EP1540385A2 - Diffusing substrate - Google Patents

Diffusing substrate

Info

Publication number
EP1540385A2
EP1540385A2 EP03769558A EP03769558A EP1540385A2 EP 1540385 A2 EP1540385 A2 EP 1540385A2 EP 03769558 A EP03769558 A EP 03769558A EP 03769558 A EP03769558 A EP 03769558A EP 1540385 A2 EP1540385 A2 EP 1540385A2
Authority
EP
European Patent Office
Prior art keywords
diffusing
substrate
redox
glass substrate
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03769558A
Other languages
German (de)
French (fr)
Inventor
Laurent Teyssedre
Thomas Bertin-Mourot
Aurelia Prat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP1540385A2 publication Critical patent/EP1540385A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/006Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character
    • C03C17/007Surface treatment of glass, not in the form of fibres or filaments, by coating with materials of composite character containing a dispersed phase, e.g. particles, fibres or flakes, in a continuous phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0092Compositions for glass with special properties for glass with improved high visible transmittance, e.g. extra-clear glass
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0273Diffusing elements; Afocal elements characterized by the use
    • G02B5/0278Diffusing elements; Afocal elements characterized by the use used in transmission
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12576Boride, carbide or nitride component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12583Component contains compound of adjacent metal
    • Y10T428/1259Oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12611Oxide-containing component
    • Y10T428/12618Plural oxides

Definitions

  • the present invention relates to a diffusing substrate intended to homogenize a light source.
  • the invention will be more particularly described with reference to a diffusing substrate used to homogenize the light emitted from a backlighting system.
  • a backlighting system which consists of a light source or “back-light” is for example used as a backlighting source for liquid crystal screens, also called LCD screens. It appears that the light thus emitted by the backlight system is not sufficiently homogeneous and presents too great contrasts. Diffusing means associated with the backlight system are therefore necessary to homogenize the light.
  • liquid crystal screens a distinction is made between screens incorporating a structure called "Direct Light” for which the light sources are located inside an enclosure and the diffusing means are located in front of the light sources, and screens incorporating a so-called “Edge Light” structure for which the light sources are positioned on the side of the enclosure, the light being conveyed to the diffusing means on the front face by a waveguide.
  • the invention relates more particularly to LCD screens with a "Direct light” structure.
  • the invention can also be used when it comes to homogenizing the light coming from architectural flat lamps used for example on ceilings, floors, or walls. They may also be flat lamps for urban use such as lamps for advertising panels or lamps that can constitute shelves or bottoms of display cases.
  • a satisfactory solution from the point of view of uniformity consists in covering the front face of the backlight system with a plastic plate such as than a polycarbonate or an acrylic polymer containing mineral fillers in the mass, the plate having for example a thickness of 2 mm.
  • a plastic plate such as than a polycarbonate or an acrylic polymer containing mineral fillers in the mass, the plate having for example a thickness of 2 mm.
  • this material is sensitive to heat, the plastic does not age well and the release of heat generally leads to a structural deformation of the plastic diffusing means, which results in a heterogeneity of the luminance of the image projected at the level of the LCD screen. for example.
  • diffusing means a diffusing layer such as that described in the French patent application published under the number 2 809 496.
  • This diffusing layer composed of particles agglomerated in a binder is deposited on a substrate, for example in glass.
  • the inventors have shown that the use of such diffusing means causes numerous reflections of the light generated by the backlight system at the interfaces of the glass substrate. And although the backlight system has reflectors to reflect the light reflected by the glass substrate that could not be transmitted, the light returned by the reflectors to the glass substrate is however only partially transmitted , a part being reflected again and returned again by the reflectors and so on. Also, all of the light is not transmitted as soon as the backlighting system is put into operation, but undergoes several back-and-forth movements before passing through the diffusing substrate with some losses. The inventors have chosen to name this phenomenon, the "recycling" phenomenon.
  • the object of the invention is therefore to provide a diffusing substrate which comprises a glass substrate coated with a diffusing layer and which makes it possible to optimize the luminance of the lighting generated via such a substrate.
  • the diffusing substrate in order to optimize the luminance of the lighting generated via the diffusing substrate which comprises a glass substrate and a diffusing layer deposited on said glass substrate, the diffusing substrate is characterized in that the glass substrate has a light transmission at least equal to 91% over the wavelength range 380 to 780 nm, and preferably at least equal to 91 , 50%, for a glass with an index of 1.52 ⁇ 0.04.
  • the inventors have been able to demonstrate that the luminance dependent on the quality of the light transmission of the substrate is a function of the parameters that are the linear absorption coefficient and the thickness of the glass substrate, the linear absorption coefficient being linked to the glass composition of the substrate.
  • the glass substrate has a total iron content such that:
  • the iron content must be even more limited if the light transmission is at least equal to 91.50%. This rate is then such that
  • the glass substrate has a minimum light transmission of 91.50% for a thickness e of 4.0 mm at most, with a total iron content of 200 ppm and a Redox of less than 0 .05.
  • the glass substrate has a minimum light transmission of 91% for a thickness e of 4.0 mm at most, with a total iron content of 160 ppm and a Redox equal to 0.31.
  • the thickness e will be 1.5 mm at most to ensure the property of minimum light transmission of 91.50%.
  • the glass substrate has a minimum light transmission of 91% for a thickness e of at most 1.2 mm, with a total iron content of 800 ppm and a Redox equal to 0.33. According to yet another embodiment, the glass substrate has a minimum light transmission of 91% for a thickness e of at most 1.2 mm, with a total iron content of 1050 ppm and a Redox equal to 0.23.
  • the glass composition of the glass substrate of the invention comprises at least the following constituents:
  • the diffusing layer of the substrate of the invention is composed of particles agglomerated in a binder, said particles having an average diameter between 0.3 and 2 microns, said binder being in a proportion between 10 and 40% by volume and the particles forming aggregates whose size is between 0.5 and 5 microns.
  • the particles are semi-transparent particles and preferably mineral particles such as oxides, nitrides, carbides.
  • the particles are preferably chosen from oxides of silica, alumina, zirconia, titanium, cerium, or a mixture of at least two of these oxides. For more details, refer to published application FR 2 809 496.
  • this diffusing substrate will in particular be used in a backlighting system which can be arranged in an LCD screen or in a flat lamp.
  • Figure 1 illustrates a backlight system
  • FIG. 2 illustrates curves giving for a light transmission of 91% the content of the global iron Fe 2 0 3 as a function of the Redox with respect to several thicknesses of glass
  • FIG. 3 illustrates curves giving for a light transmission of 91.5% the content of the global iron Fe 2 0 3 as a function of the Redox with respect to several thicknesses of glass.
  • the dimensions are not respected between the different elements.
  • FIG. 1 illustrates a backlighting system 1 intended for example to be used in an LCD screen of dimension 17 "for example.
  • the system 1 comprises an enclosure 10 comprising an illuminant or light sources 11, and a diffusing substrate in glass 20 which is associated with enclosure 10.
  • the enclosure 10 about 10 mm thick, has a lower part 12 in which the light sources 11 are arranged and an opposite upper part 13 which is open and from which the light emitted from the sources 11 propagates.
  • the lower part 12 has a bottom 14 against which are arranged reflectors 15 intended to reflect on the one hand, part of the light emitted by the sources 11 which was directed towards the lower part 12, and on the other hand, part of the light which has not been transmitted through the diffusing substrate but reflected by the glass substrate and back-scattered by the diffusing layer.
  • the light sources 11 are for example discharge lamps or tubes commonly called CCFL for "Cold Fluorescent Cathode
  • the diffusing substrate 20 is attached to the upper part 13 and held integral by mechanical fixing means not illustrated such as clipping cooperating with the enclosure and the substrate, or else kept posed by mutual engagement means not shown such that 'A groove provided on the periphery of the surface of the substrate cooperating with a peripheral rib of the enclosure.
  • the diffusing substrate 20 comprises a glass substrate 21 and a diffusing layer 22, of thickness between 1 and 20 ⁇ m, arranged on one face of the glass substrate, facing or opposite the upper part 13 of the enclosure. .
  • a diffusing layer 22 of thickness between 1 and 20 ⁇ m, arranged on one face of the glass substrate, facing or opposite the upper part 13 of the enclosure.
  • the substrate 21 for supporting the layer is made of transparent or semi-transparent glass for the visible wavelength range. It is characterized according to the invention by its low absorption of light, and has a light transmission T L at least equal to 91% over the wavelength range 380 to 780 nm.
  • the light transmission is calculated under a D65 illuminant, in accordance with standard EN410. Examples of embodiment of the glass substrate 21 are given below in the form of a table, indicating for each of them the glass composition whose contents are expressed in% by weight, the overall iron content, the ferrous iron content. , the Rédox as well as the TL SOUS light transmission illuminant D65.
  • the light transmission TL is calculated for a given thickness e of the glass substrate.
  • compositions have impurities whose nature and proportions are, for some of them, summarized below: Cr 2 O 3 ⁇ 10 ppm MnO ⁇ 300 ppm V 2 O ⁇ 30 ppm TiO2 ⁇ 1000 ppm.
  • the light transmission T L is calculated over the wavelength range 380-780 nm according to standard EN 410 from the transmission ⁇ which is defined in a known manner by Beer-Lambert law: ⁇ ) ⁇ (l - R ( ⁇ )) 2 xe- ⁇ (/ l) xe
  • the reflection factor, ⁇ , the linear absorption coefficient, oc and R being a function of the wavelength of the light emitted, and e, the thickness of the substrate.
  • the light transmission T L is therefore linked to the linear absorption coefficient ⁇ and to the thickness e of the substrate 21.
  • the inventors have therefore demonstrated that the glass composition of the substrate as well as its thickness influence the light transmission of the substrate. More particularly, the overall iron content (expressed as Fe 2 0 3 ) and the redox of the composition play a major role in the linear absorption coefficient.
  • Redox is defined as being the iron content in reduced form (expressed in FeO form) contained in the overall iron content (expressed in Fe 2 O 3 form ) (FeO / Fe 2 ⁇ 3 ratio).
  • the thickness of the substrate can be selected according to the glass composition used.
  • the inventors have established a relationship between the parameters that are, the thickness of the glass, the total iron and the redox of the glass composition, leading to the required light transmission property.
  • This stress relationship can be written in the following mathematical form, the total iron content in the composition is such that for a light transmission T L greater than or equal to 91%:
  • the stress can be given on the thickness for a given glass composition and is such that for a light transmission T L greater than or equal to 91%:
  • the total iron content in the composition must be even lower than that expressed above for a lower transmission limit equal to 91% , and is such that:
  • FIG. 2 illustrates curves giving, respectively for several given thicknesses, the content of the global iron Fe 2 0 3 as a function of the Redox for a light transmission TL of 91%.
  • Substrates of a determined thickness, the iron and redox values of the glass composition of which are situated on or below the reference curve for the same thickness chosen are suitable for meeting the property of light transmission which must be at least minus 91%.
  • the glass substrate of Examples 1a and 1b is suitable with a thickness of 0.9 mm and 2.0 mm respectively, and the glass composition could even be suitable with a higher thickness, up to at least 4 mm, to present a minimum light transmission of 91%.
  • the glass composition of example 2 would be suitable for a substrate of a thickness not exceeding 4.0 mm to present a minimum light transmission of 91%.
  • FIG. 3 illustrates curves giving, respectively for several given thicknesses, the content of the global iron Fe 2 O 3 as a function of the Redox for a minimum light transmission TL equal to 91.50%.
  • the glass substrate 21 is therefore used as a support for the diffusing layer 22 in order to constitute the diffusing substrate 20 which is associated with the enclosure 10 to constitute the backlight system 1. It is then possible to measure in a known manner the luminance of the light coming from the enclosure and passing through the diffusing substrate.
  • the table below summarizes for examples 1a, 1b and 2 to 4 the luminance associated with the light transmission.
  • the reported values of the luminance correspond to a measurement made perpendicular to the surface of the diffusing substrate and for a diffusing substrate (glass substrate and diffusing layer) of diffuse transmission of 60%, that is to say that the diffusing substrate generates 40% light back-scattering which is recycled inside the enclosure.
  • the glass substrate also has the advantage of serving as a support for depositing coatings with functional layers such as an electromagnetic isolation coating which, moreover, can constitute the diffusing layer 22 as described in the patent application.
  • functional layers such as an electromagnetic isolation coating which, moreover, can constitute the diffusing layer 22 as described in the patent application.
  • French FR 02/08289 a coating with a low-emissivity function, an anti-static, anti-fog, anti-fouling function, or even a function of increasing the luminance. This latter function may actually be desired for an application of the diffusing substrate to an LCD screen.
  • a coating having the function of further increasing the luminance by tightening the scattering indicator is for example known in the form of an optical film sold under the name CH27 by the company SKC.
  • the table below indicates, in addition to the light transmission for the glass substrate 21, the luminances of the lighting obtained without coating CH27 and with the coating CH27 on the diffusing substrate 20, as well as a result of comparison of these two luminances expressed in %.
  • the reported values of the luminance correspond to a measurement made perpendicular to the surface of the diffusing substrate and for a diffusing substrate (glass substrate and diffusing layer) of diffuse transmission of 60%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Composite Materials (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Glass Compositions (AREA)
  • Laminated Bodies (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

The invention concerns a diffusing substrate (20) comprising a glass substrate (21) and a diffusing coating (22) deposited on said glass substrate, characterized in that the glass substrate (20) has light transmission at least equal to 91 % on the wavelength range between 380 and 780 nm.

Description

SUBSTRAT DIFFUSANT DIFFUSING SUBSTRATE
La présente invention concerne un substrat diffusant destiné à homogénéiser une source lumineuse. L'invention sera plus particulièrement décrite en référence à un substrat diffusant utilisé pour homogénéiser la lumière émise depuis un système de rétroéclairage.The present invention relates to a diffusing substrate intended to homogenize a light source. The invention will be more particularly described with reference to a diffusing substrate used to homogenize the light emitted from a backlighting system.
Un système de rétro-éclairage qui consiste en une source de lumière ou « back-light » est par exemple utilisée comme source de rétro-éclairage pour des écrans à cristaux liquides, dénommés encore écrans LCD. Il apparaît que la lumière ainsi émise par le système de rétro-éclairage n'est pas suffisamment homogène et présente des contrastes trop importants. Des moyens diffusants associés au système de rétro-éclairage sont donc nécessaires pour homogénéiser la lumière. Parmi les écrans à cristaux liquides, on distingue les écrans incorporant une structure dite "Direct Light" pour lesquels les sources lumineuses sont situées à l'intérieur d'une enceinte et les moyens diffusants se trouvent devant les sources lumineuses , et les écrans incorporant une structure dite "Edge Light" pour lesquels les sources lumineuses sont positionnées sur le côté de l'enceinte, la lumière étant véhiculée vers les moyens diffusants en face avant par un guide d'onde. L'invention concerne plus particulièrement les écrans LCD à structure "Direct light".A backlighting system which consists of a light source or “back-light” is for example used as a backlighting source for liquid crystal screens, also called LCD screens. It appears that the light thus emitted by the backlight system is not sufficiently homogeneous and presents too great contrasts. Diffusing means associated with the backlight system are therefore necessary to homogenize the light. Among the liquid crystal screens, a distinction is made between screens incorporating a structure called "Direct Light" for which the light sources are located inside an enclosure and the diffusing means are located in front of the light sources, and screens incorporating a so-called "Edge Light" structure for which the light sources are positioned on the side of the enclosure, the light being conveyed to the diffusing means on the front face by a waveguide. The invention relates more particularly to LCD screens with a "Direct light" structure.
L'invention peut être également utilisée lorsqu'il s'agit d'homogénéiser la lumière provenant de lampes planes architecturales utilisées par exemple sur des plafonds, des sols, ou des murs. Il peut encore s'agir de lampes planes à usage urbain telles que des lampes pour panneaux publicitaires ou encore des lampes pouvant constituer des étagères ou des fonds de vitrines d'exposition.The invention can also be used when it comes to homogenizing the light coming from architectural flat lamps used for example on ceilings, floors, or walls. They may also be flat lamps for urban use such as lamps for advertising panels or lamps that can constitute shelves or bottoms of display cases.
Une solution satisfaisante du point de vue de l'homogénéité consiste à recouvrir la face avant du système de rétro-éclairage d'une plaque de plastique tel qu'un polycarbonate ou un polymère acrylique contenant des charges minérales dans la masse, la plaque présentant par exemple une épaisseur de 2 mm. Mais ce matériau étant sensible à la chaleur, le plastique vieillit mal et le dégagement de chaleur conduit généralement à une déformation structurelle des moyens diffusants en plastique qui se concrétise par une hétérogénéité de la luminance de l'image projetée au niveau de l'écran LCD par exemple.A satisfactory solution from the point of view of uniformity consists in covering the front face of the backlight system with a plastic plate such as than a polycarbonate or an acrylic polymer containing mineral fillers in the mass, the plate having for example a thickness of 2 mm. However, since this material is sensitive to heat, the plastic does not age well and the release of heat generally leads to a structural deformation of the plastic diffusing means, which results in a heterogeneity of the luminance of the image projected at the level of the LCD screen. for example.
Il peut alors être préféré en tant que moyens diffusants une couche diffusante telle que celle décrite dans la demande de brevet français publiée sous le numéro 2 809 496. Cette couche diffusante composée de particules agglomérées dans un liant est déposée sur un substrat, par exemple en verre.It may then be preferred as diffusing means a diffusing layer such as that described in the French patent application published under the number 2 809 496. This diffusing layer composed of particles agglomerated in a binder is deposited on a substrate, for example in glass.
Or les inventeurs ont montré que l'utilisation de tels moyens diffusants entraîne, au niveau des interfaces du substrat en verre, de nombreuses réflexions de la lumière générée par le système de rétro-éclairage. Et bien que le système de rétro-éclairage possède des réflecteurs pour réfléchir la lumière réfléchie par le substrat en verre qui n'a pu être transmise, la lumière renvoyée par les réflecteurs vers le substrat en verre n'est cependant qu'en partie transmise, une partie étant à nouveau réfléchie et renvoyée encore une fois par les réflecteurs et ainsi de suite. Aussi, la totalité de la lumière n'est pas transmise dès la mise en fonctionnement du système de rétro-éclairage mais subit plusieurs va-et-vient avant de traverser le substrat diffusant avec quelques pertes. Les inventeurs ont choisi de nommer ce phénomène, le phénomène de "recyclage".The inventors have shown that the use of such diffusing means causes numerous reflections of the light generated by the backlight system at the interfaces of the glass substrate. And although the backlight system has reflectors to reflect the light reflected by the glass substrate that could not be transmitted, the light returned by the reflectors to the glass substrate is however only partially transmitted , a part being reflected again and returned again by the reflectors and so on. Also, all of the light is not transmitted as soon as the backlighting system is put into operation, but undergoes several back-and-forth movements before passing through the diffusing substrate with some losses. The inventors have chosen to name this phenomenon, the "recycling" phenomenon.
Ayant mis en évidence ce phénomène de recyclage, problème qui jusqu'à présent n'avait jamais été soulevé, les inventeurs ont établi qu'il convenait d'étudier la qualité de transmission de la lumière au travers du substrat diffusant pour obtenir une luminance convenable de l'éclairage sortant du substrat.Having highlighted this phenomenon of recycling, a problem which until now had never been raised, the inventors established that it was necessary to study the quality of light transmission through the diffusing substrate in order to obtain a suitable luminance. of light coming out of the substrate.
Par ailleurs, les inventeurs ont montré qu'un substrat en verre trop épais pouvait générer une absorption trop importante et par conséquent générer une luminance insuffisante se traduisant par l'affaiblissement de la luminance de l'image sur un écran LCD par exemple. L'invention a donc pour but de fournir un substrat diffusant qui comporte un substrat en verre revêtu d'une couche diffusante et qui permet d'optimiser la luminance de l'éclairage généré via un tel substrat.Furthermore, the inventors have shown that a too thick glass substrate could generate an excessive absorption and consequently generate an insufficient luminance resulting in the weakening of the luminance of the image on an LCD screen for example. The object of the invention is therefore to provide a diffusing substrate which comprises a glass substrate coated with a diffusing layer and which makes it possible to optimize the luminance of the lighting generated via such a substrate.
Selon l'invention, afin d'optimiser la luminance de l'éclairage généré via le substrat diffusant qui comporte un substrat en verre et une couche diffusante déposée sur ledit substrat en verre, le substrat diffusant est caractérisé en ce que le substrat en verre présente une transmission lumineuse au moins égale à 91% sur la plage de longueurs d'onde 380 à 780 nm, et de préférence au moins égale à 91 ,50%, pour un verre présentant un indice de 1 ,52 ± 0,04. Les inventeurs ont su mettre en évidence que la luminance dépendante de la qualité de la transmission lumineuse du substrat est fonction des paramètres que sont le coefficient d'absorption linéique et l'épaisseur du substrat verrier, le coefficient d'absorption linéique étant lié à la composition verrière du substrat.According to the invention, in order to optimize the luminance of the lighting generated via the diffusing substrate which comprises a glass substrate and a diffusing layer deposited on said glass substrate, the diffusing substrate is characterized in that the glass substrate has a light transmission at least equal to 91% over the wavelength range 380 to 780 nm, and preferably at least equal to 91 , 50%, for a glass with an index of 1.52 ± 0.04. The inventors have been able to demonstrate that the luminance dependent on the quality of the light transmission of the substrate is a function of the parameters that are the linear absorption coefficient and the thickness of the glass substrate, the linear absorption coefficient being linked to the glass composition of the substrate.
Aussi, selon une caractéristique, le substrat en verre présente un taux de fer total tel que:Also, according to one characteristic, the glass substrate has a total iron content such that:
71107110
[Fe2O3]t <[Fe 2 O 3 ] t <
(l,52xe + 0,015) + (17,24xe + 0,37)xRédox(1.52xe + 0.015) + (17.24xe + 0.37) xRedox
avec [Fe203]t exprimé en ppm et correspondant au fer total dans la composition, e étant l'épaisseur du verre en mm, et le Rédox étant défini par Rédox =[FeO] / [Fe2O3]t, le Rédox étant compris entre 0 et 0,9.with [Fe 2 0 3 ] t expressed in ppm and corresponding to the total iron in the composition, e being the thickness of the glass in mm, and the Redox being defined by Redox = [FeO] / [Fe2O3] t, the Redox being between 0 and 0.9.
Selon une autre caractéristique, le taux de fer doit être encore plus limité si la transmission lumineuse est au moins égale à 91 ,50%. Ce taux est alors tel queAccording to another characteristic, the iron content must be even more limited if the light transmission is at least equal to 91.50%. This rate is then such that
21102110
[Fe2O3]t[Fe 2 O 3 ] t
(l,52xe + 0,015) + (17,24xe + 0,37)xRédox(1.52xe + 0.015) + (17.24xe + 0.37) xRedox
avec [Fe203]t exprimé en ppm et correspondant au fer total dans la composition, e étant l'épaisseur du verre en mm, et le Rédox étant défini par Rédox =[FeO] / [Fe203]t, le Rédox étant compris entre 0 et 0,9.with [Fe 2 0 3 ] t expressed in ppm and corresponding to the total iron in the composition, e being the thickness of the glass in mm, and the Redox being defined by Redox = [FeO] / [Fe 2 0 3 ] t, the Redox being between 0 and 0.9.
Aussi, selon un premier mode de réalisation, le substrat en verre présente une transmission lumineuse minimale de 91 ,50% pour une épaisseur e de 4,0 mm au plus, avec un taux de fer total de 200 ppm et un Rédox inférieur à 0,05.Also, according to a first embodiment, the glass substrate has a minimum light transmission of 91.50% for a thickness e of 4.0 mm at most, with a total iron content of 200 ppm and a Redox of less than 0 .05.
Selon un second mode de réalisation, le substrat en verre présente une transmission lumineuse minimale de 91% pour une épaisseur e de 4,0 mm au plus, avec un taux de fer total de 160 ppm et un Rédox égal à 0,31. Pour ce même taux de fer et de Rédox, l'épaisseur e sera de 1 ,5 mm au plus pour assurer la propriété de transmission lumineuse minimale de 91 ,50 %.According to a second embodiment, the glass substrate has a minimum light transmission of 91% for a thickness e of 4.0 mm at most, with a total iron content of 160 ppm and a Redox equal to 0.31. For this same rate of iron and Redox, the thickness e will be 1.5 mm at most to ensure the property of minimum light transmission of 91.50%.
Selon encore un troisième mode de réalisation, le substrat en verre présente une transmission lumineuse minimale de 91% pour une épaisseur e de 1 ,2 mm au plus, avec un taux de fer total de 800 ppm et un Rédox égal à 0,33. Selon encore un autre mode de réalisation, le substrat en verre présente une transmission lumineuse minimale de 91% pour une épaisseur e de 1 ,2 mm au plus, avec un taux de fer total de 1050 ppm et un Rédox égal à 0,23.According to yet a third embodiment, the glass substrate has a minimum light transmission of 91% for a thickness e of at most 1.2 mm, with a total iron content of 800 ppm and a Redox equal to 0.33. According to yet another embodiment, the glass substrate has a minimum light transmission of 91% for a thickness e of at most 1.2 mm, with a total iron content of 1050 ppm and a Redox equal to 0.23.
Selon une caractéristique, la composition verrière du substrat en verre de l'invention comporte au moins les constituants suivants :According to one characteristic, the glass composition of the glass substrate of the invention comprises at least the following constituents:
Selon une autre caractéristique, la couche diffusante du substrat de l'invention est composée de particules agglomérées dans un liant, lesdites particules présentant un diamètre moyen compris entre 0,3 et 2 microns, ledit liant étant dans une proportion comprise entre 10 et 40% en volume et les particules formant des agrégats dont la dimension est comprise entre 0,5 et 5 microns. Les particules sont des particules semi-transparentes et de préférence des particules minérales telles que des oxydes, des nitrures, des carbures. Les particules sont de préférence choisies parmi les oxydes de silice, d'alumine, de zircone, de titane, de cérium, ou d'un mélange d'au moins deux de ces oxydes. Pour plus de précisions, on se référera à la demande publiée FR 2 809 496.According to another characteristic, the diffusing layer of the substrate of the invention is composed of particles agglomerated in a binder, said particles having an average diameter between 0.3 and 2 microns, said binder being in a proportion between 10 and 40% by volume and the particles forming aggregates whose size is between 0.5 and 5 microns. The particles are semi-transparent particles and preferably mineral particles such as oxides, nitrides, carbides. The particles are preferably chosen from oxides of silica, alumina, zirconia, titanium, cerium, or a mixture of at least two of these oxides. For more details, refer to published application FR 2 809 496.
Enfin selon l'invention, ce substrat diffusant sera en particulier utilisé dans un système de rétro-éclairage pouvant être agencé dans un écran LCD ou dans une lampe plane.Finally according to the invention, this diffusing substrate will in particular be used in a backlighting system which can be arranged in an LCD screen or in a flat lamp.
D'autres avantages et caractéristiques de l'invention apparaîtront dans la suite de la description en regard des dessins annexés sur lesquels :Other advantages and characteristics of the invention will appear in the following description with reference to the appended drawings in which:
• La figure 1 illustre un système de rétro-éclairage;• Figure 1 illustrates a backlight system;
• La figure 2 illustre des courbes donnant pour une transmission lumineuse de 91% la teneur du fer global Fe203 en fonction du Rédox par rapport à plusieurs épaisseurs de verre; • La figure 3 illustre des courbes donnant pour une transmission lumineuse de 91 ,5% la teneur du fer global Fe203 en fonction du Rédox par rapport à plusieurs épaisseurs de verre. Par souci de clarté, les dimensions ne sont pas respectées entre les différents éléments.FIG. 2 illustrates curves giving for a light transmission of 91% the content of the global iron Fe 2 0 3 as a function of the Redox with respect to several thicknesses of glass; FIG. 3 illustrates curves giving for a light transmission of 91.5% the content of the global iron Fe 2 0 3 as a function of the Redox with respect to several thicknesses of glass. For the sake of clarity, the dimensions are not respected between the different elements.
La figure 1 illustre un système de rétro-éclairage 1 destiné par exemple à être utilisé dans un écran LCD de dimension 17" par exemple. Le système 1 comporte une enceinte 10 comprenant un illuminant ou des sources de lumière 11 , et un substrat diffusant en verre 20 qui est associé à l'enceinte 10.FIG. 1 illustrates a backlighting system 1 intended for example to be used in an LCD screen of dimension 17 "for example. The system 1 comprises an enclosure 10 comprising an illuminant or light sources 11, and a diffusing substrate in glass 20 which is associated with enclosure 10.
L'enceinte 10, d'épaisseur environ 10 mm, comporte une partie inférieure 12 dans laquelle sont agencées les sources de lumière 11 et une partie supérieure opposée 13 qui est ouverte et depuis laquelle se propage la lumière émise des sources 11. La partie inférieure 12 présente un fond 14 contre lequel sont disposés des réflecteurs 15 destinés à réfléchir d'une part, une partie de la lumière émise par les sources 11 qui était dirigée vers la partie inférieure 12, et d'autre part, une partie de la lumière qui n'a pas été transmise au travers du substrat diffusant mais réfléchie par le substrat en verre et rétro-diffusée par la couche diffusante. Les flèches représentées illustrent schématiquement les trajets de la lumière émise depuis les sources 11 et recyclée dans l'enceinte.The enclosure 10, about 10 mm thick, has a lower part 12 in which the light sources 11 are arranged and an opposite upper part 13 which is open and from which the light emitted from the sources 11 propagates. The lower part 12 has a bottom 14 against which are arranged reflectors 15 intended to reflect on the one hand, part of the light emitted by the sources 11 which was directed towards the lower part 12, and on the other hand, part of the light which has not been transmitted through the diffusing substrate but reflected by the glass substrate and back-scattered by the diffusing layer. The arrows shown schematically illustrate the paths of the light emitted from the sources 11 and recycled in the enclosure.
Les sources de lumière 11 sont par exemple des lampes ou des tubes à décharge communément appelés CCFL pour « Cold Cathode FluorescentThe light sources 11 are for example discharge lamps or tubes commonly called CCFL for "Cold Fluorescent Cathode
Lamp », HCFL « Hot Cathode Fluorescent Lamp », DBDFL pour « Dielectric Barrier Discharge Fluorescent Lamp », ou encore des lampes du type LED pourLamp ”, HCFL“ Hot Cathode Fluorescent Lamp ”, DBDFL for“ Dielectric Barrier Discharge Fluorescent Lamp ”, or LED type lamps for
« Light Emitting Diodes »."Light Emitting Diodes".
Le substrat diffusant 20 est rapporté sur la partie supérieure 13 et maintenu solidaire par des moyens de fixation mécanique non illustrés tels que de clipsage coopérant avec l'enceinte et le substrat, ou bien maintenu posé par des moyens d'engagement mutuel non illustrés tels qu'une gorge prévue sur la périphérie de la surface du substrat coopérant avec une nervure périphérique de l'enceinte.The diffusing substrate 20 is attached to the upper part 13 and held integral by mechanical fixing means not illustrated such as clipping cooperating with the enclosure and the substrate, or else kept posed by mutual engagement means not shown such that 'A groove provided on the periphery of the surface of the substrate cooperating with a peripheral rib of the enclosure.
Le substrat diffusant 20 comporte un substrat en verre 21 et une couche diffusante 22, d'épaisseur entre 1 et 20 μm, disposée sur une face du substrat en verre, en regard ou à l'opposé de la partie supérieure 13 de l'enceinte. Pour la composition de la couche et son dépôt sur le substrat en verre, on se référera à la demande de brevet français publiée 2 809 496.The diffusing substrate 20 comprises a glass substrate 21 and a diffusing layer 22, of thickness between 1 and 20 μm, arranged on one face of the glass substrate, facing or opposite the upper part 13 of the enclosure. . For the composition of the layer and its deposition on the glass substrate, reference is made to the published French patent application 2 809 496.
Le substrat 21 de support de la couche est en verre transparent ou semi- transparent pour la plage de longueur d'onde du visible. Il est caractérisé selon l'invention par sa faible absorption dé la lumière, et présente une transmission lumineuse TL au moins égale à 91% sur la plage de longueurs d'onde 380 à 780 nm. La transmission lumineuse est calculée sous un illuminant D65, conformément à la norme EN410. On donne ci-après sous forme de tableau des exemples de réalisation du substrat en verre 21 en indiquant pour chacun d'entre eux la composition verrière dont les teneurs sont exprimées en % en poids, le taux de fer global , le taux de fer ferreux, le Rédox ainsi que la transmission lumineuse TL SOUS illuminant D65. La transmission lumineuse TL est calculée pour une épaisseur e donnée du substrat en verre. Les exemples 1a, 1 b, 2 et 3 sont des substrats verriers qui répondent à la propriété de transmission lumineuse au moins égale à 91% alors que l'exemple 4 ne convient pas. Ces exemples sont des substrats en verre du commerce commercialisés selon les dénominations suivantes: Exemple 1a : B270 de la société SCHOTT avec e=0,9 mm ,The substrate 21 for supporting the layer is made of transparent or semi-transparent glass for the visible wavelength range. It is characterized according to the invention by its low absorption of light, and has a light transmission T L at least equal to 91% over the wavelength range 380 to 780 nm. The light transmission is calculated under a D65 illuminant, in accordance with standard EN410. Examples of embodiment of the glass substrate 21 are given below in the form of a table, indicating for each of them the glass composition whose contents are expressed in% by weight, the overall iron content, the ferrous iron content. , the Rédox as well as the TL SOUS light transmission illuminant D65. The light transmission TL is calculated for a given thickness e of the glass substrate. Examples 1a, 1b, 2 and 3 are glass substrates which respond to the property of light transmission at least equal to 91% while Example 4 is not suitable. These examples are commercial glass substrates sold under the following names: Example 1a: B270 from the company SCHOTT with e = 0.9 mm,
Exemple 1b : B270 de la société SCHOTT avec e=2,0 mm, pour les exemples 1a et 1b seules sont différentes les épaisseurs mais la composition verrière est identique;Example 1b: B270 from the company SCHOTT with e = 2.0 mm, for examples 1a and 1b only the thicknesses are different but the glass composition is identical;
Exemple 2 : OPTIWHITE de la société PILKINGTON avec e=1 ,8 mm; Exemple 3 :CS77 de la société SAINT-GOBAIN GLASS avec e=1 ,1 mm;Example 2: OPTIWHITE from the company PILKINGTON with e = 1.8 mm; Example 3: CS77 from the company SAINT-GOBAIN GLASS with e = 1.1 mm;
Exemple 4 : PLANILUX de la société SAINT-GOBAIN GLASS avec e=2,1 mmExample 4: PLANILUX from SAINT-GOBAIN GLASS with e = 2.1 mm
A noter que ces compositions présentent des impuretés dont la nature et les proportions sont pour certaines d'entre elles résumées ci-après : Cr2O3<10 ppm MnO<300 ppm V2O <30 ppm TiO2<1000 ppm.Note that these compositions have impurities whose nature and proportions are, for some of them, summarized below: Cr 2 O 3 <10 ppm MnO <300 ppm V 2 O <30 ppm TiO2 <1000 ppm.
La transmission lumineuse TL est calculée sur la plage de longueur d'onde 380-780 nm selon la norme EN 410 à partir de la transmission τ qui est définie de manière connue par la loi de Beer-Lambert: τμ) ≈ (l - R(Λ))2 xe-α(/l)xe The light transmission T L is calculated over the wavelength range 380-780 nm according to standard EN 410 from the transmission τ which is defined in a known manner by Beer-Lambert law: τμ) ≈ (l - R (Λ)) 2 xe- α (/ l) xe
avec R, le facteur de réflexion, α, le coefficient d'absorption linéique, oc et R étant fonction de la longueur d'onde de la lumière émise, et e, l'épaisseur du substrat.with R, the reflection factor, α, the linear absorption coefficient, oc and R being a function of the wavelength of the light emitted, and e, the thickness of the substrate.
La transmission lumineuse TL est donc liée au coefficient d'absorption linéique α et à l'épaisseur e du substrat 21.The light transmission T L is therefore linked to the linear absorption coefficient α and to the thickness e of the substrate 21.
Les inventeurs ont par conséquent mis en évidence que la composition verrière du substrat ainsi que son épaisseur influaient sur la transmission lumineuse du substrat. Plus particulièrement, la teneur global en fer (exprimé sous forme Fe203) et le Rédox de la composition jouent un rôle majeur sur le coefficient d'absorption linéique. On définit dans l'invention le Redox comme étant le taux de fer sous forme réduite (exprimé sous forme FeO) contenu dans le taux de fer global (exprimé sous forme Fe2O3) (rapport FeO/ Fe2θ3).The inventors have therefore demonstrated that the glass composition of the substrate as well as its thickness influence the light transmission of the substrate. More particularly, the overall iron content (expressed as Fe 2 0 3 ) and the redox of the composition play a major role in the linear absorption coefficient. In the invention, Redox is defined as being the iron content in reduced form (expressed in FeO form) contained in the overall iron content (expressed in Fe 2 O 3 form ) (FeO / Fe 2 θ 3 ratio).
Aussi l'épaisseur du substrat peut être sélectionnée en fonction de la composition verrière utilisée. Les inventeurs ont établi une relation entre les paramètres que sont, l'épaisseur du verre, le fer total et le Rédox de la composition verrière conduisant à la propriété de transmission lumineuse requise. Cette relation de contrainte peut s'écrire sous la forme mathématique suivante, le taux de fer total dans la composition est tel que pour une transmission lumineuse TL supérieure ou égale à 91% :Also the thickness of the substrate can be selected according to the glass composition used. The inventors have established a relationship between the parameters that are, the thickness of the glass, the total iron and the redox of the glass composition, leading to the required light transmission property. This stress relationship can be written in the following mathematical form, the total iron content in the composition is such that for a light transmission T L greater than or equal to 91%:
71107110
[Fe2O3]t <[Fe 2 O 3 ] t <
(l,52xe + 0,015) + (17,24xe + 0,37)x Rédox(1.52xe + 0.015) + (17.24xe + 0.37) x Redox
avec [Fe203]t correspondant au fer total dans la composition exprimé en ppm, e l'épaisseur du verre en mm, et Rédox = [FeO] / [Fe2O3]t, le Rédox étant compris entre 0 et 0,9with [Fe 2 0 3 ] t corresponding to the total iron in the composition expressed in ppm, e the thickness of the glass in mm, and Redox = [FeO] / [Fe2O3] t, the Redox being between 0 and 0.9
En variante, la contrainte peut être donnée sur l'épaisseur pour une composition verrière donnée et est telle que pour une transmission lumineuse TL supérieure ou égale à 91% :As a variant, the stress can be given on the thickness for a given glass composition and is such that for a light transmission T L greater than or equal to 91%:
7110/[Fe2O3]t -0,015 -0,37 xRédox e < 1 ,52 + 17,24 x Rédox7110 / [Fe 2 O 3 ] t -0.015 -0.37 x Redox e <1.52 + 17.24 x Redox
Pour une transmission lumineuse TL de 91 ,5 % qui est une valeur préférée minimale selon l'invention, le taux de fer total dans la composition doit être encore plus bas que celui exprimé ci-dessus pour une limite inférieure de transmission égale à 91%, et est tel que :For a light transmission TL of 91.5% which is a minimum preferred value according to the invention, the total iron content in the composition must be even lower than that expressed above for a lower transmission limit equal to 91% , and is such that:
21102110
[Fe2O3]t <[Fe 2 O 3 ] t <
3 (l,52xe + 0,015) + (17,24xe + 0,37)xRédox 3 (1.52xe + 0.015) + (17.24xe + 0.37) xRedox
ou l'épaisseur doit être telle queor the thickness should be such that
2110/[Fe2O3]t - 0,015 - 0,37 x Rédox e ≤ 1,52 + 17,24 x Rédox2110 / [Fe 2 O 3 ] t - 0.015 - 0.37 x Redox e ≤ 1.52 + 17.24 x Redox
Les inégalités données plus haut reliant les teneurs du coupleThe inequalities given above connecting the contents of the couple
(Fe203, Rédox) et l'épaisseur du substrat peuvent être traduites sous forme de courbes pour des épaisseurs caractéristiques de verre. Aussi, la figure 2 illustre des courbes donnant, respectivement pour plusieurs épaisseurs données, la teneur du fer global Fe203 en fonction du Rédox pour une transmission lumineuse TL de 91%. Les substrats d'une épaisseur déterminée dont les valeurs en fer et du Rédox de la composition verrière sont situées sur ou en-dessous de la courbe de référence pour la même épaisseur choisie conviennent pour répondre à la propriété de transmission lumineuse devant être d'au moins 91%.(Fe 2 0 3 , Redox) and the thickness of the substrate can be translated in the form of curves for characteristic thicknesses of glass. Also, FIG. 2 illustrates curves giving, respectively for several given thicknesses, the content of the global iron Fe 2 0 3 as a function of the Redox for a light transmission TL of 91%. Substrates of a determined thickness, the iron and redox values of the glass composition of which are situated on or below the reference curve for the same thickness chosen are suitable for meeting the property of light transmission which must be at least minus 91%.
Sur cette figure ont été positionnés les points EX1 , EX2, EX3, EX4 du couple (Fe2θ3, Rédox) de la composition verrière correspondant aux exemples 1 a et 1 b pour le point EX1 , et aux exemples 2, 3, 4 pour les autres points, respectivement, EX2, EX3, EX4.In this figure have been positioned the points EX1, EX2, EX3, EX4 of the couple (Fe 2 θ 3 , Redox) of the glass composition corresponding to examples 1 a and 1 b for the point EX1, and to examples 2, 3, 4 for the other points, respectively, EX2, EX3, EX4.
On remarque que le point EX1 se situe bien en-dessous de la courbe de 2,1 mm, et même en dessous de la courbe de 4 mm. Par conséquent, le substrat en verre des exemples 1a et 1b convient avec une épaisseur de 0,9 mm et respectivement de 2,0 mm, et la composition verrière pourrait même convenir avec une épaisseur plus élevée, jusqu'à 4 mm au moins, pour présenter une transmission lumineuse minimale de 91%. Néanmoins, ce n'est pas dans l'intérêt de la réalisation du système de rétro-éclairage d'augmenter l'épaisseur des éléments car la volonté actuelle tend vers une diminution de l'encombrement des écrans LCD en terme d'épaisseur. Aussi, on n'envisagera pas une épaisseur supérieure à 4 mm.Note that point EX1 is well below the 2.1 mm curve, and even below the 4 mm curve. Consequently, the glass substrate of Examples 1a and 1b is suitable with a thickness of 0.9 mm and 2.0 mm respectively, and the glass composition could even be suitable with a higher thickness, up to at least 4 mm, to present a minimum light transmission of 91%. However, it is not in the interest of the realization of the backlight system to increase the thickness of the elements because the current will tends to reduce the size of the LCD screens in terms of thickness. Also, we will not consider a thickness greater than 4 mm.
La même remarque s'applique au point EX2 qui est bien en-dessous de la courbe correspondant à l'épaisseur de 1 ,8 mm du substrat de l'exemple 2. La composition verrière de l'exemple 2 conviendrait pour un substrat d'une épaisseur ne dépassant pas 4,0 mm pour présenter une transmission lumineuse minimale de 91%.The same remark applies to the point EX2 which is well below the curve corresponding to the thickness of 1.8 mm of the substrate of example 2. The glass composition of example 2 would be suitable for a substrate of a thickness not exceeding 4.0 mm to present a minimum light transmission of 91%.
On constate également que le point EX3 est en-dessous de la courbe de 1 ,1 mm qui correspond à l'épaisseur de l'exemple 3. Cependant, avec une épaisseur supérieure à 1 ,2 mm (courbes en-dessous de ce point), la composition verrière de l'exemple 3 ne conviendrait plus pour satisfaire une transmission minimale de 91%.It is also noted that the point EX3 is below the curve of 1.1 mm which corresponds to the thickness of example 3. However, with a thickness greater than 1.2 mm (curves below this point ), the glass composition of Example 3 would no longer be suitable for satisfying a minimum transmission of 91%.
En revanche, le point EX4 est bien au-dessus de la courbe de 2,1 mm d'épaisseur correspondant à l'exemple 4 qui ne convient pas. On peut néanmoins en déduire qu'en diminuant l'épaisseur de ce type de verre de sorte qu'il soit d'une épaisseur inférieure à au moins 1 ,2 mm (courbes au-dessus de ce point), cette composition verrière conviendrait pour obtenir la propriété d'une transmission lumineuse de 91%.On the other hand, the point EX4 is well above the 2.1 mm thick curve corresponding to Example 4 which is not suitable. We can nevertheless deduce that by reducing the thickness of this type of glass so that it is thickness less than at least 1.2 mm (curves above this point), this glass composition would be suitable for obtaining the property of a light transmission of 91%.
La figure 3 illustre des courbes donnant, respectivement pour plusieurs épaisseurs données, la teneur du fer global Fe2O3 en fonction du Rédox pour une transmission lumineuse TL minimale égale à 91 ,50%.FIG. 3 illustrates curves giving, respectively for several given thicknesses, the content of the global iron Fe 2 O 3 as a function of the Redox for a minimum light transmission TL equal to 91.50%.
On voit que pour une transmission lumineuse de 91 ,50% qui constitue une valeur minimale préférée de l'invention, seul conviennent les exemples 1a et 1b dont le point EX1 est situé bien en-dessous de la courbe correspondant à l'épaisseur 2,1 mm. Les autres exemples ne conviennent pas pour assurer une transmission lumineuse de 91 ,50% au moins car les points EX2, EX3, EX4 sont situés au-dessus des courbes correspondant aux épaisseurs respectives des exemples 2, 3 et 4. On peut noter que le point EX2 est sensiblement au-dessus de la courbe correspondant à l'épaisseur de 1 ,8 mm, et qu'il conviendrait pour la composition verrière de l'exemple 2 de réaliser un substrat moins épais de 1 ,5 mm par exemple (ce qui correspond à la première courbe située au-dessus du point) afin d'assurer la propriété de transmission lumineuse minimale de 91 ,50%.It can be seen that for a light transmission of 91.50% which constitutes a preferred minimum value of the invention, only examples 1a and 1b are suitable, the point EX1 of which is situated well below the curve corresponding to the thickness 2, 1 mm. The other examples are not suitable for ensuring a light transmission of at least 91.50% because the points EX2, EX3, EX4 are located above the curves corresponding to the respective thicknesses of Examples 2, 3 and 4. It can be noted that the point EX2 is appreciably above the curve corresponding to the thickness of 1.8 mm, and that it would be appropriate for the glass composition of Example 2 to produce a less thick substrate of 1.5 mm for example (this which corresponds to the first curve located above the point) in order to ensure the minimum light transmission property of 91.50%.
Le substrat en verre 21 est donc utilisé comme support pour la couche diffusante 22 afin de constituer le substrat diffusant 20 qui est associé à l'enceinte 10 pour constituer le système de rétro-éclairage 1. Il est alors possible de mesurer de manière connue la luminance de l'éclairage provenant de l'enceinte et traversant le substrat diffusant. Le tableau ci-dessous résume pour les exemples 1a, 1b et 2 à 4 la luminance associée à la transmission lumineuse. Les valeurs renseignées de la luminance correspondent à une mesure faite perpendiculairement à la surface du substrat diffusant et pour un substrat diffusant (substrat en verre et couche diffusante) de transmission diffuse de 60%, c'est-à-dire que le substrat diffusant génère une rétro-diffusion de la lumière de 40% qui est recyclée à l'intérieur de l'enceinte.The glass substrate 21 is therefore used as a support for the diffusing layer 22 in order to constitute the diffusing substrate 20 which is associated with the enclosure 10 to constitute the backlight system 1. It is then possible to measure in a known manner the luminance of the light coming from the enclosure and passing through the diffusing substrate. The table below summarizes for examples 1a, 1b and 2 to 4 the luminance associated with the light transmission. The reported values of the luminance correspond to a measurement made perpendicular to the surface of the diffusing substrate and for a diffusing substrate (glass substrate and diffusing layer) of diffuse transmission of 60%, that is to say that the diffusing substrate generates 40% light back-scattering which is recycled inside the enclosure.
Par ailleurs, le substrat en verre a également l'avantage de servir de support pour le dépôt de revêtements à couches fonctionnelles tels qu'un revêtement d'isolement électromagnétique que peut d'ailleurs constituer la couche diffusante 22 comme décrit dans la demande de brevet français FR 02/08289, un revêtement à fonction bas-émissive, à fonction anti-statique, anti-buée, antisalissures, ou encore à fonction d'augmentation de la luminance. Cette dernière fonction peut effectivement être souhaitée pour une application du substrat diffusant à un écran LCD. Furthermore, the glass substrate also has the advantage of serving as a support for depositing coatings with functional layers such as an electromagnetic isolation coating which, moreover, can constitute the diffusing layer 22 as described in the patent application. French FR 02/08289, a coating with a low-emissivity function, an anti-static, anti-fog, anti-fouling function, or even a function of increasing the luminance. This latter function may actually be desired for an application of the diffusing substrate to an LCD screen.
Un revêtement présentant la fonction d'augmenter davantage la luminance en resserrant l'indicatrice de diffusion est par exemple connu sous la forme d'un film optique commercialisé sous le nom CH27 par la société SKC.A coating having the function of further increasing the luminance by tightening the scattering indicator is for example known in the form of an optical film sold under the name CH27 by the company SKC.
Le tableau ci-dessous indique, outre la transmission lumineuse pour le substrat verrier 21 , les luminances de l'éclairage obtenues sans revêtement CH27 et avec le revêtement CH27 sur le substrat diffusant 20, ainsi qu'un résultat de comparaison de ces deux luminances exprimé en %. Les valeurs renseignées de la luminance correspondent à une mesure faite perpendiculairement à la surface du substrat diffusant et pour un substrat diffusant (substrat en verre et couche diffusante) de transmission diffuse de 60%.The table below indicates, in addition to the light transmission for the glass substrate 21, the luminances of the lighting obtained without coating CH27 and with the coating CH27 on the diffusing substrate 20, as well as a result of comparison of these two luminances expressed in %. The reported values of the luminance correspond to a measurement made perpendicular to the surface of the diffusing substrate and for a diffusing substrate (glass substrate and diffusing layer) of diffuse transmission of 60%.
On note que bien entendu la luminance augmente avec le revêtement CH27 dont c'est la fonction, mais aussi que l'augmentation de la luminance est bien plus élevée lorsque la transmission lumineuse est plus importante. Ces résultats montrent l'intérêt d'utiliser un substrat en verre 21 le moins absorbant possible pour optimiser la luminance d'un système de rétro-éclairage. A ce titre, le substrat de l'exemple 1 a ou 1 b sera préféré. It is noted that of course the luminance increases with the coating CH27 which it is the function, but also that the increase in luminance is much higher when the light transmission is greater. These results show the advantage of using the least absorbent glass substrate 21 possible to optimize the luminance of a backlight system. As such, the substrate of Example 1a or 1b will be preferred.

Claims

REVENDICATIONS
1. Substrat diffusant (20) comportant un substrat en verre (21) et une couche diffusante (22) déposée sur ledit substrat en verre, caractérisé en ce que le substrat en verre (20) présente une transmission lumineuse au moins égale à 91% sur la plage de longueurs d'onde 380 à 780 nm.1. Diffusing substrate (20) comprising a glass substrate (21) and a diffusing layer (22) deposited on said glass substrate, characterized in that the glass substrate (20) has a light transmission at least equal to 91% over the wavelength range 380 to 780 nm.
2. Substrat diffusant selon la revendication 1 , caractérisé en ce que le substrat en verre (20) présente une transmission lumineuse au moins égale à 91 ,50% sur la plage de longueurs d'onde 380 à 780 nm. 2. Diffusing substrate according to claim 1, characterized in that the glass substrate (20) has a light transmission at least equal to 91.50% over the wavelength range 380 to 780 nm.
3. Substrat diffusant selon la revendication 1 , caractérisé en ce que le substrat en verre (20) présente un taux de fer total tel que:3. Diffusing substrate according to claim 1, characterized in that the glass substrate (20) has a total iron content such that:
71107110
[Fe2O3]t <[Fe 2 O 3 ] t <
(l,52xe + 0,015) + (17,24xe + 0,37)xRédox(1.52xe + 0.015) + (17.24xe + 0.37) xRedox
avec [Fe203]t exprimé en ppm et correspondant au fer total dans la composition, e étant l'épaisseur du verre en mm, et le Rédox étant défini par Rédox =[FeO] / [Fe2O3]t, le Rédox étant compris entre 0 et 0,9.with [Fe 2 0 3 ] t expressed in ppm and corresponding to the total iron in the composition, e being the thickness of the glass in mm, and the Redox being defined by Redox = [FeO] / [Fe2O3] t, the Redox being between 0 and 0.9.
4. Substrat diffusant selon la revendication 2, caractérisé en ce que le substrat en verre (20) présente un taux de fer total tel que:4. Diffusing substrate according to claim 2, characterized in that the glass substrate (20) has a total iron content such that:
21102110
[Fe2O3]t [Fe 2 O 3 ] t
(l,52xe + 0,015) + (17,24xe + 0,37) x Rédox(1.52xe + 0.015) + (17.24xe + 0.37) x Redox
avec [Fe2θ3]t exprimé en ppm et correspondant au fer total dans la composition, e étant l'épaisseur du verre en mm, et le Rédox étant défini par Rédox =[FeO] / [Fe203]t, le Rédox étant compris entre 0 et 0,9.with [Fe 2 θ 3 ] t expressed in ppm and corresponding to the total iron in the composition, e being the thickness of the glass in mm, and the Redox being defined by Redox = [FeO] / [Fe203] t, the Redox being between 0 and 0.9.
5. Substrat diffusant selon l'une quelconque des revendications précédentes, caractérisé en ce que la couche diffusante (22) est composée de particules agglomérées dans un liant, lesdites particules présentant un diamètre moyen compris entre 0,3 et 2 microns, ledit liant étant dans une proportion comprise entre 10 et 40% en volume et les particules formant des agrégats dont la dimension est comprise entre 0,5 et 5 microns. 5. Diffusing substrate according to any one of the preceding claims, characterized in that the diffusing layer (22) is composed of particles agglomerated in a binder, said particles having an average diameter of between 0.3 and 2 microns, said binder in a proportion of between 10 and 40% by volume and the particles forming aggregates whose size is between 0.5 and 5 microns.
6. Substrat diffusant selon la revendication 5, caractérisé en ce que les particules sont des particules semi-transparentes et de préférence des particules minérales telles que des oxydes, des nitrures, des carbures.6. Diffusing substrate according to claim 5, characterized in that the particles are semi-transparent particles and preferably mineral particles such as oxides, nitrides, carbides.
7. Substrat diffusant l'une quelconque des revendications précédentes, caractérisé en ce que le substrat en verre (20) présente une composition verrière à base d'au moins les constituants suivants :7. Substrate diffusing any one of the preceding claims, characterized in that the glass substrate (20) has a glass composition based on at least the following constituents:
8. Substrat diffusant selon la revendication 1 ou 2, caractérisé en ce que le substrat en verre (20) présente une transmission lumineuse minimale de 91,50% pour une épaisseur e de 4,0 mm au plus, avec un taux de fer total de 200 ppm et un Rédox inférieur à 0,05.8. Diffusing substrate according to claim 1 or 2, characterized in that the glass substrate (20) has a minimum light transmission of 91.50% for a thickness e of 4.0 mm at most, with a total iron content of 200 ppm and a Redox less than 0.05.
9. Substrat diffusant selon la revendication 1 , caractérisé en ce que le substrat en verre (20) présente une transmission lumineuse minimale de 91% pour une épaisseur e de 4,0 mm au plus, avec un taux de fer total de 160 ppm et un Rédox égal à 0,31.9. Diffusing substrate according to claim 1, characterized in that the glass substrate (20) has a minimum light transmission of 91% for a thickness e of 4.0 mm at most, with a total iron content of 160 ppm and a Redox equal to 0.31.
10. Substrat diffusant selon la revendication 2, caractérisé en ce que le substrat en verre (20) présente une transmission lumineuse minimale de 91 ,50 % pour une épaisseur e de 1 ,5 mm au plus, avec un taux de fer total de 160 ppm et un Rédox égal à 0,31. 10. Diffusing substrate according to claim 2, characterized in that the glass substrate (20) has a minimum light transmission of 91.50% for a thickness e of 1.5 mm at most, with a total iron content of 160 ppm and a Redox equal to 0.31.
11. Substrat diffusant selon la revendication 1 , caractérisé en ce que le substrat en verre (20) présente une transmission lumineuse minimale de 91% pour une épaisseur e de 1 ,2 mm au plus, avec un taux de fer total de 800 ppm et un Rédox égal à 0,33.11. Diffusing substrate according to claim 1, characterized in that the glass substrate (20) has a minimum light transmission of 91% for a thickness e of at most 1.2 mm, with a total iron content of 800 ppm and a Redox equal to 0.33.
12. Substrat diffusant selon la revendication 1 , caractérisé en ce que le substrat en verre (20) présente une transmission lumineuse minimale de 91% pour une épaisseur e de 1 ,2 mm au plus, avec un taux de fer total de 1050 ppm et un Rédox égal à 0,23. 12. Diffusing substrate according to claim 1, characterized in that the glass substrate (20) has a minimum light transmission of 91% for a thickness e of 1.2 mm at most, with a total iron content of 1050 ppm and a Redox equal to 0.23.
13. Utilisation d'un substrat diffusant tel que décrit selon l'une des revendications 1 à 12 pour réaliser un système de rétro-éclairage.13. Use of a diffusing substrate as described according to one of claims 1 to 12 to produce a backlighting system.
14. Utilisation selon la revendication 13 pour laquelle le système de rétroéclairage est agencé dans un écran LCD.14. Use according to claim 13 for which the backlight system is arranged in an LCD screen.
15. Utilisation selon la revendication 13 pour laquelle le système de rétroéclairage est agencé dans une lampe plane. 15. Use according to claim 13 for which the backlighting system is arranged in a flat lamp.
EP03769558A 2002-09-11 2003-09-03 Diffusing substrate Withdrawn EP1540385A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0211225 2002-09-11
FR0211225A FR2844364B1 (en) 2002-09-11 2002-09-11 DIFFUSING SUBSTRATE
PCT/FR2003/002631 WO2004025334A2 (en) 2002-09-11 2003-09-03 Diffusing substrate

Publications (1)

Publication Number Publication Date
EP1540385A2 true EP1540385A2 (en) 2005-06-15

Family

ID=31725992

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03769558A Withdrawn EP1540385A2 (en) 2002-09-11 2003-09-03 Diffusing substrate

Country Status (10)

Country Link
US (1) US20060099441A1 (en)
EP (1) EP1540385A2 (en)
JP (1) JP2006512596A (en)
KR (1) KR20050046756A (en)
CN (1) CN100397104C (en)
AU (1) AU2003278248A1 (en)
FR (1) FR2844364B1 (en)
PL (1) PL374658A1 (en)
TW (1) TW200407630A (en)
WO (1) WO2004025334A2 (en)

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2895781B1 (en) * 2005-12-29 2014-10-10 Saint Gobain LIGHT STRUCTURE COMPRISING AT LEAST ONE ELECTROLUMINESCENT DIODE, ITS MANUFACTURE AND ITS APPLICATIONS
KR100727059B1 (en) * 2006-01-24 2007-06-12 삼성코닝 주식회사 Back light unit formed an optical layer laminated with oxide compound
JP2010503166A (en) 2006-09-07 2010-01-28 サン−ゴバン グラス フランス SUBSTRATE FOR ORGANIC LIGHT EMITTING DEVICE, USE AND PRODUCTION PROCESS OF SUBSTRATE, AND ORGANIC LIGHT EMITTING DEVICE
US8203073B2 (en) * 2006-11-02 2012-06-19 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US20080302414A1 (en) * 2006-11-02 2008-12-11 Den Boer Willem Front electrode for use in photovoltaic device and method of making same
US20080105293A1 (en) * 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US7964788B2 (en) * 2006-11-02 2011-06-21 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US20080105299A1 (en) * 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode with thin metal film layer and high work-function buffer layer for use in photovoltaic device and method of making same
US20080105298A1 (en) * 2006-11-02 2008-05-08 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US8012317B2 (en) * 2006-11-02 2011-09-06 Guardian Industries Corp. Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
US8076571B2 (en) * 2006-11-02 2011-12-13 Guardian Industries Corp. Front electrode for use in photovoltaic device and method of making same
US20080178932A1 (en) * 2006-11-02 2008-07-31 Guardian Industries Corp. Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
EP2090139A2 (en) 2006-11-17 2009-08-19 Saint-Gobain Glass France Electrode for an organic light-emitting device, acid etching thereof, and also organic light-emitting device incorporating it
EP1944276A1 (en) * 2006-12-18 2008-07-16 AGC Flat Glass Europe SA Illuminated panel
US8334452B2 (en) 2007-01-08 2012-12-18 Guardian Industries Corp. Zinc oxide based front electrode doped with yttrium for use in photovoltaic device or the like
US20080169021A1 (en) * 2007-01-16 2008-07-17 Guardian Industries Corp. Method of making TCO front electrode for use in photovoltaic device or the like
US20080223430A1 (en) * 2007-03-14 2008-09-18 Guardian Industries Corp. Buffer layer for front electrode structure in photovoltaic device or the like
US20080308145A1 (en) * 2007-06-12 2008-12-18 Guardian Industries Corp Front electrode including transparent conductive coating on etched glass substrate for use in photovoltaic device and method of making same
US7888594B2 (en) * 2007-11-20 2011-02-15 Guardian Industries Corp. Photovoltaic device including front electrode having titanium oxide inclusive layer with high refractive index
FR2924274B1 (en) 2007-11-22 2012-11-30 Saint Gobain SUBSTRATE CARRYING AN ELECTRODE, ORGANIC ELECTROLUMINESCENT DEVICE INCORPORATING IT, AND MANUFACTURING THE SAME
FR2925981B1 (en) 2007-12-27 2010-02-19 Saint Gobain CARRIER SUBSTRATE OF AN ELECTRODE, ORGANIC ELECTROLUMINESCENT DEVICE INCORPORATING IT.
US20090194157A1 (en) * 2008-02-01 2009-08-06 Guardian Industries Corp. Front electrode having etched surface for use in photovoltaic device and method of making same
US10121950B2 (en) * 2008-03-01 2018-11-06 Goldeneye, Inc. Lightweight solid state light source with common light emitting and heat dissipating surface
US8022291B2 (en) * 2008-10-15 2011-09-20 Guardian Industries Corp. Method of making front electrode of photovoltaic device having etched surface and corresponding photovoltaic device
US20110168252A1 (en) * 2009-11-05 2011-07-14 Guardian Industries Corp. Textured coating with etching-blocking layer for thin-film solar cells and/or methods of making the same
US20110186120A1 (en) * 2009-11-05 2011-08-04 Guardian Industries Corp. Textured coating with various feature sizes made by using multiple-agent etchant for thin-film solar cells and/or methods of making the same
US8502066B2 (en) * 2009-11-05 2013-08-06 Guardian Industries Corp. High haze transparent contact including insertion layer for solar cells, and/or method of making the same
FR2953212B1 (en) 2009-12-01 2013-07-05 Saint Gobain REACTIVE ION ETCHING SURFACE STRUCTURING METHOD, STRUCTURED SURFACE AND USES THEREOF.
FR2953213B1 (en) 2009-12-01 2013-03-29 Saint Gobain METHOD FOR ION ABRASION SURFACE STRUCTURING, STRUCTURED SURFACE AND USES
FR2953703B1 (en) 2009-12-16 2012-02-03 Saint Gobain LIGHTING MIRROR
FR2953904B1 (en) 2009-12-16 2012-01-13 Saint Gobain ELECTROLUMINESCENT DIODE PANEL
FR2955915B1 (en) 2010-02-01 2012-03-09 Saint Gobain LUMINOUS MULTIPLE GLAZING WITH LIGHT EMITTING DIODES
FR2964176B1 (en) 2010-09-01 2015-10-16 Saint Gobain DECORATIVE AND LIGHTING PANEL WITH ELECTROLUMINESCENT DIODES
FR2964138B1 (en) 2010-09-01 2012-08-24 Saint Gobain MULTILIGHTING GLAZING WITH LIGHT EMITTING DIODES
FR2964446B1 (en) 2010-09-02 2012-08-24 Saint Gobain DECORATIVE AND LIGHTING PANEL WITH ELECTROLUMINESCENT DIODES
FR2964447B1 (en) 2010-09-02 2012-08-24 Saint Gobain LUMINOUS LIGHT EMITTING LAMINATED GLAZING AND MANUFACTURE THEREOF
FR2964722B1 (en) 2010-09-15 2015-11-06 Saint Gobain MIRROR AND LIGHTING PANEL WITH ELECTROLUMINESCENT DIODES
FR2970671B1 (en) 2011-01-21 2016-12-30 Saint Gobain BRIGHT GLAZING
FR2993203B1 (en) 2012-07-11 2014-07-18 Saint Gobain BRIGHT GLAZING
US20140152914A1 (en) * 2012-11-30 2014-06-05 Corning Incorporated Low-Fe Glass for IR Touch Screen Applications
FR2999808B1 (en) 2012-12-13 2015-01-02 Saint Gobain CONDUCTIVE BRACKET FOR OLED DEVICE AND INCORPORATING OLED DEVICE
FR2999807B1 (en) 2012-12-13 2015-01-02 Saint Gobain CONDUCTIVE BRACKET FOR OLED DEVICE AND INCORPORATING OLED DEVICE
FR3003084B1 (en) 2013-03-08 2015-02-27 Saint Gobain ELECTROCONDUCTIVE SUPPORT FOR OLED, OLED INCORPORATING THE SAME, AND MANUFACTURING THE SAME
EP2803645B1 (en) * 2013-05-17 2018-08-01 Saint-Gobain Glass France Transparent diffusive oled substrate and method for producing such a substrate
US9902644B2 (en) 2014-06-19 2018-02-27 Corning Incorporated Aluminosilicate glasses
FR3023979B1 (en) 2014-07-17 2016-07-29 Saint Gobain ELECTROCONDUCTIVE SUPPORT FOR OLED, OLED INCORPORATING THE SAME, AND MANUFACTURING THE SAME.
FR3034501A1 (en) 2015-04-03 2016-10-07 Saint Gobain LUMINOUS GLAZING FOR BUILDING, FURNITURE, PUBLIC TRANSPORT VEHICLE
FR3034500A1 (en) 2015-04-03 2016-10-07 Saint Gobain LIGHTING GLASS OF MOTOR VEHICLE AND MOTOR VEHICLE WITH SUCH A GLAZING
FR3040992B1 (en) 2015-09-11 2017-10-06 Saint Gobain LUMINOUS GLAZING OF VEHICLE AND ITS MANUFACTURE.
FR3044972B1 (en) 2015-12-14 2017-12-22 Saint Gobain LIGHT WINDSHIELD OF VEHICLE WITH INTERNAL LIGHT SIGNALING.
FR3044971B1 (en) * 2015-12-14 2017-12-22 Saint Gobain LIGHT WINDSHIELD OF VEHICLE WITH INTERNAL LIGHT SIGNALING.
FR3045505B1 (en) 2015-12-16 2017-12-22 Saint Gobain LIGHT WINDSHIELD OF VEHICLE WITH INTERNAL LIGHT SIGNALING.
FR3045506B1 (en) 2015-12-16 2017-12-22 Saint Gobain LIGHT WINDSHIELD OF VEHICLE WITH INTERNAL LIGHT SIGNALING.
FR3046374B1 (en) 2015-12-30 2018-01-19 Saint-Gobain Glass France GLAZING LIGHT OF VEHICLE WITH AMOLED SCREEN
FR3046375A1 (en) 2015-12-30 2017-07-07 Saint Gobain GLAZING LIGHT OF VEHICLE WITH AMOLED SCREEN
FR3046376B1 (en) 2015-12-30 2018-01-19 Saint-Gobain Glass France GLAZING LIGHT OF VEHICLE WITH AMOLED SCREEN
FR3046379B1 (en) 2015-12-31 2018-01-19 Saint-Gobain Glass France GLAZING LIGHT OF VEHICLE WITH AMOLED SCREEN
FR3058107B1 (en) 2016-10-28 2018-12-07 Saint-Gobain Glass France LIGHTING GLASS OF VEHICLE, VEHICLE INCORPORATING IT
WO2018101220A1 (en) * 2016-12-01 2018-06-07 旭硝子株式会社 Glass plate
FR3064941B1 (en) 2017-04-07 2019-06-07 Saint-Gobain Glass France LUMINOUS SHEET GLAZING OF VEHICLE WITH INORGANIC ELECTROLUMINESCENT DIODES AND MANUFACTURE THEREOF.
FR3069660B1 (en) 2017-07-31 2019-08-30 Saint-Gobain Glass France ELECTROCOMMANDABLE DEVICE WITH VARIABLE DIFFUSION BY LIQUID CRYSTALS.
FR3084355B1 (en) 2018-07-27 2023-05-19 Saint Gobain ENAMELLED SUBSTRATE, AUTOMOTIVE LIGHT WINDOW DEVICE WITH SUCH A SUBSTRATE AND THE MANUFACTURE OF IT.
FR3084353B1 (en) 2018-07-27 2023-03-24 Saint Gobain ENAMELLED SUBSTRATE, ILLUMINATED GLASS DEVICE WITH SUCH SUBSTRATE AND ITS MANUFACTURE.
FR3084354B1 (en) 2018-07-27 2020-07-17 Saint-Gobain Glass France ENAMELLED SUBSTRATE FORMING PROJECTION SCREEN, AND ITS MANUFACTURE.
FR3086771A1 (en) 2018-09-27 2020-04-03 Saint-Gobain Glass France ELECTRICALLY CONTROLLABLE DEVICE WITH VARIABLE DIFFUSION BY LIQUID CRYSTALS AND METHOD THEREOF.
JP7440499B2 (en) 2018-09-27 2024-02-28 サン-ゴバン グラス フランス Electrically controllable device and method with variable diffusion by liquid crystal
FR3101014B1 (en) 2019-09-20 2021-12-31 Saint Gobain LAMINATED VEHICLE GLAZING AND DEVICE WITH ASSOCIATED NEAR INFRARED VISION SYSTEM
FR3105943B1 (en) 2020-01-03 2023-05-19 Saint Gobain LAMINATED VEHICLE GLAZING AND DEVICE WITH ASSOCIATED NEAR INFRARED VISION SYSTEM AND ITS MANUFACTURE
FR3105942B1 (en) 2020-01-03 2021-12-31 Saint Gobain LAMINATED VEHICLE GLAZING AND DEVICE WITH ASSOCIATED NEAR INFRARED VISION SYSTEM AND ITS MANUFACTURE
FR3106887B1 (en) 2020-01-31 2022-01-21 Saint Gobain Glazing analysis process for a LIDAR
FR3108990A1 (en) 2020-04-01 2021-10-08 Saint-Gobain Glass France ELECTRO-CONTROLLED DEVICE WITH VARIABLE DIFFUSION
FR3113008B1 (en) 2020-07-31 2022-09-09 Saint Gobain MOTOR VEHICLE LUMINOUS GLAZING and MOTOR VEHICLE WITH SUCH LUMINOUS GLAZING
FR3116758B1 (en) 2020-12-01 2022-11-18 Saint Gobain LAMINATED VEHICLE GLAZING AND DEVICE WITH ASSOCIATED NEAR INFRARED VISION SYSTEM
CN115226396A (en) 2021-02-19 2022-10-21 法国圣戈班玻璃厂 Laminated glazing, associated apparatus with near infrared vision system
FR3120012B1 (en) 2021-02-19 2023-12-29 Saint Gobain LAMINATED VEHICLE GLAZING, ITS MANUFACTURING AND DEVICE WITH ASSOCIATED NEAR INFRARED VISION SYSTEM
FR3121235B1 (en) 2021-03-24 2023-12-29 Saint Gobain VEHICLE GLASS AND DEVICE WITH ASSOCIATED NEAR INFRARED VISION SYSTEM
FR3121384B1 (en) 2021-03-31 2023-03-24 Saint Gobain VEHICLE GLAZING AND DEVICE WITH ASSOCIATED NEAR INFRARED DETECTION SYSTEM
FR3120013B1 (en) 2021-02-19 2023-10-27 Saint Gobain LAMINATED VEHICLE GLASS AND DEVICE WITH ASSOCIATED NEAR INFRARED VISION SYSTEM
US20240123709A1 (en) 2021-02-19 2024-04-18 Saint-Gobain Glass France Laminated vehicle glazing, manufacture thereof and device with associated near-infrared vision system
FR3121873A1 (en) 2021-04-14 2022-10-21 Saint-Gobain Glass France LAMINATED VEHICLE GLAZING, DEVICE WITH ASSOCIATED NEAR INFRARED DETECTION SYSTEM
FR3130684B1 (en) 2021-12-22 2024-02-16 Saint Gobain LAMINATED VEHICLE GLASS AND DEVICE WITH ASSOCIATED NEAR INFRARED VISION SYSTEM
FR3127827B1 (en) 2021-10-06 2024-08-16 Saint Gobain Liquid crystal OPTICAL SYSTEM
FR3127826B1 (en) 2021-10-06 2023-09-08 Saint Gobain Liquid crystal OPTICAL SYSTEM
FR3134107A1 (en) 2022-03-30 2023-10-06 Saint-Gobain Glass France Adhesive composition for a glass article comprising expansion means and laminated glazing for automobiles comprising such a composition
FR3134745A1 (en) 2022-04-22 2023-10-27 Saint-Gobain Glass France AUTOMOTIVE VEHICLE GLAZING
FR3141380B1 (en) 2022-10-26 2024-10-18 Saint Gobain ILLUMINABLE LAMINATED GLAZING FOR VEHICLE AND VEHICLE WITH SUCH GLAZING
FR3141379B1 (en) 2022-10-26 2024-10-18 Saint Gobain ILLUMINABLE LAMINATED GLAZING FOR VEHICLE AND VEHICLE WITH SUCH GLAZING
FR3144544A1 (en) 2022-12-28 2024-07-05 Saint-Gobain Glass France ILLUMINABLE VEHICLE GLASS ROOF
EP4398029A1 (en) 2023-01-05 2024-07-10 Saint-Gobain Glass France Liquid crystals switchable stack, liquid crystals mixture, and system with liquid crystals switchable stack

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030594A (en) * 1990-06-29 1991-07-09 Ppg Industries, Inc. Highly transparent, edge colored glass
JPH04350821A (en) * 1991-05-29 1992-12-04 Seiko Instr Inc Liquid crystal display device
DE4422118A1 (en) * 1994-06-24 1996-01-04 Merck Patent Gmbh Preparations of monodisperse spherical oxide particles
JPH09509645A (en) * 1994-12-23 1997-09-30 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Method of manufacturing substrate with reduced glare phenomenon, method of manufacturing display window of cathode ray tube, and cathode ray tube having display window
US5948481A (en) * 1996-11-12 1999-09-07 Yazaki Corporation Process for making a optical transparency having a diffuse antireflection coating
US6034470A (en) * 1997-03-21 2000-03-07 Patent-Treuhand-Gesellschaft Fuer Elektrische Gluehlampen Mbh Flat fluorescent lamp with specific electrode structuring
EP1073918B1 (en) * 1998-04-24 2003-11-19 Minnesota Mining And Manufacturing Company Optical components with self-adhering diffuser
WO2000012441A1 (en) * 1998-08-26 2000-03-09 Nihon Yamamura Glass Co., Ltd. Ultraviolet-absorbing, colorless, transparent soda-lime silica glass
EP1116699B1 (en) * 1998-09-04 2006-02-15 NIPPON SHEET GLASS CO., Ltd. Light-colored glass of high transmittance and method for production thereof, glass plate with electrically conductive film and method for production thereof, and glass article
JP2000330107A (en) * 1999-05-24 2000-11-30 Nitto Denko Corp Liquid crystal display device
JP2001316128A (en) * 2000-03-02 2001-11-13 Nippon Sheet Glass Co Ltd Pale colored high transmittance plate-glass and method for manufacturing same
EP2261183B1 (en) * 2000-03-06 2015-02-25 Nippon Sheet Glass Company, Limited High transmittance glass sheet and method of manufacture the same
FR2809496B1 (en) * 2000-05-23 2002-07-12 Saint Gobain Vitrage DIFFUSING LAYER

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004025334A2 *

Also Published As

Publication number Publication date
WO2004025334A2 (en) 2004-03-25
TW200407630A (en) 2004-05-16
CN1695074A (en) 2005-11-09
FR2844364A1 (en) 2004-03-12
AU2003278248A1 (en) 2004-04-30
CN100397104C (en) 2008-06-25
US20060099441A1 (en) 2006-05-11
WO2004025334A3 (en) 2004-06-17
AU2003278248A8 (en) 2004-04-30
JP2006512596A (en) 2006-04-13
FR2844364B1 (en) 2004-12-17
PL374658A1 (en) 2005-10-31
KR20050046756A (en) 2005-05-18

Similar Documents

Publication Publication Date Title
EP1540385A2 (en) Diffusing substrate
BE1017182A3 (en) DIFFUSING STRUCTURE WITH ABSORPTION PROPERTIES IN THE UTRAVIOLET
CA2410396C (en) Diffusing coating
FR2836912A1 (en) TRANSPARENT SUSBSTRAT WITH ANTIREFLECTED COATING WITH ABRASION RESISTANCE PROPERTIES
EP2092379B1 (en) Flat diffusing structure, its manufacturing process and its applications
WO2012086806A1 (en) Article having low reflection film
EP1807368A1 (en) Glass substrate for viewing display
EP1588218B1 (en) Screen for front and rear projection
JP6252706B2 (en) Glass and glass member
WO2008107584A2 (en) Illuminating structure and optical structure
KR100812593B1 (en) Light-diffusing film for back light unit of lcd
WO2005012957A1 (en) Diffusing structure
JP2008129319A (en) Light-transmissive substrate with light-scattering film
EP2906975B1 (en) Information display assembly including an information display device illuminated by means of a light guide
WO2014042129A1 (en) Product having low-reflection film
FR2898991A1 (en) Diffusing structure for homogenizing light from backlighting system, has diffusing layer deposited on internal surface of glass substrate and having thickness between 3 to 20 micrometer and variable covering density to homogenize light
WO2007110543A1 (en) Diffusing structure
KR100737978B1 (en) Light diffusing sheet for back light unit for liquid crystal display and back light unit having the same
WO2023237839A1 (en) Luminous laminated glass panel comprising a functional coating
WO2024141734A1 (en) Luminous glazing unit
FR3134034A1 (en) Diffuse reflection glazing
KR20090008552A (en) Light-diffusing sheet for back light unit of lcd

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050411

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: PRAT, AURELIA

Inventor name: BERTIN-MOUROT, THOMAS

Inventor name: TEYSSEDRE, LAURENT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PRAT, AURELIA

Inventor name: BERTIN-MOUROT, THOMAS

Inventor name: TEYSSEDRE, LAURENT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080726