EP1544096B1 - Method for verifying the destruction of a sea mine - Google Patents

Method for verifying the destruction of a sea mine Download PDF

Info

Publication number
EP1544096B1
EP1544096B1 EP04029038A EP04029038A EP1544096B1 EP 1544096 B1 EP1544096 B1 EP 1544096B1 EP 04029038 A EP04029038 A EP 04029038A EP 04029038 A EP04029038 A EP 04029038A EP 1544096 B1 EP1544096 B1 EP 1544096B1
Authority
EP
European Patent Office
Prior art keywords
mine
detonation
destruction
explosive charge
time window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04029038A
Other languages
German (de)
French (fr)
Other versions
EP1544096A3 (en
EP1544096A2 (en
Inventor
Andreas Lonkai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas Elektronik GmbH
Original Assignee
Atlas Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Elektronik GmbH filed Critical Atlas Elektronik GmbH
Publication of EP1544096A2 publication Critical patent/EP1544096A2/en
Publication of EP1544096A3 publication Critical patent/EP1544096A3/en
Application granted granted Critical
Publication of EP1544096B1 publication Critical patent/EP1544096B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G7/00Mine-sweeping; Vessels characterised thereby
    • B63G7/02Mine-sweeping means, Means for destroying mines
    • B63G7/08Mine-sweeping means, Means for destroying mines of acoustic type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G7/00Mine-sweeping; Vessels characterised thereby
    • B63G7/02Mine-sweeping means, Means for destroying mines

Definitions

  • the invention relates to a method for testing the destruction of a sea mine, which is exploded by means of an explosive charge, the genus defined in the preamble of claim 1.
  • the document DE 4 416 848 which is considered to be the closest prior art, describes such a method which is also used for position determination of a sea-mine detonation.
  • Marine mines are first located by suitably equipped mine-hunting boats by means of a sensor and then identified, wherein the identification by optical means, such as TV camera in a mine-controlled underwater vehicle (drone) or visual contact by divers, takes place.
  • the mine is fought, for example, by placing a detention load by a diver, by depositing a minervation charge (MVL) at the location of the identified mine by means of an underwater vehicle, or by a remotely controlled underwater vehicle with integrated explosive charge directed to the mine at a predetermined distance from the mine, the explosive charge is ignited.
  • MTL minervation charge
  • the success of the fight against the mine, ie its destruction, is determined in different ways depending on the blasting method used.
  • the invention has for its object to provide a method for testing the destruction of a sea mine by blasting, with the destruction of the mine can be determined relatively safely without significant delay after detonation.
  • the method according to the invention has the advantage that the receiving side unambiguously detected in the received signal can be whether only the explosive or explosive charge detonated or a Sympathiedetonation the mine has taken place. It exploits the fact that the explosion of an explosive charge generates a characteristic pressure signature, which propagates as a spherical wave in the water and only at long distance loses its property, for example by damping. The explosion caused by the explosive detonation wave propagates in the water at a speed that is much higher than the speed of sound, for example, at a speed of about 5000 m / s, the propagation speed depends essentially on the type of explosive or explosive. Because z.
  • the distance between the stored explosive charge and mine is typically about 0.5 to 1.5 m
  • the receiver is located in the vicinity of the blast, typically within a radius of 300 to 500 m
  • the detonation wave as Shock wave propagates at the said speed in the water
  • the detonation of the explosive charge on the one hand and the Sympathiedetonation the mine on the other hand can be detected as time-delayed detonation events in the received signal. If two detonation events can be detected in the received signal, destruction of the mine can be assumed with great certainty.
  • the time window within which the detonation events must be determined as a function of the distance between the explosive charge and sea mines at the moment of detonation of the explosive charge and the type of explosive of the explosive charge.
  • the time window is chosen less than 2 ms, wherein in typical applications, the time window is approximately 200 to 300 microseconds.
  • Fig. 1 and Fig. 2 schematically a mine hunting situation is sketched in plan view and side view, in which trained as a surface water mine-rifle 11 with an exposable, connected via an unwinding cable 16 with the mine-hunting boat 11, guided underwater vehicle 12, a so-called.
  • Drone used to clear a sea area of sea mines is.
  • a mine 13 of the sea mines laid out in the sea area is in Fig. 1 and 2 represented, as a type of mine a bottom mine is assumed, which is deposited on the seabed 15.
  • the mine-hunting boat 11 has a so-called mine-hunting sonar 18 with which mines 13 anchored in the sea area or deposited on the seabed 15 can be detected and classified.
  • Ground mines, which have penetrated deposited in the seabed 15 sediment 14, are acoustically detected and classified by means of a so-called. Sedimentsonars, which is installed for example in the underwater vehicle.
  • the underwater vehicle 12, which is exposed by the mines hunting boat 11, is directed towards the mine 13, whereby the underwater vehicle 12 is always guided against the flow 17 to the mine 13.
  • the mine 13 is through the Underwater vehicle 12 identifies, and the underwater vehicle 12 is caused by the mine hunting boat 11, a demolition charge 20, in the exemplary embodiment, a so-called.
  • Mine destruction charge to settle at the site of the mine 13, wherein usually settling the explosive charge 20 at a distance a from 0.5 to 1, 5 m away from Mine 13.
  • the underwater vehicle 12 is overtaken by mine-hunting boat 11 again.
  • the explosive charge is integrated in the underwater vehicle, and the latter is destroyed in the demolition of the mine 13 with.
  • the destruction of the mine 13 is triggered in all cases by remotely igniting the explosive charge 20 from the mine hunting boat 11, wherein the mine hunting boat 11 a certain distance, which depends on the size of the explosive charge 20 and the mine species, from the location of the mine 13 complies.
  • the distance to be observed is about 300 to 500 m, measured from the projection point of the mine 13 on the water surface 19.
  • the explosion-induced pressure waves propagate as spherical shock waves in the water at a very high velocity, which is significantly greater than the speed of sound in the water and, for example, is 5000 m / s.
  • detonation waves are understood by a receiver 21 in the mine-hunting boat 11, which is located in the vicinity of the blast.
  • the receiver 21 has for this purpose - as shown in the block diagram of Fig. 3 is sketched - a broadband electro-acoustic transducer, commonly called hydrophone 22, and a downstream of the output of the hydrophone 22, electrical Signal processing 23 and a display device 24 for displaying the result of the mine destruction action on.
  • the received signal of the receiver 21 is examined for the occurrence of detonation events within a time window ⁇ . If two detonation events are found within the time window ⁇ , the destruction of the mine 13 is displayed in the display device 24. If only one detonation event is detected within the time window ⁇ , it is indicated in the display device 24 that the blast has not led to the destruction of the mine 13.
  • an example of a receive signal is shown schematically, in which within the time window ⁇ only one detonation event ( Fig. 4 ) or two detonation events ( Fig. 5 ) were detected. Due to the Dirac case-like amplitude peaks in the received signal, the detonation events can be very well recognized.
  • the detection of the detonation events can be carried out in different ways in the signal processing 23. For example, the maxima of the signal amplitude, the maxima of the magnitude of the signal amplitude, the maxima of the signal level or the maxima of the envelope of the received signal can be used.
  • the explosive substance of the detonated mine 13 can be classified by quantity and / or type or class by evaluating the second detonation event in the received signal due to the sympathetic toning of the mine 13 with the aid of a database or an expert system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

The method involves recording the pressure waves triggered by exploding the mine (13) using a receiver (21) placed in the sea bed (15) remote from the mine and investigating the received signal for the occurrence of detonation events within a time window. The presence of two detonation events indicates destruction of the mine.

Description

Die Erfindung betrifft ein Verfahren zum Prüfen der Zerstörung einer Seemine, die mittels einer Sprengladung gesprengt wird, der im Oberbegriff des Anspruchs 1 definierten Gattung.The invention relates to a method for testing the destruction of a sea mine, which is exploded by means of an explosive charge, the genus defined in the preamble of claim 1.

Das Dokument DE 4 416 848 , das als nächstliegender Stand der Technik angesehen wird, beschreibt ein solches Verfahren, das auch zur Positionbestimmung einer Seeminendetonation angewendet wird.The document DE 4 416 848 , which is considered to be the closest prior art, describes such a method which is also used for position determination of a sea-mine detonation.

Seeminen werden durch entsprechend ausgerüstete Minenjagdboote zunächst mittels eines Sensors geortet und dann identifiziert, wobei die Identifikation durch optische Mittel, wie TV-Kamera in einem zur Mine gesteuerten Unterwasserfahrzeug (Drohne) oder Sichtkontakt durch Taucher, erfolgt. Nach Identifikation der Mine wird die Mine bekämpft, beispielsweise durch Anbringen einer Haftladung durch einen Taucher, durch Absetzen einer Minnevernichtungsladung (MVL) am Ort der identifizierten Mine mittels eines Unterwasserfahrzeugs oder durch ein ferngesteuertes Unterwasserfahrzeug mit integrierter Sprengladung, das auf die Mine gelenkt wird, wobei in einem vorgegebenen Abstand von der Mine die Sprengladung gezündet wird. Der Erfolg der Bekämpfung der Mine, also deren Zerstörung, wird je nach eingesetztem Sprengverfahren auf unterschiedliche Weise nachträglich festgestellt. Bei Sprengung mittels Haftladung, die eine deutlich kleinere Menge an Explosivstoff besitzt als die Mine, wird die Zerstörung der Mine durch die Gesamtwirkung der Detonation beurteilt. Eine starke Detonation lässt den sicheren Schluss zu, dass die Mine in einer Sympathiedetonation durch die Haftladung zerstört worden ist. Liegt das Sprengladungsgewicht der Mine etwa in der gleichen Größenordnung wie die Minenvernichtungsladung, lässt die Beobachtung der Detonationswirkung, z.B. Wasserfontäne, Stärke des Schocks, keinen sicheren Rückschluss auf die erfolgreiche Bekämpfung der Mine zu. Bei Sprengung durch Minenvernichtungsladungen, die eine relativ große Menge an Explosivstoff besitzen, je nach Bauart z.B. ca. 40 kg oder ca. 130 kg TNT-Äquivalent, wird daher der Bereich der Mine nach der Sprengung mit dem Sonar beleuchtet. Der Einsatz des Sonars ist aber erst nach einer sehr langen Zeitspanne nach Sprengung mit Aussicht auf Erfolg möglich, da durch die Sprengung aufgeworfenes Sediment sich erst wieder ablagern und der durch die Sprengung erzeugte Blasenschleier sich erst wieder auflösen muss, bevor ein aussagefähiges Sonarbild aus dem Bereich der Mine erhalten werden kann. Im Falle von im Sediment vergrabenen Minen kann auch mit der nachträglichen Sonarbeleuchtung des Minengebiets eine Aussage über die Zerstörung der Mine nicht mit absoluter Sicherheit gegeben werden.Marine mines are first located by suitably equipped mine-hunting boats by means of a sensor and then identified, wherein the identification by optical means, such as TV camera in a mine-controlled underwater vehicle (drone) or visual contact by divers, takes place. Upon identification of the mine, the mine is fought, for example, by placing a detention load by a diver, by depositing a minervation charge (MVL) at the location of the identified mine by means of an underwater vehicle, or by a remotely controlled underwater vehicle with integrated explosive charge directed to the mine at a predetermined distance from the mine, the explosive charge is ignited. The success of the fight against the mine, ie its destruction, is determined in different ways depending on the blasting method used. When detonating by means of static charge, which has a significantly smaller amount of explosive than the mine, the destruction of the mine is judged by the overall effect of the detonation. A strong Detonation allows for the certain conclusion that the mine has been destroyed in a Sympathiedetonation by the charge charge. If the explosive charge weight of the mine is about the same order of magnitude as the mine destruction charge, the observation of the detonation effect, eg water fountain, the strength of the shock, does not allow a safe conclusion on the successful control of the mine. When demolition by mine destruction charges, which have a relatively large amount of explosive, depending on the type, for example, about 40 kg or about 130 kg of TNT equivalent, therefore, the area of the mine is illuminated after blasting with the sonar. However, the use of the sonar is possible only after a very long period of time after blasting with a chance of success, as sediment thrown up by the blasting deposit only again and the bubble curtain generated by the blasting must dissolve again before a meaningful sonar image from the area the mine can be obtained. In the case of mines buried in the sediment, a statement about the destruction of the mine can not be given with absolute certainty even with the subsequent sonar illumination of the mine area.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Prüfung der Zerstörung einer Seemine durch Sprengung anzugeben, mit dem ohne nennenswerten Zeitverzug nach Sprengung die Zerstörung der Mine relativ sicher festgestellt werden kann.The invention has for its object to provide a method for testing the destruction of a sea mine by blasting, with the destruction of the mine can be determined relatively safely without significant delay after detonation.

Die Aufgabe wird erfindungsgemäß durch die Merkmale im Anspruch 1 gelöst.The object is achieved by the features in claim 1.

Das erfindungsgemäße Verfahren hat den Vorteil, dass empfangsseitig im Empfangssignal eindeutig festgestellt werden kann, ob nur die Explosiv- oder Sprengladung detoniert ist oder auch eine Sympathiedetonation der Mine stattgefunden hat. Dabei macht man sich die Tatsache zunutze, dass die Explosion einer Sprengladung eine charakteristische Drucksignatur erzeugt, die sich als Kugelwelle im Wasser ausbreitet und erst in großer Entfernung ihre Eigenschaft, z.B. durch Dämpfung, verliert. Die vom Explosivstoff ausgelöste Detonationswelle breitet sich im Wasser mit einer im Vergleich zur Schallgeschwindigkeit deutlich höheren Geschwindigkeit aus, beispielsweise mit einer Geschwindigkeit von ca. 5000 m/s, wobei die Ausbreitungsgeschwindigkeit im wesentlichen von der Art des Explosiv- oder Sprengstoffes abhängt. Da z. B. beim Einsatz von Minenvernichtungsladungen der Abstand zwischen abgelegter Sprengladung und Mine typischerweise ca. 0,5 bis 1,5 m beträgt, der Empfänger im Nahbereich der Sprengung, typischerweise in einem Umkreis von 300 bis 500 m, angeordnet ist und die Detonationswelle sich als Stoßwelle mit der genannten Geschwindigkeit im Wasser ausbreitet, kann die Detonation der Sprengladung einerseits und die Sympathiedetonation der Mine andererseits als zeitlich versetzte Detonationsereignisse im Empfangssignal detektiert werden. Sind im Empfangssignal zwei Detonationsereignisse feststellbar, so kann mit großer Sicherheit eine Zerstörung der Mine angenommen werden. Infolge der Einengung des Zeitversatzes zwischen den Detonationsereignissen auf ein Zeitfenster oder Zeitintervall, das beispielsweise ca. 200 bis 300 µs betragen kann, wird sichergestellt, dass ein auf ein erstes Detonationsereignis, das auf die Explosion der Sprengladung zurückgeht, folgendes zweites Detonationsereignis auch tatsächlich von der Sympathiedetonation der Mine ausgelöst worden ist. Wird in dem Zeitintervall nur ein einziges Detonationsereignis detektiert, so ist die Mine mit sehr großer Sicherheit nicht gesprengt, also nicht zerstört worden.The method according to the invention has the advantage that the receiving side unambiguously detected in the received signal can be whether only the explosive or explosive charge detonated or a Sympathiedetonation the mine has taken place. It exploits the fact that the explosion of an explosive charge generates a characteristic pressure signature, which propagates as a spherical wave in the water and only at long distance loses its property, for example by damping. The explosion caused by the explosive detonation wave propagates in the water at a speed that is much higher than the speed of sound, for example, at a speed of about 5000 m / s, the propagation speed depends essentially on the type of explosive or explosive. Because z. For example, when using mine destruction charges, the distance between the stored explosive charge and mine is typically about 0.5 to 1.5 m, the receiver is located in the vicinity of the blast, typically within a radius of 300 to 500 m, and the detonation wave as Shock wave propagates at the said speed in the water, the detonation of the explosive charge on the one hand and the Sympathiedetonation the mine on the other hand can be detected as time-delayed detonation events in the received signal. If two detonation events can be detected in the received signal, destruction of the mine can be assumed with great certainty. As a result of the narrowing of the time offset between the detonation events to a time window or time interval, which may be, for example, about 200 to 300 microseconds, it is ensured that a second detonation event following a first detonation event, which is due to the explosion of the explosive charge actually from the Sympathiedetonation of the mine has been triggered. If only a single detonation event is detected in the time interval, then the mine is at very high of great safety not been blown up, so not destroyed.

Zweckmäßige Ausführungsformen des erfindungsgemäßen Verfahrens mit vorteilhaften Weiterbildungen und Ausgestaltungen der Erfindung ergeben sich aus den weiteren Ansprüchen.Advantageous embodiments of the method according to the invention with advantageous developments and embodiments of the invention will become apparent from the other claims.

Gemäß einer vorteilhaften Ausführungsform der Erfindung wird das Zeitfenster, innerhalb dessen die Detonationsereignisse liegen müssen, in Abhängigkeit von dem Abstand zwischen Sprengladung und Seemine im Moment des Zündens der Sprengladung und der Art des Explosivstoffes der Sprengladung festgelegt. Als ausreichendes Zeitfenster wird das Zeitfenster kleiner 2 ms gewählt, wobei in typischen Anwendungsfällen das Zeitfenster ca. 200 bis 300 µs beträgt.According to an advantageous embodiment of the invention, the time window within which the detonation events must be determined as a function of the distance between the explosive charge and sea mines at the moment of detonation of the explosive charge and the type of explosive of the explosive charge. As a sufficient time window, the time window is chosen less than 2 ms, wherein in typical applications, the time window is approximately 200 to 300 microseconds.

Die Erfindung ist anhand eines in der Zeichnung illustrierten Ausführungsbeispiels im folgenden näher beschrieben. Es zeigen jeweils in schematischer Darstellung:

Fig. 1
eine Draufsicht einer Minenjagdsituation mit Minenjagdfahrzeug, ferngelenktem Unterwasserfahrzeug und Seemine,
Fig. 2
eine Seitenansicht der Minenjagdsituation gemäß Fig. 1,
Fig. 3
ein Blockschaltbild des am Minenjagdfahrzeugs installierten Empfängers,
Fig. 4
ein am Empfänger abgenommenes Empfangssignal bei ausschließlicher Detonation einer am Minenort abgesetzten Sprengladung,
Fig. 5
das am Empfänger abgenommene Empfangssignal bei Detonation der Sprengladung und Sympathiedetonation der Mine.
The invention is described in more detail below with reference to an embodiment illustrated in the drawing. Shown schematically in each case:
Fig. 1
a top view of a mine hunting situation with mine hunting vehicle, guided underwater vehicle and sea mine,
Fig. 2
a side view of the mine hunting situation according to Fig. 1 .
Fig. 3
a block diagram of the receiver installed on the mine-hunting vehicle,
Fig. 4
a reception signal picked up at the receiver with the sole detonation of an explosive charge placed at the mine site,
Fig. 5
the received signal received at the receiver when the explosive charge detonates and the sympathy toning of the mine.

In Fig. 1 und Fig. 2 ist schematisch eine Minenjagdsituation in Draufsicht und Seitenansicht skizziert, bei der ein als Überwasserschiff ausgebildetes Minenjagdboot 11 mit einem aussetzbaren, über ein sich abspulendes Kabel 16 mit dem Minenjagdboot 11 verbundenen, ferngelenkten Unterwasserfahrzeug 12, einer sog. Drohne, zur Räumung eines Seegebiets von Seeminen eingesetzt ist. Eine Mine 13 der im Seegebiet ausgelegten Seeminen ist in Fig. 1 und 2 dargestellt, wobei als Minenart eine Bodenmine angenommen ist, die auf dem Meeresboden 15 abgelegt ist. Das Minenjagdboot 11 verfügt über ein sog. Minenjagdsonar 18, mit dem im Seegebiet verankerte oder auf dem Meeresboden 15 abgelegte Minen 13 detektiert und klassifiziert werden können. Bodenminen, die in auf dem Meeresboden 15 abgelagertes Sediment 14 eingedrungen sind, werden mittels eines sog. Sedimentsonars, das z.B. im Unterwasserfahrzeug installiert ist, akustisch detektiert und klassifiziert.In Fig. 1 and Fig. 2 schematically a mine hunting situation is sketched in plan view and side view, in which trained as a surface water mine-rifle 11 with an exposable, connected via an unwinding cable 16 with the mine-hunting boat 11, guided underwater vehicle 12, a so-called. Drone used to clear a sea area of sea mines is. A mine 13 of the sea mines laid out in the sea area is in Fig. 1 and 2 represented, as a type of mine a bottom mine is assumed, which is deposited on the seabed 15. The mine-hunting boat 11 has a so-called mine-hunting sonar 18 with which mines 13 anchored in the sea area or deposited on the seabed 15 can be detected and classified. Ground mines, which have penetrated deposited in the seabed 15 sediment 14, are acoustically detected and classified by means of a so-called. Sedimentsonars, which is installed for example in the underwater vehicle.

Das vom Minen jagdboot 11 ausgesetzte Unterwasserfahrzeug 12 wird zur Mine 13 hin gelenkt, wobei das Unterwasserfahrzeug 12 immer gegen die Strömung 17 an die Mine 13 herangeführt wird. Über das Kabel 16, das beispielsweise ein Glasfaserkabel sein kann, findet dabei eine permanente Kommunikation zwischen Minenjagdboot 11 und Unterwasserfahrzeug 12 statt. Die Mine 13 wird durch das Unterwasserfahrzeug 12 identifiziert, und das Unterwasserfahrzeug 12 wird vom Minenjagdboot 11 veranlasst, eine Sprengladung 20, im Ausführungsbeispiel eine sog. Minenvernichtungsladung, am Ort der Mine 13 abzusetzen, wobei üblicherweise das Absetzen der Sprengladung 20 in einem Abstand a von 0,5 bis 1,5 m von der Mine 13 entfernt vorgenommen wird. Nach Absetzen der Sprengladung 20 wird das Unterwasserfahrzeug 12 vom Minenjagdboot 11 wieder eingeholt. In einer alternativen Ausführung ist die Sprengladung im Unterwasserfahrzeug integriert, und letzteres wird bei der Sprengung der Mine 13 mit vernichtet.The underwater vehicle 12, which is exposed by the mines hunting boat 11, is directed towards the mine 13, whereby the underwater vehicle 12 is always guided against the flow 17 to the mine 13. About the cable 16, which may be a fiber optic cable, for example, there is a permanent communication between mine hunting boat 11 and underwater vehicle 12 instead. The mine 13 is through the Underwater vehicle 12 identifies, and the underwater vehicle 12 is caused by the mine hunting boat 11, a demolition charge 20, in the exemplary embodiment, a so-called. Mine destruction charge to settle at the site of the mine 13, wherein usually settling the explosive charge 20 at a distance a from 0.5 to 1, 5 m away from Mine 13. After discontinuation of the explosive charge 20, the underwater vehicle 12 is overtaken by mine-hunting boat 11 again. In an alternative embodiment, the explosive charge is integrated in the underwater vehicle, and the latter is destroyed in the demolition of the mine 13 with.

Die Vernichtung der Mine 13 wird in allen Fällen durch Fernzünden der Sprengladung 20 vom Minenjagdboot 11 aus ausgelöst, wobei das Minenjagdboot 11 eine gewisse Distanz, die von der Größe der Sprengladung 20 und der Minenart abhängt, vom Ort der Mine 13 einhält. Bei den üblicherweise verwendeten Minenvernichtungsladungen beträgt der einzuhaltende Abstand ca. 300 bis 500 m, gemessen von dem Projektionspunkt der Mine 13 auf die Wasseroberfläche 19. Durch die Detonation der Sprengladung 20 wird die Mine 13 zur Detonation, der sog. Sympathiedetonation, gebracht. Die durch die Sprengung ausgelösten Druckwellen, die sog. Detonationswellen, breiten sich als kugelförmige Stoßwellen im Wasser mit einer sehr hohen Geschwindigkeit aus, die wesentlich größer als die Schallgeschwindigkeit im Wasser ist und z.B. 5000 m/s beträgt. Diese Detonationswellen werden von einem Empfänger 21 im Minenjagdboot 11, das sich im Nahbereich der Sprengung befindet, aufgefasst. Der Empfänger 21 weist hierzu - wie dies im Blockschaltbild der Fig. 3 skizziert ist - einen breitbandigen elektroakustischen Wandler, üblicherweise Hydrofon 22 genannt, und eine dem Ausgang des Hydrofons 22 nachgeordnete, elektrische Signalverarbeitung 23 sowie eine Anzeigevorrichtung 24 zur Darstellung des Ergebnisses der Minenvernichtungsaktion auf. Mittels der Signalverarbeitung 23 wird das Empfangssignal des Empfängers 21 auf das Auftreten von Detonationsereignissen innerhalb eines Zeitfensters τ untersucht. Werden innerhalb des Zeitfensters τ zwei Detonationsereignisse gefunden, so wird in der Anzeigevorrichtung 24 die Zerstörung der Mine 13 angezeigt. Wird innerhalb des Zeitfensters τ nur ein Detonationsereignis festgestellt, so wird in der Anzeigevorrichtung 24 angezeigt, dass die Sprengung nicht zu einer Vernichtung der Mine 13 geführt hat.The destruction of the mine 13 is triggered in all cases by remotely igniting the explosive charge 20 from the mine hunting boat 11, wherein the mine hunting boat 11 a certain distance, which depends on the size of the explosive charge 20 and the mine species, from the location of the mine 13 complies. In the usually used mine destruction charges the distance to be observed is about 300 to 500 m, measured from the projection point of the mine 13 on the water surface 19. By the detonation of the explosive charge 20, the mine 13 to the detonation, the so-called. Sympathiedetonation brought. The explosion-induced pressure waves, the so-called detonation waves, propagate as spherical shock waves in the water at a very high velocity, which is significantly greater than the speed of sound in the water and, for example, is 5000 m / s. These detonation waves are understood by a receiver 21 in the mine-hunting boat 11, which is located in the vicinity of the blast. The receiver 21 has for this purpose - as shown in the block diagram of Fig. 3 is sketched - a broadband electro-acoustic transducer, commonly called hydrophone 22, and a downstream of the output of the hydrophone 22, electrical Signal processing 23 and a display device 24 for displaying the result of the mine destruction action on. By means of the signal processing 23, the received signal of the receiver 21 is examined for the occurrence of detonation events within a time window τ. If two detonation events are found within the time window τ, the destruction of the mine 13 is displayed in the display device 24. If only one detonation event is detected within the time window τ, it is indicated in the display device 24 that the blast has not led to the destruction of the mine 13.

In Fig. 4 und 5 ist jeweils ein Beispiel für ein Empfangsignal schematisch dargestellt, bei dem innerhalb des Zeitfensters τ nur ein Detonationsereignis (Fig. 4) bzw. zwei Detonationsereignisse (Fig. 5) festgestellt wurden. Durch die Diracstoß-ähnlichen Amplitudenspitzen im Empfangssignal können die Detonationsereignisse sehr gut erkannt werden. Das Auffinden der Detonationsereignisse kann auf verschiedene Weise in der Signalverarbeitung 23 durchgeführt werden. So können z.B. die Maxima der Signalamplitude, die Maxima des Betrags der Signalamplitude, die Maxima des Signalpegels oder die Maxima der Hüllkurve des Empfangssignals herangezogen werden.In 4 and 5 an example of a receive signal is shown schematically, in which within the time window τ only one detonation event ( Fig. 4 ) or two detonation events ( Fig. 5 ) were detected. Due to the Diracstoß-like amplitude peaks in the received signal, the detonation events can be very well recognized. The detection of the detonation events can be carried out in different ways in the signal processing 23. For example, the maxima of the signal amplitude, the maxima of the magnitude of the signal amplitude, the maxima of the signal level or the maxima of the envelope of the received signal can be used.

Das Zeitfenster τ wird in Abhängigkeit von dem Abstand a zwischen Sprengladung 20 und Mine 13 und der Art des Explosivstoffes der Sprengladung 20 festgelegt. Als ein ausreichend kleines Zeitfenster τ, in dem Detonationsereignisse festgestellt werden müssen, wird ein Zeitfenster τ mit kleiner 2 ms gewählt. Bei einem mittleren Abstand von a = 1 m zwischen Sprengladung 20 und Mine 13 und bei einer Ausbreitungsgeschwindigkeit der Detonationswelle im Wasser von 5000 m/s beträgt der zeitliche Versatz Δt der beiden Detonationsereignisse ca. 200 µs, so dass bei einer Sympathiedetonation der Mine 13 beide Detonationsereignisse in das aufgespannte Zeitfenster τ fallen.The time window τ is determined as a function of the distance a between the explosive charge 20 and mine 13 and the type of explosive of the explosive charge 20. As a sufficiently small time window τ at which detonation events must be detected, a time window τ less than 2 ms is chosen. At a mean distance of a = 1 m between explosive charge 20 and mine 13 and at a propagation velocity of the detonation wave in the water of 5000 m / s, the time offset .DELTA.t of the two detonation events is about 200 .mu.s, so that in a Sympathiedetonation the mine 13 fall both detonation events in the spanned time window τ.

In Ergänzung des Verfahrens kann durch Auswertung des auf die Sympathiedetonation der Mine 13 zurückgehenden zweiten Detonationsereignisses im Empfangssignal mit Hilfe einer Datenbasis oder eines Expertensystems der Explosivstoff der detonierten Mine 13 nach Menge und/oder Art bzw. Klasse klassifiziert werden.In addition to the method, the explosive substance of the detonated mine 13 can be classified by quantity and / or type or class by evaluating the second detonation event in the received signal due to the sympathetic toning of the mine 13 with the aid of a database or an expert system.

Claims (6)

  1. Method for checking the destruction of a sea mine (13), which has been detonated by means of an explosive charge (20), characterized in that pressure weights initiated by the detonation are recorded as a received signal by means of a receiver (21) which is placed remotely from the mine in the sea area, and in that the received signal is examined for the occurrence of detonation events within a time window (τ), and the presence of two detonation events is indicated as mine destruction.
  2. Method according to Claim 1, characterized in that the time window (τ) is defined as a function of the distance (a) between the explosive charge (20) and the sea mine (13), and the nature of the explosive in the explosive charge (20).
  3. Method according to Claim 1, characterized in that the time window is chosen to be shorter than 2 ms.
  4. Method according to one of Claims 1 to 3, characterized in that maxima of the signal amplitude, of the magnitude of the signal amplitude, of the signal level or of the envelope curve of the received signal are used to find the detonation events.
  5. Method according to one of Claims 1 to 4, characterized in that the electroacoustic receiver (21) is equipped with a broadband reception characteristic.
  6. Method according to one of Claims 1 to 5, characterized in that the receiver (21) has at least one electroacoustic transducer (22) and electrical signal processing (23), which is connected downstream from the transducer (22), for the electrical output signal from the transducer (22).
EP04029038A 2003-12-19 2004-12-08 Method for verifying the destruction of a sea mine Not-in-force EP1544096B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10359855A DE10359855B3 (en) 2003-12-19 2003-12-19 Checking destruction of marine mine involves investigating received pressure wave receiver signal for occurrence of detonation events within time window, with presence of two detonation events indicating destruction of mine
DE10359855 2003-12-19

Publications (3)

Publication Number Publication Date
EP1544096A2 EP1544096A2 (en) 2005-06-22
EP1544096A3 EP1544096A3 (en) 2007-10-03
EP1544096B1 true EP1544096B1 (en) 2010-06-23

Family

ID=34202468

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04029038A Not-in-force EP1544096B1 (en) 2003-12-19 2004-12-08 Method for verifying the destruction of a sea mine

Country Status (3)

Country Link
EP (1) EP1544096B1 (en)
AT (1) ATE471866T1 (en)
DE (2) DE10359855B3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113155264B (en) * 2021-03-30 2024-02-20 长江武汉航道工程局 Underwater blasting noise testing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3511248C2 (en) * 1985-03-28 1994-11-10 Deutsche Aerospace Arrangement for the detection of sound signals
DE4416848C1 (en) * 1994-05-13 1995-06-08 Bundesrep Deutschland Determining sea mine detonation location

Also Published As

Publication number Publication date
EP1544096A3 (en) 2007-10-03
DE502004011305D1 (en) 2010-08-05
DE10359855B3 (en) 2005-03-24
ATE471866T1 (en) 2010-07-15
EP1544096A2 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
EP1791754B1 (en) Method and system for the destruction of a localized mine
DE69113462T2 (en) METHOD AND DEVICE FOR SEARCHING AN OBJECT.
EP2607226B2 (en) Ordnance clearing device for clearing ordnance, such as mines, underwater, ordnance clearing combination with unmanned submarine and ordnance clearing device and method for the same
EP1827964A1 (en) Method for detecting and neutralizing submarine objects
DE69202045T2 (en) Process for the destruction of an underwater object, in particular a sea mine.
DE2935821A1 (en) METHOD FOR TRANSFERRING INFORMATION TO ACTIVE SUBSTANCES, IN PARTICULAR MINES, AFTER THEIR LAYING
EP1544096B1 (en) Method for verifying the destruction of a sea mine
DE69406029T2 (en) Improved process for the destruction of a sunk object, especially a sea mine
DE102005062109A1 (en) Person e.g. diver, protecting method for use in underwater prohibited area, involves operating unmanned underwater craft equipped with defense unit to expectation area when detecting person entering into prohibited area
EP0375872A1 (en) Fuze triggered by a tracked vehicle
DE3326748C2 (en)
DE3442051C2 (en)
DE68911685T2 (en) DEVICE AND METHOD FOR DISCOVERING AND DESTROYING SUBMERSIBLES FROM A PLANE.
DE4416848C1 (en) Determining sea mine detonation location
DE4135225C2 (en) Methods for simulating the effect of mines on different mine targets and simulation mines for carrying out such a method
DE1613962A1 (en) IGNITION OF CHARGES
DE3927663C2 (en)
Rude et al. Performance evaluation of the Roach Cove bubble screen apparatus
DE3433146C2 (en)
EP0591854B1 (en) Device for putting out of action a sea mine
DE69405188T2 (en) Training procedure for mine detection
DE102022200703A1 (en) Underwater vehicle for destroying sea mines
DE978020C (en) Acoustic distance igniter for ground and anchor mines and torpedoes
DE3025370C2 (en) Display of the effective area of a training mine
DE3318763A1 (en) Method for defending acoustically-controlled torpedo, involves emitting sound energy in water by floating body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041208

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004011305

Country of ref document: DE

Date of ref document: 20100805

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100924

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101023

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101025

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20101214

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20101214

Year of fee payment: 7

Ref country code: NL

Payment date: 20101213

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110124

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004011305

Country of ref document: DE

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101208

REG Reference to a national code

Ref country code: GB

Ref legal event code: S117

Free format text: REQUEST FILED; REQUEST FOR CORRECTION UNDER SECTION 117 FILED ON 3 AUGUST 2011

REG Reference to a national code

Ref country code: GB

Ref legal event code: S117

Free format text: CORRECTIONS ALLOWED; REQUEST FOR CORRECTION UNDER SECTION 117 FILED ON 3 AUGUST 2011, ALLOWED 14 FEBRUARY 2012

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 471866

Country of ref document: AT

Kind code of ref document: T

Effective date: 20101208

BERE Be: lapsed

Owner name: ATLAS ELEKTRONIK G.M.B.H.

Effective date: 20111231

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20120701

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101224

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111209

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004011305

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101004

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151210

Year of fee payment: 12

Ref country code: GB

Payment date: 20151221

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151221

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004011305

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161208

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170701

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161208