ether, pentaerythritol tetra (meth) acrylate, pentaerythritol tetra vinyl ethers, and crosslinkers with two or more different reactive ends, such as. B. (Meth) allyl (meth) acrylates of the formulas:
(worin R Wasserstoff oder Methyl bedeutet).(where R is hydrogen or methyl).
Gruppe 2: Reaktive Vernetzer, die vernetzend, größtenteils aber nachvernetzend wirken, z. B. bei Erwärmung oder Trocknung, und die in die Kern- bzw. Mantelpolymere als Copolymere einpolymerisiert werden. Beispiele hierfür sind: N-Methylol-(meth)acrylamid, Acrylamidoglycolsäure, sowie deren Ether und/oder Ester mit Ci bis C6-Alkoholen, Diaceton- acrylamid (DAAM), Glycidylmethacrylat (GMA), Methacryloyloxypropyl- trimethoxysilan (MEMO), Vinyl-trimethoxysilan, m-lsopropenyl-benzyl- isocyanat (TMI).Group 2: reactive crosslinking agents which have a crosslinking action, but mostly have a postcrosslinking action, e.g. B. with heating or drying, and which are copolymerized into the core or shell polymers as copolymers. Examples include: N-methylol- (meth) acrylamide, acrylamidoglycolic acid, and their ethers and / or esters with C 1 to C 6 alcohols, diacetone acrylamide (DAAM), glycidyl methacrylate (GMA), methacryloyloxypropyltrimethoxysilane (MEMO), vinyl trimethoxysilane, m-isopropenyl benzyl isocyanate (TMI).
Gruppe 3: Carbonsäuregruppen, die durch Copolymerisation ungesättigter Carbonsäuren in das Polymer eingebaut worden sind, werden über mehrwertige Metallionen brückenartig vernetzt. Als ungesättigte Carbonsäuren werden hierzu vorzugsweise Acrylsäure, Methacrylsäure, Maleinsäureandhydrid, Itaconsäure und Furnarsäure eingesetzt. Als Metallionen eignen sich Mg, Ca, Sr, Ba, Zn, Pb, Fe, Ni, Co, Cr, Cu, Mn, Sn, Cd. Besonders bevorzugt sind Ca, M g u nd Zn, Ti u nd Zr. Daneben eignen sich auch einwertige Metallionen, wie z.B. Na oder K.Group 3: Carboxylic acid groups which have been incorporated into the polymer by copolymerization of unsaturated carboxylic acids are crosslinked like polyvalent metal ions. Acrylic acid, methacrylic acid, maleic anhydride, itaconic acid and veneric acid are preferably used as unsaturated carboxylic acids. Mg, Ca, Sr, Ba, Zn, Pb, Fe, Ni, Co, Cr, Cu, Mn, Sn, Cd are suitable as metal ions. Ca, M g and Zn, Ti and Zr are particularly preferred. In addition, monovalent metal ions, such as Well or K.
Gruppe 4: Nachvernetzte Additive. Hierunter versteht man bis- oder höher funktionalisierte Additive, die mit dem Polymer (durch Additionsoder vorzugsweise Kondensationsreaktionen) irreversibel unter Ausbildung eines Netzwerks reagieren. Beispiele hierfür sind Verbindungen, die pro Molekül mindestens zwei der folgenden reaktiven Gruppen aufweisen: Epoxid-, Aziridin-, Isocyanat-Säurechlorid-, Carbodiimid- oder Carbonyl- gruppen, ferner z. B. 3.4-Dihydroxy-imidazolinon und dessen Derivate (®Fixapret@-Marken der BASF).Group 4: Post-crosslinked additives. This is understood to mean additives which are functionalized to a degree or higher and which react irreversibly with the polymer (by addition or preferably condensation reactions) to form a network. Examples of these are compounds which have at least two of the following reactive groups per molecule: epoxy, aziridine, isocyanate acid chloride, carbodiimide or carbonyl groups, furthermore, for. B. 3.4-Dihydroxy-imidazolinone and its derivatives (®Fixapret @ brands from BASF).
Wie bereits oben dargelegt, benötigen Nachvernetzer mit reaktiven Gruppen, wie z. B. Epoxid- und Isocyanatgruppen, komplementäre, reaktive G ruppen im zu vernetzenden Polymer. So reagieren Isocyanate beispielsweise mit Alkoholen zu Urethanen, mit Aminen zu Harnstoffderivaten, während Epoxide mit diesen komplementären Gruppen zu Hydroxyethern bzw. Hydroxyaminen reagieren. Unter Nachvernetzung wird auch die photochemische Aushärtung, eine oxidative, oder eine luft- oder feuchtigkeitsinduzierte Aushärtung der Systeme verstanden.As already explained above, postcrosslinkers with reactive groups, such as. B. epoxy and isocyanate groups, complementary, reactive G groups in the polymer to be crosslinked. For example, isocyanates react with alcohols to form urethanes, with amines to form urea derivatives, while epoxides react with these complementary groups to form hydroxyethers or hydroxyamines. Post-crosslinking is also understood to mean photochemical curing, an oxidative, or an air- or moisture-induced curing of the systems.
Die oben angegebenen Monomeren und Vernetzer können beliebig und zielgerichtet in der Weise miteinander kombiniert und (co-)polymerisiert werden, so dass ein gegebenenfalls vernetztes (Co-)polymerisat mit dem gewünschten Brechungsindex und den erforderlichen Stabilitätskriterien und mechanischen Eigenschaften erhalten wird.The above-mentioned monomers and crosslinking agents can be combined with one another in a targeted manner and (co) polymerized, so that an optionally crosslinked (co) polymer is obtained with the desired refractive index and the required stability criteria and mechanical properties.
Es ist auch möglich, weitere gängige Monomere, z. B. Acrylate, Methacrylate, Vinylester, Butadien, Ethylen oder Styrol, zusätzlich zu copolymerisieren, um beispielsweise die Glastemperatur oder die mechanischen Eigenschaften der Kern- und/oder Mantelpolymeren nach Bedarf einzustellen.It is also possible to use other common monomers, e.g. As acrylates, methacrylates, vinyl esters, butadiene, ethylene or styrene, additionally copolymerize, for example to adjust the glass transition temperature or the mechanical properties of the core and / or shell polymers as required.
Erfindungsgemäß ebenfalls bevorzugt ist es, wenn das Aufbringen des Mantels aus organischen Polymeren durch Aufpfropfung, vorzugsweise durch Emulsionspolymerisation oder ATR-Polymerisation erfolgt. Dabei lassen sich die oben beschriebenen Methoden und Monomere entsprechend einsetzen.According to the invention, it is also preferred if the coating of organic polymers is applied by grafting, preferably by emulsion polymerization or ATR polymerization. The methods and monomers described above can be used accordingly.
Die nachfolgenden Beispiele sollen die Erfindung näher erläutern, ohne sie zu begrenzen. The following examples are intended to explain the invention in more detail without limiting it.
BeispieleExamples
Beispiel 1 : Herstellung der Kern-Mantel-PartikelExample 1: Production of the core-shell particles
In einem auf 75 °C temperierten 5 I Doppelmantelreaktor mit Doppelpropellerrührer, Argon-Schutzgaseinleitung und Rückflußkühler wird eine auf 4 °C temperierte Vorlage, bestehend aus 1519 g VE-Wasser, 2,8 g 1 ,4-Butandioldiacrylat (Fa. MERCK), 25,2 g Styrol (Fa. MERCK) und 1030 mg Natriumdodecylsulfat (Fa. MERCK) eingefüllt und unter starkem Rühren dispergiert. Direkt danach wird die Reaktion durch a ufeinanderfolgendes E inspritzen von 350 mg Natriumdithionit (Fa. MERCK), 1 ,75 g Ammoniumperoxodisulfat (Fa. MERCK) und wiederum 350 mg Natriumdithionit (Fa. MERCK), jeweils in ca. 20 ml Wasser gelöst, gestartet. Das Einspritzen erfolgt mittels Einwegspritzen. Nach 20 min wird eine Monomeremulsion, bestehend aus 56,7 g 1 ,4- Butandioldiacrylat (Fa. MERCK), 510,3 g Styrol (Fa. MERCK), 2,625 g Natriumdodecylsulfat (Fa. MERCK), 0,7 g KOH und 770 g Wasser über ein Zeitraum von 120 min kontinuierlich über die Taumelkolbenpumpe zudosiert.In a 5 l double-jacket reactor heated to 75 ° C. with a double propeller stirrer, argon protective gas inlet and reflux condenser, a receiver is heated to 4 ° C. and consists of 1519 g demineralized water, 2.8 g 1,4-butanediol diacrylate (MERCK), 25.2 g of styrene (from MERCK) and 1030 mg of sodium dodecyl sulfate (from MERCK) are added and dispersed with vigorous stirring. Immediately afterwards, the reaction is dissolved by successively injecting 350 mg of sodium dithionite (MERCK), 1.75 g of ammonium peroxodisulfate (MERCK) and again 350 mg of sodium dithionite (MERCK), each in about 20 ml of water. started. The injection takes place by means of disposable syringes. After 20 minutes, a monomer emulsion consisting of 56.7 g of 1,4-butanediol diacrylate (from MERCK), 510.3 g of styrene (from MERCK), 2.625 g of sodium dodecyl sulfate (from MERCK), 0.7 g of KOH and 770 g of water are metered in continuously over a period of 120 min via the wobble piston pump.
Der Reaktorinhalt wird 30 min ohne weitere Zugabe gerührt. Anschließend wird eine zweite Monomeremulsion, bestehend aus 10,5 g Allylmethacrylat (Fa. MERCK), 94,50 g Methylmetacrylat (Fa. MERCK), 0,525 g Natriumdodecylsulfat (Fa. MERCK) und 140 g Wasser über einen Zeitraum von 30 min über die Taumelkolbenpumpe kontinuierlich zudosiert. Nach ca. 15 min werden 350 mg Ammoniumperoxodisulfat (Fa. MERCK) zugegeben und danach noch 15 min gerührt.The reactor contents are stirred for 30 minutes without further addition. Then a second monomer emulsion consisting of 10.5 g allyl methacrylate (MERCK), 94.50 g methyl methacrylate (MERCK), 0.525 g sodium dodecyl sulfate (MERCK) and 140 g water over a period of 30 minutes over the Swash piston pump metered in continuously. After about 15 minutes, 350 mg of ammonium peroxodisulfate (from MERCK) are added and the mixture is then stirred for a further 15 minutes.
Schließlich wird eine dritte Monomeremulsion, bestehend aus 200 g Ethylacrylat (Fa. MERCK), 0,550 g Natriumdodecylsulfat (Fa. MERCK) und 900 g Wasser über einen Zeitraum von 240 min kontinuierlich über dieFinally, a third monomer emulsion consisting of 200 g of ethyl acrylate (from MERCK), 0.550 g of sodium dodecyl sulfate (from MERCK) and 900 g of water continuously over a period of 240 min
Taumelkolbenpumpe zudosiert. Anschließend wird 120 min nachgerührt.Swash piston pump metered in. The mixture is then stirred for 120 minutes.
Vor und nach jedem Einleiten von Monomerenemulsionen und nachBefore and after each introduction of monomer emulsions and after
Einfüllen der Vorlage wird ca. eine Minute Argon als Schutzgaspolster in den Doppelmantelreaktor eingeleitet.The template is introduced into the double jacket reactor as a protective gas cushion for about one minute.
Am nächsten Tag wird der Reaktor auf 95 °C erwärmt und eine Wasserdampfdestillation durchgeführt, um restliche, nicht abreagierte Monomere aus der Latexdispersion zu entfernen.The next day, the reactor is heated to 95 ° C. and a steam distillation is carried out in order to remove residual, unreacted monomers from the latex dispersion.
Es resiultiert eine Dispersion von Kern-Mantel-Partikeln, bei denen der Mantel einen Gewichtsanteil von ca. 22% hat. Der Kern aus Polystyrol ist vernetzt, die Zwischenschicht ist ebenfalls vernetzt ( p(MMA-co-ALMA)) und dient zum Pfropfen des Mantels aus unvernetztem Ehtylacrylat.The result is a dispersion of core-shell particles in which the shell has a weight fraction of approx. 22%. The polystyrene core is cross-linked, the intermediate layer is also cross-linked (p (MMA-co-ALMA)) and is used to graft the jacket from uncrosslinked ethyl acrylate.
Beispiel 2: Herstellung einer inversen OpalstrukturExample 2: Production of an inverse opal structure
Zur Bildung der templatisierenden Struktur, d. h. der Organisation der Kern-Mantel-Partikel in eine dichte Kugelpackung, werden 5 g der Latexdispersion in eine flache Glasschale eines Durchmessers von 7 cm gegossen und an der Luft getrocknet, wobei bunt schillernde Flitter entstehen.To form the templating structure, i.e. H. When the core-shell particles are organized in a dense spherical packing, 5 g of the latex dispersion are poured into a flat glass bowl with a diameter of 7 cm and dried in the air, producing colorful, iridescent tinsel.
Ein solcher Flitter wird in einem Rundkolben mit der Öldrehschieberpumpe evakuiert. Anschließend wird eine Precursor-Lösung, bestehend aus 5 ml Tetra-n-butylorthotitanat in 5 ml absolutem Ethanol im statischen Vakuum dazugegeben, so dass der gelöste Precursor, getrieben von Kapillarkräften, in die Kavitäten des Templates eindringen kann. Über die Lösung, in dem sich das imprägnierte Template befindet, wird ein Argon- Polster gegeben. Diese Anordnung wird statisch über einige Stunden belassen, bevor im Argon Schutzgasstrom der imprägnierte Flitter entnommen und in einem Korund-Schiffchen im Rohrofen bei 500 °C calziniert wird.Such a tinsel is evacuated in a round bottom flask with the oil rotary vane pump. A precursor solution consisting of 5 ml of tetra-n-butyl orthotitanate in 5 ml of absolute ethanol is then added in a static vacuum so that the dissolved precursor, driven by capillary forces, can penetrate the cavities of the template. An argon cushion is placed over the solution in which the impregnated template is located. This arrangement is left static for a few hours before the impregnated tinsel in the argon protective gas stream removed and calcined in a corundum boat in a tube furnace at 500 ° C.
Als Ergebnis werden inverse Strukturen erhalten, die aus dichtest gepackten Hohlräumen in TiO2 bestehen (Figur 1). As a result, inverse structures are obtained which consist of densely packed cavities in TiO 2 (FIG. 1).
Abbildungen:pictures:
Figur 1 : Rasterelektronenmikroskopische Aufnahme der inversen Opal- Struktur aus Titandioxid (Besipiel 2). Die regelmäßige Anordnung der identischen Hohlvolumina ist über einen großen Bereich zu erkennen. Die Hohlvolumina sind durch Kanäle miteinander verbunden, wodurch sich die Möglichkeit der Befüllung über die flüssige oder Gasphase ergibt Figure 1: Scanning electron micrograph of the inverse opal structure made of titanium dioxide (Example 2). The regular arrangement of the identical hollow volumes can be seen over a large area. The hollow volumes are connected to one another by channels, which results in the possibility of filling via the liquid or gas phase

Claims

Patentansprüche claims
1. Verwendung von Kern-Mantel-Partikeln, deren Mantel eine Matrix bildet und deren Kern im wesentlichen fest ist und eine im wesentlichen monodisperse Größenverteilung aufweist als Template zur Herstellung inverser Opalstrukturen.1. Use of core-shell particles, the shell of which forms a matrix and whose core is essentially solid and has an essentially monodisperse size distribution as a template for producing inverse opal structures.
2. Verwendung nach Anspruch 1 , dadurch gekennzeichnet, dass in den Kern-Mantel-Partikeln der Mantel mit dem Kern über eine Zwischenschicht verbunden ist.2. Use according to claim 1, characterized in that in the core-shell particles, the shell is connected to the core via an intermediate layer.
3. Verwendung n ach m indestens e inem d er v orstehenden A nsprüche, dadurch gekennzeichnet, dass in den Kern-Mantel-Partikeln das Gewichtsverhältnis von Kern zu Mantel im Bereich von 20:1 bis 1 ,3. Use according to at least one of the preceding claims, characterized in that in the core-shell particles the weight ratio of core to shell in the range from 20: 1 to 1,
4:1 , vorzugsweise im Bereich von 6:1 bis 2:1 und insbesondere bevorzugt im Bereich 5:1 bis 3,5:1 liegt.4: 1, preferably in the range from 6: 1 to 2: 1 and particularly preferably in the range from 5: 1 to 3.5: 1.
Verwendung nach m indestens einem d er vorstehenden Ansprüche, dadurch gekennzeichnet, dass in den Kern-Mantel-Partikeln der Mantel aus im wesentlichen unvemetzten organischen Polymeren besteht, die bevorzugt über eine zumindest teilweise vernetzte Zwischenschicht auf den Kern aufgepfropft sind.Use according to at least one of the preceding claims, characterized in that in the core-shell particles the shell consists of essentially uncrosslinked organic polymers which are preferably grafted onto the core via an at least partially crosslinked intermediate layer.
5. Verwendung nach m indestens e inem d er v orstehenden A nsprüche, dadurch gekennzeichnet, dass in den Kern-Mantel-Partikeln der Kern aus einem organischen Polymer, das vorzugsweise vernetzt ist, besteht.5. Use according to at least one of the preceding claims, characterized in that in the core-shell particles the core consists of an organic polymer, which is preferably crosslinked.
6. Verwendung nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in den Kern-Mantel-Partikeln der Kern aus einem anorganischen Material besteht und das Gewichtsverhältnis von Kern zu Mantel vorzugsweise im Bereich von 5:1 bis 1 :10, insbesondere im Bereich von 2:1 bis 1 :5 und besonders bevorzugt im Bereich kleiner 1 :1 liegt.6. Use according to at least one of claims 1 to 4, characterized in that in the core-shell particles, the core consists of an inorganic material and the weight ratio from core to jacket is preferably in the range from 5: 1 to 1:10, in particular in the range from 2: 1 to 1: 5 and particularly preferably in the range less than 1: 1.
7. Verfahren zur Herstellung inverser Opalstrukturen, dadurch gekennzeichnet, dass, a) eine Dispersion aus Kern-Mantel-Partikeln, deren Mantel eine Matrix bildet und deren Kern im wesentlichen fest ist, getrocknet wird, ι b) optional ein oder mehrere Precursoren geeigneter7. Process for the production of inverse opal structures, characterized in that a) a dispersion of core-shell particles, the shell of which forms a matrix and the core of which is essentially solid, is dried, ι b) optionally one or more precursors are more suitable
Wandmaterialen zugegeben werden und, c) anschließend die Kerne entfernt werden.Wall materials are added and, c) the cores are subsequently removed.
5 8. Verfahren zur Herstellung inverser Opalstrukturen nach Anspruch 7, dadurch gekennzeichnet, dass in einem Schritt a2) die Anwendung einer mechanischen Kraft auf eine in Schritt a1) vorgetrocknete Masse der Kern-Mantel-Partikel erfolgt.5 8. A method for producing inverse opal structures according to claim 7, characterized in that in a step a2) the application of a mechanical force to a pre-dried mass of the core-shell particles takes place in step a1).
00
9. Verfahren zur Herstellung inverser Opalstrukturen nach Anspruch 8, dadurch gekennzeichnet, dass die Anwendung einer mechanischen Kraft durch uniaxiales Pressen oder während eines Spritzgußvorganges oder während eines Transferpressvorganges 5 oder während einer (Co-) Extrusion oder während eines9. A method for producing inverse opal structures according to claim 8, characterized in that the application of a mechanical force by uniaxial pressing or during an injection molding process or during a transfer pressing process 5 or during a (co) extrusion or during a
Kalandriervorganges oder während eines Blasvorganges erfolgt.Calendering process or during a blowing process.
10. Verfahren z ur H erstellung i nverser O palstrukturen nach mindestens 0 einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass es sich bei dem Precursor in Schritt b) um eine Lösung eines Esters einer anorganischen ortho-Säure mit einem niederen Alkohol handelt.10. The method for the production of inverse o pal structures according to at least one of claims 7 to 9, characterized in that the precursor in step b) is a solution of an ester of an inorganic ortho acid with a lower alcohol.
11. Verfahren z ur H erstellung i nverser O palstrukturen nach mindestens 5 einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass Schritt b) bei vermindertem Druck, vorzugsweise im statischen Vakuum mit p < 1 mbar durchgeführt wird.11. A method for the production of inverse o pal structures according to at least 5 one of claims 7 to 10, characterized in that step b) is carried out at reduced pressure, preferably in a static vacuum with p <1 mbar.
12. Verfahren zur H erstellung i nverser O palstrukturen nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei Schritt c) um eine Calcinierung, vorzugsweise bei Temperaturen oberhalb 200 °C, insbesondere bevorzugt oberhalb 400 °C handelt.12. A method for producing inverse o pal structures according to at least one of the preceding claims, characterized in that step c) is a calcination, preferably at temperatures above 200 ° C, particularly preferably above 400 ° C.
n u 13. Verfahren z ur H erstellung i nverser O palstrukturen nach mindestens einem der Ansprüche 7 bis 11 , dadurch gekennzeichnet, dass es sich bei Schritt c) um einen Ätzprozess, vorzugsweise um Ätzen mit HF handelt. 5n u 13. A method for for creation H i O nverser palstrukturen according to at least one of claims 7 to 11, characterized in that it preferably is to HF etching to an etching process in step c). 5
14. Verfahren z ur H erstellung i nverser O palstrukturen nach mindestens einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass in Schritt c) die Kern-Mantel-Partikel entfernt werden.14. A method for the production of inverse opal structures according to at least one of the preceding claims, characterized in that the core-shell particles are removed in step c).
00
55
00
5 5
EP03798883A 2002-09-30 2003-09-02 Method for producing inverse opaline structures Withdrawn EP1546063A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10245848A DE10245848A1 (en) 2002-09-30 2002-09-30 Process for the production of inverse opal structures
DE10245848 2002-09-30
PCT/EP2003/009717 WO2004031102A1 (en) 2002-09-30 2003-09-02 Method for producing inverse opaline structures

Publications (1)

Publication Number Publication Date
EP1546063A1 true EP1546063A1 (en) 2005-06-29

Family

ID=31969733

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03798883A Withdrawn EP1546063A1 (en) 2002-09-30 2003-09-02 Method for producing inverse opaline structures

Country Status (11)

Country Link
US (1) US20060254315A1 (en)
EP (1) EP1546063A1 (en)
JP (1) JP2006501124A (en)
KR (1) KR20050074466A (en)
CN (1) CN1684925A (en)
AU (1) AU2003255503A1 (en)
BR (1) BR0314827A (en)
CA (1) CA2500327A1 (en)
DE (1) DE10245848A1 (en)
TW (1) TWI291944B (en)
WO (1) WO2004031102A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3034566A1 (en) 2014-12-19 2016-06-22 Eckart GmbH Metal effect pigments comprising a high chroma and a high brilliancy, method for their preparation and their use
EP3034564A1 (en) 2014-12-19 2016-06-22 Eckart GmbH Effect pigments with high transparency, high chroma and a high brilliance, method for their preparation and their use
EP3034562A1 (en) 2014-12-19 2016-06-22 Eckart GmbH Absorbing effect pigments with high chroma and a high brilliance, method for their preparation and their use
EP3034563A1 (en) 2014-12-19 2016-06-22 Eckart GmbH Gold-coloured effect pigments with high chroma and a high brilliance, method for their preparation and their use
US11202739B2 (en) 2014-12-19 2021-12-21 Eckart Gmbh Red-coloured decorative pigments with high chroma and high brilliancy, method for their production and use of same

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10341198A1 (en) * 2003-09-04 2005-05-19 Merck Patent Gmbh Shaped articles with homogeneous, evenly distributed cavities, useful e.g. in electro-optical devices, obtained using core-shell particles having thermoplastic matrix shell and solid core
DE10357681A1 (en) * 2003-12-10 2005-07-21 Merck Patent Gmbh Use of core-shell particles
DE102004009569A1 (en) * 2004-02-25 2005-09-15 Merck Patent Gmbh Use of core-shell particles
JP2006110653A (en) * 2004-10-13 2006-04-27 Kawamura Inst Of Chem Res Inorganic oxide periodic structure
US8383014B2 (en) * 2010-06-15 2013-02-26 Cabot Corporation Metal nanoparticle compositions
JP2006213534A (en) * 2005-02-01 2006-08-17 Kawamura Inst Of Chem Res Inorganic oxide periodic structure
US20100207139A1 (en) 2005-08-11 2010-08-19 Holger Winkler Photonic material having regularly arranged cavities
US8133938B2 (en) 2005-11-01 2012-03-13 Ppg Industries Ohio, Inc. Radiation diffraction colorants
JP2007145636A (en) * 2005-11-25 2007-06-14 Shimadzu Corp Porous continuum, column using the same, and method of manufacturing porous continuum
JPWO2007086306A1 (en) * 2006-01-30 2009-06-18 学校法人近畿大学 Biodegradable inverted-opal structure, method for producing and using the same, and medical implant comprising the biodegradable inverted-opal structure
DE102006013055A1 (en) * 2006-03-22 2007-09-27 Merck Patent Gmbh Gas-phase infiltration of phosphors into the pore system of inverse opals
DE102006017163A1 (en) * 2006-04-12 2007-10-18 Merck Patent Gmbh Preparing inverse opal with adjustable canal diameter, comprises arranging and partially fusing template sphere, increasing temperature, soaking sphere space with wall material precursor, forming wall material and removing template sphere
DE102007020888A1 (en) 2007-05-04 2008-11-06 Micro Systems Engineering Gmbh & Co. Kg Ceramic substrate material, method of making and using same and antenna or antenna array
DE102007026492A1 (en) 2007-06-05 2008-12-11 Merck Patent Gmbh Inverse opals based on luminescent materials
DE102007027671A1 (en) 2007-06-05 2008-12-11 Merck Patent Gmbh Luminescence activation of inverse opals through intricate multilayer structures
DE102007049172A1 (en) 2007-10-13 2009-04-16 Micro Systems Engineering Gmbh & Co. Kg A microreactor and method of making the same and method of making a substrate for a microreactor
WO2010027854A1 (en) * 2008-08-26 2010-03-11 President And Fellows Of Harvard College Porous films by a templating co-assembly process
DE102008043352A1 (en) 2008-10-31 2010-05-06 Micro Systems Engineering Gmbh Ceramic substrate material, method of making and using same and antenna or antenna array
DE102009000813A1 (en) 2009-02-12 2010-08-19 Evonik Degussa Gmbh Fluorescence conversion solar cell I Production by the plate casting method
DE102009002386A1 (en) 2009-04-15 2010-10-21 Evonik Degussa Gmbh Fluorescence Conversion Solar Cell - Injection Molding Production
US8252412B2 (en) * 2009-06-16 2012-08-28 Ppg Industries Ohio, Inc Angle switchable crystalline colloidal array films
DE102009030250A1 (en) 2009-06-23 2010-12-30 Merck Patent Gmbh Diffraction color pigment, useful e.g. in powder coatings, inks and toners, and in the production of masterbatches, comprises a portion of arrays of spherical cavities with a monodisperse size distribution for the optical properties
DE102009027431A1 (en) 2009-07-02 2011-01-05 Evonik Degussa Gmbh Fluorescence conversion solar cell - Production by extrusion or coextrusion
GB0911792D0 (en) * 2009-07-07 2009-08-19 Rue De Int Ltd Photonic crystal material
US20110135888A1 (en) * 2009-12-04 2011-06-09 Ppg Industries Ohio, Inc. Crystalline colloidal array of particles bearing reactive surfactant
DE102010028186A1 (en) 2010-04-26 2011-10-27 Evonik Röhm Gmbh Plastic molded body made from a transparent, thermoplastic polymer, useful in an arrangement for producing a collector of solar cell, comprises coatings, which are colored with fluorescent dye, and are applied by roll coating method
DE102010028180A1 (en) 2010-04-26 2011-10-27 Evonik Röhm Gmbh Plastic molding useful for manufacturing solar panels, comprises polymethyl(meth)acrylate coated with a film made of several individual layers, which are dyed with a fluorescent dye
US8582194B2 (en) 2010-04-29 2013-11-12 Ppg Industries Ohio, Inc. Thermally responsive crystalline colloidal arrays
DE102010038685A1 (en) 2010-07-30 2012-02-02 Evonik Röhm Gmbh Fluorescence Conversion Solar Cell Manufactured by plate casting
US9022648B2 (en) 2010-11-11 2015-05-05 Prc-Desoto International, Inc. Temperature sensitive composite for photonic crystals
WO2012095634A2 (en) 2011-01-12 2012-07-19 Cambridge Enterprise Limited . Manufacture of composite optical materials
US8641933B2 (en) 2011-09-23 2014-02-04 Ppg Industries Ohio, Inc Composite crystal colloidal array with photochromic member
US20130077169A1 (en) 2011-09-23 2013-03-28 Ppg Industries Ohio, Inc. Hollow particle crystalline colloidal arrays
CA2871624A1 (en) * 2012-04-27 2013-10-31 Fio Corporation Method for stabilizing quantum-dots
CN103043938A (en) * 2013-01-28 2013-04-17 吴江笨鸟墙面科技有限公司 Impermeable micro composite particles of concrete
JP6203507B2 (en) * 2013-03-07 2017-09-27 富士電機株式会社 Method for producing porous structure
CN103257123A (en) * 2013-05-28 2013-08-21 北京科技大学 Preparation method of photonic crystal thin film heavy metal sensor with multilevel structure
KR101538327B1 (en) * 2013-08-26 2015-07-22 전자부품연구원 Manufacturing method of 3-dimensional photonic crystal layer
CN104355290B (en) * 2014-11-27 2016-06-01 中国科学院重庆绿色智能技术研究院 A kind of three-dimensional interior connected porous micro-nano structure and increasing material manufacture method thereof
CN113219011B (en) * 2021-05-19 2022-08-09 吉林大学 Co-doped SnO 2 Formaldehyde-acetone gas sensor and preparation method thereof

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2005A (en) * 1841-03-16 Improvement in the manner of constructing molds for casting butt-hinges
US3138475A (en) * 1959-11-14 1964-06-23 Jenaer Glaswerk Schott & Gen Filler and meterial with an artificial pearly gloss and method of producing the same
US3258349A (en) * 1962-05-11 1966-06-28 Norton Co Light porous refractory brick and method
AU418170B2 (en) * 1964-10-02 1971-10-11 Commonwealth Scientific And Industrial Researc Organization Opaline materials
US4391928A (en) * 1981-09-04 1983-07-05 Nl Industries, Inc. Opacifying polymeric particle and uses
JPS6096589A (en) * 1983-10-26 1985-05-30 京セラ株式会社 Jewel dressing member
DE3616133A1 (en) 1985-09-25 1987-11-19 Merck Patent Gmbh SPHERICAL SIO (DOWN ARROW) 2 (DOWN ARROW) PARTICLES
US5026782A (en) * 1988-09-23 1991-06-25 Union Oil Company Of California Polymeric opaque particles and process for making same
US5053441A (en) * 1988-09-23 1991-10-01 Union Oil Company Of California Core/shell particles and process for making same
JP2790381B2 (en) * 1990-02-03 1998-08-27 三井化学株式会社 Cored multilayer emulsion particles
JPH03257081A (en) * 1990-03-05 1991-11-15 Mitsui Eng & Shipbuild Co Ltd Production of porous ceramics
US5344489A (en) * 1991-11-15 1994-09-06 Manfred R. Kuehnle Synthetic, monodispersed color pigments for the coloration of media such as printing inks, and method and apparatus for making same
DE4219287A1 (en) * 1992-06-12 1993-12-16 Merck Patent Gmbh Inorganic fillers and organic matrix materials with refractive index adjustment
DE19521638A1 (en) * 1995-06-14 1996-12-19 Roehm Gmbh Process for the production of highly filled plastics with a glitter effect
US5932309A (en) * 1995-09-28 1999-08-03 Alliedsignal Inc. Colored articles and compositions and methods for their fabrication
ES2202511T3 (en) * 1996-04-22 2004-04-01 Merck Patent Gmbh PARTICLES OF SIO2 COVERED.
JPH10101748A (en) * 1996-08-07 1998-04-21 Mitsubishi Rayon Co Ltd Acrylic resin film
US6276214B1 (en) * 1997-12-26 2001-08-21 Toyoaki Kimura Strain sensor functioned with conductive particle-polymer composites
JP3695116B2 (en) * 1998-01-16 2005-09-14 株式会社豊田中央研究所 Highly sensitive mechanical sensor material
US6254831B1 (en) * 1998-01-21 2001-07-03 Bayer Corporation Optical sensors with reflective materials
DE19820302A1 (en) * 1998-05-04 2000-02-24 Basf Ag Core / shell particles, their manufacture and use
US6261469B1 (en) * 1998-10-13 2001-07-17 Honeywell International Inc. Three dimensionally periodic structural assemblies on nanometer and longer scales
GB9825066D0 (en) * 1998-11-17 1999-01-13 Ici Plc Moulded article and moulding composition
JP2000281911A (en) * 1999-01-25 2000-10-10 Mitsubishi Chemicals Corp Cluster of spherical molecules
CA2296819A1 (en) * 1999-02-11 2000-08-11 Sanjay Patel Process for fabricating article exhibiting substantial three-dimensional micron-scale order and resultant article
US6436187B1 (en) * 1999-09-01 2002-08-20 Agere Systems Guardian Corp. Process for fabricating article having substantial three-dimensional order
US6545809B1 (en) * 1999-10-20 2003-04-08 Flex Products, Inc. Color shifting carbon-containing interference pigments
WO2001086038A2 (en) * 2000-05-05 2001-11-15 Universidad Politecnica De Valencia Photonic bandgap materials based on germanium
DE10024466A1 (en) * 2000-05-18 2001-11-22 Merck Patent Gmbh Highly stable opal-structured pigments useful in e.g. lacquers, paints, inks, plastics or cosmetics are obtained from monodisperse spheres, e.g. of silica, metal oxides such as titanium dioxide or polymer
EP1292727A2 (en) * 2000-06-15 2003-03-19 MERCK PATENT GmbH A method for producing sphere-based crystals
MXPA01008706A (en) * 2000-09-03 2004-08-12 Rohm & Haas High solids polymeric additive systems: compositions, processes, and products thereof.
MXPA01008705A (en) * 2000-09-03 2004-08-12 Rohm & Haas Multiple polymeric additive systems: compositions, processes, and products thereof.
US20040071965A1 (en) * 2000-11-30 2004-04-15 Guoyi Fu Particles with opalescent effect
JP2002174597A (en) * 2000-12-06 2002-06-21 Fuji Xerox Co Ltd Method for detecting sensor material, sensor and organic substance and method for detecting transmitted light
US6841238B2 (en) * 2002-04-05 2005-01-11 Flex Products, Inc. Chromatic diffractive pigments and foils
CA2459749A1 (en) 2001-09-14 2003-03-27 Merck Patent Gesellschaft Mit Beschraenkter Haftung Mouldings made from core/shell particles
DE10204338A1 (en) * 2002-02-01 2003-08-14 Merck Patent Gmbh Shaped body made of core-shell particles
DE10204339A1 (en) * 2002-02-01 2003-08-07 Merck Patent Gmbh Strain and compression sensor
DE10227071A1 (en) * 2002-06-17 2003-12-24 Merck Patent Gmbh Composite material containing core-shell particles
US7695689B2 (en) * 2002-07-18 2010-04-13 National Institute Of Advanced Industrial Science And Technology Micro reactor device and method of manufacturing micro reactor device
JP4190239B2 (en) * 2002-09-13 2008-12-03 財団法人川村理化学研究所 Colloidal crystal and method for producing the same
JP2007504307A (en) * 2003-09-04 2007-03-01 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Use of core / shell particles
DE10357681A1 (en) * 2003-12-10 2005-07-21 Merck Patent Gmbh Use of core-shell particles
DE102004009569A1 (en) * 2004-02-25 2005-09-15 Merck Patent Gmbh Use of core-shell particles
DE102004032120A1 (en) * 2004-07-01 2006-02-09 Merck Patent Gmbh Diffractive colorants for cosmetics

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004031102A1 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3034566A1 (en) 2014-12-19 2016-06-22 Eckart GmbH Metal effect pigments comprising a high chroma and a high brilliancy, method for their preparation and their use
EP3034564A1 (en) 2014-12-19 2016-06-22 Eckart GmbH Effect pigments with high transparency, high chroma and a high brilliance, method for their preparation and their use
EP3034562A1 (en) 2014-12-19 2016-06-22 Eckart GmbH Absorbing effect pigments with high chroma and a high brilliance, method for their preparation and their use
EP3034563A1 (en) 2014-12-19 2016-06-22 Eckart GmbH Gold-coloured effect pigments with high chroma and a high brilliance, method for their preparation and their use
US10391043B2 (en) 2014-12-19 2019-08-27 Eckart Gmbh Effect pigments with high chroma and high brilliancy, method for the production and use thereof
US10759941B2 (en) 2014-12-19 2020-09-01 Eckart Gmbh Metal effect pigments with high chroma and high brilliancy, method for the production and use thereof
US10799432B2 (en) 2014-12-19 2020-10-13 Eckart Gmbh Effect pigments with high chroma and high brilliancy, method for the production and use thereof
US10934436B2 (en) 2014-12-19 2021-03-02 Eckart Gmbh Effect pigments having high transparency, high chroma and high brilliancy, method for the production and use thereof
US10947391B2 (en) 2014-12-19 2021-03-16 Eckart Gmbh Gold-coloured effect pigments having high chroma and high brilliancy, method for the production and use thereof
US11202739B2 (en) 2014-12-19 2021-12-21 Eckart Gmbh Red-coloured decorative pigments with high chroma and high brilliancy, method for their production and use of same

Also Published As

Publication number Publication date
CN1684925A (en) 2005-10-19
CA2500327A1 (en) 2004-04-15
US20060254315A1 (en) 2006-11-16
JP2006501124A (en) 2006-01-12
DE10245848A1 (en) 2004-04-01
TW200418745A (en) 2004-10-01
TWI291944B (en) 2008-01-01
BR0314827A (en) 2005-08-02
WO2004031102A1 (en) 2004-04-15
AU2003255503A1 (en) 2004-04-23
KR20050074466A (en) 2005-07-18

Similar Documents

Publication Publication Date Title
EP1546063A1 (en) Method for producing inverse opaline structures
EP1425322B1 (en) Moulded bodies consisting of core-shell particles
EP0955323B1 (en) Core - shell particles, their production and use
WO2005080475A2 (en) Use of core-shell particles for producing inverse-opal structures
EP1812484B1 (en) Core-shell particles
EP1469020A1 (en) Core-Shell Particles
DE69433242T2 (en) HETEROGENEOUS POLYMERIZATION IN CARBON DIOXIDE
DE69834326T2 (en) ORGANIC, LOW-WEIGHT, OPEN-CELL SHEETS, LOW-WEIGHT OPEN-CELL CARBON, AND METHOD FOR THE PRODUCTION THEREOF
DE10204338A1 (en) Shaped body made of core-shell particles
DE1621964A1 (en) Process for encasing solid particles with polymer
EP0351759A2 (en) Process for fixing an inorganic species in an organic matrix
DE102011051992A1 (en) Coated pigments and coating system containing them
DE1519811C3 (en) Process for the production of polymer microcapsules
DE10357681A1 (en) Use of core-shell particles
DE10357679A1 (en) Effect colorant containing core-shell particles
WO2005028396A2 (en) Use of core-shell particles
WO2009027328A1 (en) Photonic crystals consisting of polymer particles with interparticulate interaction
DE19854486B4 (en) Process for producing a composite of organic and inorganic compounds
DE112011101753T5 (en) Hydrophobic lignocellulosic material and process for its preparation
WO2003064988A2 (en) Extension and upsetting sensor
EP0532113B1 (en) Process for the preparation of shaped ceramic or glass bodies
DE10341198A1 (en) Shaped articles with homogeneous, evenly distributed cavities, useful e.g. in electro-optical devices, obtained using core-shell particles having thermoplastic matrix shell and solid core
DE2237256B2 (en) Process for the preparation of polymers bound to crystalline inorganic salts
DE10357680A1 (en) Shaped articles with homogeneous, evenly distributed cavities, useful e.g. in electro-optical devices, obtained using core-shell particles having thermoplastic matrix shell and solid core
DE69434355T2 (en) Electrorheological fluid

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050215

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: SPAHN, PETER

Inventor name: RUHL, TILMANNN

Inventor name: HELLMANN, GOETZ

Inventor name: WINKLER, HOLGER

17Q First examination report despatched

Effective date: 20080826

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100401