WO2014042129A1 - Product having low-reflection film - Google Patents

Product having low-reflection film Download PDF

Info

Publication number
WO2014042129A1
WO2014042129A1 PCT/JP2013/074280 JP2013074280W WO2014042129A1 WO 2014042129 A1 WO2014042129 A1 WO 2014042129A1 JP 2013074280 W JP2013074280 W JP 2013074280W WO 2014042129 A1 WO2014042129 A1 WO 2014042129A1
Authority
WO
WIPO (PCT)
Prior art keywords
lower layer
reflection film
article
low reflection
layer
Prior art date
Application number
PCT/JP2013/074280
Other languages
French (fr)
Japanese (ja)
Inventor
義美 大谷
敏 本谷
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2014042129A1 publication Critical patent/WO2014042129A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/202LCD, i.e. liquid crystal displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/204Plasma displays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/425Coatings comprising at least one inhomogeneous layer consisting of a porous layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/70Properties of coatings
    • C03C2217/73Anti-reflective coatings with specific characteristics
    • C03C2217/734Anti-reflective coatings with specific characteristics comprising an alternation of high and low refractive indexes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/90Other aspects of coatings
    • C03C2217/91Coatings containing at least one layer having a composition gradient through its thickness
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/11Deposition methods from solutions or suspensions
    • C03C2218/113Deposition methods from solutions or suspensions by sol-gel processes

Definitions

  • the present invention relates to an article having a low reflection film on a transparent substrate.
  • Articles having a low reflection film on the surface of a transparent substrate are used as cover glasses for solar cells, various displays and their front plates, various window glasses, cover glasses for touch panels, and the like.
  • the following low reflection films for example, the following low reflection films (i) and (ii) are known.
  • the low reflection film (i) has a high average reflectance of light incident from an oblique angle with a wavelength of 400 to 1200 nm (that is, light having a large incident angle).
  • the porosity of the low reflective film (i) is increased in order to keep the reflectance low, moisture and the like easily penetrate into the transparent substrate, and the weather resistance is low.
  • the transparent substrate is glass, alkali is eluted from the glass due to moisture and the film deteriorates, so that it is difficult to obtain sufficient weather resistance.
  • the low reflection film (ii) has a large number of interfaces between layers, there is a large risk of delamination at the interfaces and wear resistance is low.
  • the following low reflection film (iii) has been proposed as a low reflection film having a low reflectance even in light having a large incident angle in a wide wavelength region and having good weather resistance and durability.
  • (Iii) It consists of two layers, a lower layer on the transparent substrate side and an upper layer formed on the lower layer, the refractive index of the lower layer is 1.30 to 1.44, and the refractive index of the upper layer is 1.10.
  • a low reflection film having a thickness of ⁇ 1.29 see Patent Document 3).
  • the present invention provides an article having a low reflection film that has good weather resistance and durability, low reflectance, and can sufficiently reduce the reflection color, particularly reddish purple and blue.
  • the article of the present invention has a transparent substrate and a low reflection film formed on the transparent substrate, and the low reflection film is formed on the lower layer on the transparent substrate side and on the lower layer.
  • the lower layer has a refractive index of 1.40 to 1.44
  • the lower layer has a thickness of 70 to 130 nm
  • the upper layer has a refractive index of 1.17 to 1.30.
  • the upper layer has a thickness of 70 to 130 nm.
  • the lower layer has independent pores and does not have pores communicating from the upper layer to the transparent substrate.
  • the lower layer is preferably a layer mainly composed of SiO 2.
  • the upper layer is preferably a layer mainly composed of SiO 2 .
  • the lower layer preferably contains hollow SiO 2 fine particles.
  • the upper layer preferably contains solid SiO 2 fine particles.
  • the difference between the refractive index of the lower layer and the refractive index of the upper layer is preferably 0.10 to 0.27.
  • the porosity of the lower layer is preferably less than 15% by volume.
  • the lower layer preferably has independent pores, and the average pore diameter of the independent pores is preferably 10 to 100 nm.
  • the reflectivity at 5 ° incidence in light of wavelengths 380 nm and 780 nm is 0.7% or less, and the difference between the maximum value and the minimum value of reflectivity in light in the wavelength range of 380 nm to 780 nm. Is preferably 0.5% or less.
  • the article of the present invention is preferably a cover glass for solar cells.
  • the article of the present invention has good weather resistance and durability and low reflectivity, and particularly, reflection colors such as reddish purple and blue are sufficiently suppressed.
  • FIG. 1 is a cross-sectional view showing an example of the article of the present invention.
  • the article 10 includes a transparent substrate 12 and a low reflection film 14 formed on the surface of the transparent substrate 12.
  • the transparency in the transparent substrate means that 80% or more of light in the wavelength region of 400 to 1200 nm is transmitted on average.
  • Examples of the shape of the transparent substrate 12 include a plate and a film.
  • a layer other than the low reflection film such as an alkali barrier layer may be formed in advance.
  • Examples of the material of the transparent substrate 12 include glass and resin.
  • Examples of the glass include soda lime glass, borosilicate glass, aluminosilicate glass, and alkali-free glass.
  • molded by the float method etc. may be sufficient and the template glass which has an unevenness
  • surface treatment such as physical strengthening or chemical strengthening may be performed.
  • the resin include polyethylene terephthalate, polycarbonate, triacetyl cellulose, polymethyl methacrylate, and the like.
  • the transparent substrate 12 is expressed in terms of an oxide-based mass percentage (hereinafter, “mass percentage display” is also simply referred to as “%”; hereinafter the same). Soda lime glass having the following composition is preferred.
  • the transparent substrate 12 is alkali-free glass
  • those having the following composition in terms of oxide-based mass percentage are preferable.
  • SiO 2 39 to 70%
  • Al 2 O 3 3 to 25%
  • B 2 O 3 1-30%
  • MgO 0 to 10%
  • CaO 0 to 17%
  • SrO 0 to 20%
  • BaO 0-30%.
  • the transparent substrate 12 is a mixed alkali glass
  • those having the following composition in terms of mass percentage based on oxide are preferable.
  • SiO 2 50 to 75%
  • Al 2 O 3 0 to 15%
  • MgO + CaO + SrO + BaO + ZnO 6 to 24%
  • Na 2 O + K 2 O 6-24%.
  • the transparent substrate 12 is preferably a satin-patterned template glass with an uneven surface.
  • the composition ratio of iron is less than the soda lime glass used in ordinary window glass (so-called blue plate glass: the so-called name of soda lime glass with a slight bluish tint).
  • Non-white glass is preferred.
  • White plate glass is a glass in which the transmittance of light having a wavelength of 400 to 800 nm with respect to a glass plate having a thickness of 4 mm is 90% or more.
  • the low reflection film 14 includes two layers, a lower layer 16 on the transparent substrate 12 side and an upper layer 18 formed on the lower layer 16.
  • the refractive index of the lower layer 16 is 1.40 to 1.44.
  • the film thickness of the lower layer 16 is 70 to 130 nm.
  • the refractive index of the upper layer 18 is 1.17 to 1.30.
  • the thickness of the upper layer 18 is 70 to 130 nm.
  • the refractive index n of each layer constituting the low-reflection film is measured with a spectrophotometer on the surface of the transparent substrate formed by forming a single-layer film of the layer whose refractive index is desired.
  • the minimum reflectance (so-called bottom reflectance) Rmin in the wavelength range of 380 to 780 nm and the refractive index ns of the transparent base material the following formula (1) is used.
  • Rmin (n ⁇ ns) 2 / (n + ns) 2 (1).
  • the difference between the refractive index of the lower layer 16 and the refractive index of the upper layer 18 is preferably 0.10 to 0.27, and particularly preferably 0.11 to 0.26. If the difference in refractive index is greater than or equal to the lower limit value, reflection of light having a large incident angle is sufficiently suppressed. If the difference in refractive index is less than or equal to the upper limit, light reflection at the interface between the lower layer 16 and the upper layer 18 is sufficiently suppressed.
  • the refractive index of the lower layer 16 is 1.40 to 1.44, preferably 1.40 to 1.43.
  • the refractive index of the lower layer 16 is within the above range, the reflectance is lowered, and particularly the reflection colors such as magenta and blue are reduced.
  • the refractive index of the lower layer 16 is equal to or higher than the lower limit value, the porosity of the lower layer 16 can be easily lowered even when the refractive index of the lower layer 16 is adjusted by the porosity of the lower layer 16. Thereby, it becomes difficult for water
  • the refractive index of the lower layer 16 is less than or equal to the upper limit value, it is easy to suppress warping of the transparent substrate 12 that occurs when the porosity of the lower layer 16 is low.
  • the refractive index of the lower layer 16 can be adjusted by adjusting the porosity of the lower layer 16 or adding a substance having a specific refractive index to the lower layer 16. For example, the refractive index of the lower layer 16 can be lowered by increasing the porosity of the lower layer 16. Moreover, the refractive index of the lower layer 16 can be lowered by adding a substance having a low refractive index to the lower layer 16. Examples of the substance having a low refractive index include fluorine compounds such as magnesium fluoride.
  • the film thickness of the lower layer 16 is 70 to 130 nm, preferably 70 to 120 nm, and particularly preferably 80 to 120 nm.
  • the reflectance is lowered, and particularly the reflection colors such as magenta and blue are reduced.
  • the film thickness of the lower layer 16 is more than a lower limit, it will become difficult to permeate
  • the film thickness of the lower layer 16 is not more than the upper limit value, the reflectance of light having a wavelength of 400 to 1200 nm can be kept low.
  • the film thickness of the lower layer 16 is measured by the method described in the examples.
  • the lower layer 16 preferably has independent pores and does not have pores communicating from the upper layer 18 to the transparent substrate 12, that is, the upper layer 18 and the transparent substrate 12 are preferably not connected by a gap. .
  • the presence or absence of the communicated vacancy can be confirmed by observing the lower section with a scanning electron microscope. If the pores in the lower layer 16 are not pores communicating from the upper layer 18 to the transparent base material 12 but are almost independent pores, moisture or the like hardly penetrates to the transparent base material 12 and has excellent weather resistance. can get.
  • the transparent substrate 12 is glass, it is easy to suppress deterioration of the low reflection film 14 due to the elution of alkali from the glass due to moisture.
  • the average pore diameter of the pores in the lower layer 16 is preferably 10 to 100 nm, and more preferably 20 to 70 nm. If the average hole diameter of the holes is equal to or greater than the lower limit value, the refractive index of the lower layer 16 is easily set to 1.44 or less. If the average pore diameter of the pores is not more than the upper limit value, moisture or the like hardly penetrates to the transparent substrate 12, and excellent weather resistance is obtained.
  • the average pore diameter of the lower layer pores can be obtained by averaging the diameters of 100 pores measured from an image obtained by observing the cross section of the lower layer with a scanning electron microscope.
  • the porosity of the lower layer 16 is preferably less than 15% by volume and particularly preferably 13% by volume or less from the viewpoint that moisture or the like hardly penetrates to the transparent substrate 12 and excellent weather resistance is obtained.
  • the porosity of the lower layer 16 is preferably 2% by volume or more, and particularly preferably 4% by volume or more, from the viewpoint that the refractive index of the lower layer 16 can easily be 1.44 or less.
  • the porosity can be calculated by the method described in the examples.
  • the lower layer 16 a layer mainly composed of SiO 2 is preferable from the viewpoint of relatively low refractive index, excellent chemical stability, and excellent adhesion to glass, and a layer substantially composed of SiO 2 is particularly preferable.
  • the layer containing SiO 2 as a main component means that the proportion of SiO 2 is 90% by mass or more of the entire layer (100% by mass).
  • the layer substantially composed of SiO 2 means a layer composed only of SiO 2 excluding inevitable impurities.
  • the lower layer 16 is preferably composed of SiO 2 fine particles and a matrix.
  • the SiO 2 fine particles used for the lower layer 16 include hollow SiO 2 fine particles and solid SiO 2 fine particles.
  • the SiO 2 fine particles used for the lower layer 16 are preferably hollow SiO 2 fine particles because they can form the lower layer 16 having independent pores and not having pores communicating from the upper layer 18 to the transparent substrate 12.
  • each particle may exist in an independent state, each particle may be linked in a chain shape, or each particle may be aggregated.
  • the average primary particle diameter of the hollow SiO 2 fine particles is preferably 5 to 150 nm, more preferably 50 to 100 nm. If the average primary particle diameter of the hollow SiO 2 fine particles is equal to or greater than the lower limit value, the reflectance of the low reflective film 14 is sufficiently low. If the average primary particle diameter of the hollow SiO 2 fine particles is not more than the upper limit value, the haze of the low reflective film 14 can be suppressed low.
  • each particle may exist in an independent state, each particle may be linked in a chain shape, or each particle may be aggregated.
  • the average primary particle diameter of the solid SiO 2 fine particles is preferably 5 to 150 nm, more preferably 50 to 100 nm. If the average primary particle diameter of the solid SiO 2 fine particles is not less than the lower limit value, the reflectance of the low reflective film 14 is sufficiently low. If the average primary particle diameter of the solid SiO 2 fine particles is not more than the upper limit value, the haze of the low reflective film 14 can be suppressed low.
  • the average primary particle size of the fine particles is obtained by randomly selecting 100 fine particles from an electron micrograph, measuring the particle size of each fine particle, and averaging the particle sizes of the 100 fine particles.
  • the matrix examples include a calcined product of an alkoxysilane hydrolyzate (sol-gel silica), a silazane calcined product, and the like.
  • a calcined product of a hydrolyzate of alkoxysilane is preferable.
  • a catalyst used for hydrolysis of alkoxysilane a catalyst that does not hinder the dispersion of SiO 2 fine particles is preferable.
  • alkoxysilane examples include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc.), alkoxysilane having a perfluoropolyether group (perfluoropolyether triethoxysilane, etc.), perfluorosilane.
  • Alkoxysilanes having a fluoroalkyl group perfluoroethyltriethoxysilane, etc.
  • alkoxysilanes having a vinyl group vinyltriethoxysilane, etc.
  • alkoxysilanes having an epoxy group (2- (3, 4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysila Etc..
  • hydrolysis of the alkoxysilane is carried out using 4 times or more moles of water of the alkoxysilane and an acid or alkali as a catalyst.
  • the acid include inorganic acids (such as nitric acid, sulfuric acid, and hydrochloric acid) and organic acids (such as formic acid, oxalic acid, monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid).
  • the alkali include ammonia, sodium hydroxide, potassium hydroxide and the like.
  • the catalyst is preferably an acid from the viewpoint of long-term storage stability of the hydrolyzate of alkoxysilane.
  • the average of the hollow fine SiO 2 particles is preferably 0.5 or more, particularly preferably 0.52 or more. If the ratio (d2 / d1) is equal to or greater than the lower limit, excellent weather resistance can be obtained, and even when the transparent substrate is glass, alkali is eluted from the glass due to moisture and the low reflective film is prevented from deteriorating. It's easy to do.
  • the average aggregate particle diameter (d1) of the hollow SiO 2 fine particles in the coating solution is measured by the method described in the examples.
  • the lower layer 16 is preferably formed of a lower layer coating solution having an acid concentration of 50 to 200 ppm by mass. It is particularly preferable that the lower layer coating solution is 50 to 100 ppm by mass. Moreover, if the said acid concentration is more than a lower limit, hydrolysis of alkoxysilane will fully advance. If the acid concentration is less than or equal to the upper limit value, the ratio (d2 / d1) is likely to be 0.5 or more. Thereby, a low reflective film having excellent weather resistance can be formed, and even when the transparent base material is glass, it is easy to suppress deterioration of the low reflective film due to alkali elution from the glass due to moisture.
  • the refractive index of the upper layer 18 is 1.17 to 1.30, preferably 1.17 to 1.29, and particularly preferably 1.17 to 1.27. If the refractive index of the upper layer 18 is within the above range, the reflectance will be low, and in particular, the reflection colors such as reddish purple and blue will be reduced. Moreover, if the refractive index of the upper layer 18 is more than a lower limit, the upper layer 18 will not become sparse too much and the outstanding durability will be obtained. If the refractive index of the upper layer 18 is not more than the upper limit value, the reflectance of the low reflective film 14 can be lowered. Similar to the refractive index of the lower layer 16, the refractive index of the upper layer 18 can be adjusted by adjusting the porosity and adding a substance having a specific refractive index.
  • the film thickness of the upper layer 18 is 70 to 130 nm, preferably 70 to 120 nm, and particularly preferably 70 to 110 nm.
  • the film thickness of the upper layer 18 is within the above range, the reflectance is lowered, and particularly the reflection colors such as reddish purple and blue are suppressed.
  • the film thickness of the upper layer 18 is not more than the upper limit value, practical wear resistance can be ensured.
  • the film thickness of the upper layer 18 is measured by the method described in the examples.
  • the upper layer 18 a layer mainly composed of SiO 2 is preferable from the viewpoint of relatively low refractive index, excellent chemical stability, and excellent adhesion to the lower layer 16, and a layer substantially composed of SiO 2 is preferable. Particularly preferred.
  • the upper layer 18 is preferably composed of SiO 2 fine particles and a matrix. Examples of the SiO 2 fine particles used for the upper layer 18 include hollow SiO 2 fine particles and solid SiO 2 fine particles. As the SiO 2 fine particles used for the upper layer 18, solid SiO 2 fine particles are preferable from the viewpoint of cost.
  • Examples of the hollow SiO 2 fine particles, the solid SiO 2 fine particles, and the matrix used for the upper layer 18 include the same as those mentioned in the lower layer 16.
  • a coating solution for forming each layer of a low reflection film is sequentially applied on a transparent substrate, preheated as necessary, and finally fired.
  • firing includes heating and curing a coating film obtained by coating a coating solution on the transparent substrate surface.
  • the coating solution include a mixture of a dispersion of SiO 2 fine particles and a matrix precursor solution (a solution of an alkoxysilane hydrolyzate, a silazane solution, etc.).
  • Examples of the dispersion medium for the dispersion of SiO 2 fine particles include water, alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and sulfur-containing compounds.
  • a solvent of the alkoxysilane hydrolyzate solution a mixed solvent of water and alcohols (methanol, ethanol, isopropanol, butanol, diacetone alcohol, etc.) is preferable.
  • the coating liquid may contain an additive.
  • the additive include a terpene derivative for reducing reflectance, a surfactant for improving leveling properties, and a metal compound for improving durability of a coating film.
  • the terpene means a hydrocarbon having a composition of (C 5 H 8 ) k (where k is an integer of 1 or more) having isoprene (C 5 H 8 ) as a structural unit.
  • the terpene derivative means terpenes having a functional group derived from terpene. Terpene derivatives include those with different degrees of unsaturation.
  • Terpene derivatives include terpene alcohols ( ⁇ -terpineol, terpinene 4-ol, L-menthol, ( ⁇ ) citronellol, myrtenol, nerol, borneol, farnesol, phytol, etc.), terpene aldehyde (citral, ⁇ -cyclocitral, Perylaldehyde, etc.), terpene ketones (( ⁇ ) camphor, ⁇ -ionone, etc.), terpene carboxylic acids (citronellic acid, abietic acid, etc.), terpene esters (terpinyl acetate, menthyl acetate, etc.) and the like. It is done.
  • terpene alcohols ⁇ -terpineol, terpinene 4-ol, L-menthol, ( ⁇ ) citronellol, myrtenol, nerol, borneol, farnesol, phytol, etc.
  • the surfactant examples include silicone oil and acrylic.
  • a metal compound a zirconium chelate compound, a titanium chelate compound, and an aluminum chelate compound are preferable.
  • the zirconium chelate compound include zirconium tetraacetylacetonate and zirconium tributoxy systemate.
  • wet coating methods include spin coating, spray coating, dip coating, die coating, curtain coating, screen coating, inkjet coating, flow coating, gravure coating, bar coating, flexo coating, and slit coating. Method, roll coat method and the like.
  • the acid concentration in the lower layer coating solution is preferably 50 to 200 ppm by mass, and particularly preferably 50 to 100 ppm by mass.
  • the coating temperature is preferably room temperature to 80 ° C., more preferably room temperature to 60 ° C.
  • the firing temperature is preferably 30 ° C. or higher, and may be appropriately determined according to the material of the transparent substrate, fine particles or matrix.
  • the firing temperature is equal to or lower than the heat resistant temperature of the resin. Even in this case, the obtained article has a sufficient antireflection effect.
  • a transparent base material is glass
  • baking temperature is 200 degreeC or more and below the softening point temperature of glass. When the firing temperature is 200 ° C. or higher, the lower layer is densified and the durability is improved. If the firing temperature is equal to or lower than the softening point temperature of glass (for example, 800 ° C. or lower), voids in the low reflection film are not lost, and the reflectance of the low reflection film is sufficiently low.
  • the human eye has a high sensitivity to blue colors, and if the low reflection film has a slight amount of blue reflection color, it tends to feel the color.
  • the refractive index and film thickness of the lower layer that forms the low reflection film and the refractive index and film thickness of the upper layer are controlled in specific ranges, respectively, so that the blue color that is easily perceived by human eyes.
  • the color of the system is highly suppressed.
  • the refractive index of the lower layer is in the above range, the lower layer is dense, moisture and the like hardly penetrate into the transparent substrate, and weather resistance is good.
  • the low reflection film is composed of two layers, the friction durability is better than that of the three or more low reflection films.
  • the average reflectance at a wavelength of 380 to 780 nm with respect to 5 ° incident light of the low reflection film in the article of the present invention is preferably 0.7% or less.
  • the reflectance at 5 ° incidence for light with a wavelength of 380 nm and 780 nm is 0.7% or less, and the maximum reflectance (maximum value for light with a wavelength in the range of 380 nm to 780 nm).
  • the difference between the (reflectance) and the minimum value (minimum reflectance) is more preferably 0.5% or less, and each difference is more preferably 0.3% or less. If the above conditions are satisfied, it is difficult to feel the color when viewed with human eyes.
  • Articles of the present invention include vehicle transparent parts (for example, headlight covers, side mirrors, front transparent substrates, side transparent substrates, rear transparent substrates, instrument panels, etc.), meters, architectural windows, show windows, displays (for example, notebook computers, monitors, LCDs, PDPs, ELDs, CRTs, PDAs, etc.), LCD color filters, touch panel substrates, pickup lenses, optical lenses, eyeglass lenses, camera components, video components, CCD cover substrates, light Fiber end face, projector parts, copier parts, solar cell cover glass, mobile phone window, backlight unit parts (for example, light guide plate, cold cathode tube, etc.), backlight unit parts, liquid crystal brightness enhancement film (for example, prism, Translucent film, etc.), LCD brightness enhancement film Organic EL light-emitting element parts, inorganic EL light-emitting element parts, phosphor light-emitting element parts, optical filters, end faces of optical parts, illumination lamps, covers for lighting fixtures, amplified laser light sources, antireflection films,
  • Examples 1 and 2 are examples, and examples 3 to 10 are comparative examples.
  • Various measurement methods and various liquids in each example, and adjustment methods of the respective liquids are as follows. (Average aggregated particle size of fine particles) The average aggregate particle diameter (90% volume average value) of the fine particles was measured using a dynamic light scattering particle size analyzer (manufactured by Nikkiso Co., Ltd., Microtrac UPA).
  • the refractive index n of each layer of the low reflection film was measured by the following method. A single-layer film of a layer whose refractive index is desired to be obtained was formed on the surface of a transparent substrate, and a black vinyl tape was attached to the surface of the transparent substrate opposite to the single-layer film so as not to contain bubbles. . Each single-layer film was formed under the same conditions as those for forming the lower layer and the upper layer in Examples 1 to 10 described later.
  • Td T1-T2 (2)
  • T1 the transmittance
  • T2 the transmittance
  • the reflectance (%) of an article having a low reflection film was measured by the following method. A two-layer film whose reflectance is to be obtained was formed on the surface of the transparent substrate, and a black vinyl tape was attached to the surface of the transparent substrate opposite to the two-layer film so as not to contain bubbles. Thereafter, light at a wavelength of 380 nm to 780 nm was measured using a spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., instantaneous multi-photometry system MCPD-3000). The incident angle of light was 5 °.
  • the film thickness d (nm) of each layer of the low reflection film was calculated by the following equation (4) from the refractive index n and the wavelength ⁇ (nm) at the bottom reflectivity Rmin of the layer whose thickness is to be obtained.
  • n ⁇ d ⁇ / 4 (4)
  • the appearance color tone of the article having the low reflection film was visually observed and evaluated according to the following criteria.
  • The reflection color of the low reflection film is neutral and unnoticeable.
  • The reflection color of the low reflection film is slightly conspicuous.
  • X The reflection color of the low reflection film is very conspicuous
  • Example 1 As a transparent substrate, a template glass (manufactured by Asahi Glass Co., Ltd., Solite (trade name), soda lime glass (white plate glass) with a low iron content, on which a satin pattern is formed. Size: 100 mm ⁇ 100 mm, thickness: 3.2 mm, refractive index: 1.46). The surface of the pear ground of the template glass was polished with an aqueous cerium oxide dispersion, and the cerium oxide was washed away with water, then rinsed with ion-exchanged water and dried.
  • the above-mentioned template glass is preheated in a preheating furnace (VTR-115, manufactured by ISUZU), and a reverse roll coater (Sanwa Seiki Co., Ltd.) is placed on the surface of the template glass while the glass surface temperature is kept at 30 ° C.
  • the coating solution (C) for the lower layer was applied with a coating roll manufactured by the company.
  • the coating conditions were such that the rotation speed of the coating roll and the rotation speed of the doctor roll were changed so as to obtain a predetermined film thickness with respect to the conveyance speed of the substrate: 8.5 m / min.
  • the gap between the coating roll and the conveyor belt was 2.9 mm, and the indentation thickness between the coating roll and the doctor roll was 0.6 mm.
  • the coating roll a rubber lining roll lined with rubber (ethylene propylene diene rubber) having a surface hardness (JIS-A) of 30 was used.
  • the doctor roll a metal roll having lattice-like grooves formed on the surface thereof was used.
  • the upper layer coating solution (G) was further coated on the coating film of the lower layer coating solution (C) by a reverse roll coater in the same manner. Thereafter, it was baked at 500 ° C. for 30 minutes in the air to obtain an article having a low reflection film.
  • Example 2 to 10 An article having a low reflection film was obtained in the same manner as in Example 1 except that the types of the lower layer coating liquid and the upper layer coating liquid and the film thickness were changed as shown in Table 2. Note that 1 to 10 in the first row in Table 2 indicate Examples 1 to 10.
  • Table 2 shows the maximum reflectance at 780 nm, the minimum reflectance, the difference between the maximum reflectance and the minimum reflectance, and the appearance evaluation results.
  • a scanning electron micrograph of a part of the cross section of the article of Example 1 is shown in FIG. Further, spectrum charts obtained by measuring the reflectance in Examples 1 to 10 are shown in FIGS.
  • the low reflection films of Examples 1 and 2 in which the refractive index and film thickness of the lower layer and the upper layer satisfy the conditions of the present invention have a low reflectance, and particularly the reflection colors such as magenta and blue are sufficiently reduced. I did not feel the color with my eyes.
  • the low reflection film of Examples 3 to 6 in which either the refractive index or the film thickness of the lower layer does not satisfy the conditions of the present invention and the low reflection film of Example 10 in which the upper film thickness is larger than 130 nm, The reflected colors of blue and the like were not sufficiently reduced.
  • the low reflection film of Example 7 in which the refractive index of the upper layer is smaller than 1.17 has a difference between the maximum reflectance and the minimum reflectance of more than 0.5%, and the reflection colors such as magenta and blue are reduced. It was insufficient.
  • the low reflection film of Example 8 having an upper layer refractive index greater than 1.30 has a reflectance at 780 nm of more than 0.7%, and the low reflection film of Example 9 having an upper layer film thickness of less than 70 nm is 380 nm.
  • the reflectivity at 780 nm exceeds 0.7%, the difference between the maximum reflectivity and the minimum reflectivity is more than 0.5%, and the reflection colors such as magenta and blue are not sufficiently reduced, and sufficient transmission is achieved. The rate could not be obtained.
  • an article having a low reflection film that has good weather resistance and durability, low reflectance, and in particular, reflection colors such as reddish purple and blue are sufficiently suppressed.
  • An article having such a low reflection film is useful as a cover glass for solar cells, a front plate for various displays, various window glasses, a cover glass for touch panels, and the like.

Abstract

Provided is a product having a low-reflection film having good weather resistance and durability, as well as low reflectivity, and that is capable of adequately reducing reflected colors such as red-violet and blue in particular. A product (10) having a low-reflection film, having a transparent substrate (12) and a low-reflection film (14) formed on the transparent substrate (12), the low-reflection film (14) comprising two layers including a lower layer (16) on the transparent substrate (12) side and an upper layer (18) formed on the lower layer (16), the refractive index of the lower layer (16) being 1.40-1.44, the film thickness of the lower layer (16) being 70-130 nm, the refractive index of the upper layer (18) being 1.17-1.30, and the film thickness of the upper layer (18) being 70-130 nm.

Description

低反射膜を有する物品Article having a low-reflection film
 本発明は、透明基材上に低反射膜を有する物品に関する。 The present invention relates to an article having a low reflection film on a transparent substrate.
 透明基材の表面に低反射膜を有する物品は、太陽電池のカバーガラス、各種ディスプレイおよびそれらの前面板、各種窓ガラス、タッチパネルのカバーガラス等として用いられている。 Articles having a low reflection film on the surface of a transparent substrate are used as cover glasses for solar cells, various displays and their front plates, various window glasses, cover glasses for touch panels, and the like.
 低反射膜としては、たとえば、下記の低反射膜(i)および(ii)が知られている。
 (i)中空SiO微粒子とマトリックスとを含む単層の低反射膜(特許文献1参照)。
 (ii)3層以上の薄膜層からなり、各層の屈折率が1.0~2.5の範囲内で最表層から透明基材に向かって段階的に大きくされた低反射膜(特許文献2参照)。
As the low reflection film, for example, the following low reflection films (i) and (ii) are known.
(I) A single-layer low-reflection film containing hollow SiO 2 fine particles and a matrix (see Patent Document 1).
(Ii) A low-reflection film comprising three or more thin film layers, each layer having a refractive index of 1.0 to 2.5 and gradually increased from the outermost layer toward the transparent substrate (Patent Document 2) reference).
 しかし、低反射膜(i)は、波長400~1200nmの斜めから入射する光(すなわち、入射角の大きい光)の平均反射率が高い。また、低反射膜(i)は、反射率を低く抑えるために空隙率を高くすると、透明基材まで水分等が浸透しやすく、耐候性が低い。特に透明基材がガラスである場合、水分によって該ガラスからアルカリが溶出して膜が劣化するため、充分な耐候性を得ることが困難である。
 また、低反射膜(ii)は、層間の界面の数が多いため、界面における層間剥離のおそれが大きく、摩耗耐久性が低い。
However, the low reflection film (i) has a high average reflectance of light incident from an oblique angle with a wavelength of 400 to 1200 nm (that is, light having a large incident angle). In addition, when the porosity of the low reflective film (i) is increased in order to keep the reflectance low, moisture and the like easily penetrate into the transparent substrate, and the weather resistance is low. In particular, when the transparent substrate is glass, alkali is eluted from the glass due to moisture and the film deteriorates, so that it is difficult to obtain sufficient weather resistance.
Moreover, since the low reflection film (ii) has a large number of interfaces between layers, there is a large risk of delamination at the interfaces and wear resistance is low.
 そこで、広い波長領域において入射角が大きい光でも反射率が低く、耐候性および耐久性が良好な低反射膜として、下記の低反射膜(iii)が提案されている。
 (iii)透明基材側の下層および該下層の上に形成された上層の2層からなり、前記下層の屈折率が1.30~1.44であり、前記上層の屈折率が1.10~1.29である低反射膜(特許文献3参照)。
Therefore, the following low reflection film (iii) has been proposed as a low reflection film having a low reflectance even in light having a large incident angle in a wide wavelength region and having good weather resistance and durability.
(Iii) It consists of two layers, a lower layer on the transparent substrate side and an upper layer formed on the lower layer, the refractive index of the lower layer is 1.30 to 1.44, and the refractive index of the upper layer is 1.10. A low reflection film having a thickness of ˜1.29 (see Patent Document 3).
日本特開2001-233611号公報Japanese Unexamined Patent Publication No. 2001-233611 日本特開2007-052345号公報Japanese Unexamined Patent Publication No. 2007-052345 国際公開第2012/086806号International Publication No. 2012/086806
 しかし、低反射膜(iii)でも、赤紫、青等の反射色を低減することは困難である。そのため、低反射膜に色むらが生じたり、付着した表面の汚れ(例えば、砂塵、指紋)が目立ったりする問題が生じることがあるうえ、低反射膜の色合いそのものが問題とされることもある。 However, it is difficult to reduce reflection colors such as magenta and blue even with the low reflection film (iii). As a result, color unevenness may occur in the low-reflection film, dirt on the attached surface (for example, dust, fingerprints) may be noticeable, and the color of the low-reflection film itself may be a problem. .
 本発明は、耐候性および耐久性が良好なうえ、反射率が低く、特に赤紫、青等の反射色を充分に低減できる低反射膜を有する物品を提供する。 The present invention provides an article having a low reflection film that has good weather resistance and durability, low reflectance, and can sufficiently reduce the reflection color, particularly reddish purple and blue.
 本発明の物品は、透明基材と、該透明基材上に形成された低反射膜と、を有し、前記低反射膜が、前記透明基材側の下層と、該下層の上に形成された上層の2層からなり、前記下層の屈折率が1.40~1.44であり、前記下層の膜厚が70~130nmであり、前記上層の屈折率が1.17~1.30であり、前記上層の膜厚が70~130nmである。 The article of the present invention has a transparent substrate and a low reflection film formed on the transparent substrate, and the low reflection film is formed on the lower layer on the transparent substrate side and on the lower layer. The lower layer has a refractive index of 1.40 to 1.44, the lower layer has a thickness of 70 to 130 nm, and the upper layer has a refractive index of 1.17 to 1.30. The upper layer has a thickness of 70 to 130 nm.
 前記下層は、独立した空孔を有し、かつ前記上層から前記透明基材にわたって連通した空孔を有さないことが好ましい。
 前記下層は、SiOを主成分とする層であることが好ましい。
 前記上層は、SiOを主成分とする層であることが好ましい。
 前記下層は、中空SiO微粒子を含むことが好ましい。
 前記上層は、中実SiO微粒子を含むことが好ましい。
 前記下層の屈折率と前記上層の屈折率との差は、0.10~0.27であることが好ましい。
 前記下層の空隙率は、15体積%未満であることが好ましい。
 前記下層は、独立した空孔を有し、前記独立した空孔の平均空孔径が、10~100nmであることが好ましい。
 本発明の物品では、波長380nmおよび780nmの光における5°入射の反射率がいずれも0.7%以下であり、かつ波長380nm~780nmの範囲の光における反射率の最大値と最小値の差が0.5%以下であることが好ましい。
 本発明の物品は、太陽電池用カバーガラスであることが好ましい。
It is preferable that the lower layer has independent pores and does not have pores communicating from the upper layer to the transparent substrate.
The lower layer is preferably a layer mainly composed of SiO 2.
The upper layer is preferably a layer mainly composed of SiO 2 .
The lower layer preferably contains hollow SiO 2 fine particles.
The upper layer preferably contains solid SiO 2 fine particles.
The difference between the refractive index of the lower layer and the refractive index of the upper layer is preferably 0.10 to 0.27.
The porosity of the lower layer is preferably less than 15% by volume.
The lower layer preferably has independent pores, and the average pore diameter of the independent pores is preferably 10 to 100 nm.
In the article of the present invention, the reflectivity at 5 ° incidence in light of wavelengths 380 nm and 780 nm is 0.7% or less, and the difference between the maximum value and the minimum value of reflectivity in light in the wavelength range of 380 nm to 780 nm. Is preferably 0.5% or less.
The article of the present invention is preferably a cover glass for solar cells.
 本発明の物品は、耐候性および耐久性が良好なうえ、反射率が低く、特に赤紫、青等の反射色が充分に抑制されている。 The article of the present invention has good weather resistance and durability and low reflectivity, and particularly, reflection colors such as reddish purple and blue are sufficiently suppressed.
本発明の物品の一例を示す断面図である。It is sectional drawing which shows an example of the articles | goods of this invention. 例1の物品の断面の一部の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a part of a cross section of the article of Example 1. 例1の物品の反射率を測定したスペクトルチャートである。3 is a spectrum chart in which the reflectance of the article of Example 1 is measured. 例2の物品の反射率を測定したスペクトルチャートである。6 is a spectrum chart obtained by measuring the reflectance of the article of Example 2. 例3の物品の反射率を測定したスペクトルチャートである。10 is a spectrum chart obtained by measuring the reflectance of the article of Example 3. 例4の物品の反射率を測定したスペクトルチャートである。10 is a spectrum chart obtained by measuring the reflectance of the article of Example 4. 例5の物品の反射率を測定したスペクトルチャートである。10 is a spectrum chart obtained by measuring the reflectance of the article of Example 5. 例6の物品の反射率を測定したスペクトルチャートである。10 is a spectrum chart obtained by measuring the reflectance of the article of Example 6. 例7の物品の反射率を測定したスペクトルチャートである。10 is a spectrum chart obtained by measuring the reflectance of the article of Example 7. 例8の物品の反射率を測定したスペクトルチャートである。10 is a spectrum chart obtained by measuring the reflectance of the article of Example 8. 例9の物品の反射率を測定したスペクトルチャートである。10 is a spectrum chart obtained by measuring the reflectance of the article of Example 9. 例10の物品の反射率を測定したスペクトルチャートである。12 is a spectrum chart obtained by measuring the reflectance of the article of Example 10.
 図1は、本発明の物品の一例を示す断面図である。
 物品10は、透明基材12と、透明基材12の表面に形成された低反射膜14と、を有する。
FIG. 1 is a cross-sectional view showing an example of the article of the present invention.
The article 10 includes a transparent substrate 12 and a low reflection film 14 formed on the surface of the transparent substrate 12.
(透明基材)
 透明基材における透明とは、400~1200nmの波長領域の光を平均して80%以上透過することを意味する。
 透明基材12の形状としては、板、フィルム等が挙げられる。
 透明基材12の表面には、アルカリバリア層等の低反射膜以外の層があらかじめ形成されていてもよい。
(Transparent substrate)
The transparency in the transparent substrate means that 80% or more of light in the wavelength region of 400 to 1200 nm is transmitted on average.
Examples of the shape of the transparent substrate 12 include a plate and a film.
On the surface of the transparent substrate 12, a layer other than the low reflection film such as an alkali barrier layer may be formed in advance.
 透明基材12の材料としては、ガラス、樹脂等が挙げられる。
 ガラスとしては、たとえば、ソーダライムガラス、ホウケイ酸ガラス、アルミノケイ酸塩ガラス、無アルカリガラス等が挙げられる。また、ガラスとしては、フロート法等により成形された平滑なガラスであってもよく、表面に凹凸を有する型板ガラスであってもよい。また、ガラスの場合、物理強化もしくは化学強化等の表面処理がなされていてもよい。
 樹脂としては、ポリエチレンテレフタレート、ポリカーボネート、トリアセチルセルロース、ポリメタクリル酸メチル等が挙げられる。
Examples of the material of the transparent substrate 12 include glass and resin.
Examples of the glass include soda lime glass, borosilicate glass, aluminosilicate glass, and alkali-free glass. Moreover, as glass, the smooth glass shape | molded by the float method etc. may be sufficient and the template glass which has an unevenness | corrugation on the surface may be sufficient. In the case of glass, surface treatment such as physical strengthening or chemical strengthening may be performed.
Examples of the resin include polyethylene terephthalate, polycarbonate, triacetyl cellulose, polymethyl methacrylate, and the like.
 物品10が建築用または車両用の窓ガラスの場合、透明基材12は、酸化物基準の質量百分率表示(以下、「質量百分率表示」を単に「%」とも記載する。以下、同様。)で、下記の組成を有するソーダライムガラスが好ましい。
   SiO:65~75%、
   Al:0~10%、
   CaO:5~15%、
   MgO:0~15%、
   NaO:10~20%、
   KO:0~3%、
   LiO:0~5%、
   Fe:0~3%、
   TiO:0~5%、
   CeO:0~3%、
   BaO:0~5%、
   SrO:0~5%、
   B:0~15%、
   ZnO:0~5%、
   ZrO:0~5%、
   SnO:0~3%、
   SO:0~0.5%。
When the article 10 is an architectural or vehicle window glass, the transparent substrate 12 is expressed in terms of an oxide-based mass percentage (hereinafter, “mass percentage display” is also simply referred to as “%”; hereinafter the same). Soda lime glass having the following composition is preferred.
SiO 2 : 65 to 75%,
Al 2 O 3 : 0 to 10%,
CaO: 5-15%,
MgO: 0 to 15%,
Na 2 O: 10-20%,
K 2 O: 0 to 3%,
Li 2 O: 0 to 5%,
Fe 2 O 3 : 0 to 3%,
TiO 2 : 0 to 5%,
CeO 2 : 0 to 3%
BaO: 0-5%,
SrO: 0-5%
B 2 O 3 : 0 to 15%,
ZnO: 0 to 5%,
ZrO 2 : 0 to 5%,
SnO 2 : 0 to 3%
SO 3 : 0 to 0.5%.
 透明基材12が無アルカリガラスの場合、酸化物基準の質量百分率表示で、下記の組成を有するものが好ましい。
   SiO:39~70%、
   Al:3~25%、
   B:1~30%、
   MgO:0~10%、
   CaO:0~17%、
   SrO:0~20%、
   BaO:0~30%。
In the case where the transparent substrate 12 is alkali-free glass, those having the following composition in terms of oxide-based mass percentage are preferable.
SiO 2 : 39 to 70%,
Al 2 O 3 : 3 to 25%,
B 2 O 3 : 1-30%,
MgO: 0 to 10%,
CaO: 0 to 17%,
SrO: 0 to 20%,
BaO: 0-30%.
 透明基材12が混合アルカリ系ガラスの場合、酸化物基準の質量百分率表示で、下記の組成を有するものが好ましい。
   SiO:50~75%、
   Al:0~15%、
   MgO+CaO+SrO+BaO+ZnO:6~24%、
   NaO+KO:6~24%。
When the transparent substrate 12 is a mixed alkali glass, those having the following composition in terms of mass percentage based on oxide are preferable.
SiO 2 : 50 to 75%,
Al 2 O 3 : 0 to 15%,
MgO + CaO + SrO + BaO + ZnO: 6 to 24%,
Na 2 O + K 2 O: 6-24%.
 物品10が太陽電池用カバーガラスの場合、透明基材12は、表面に凹凸をつけた梨地模様の型板ガラスが好ましい。型板ガラスとしては、通常の窓ガラス等に用いられるソーダライムガラス(いわゆる青板ガラス:若干青味を帯びたソーダライムガラスの通称名)よりも鉄の成分比が少なく、透明度が高く、色味を帯びていない白板ガラスが好ましい。白板ガラスとは、厚みが4mmのガラス板に対する波長400~800nmの光の透過率が90%以上となるガラスである。 When the article 10 is a cover glass for a solar cell, the transparent substrate 12 is preferably a satin-patterned template glass with an uneven surface. As a template glass, the composition ratio of iron is less than the soda lime glass used in ordinary window glass (so-called blue plate glass: the so-called name of soda lime glass with a slight bluish tint). Non-white glass is preferred. White plate glass is a glass in which the transmittance of light having a wavelength of 400 to 800 nm with respect to a glass plate having a thickness of 4 mm is 90% or more.
(低反射膜)
 低反射膜14は、透明基材12側の下層16と、下層16の上に形成された上層18との2層からなる。
 下層16の屈折率は、1.40~1.44である。また、下層16の膜厚は、70~130nmである。上層18の屈折率は、1.17~1.30である。また、上層18の膜厚は、70~130nmである。下層16および上層18の屈折率と膜厚がそれぞれ前記範囲内であることで、反射率が低くなり、特に赤紫、青等の反射色が充分に低減される。
(Low reflective film)
The low reflection film 14 includes two layers, a lower layer 16 on the transparent substrate 12 side and an upper layer 18 formed on the lower layer 16.
The refractive index of the lower layer 16 is 1.40 to 1.44. The film thickness of the lower layer 16 is 70 to 130 nm. The refractive index of the upper layer 18 is 1.17 to 1.30. The thickness of the upper layer 18 is 70 to 130 nm. When the refractive index and the film thickness of the lower layer 16 and the upper layer 18 are within the above ranges, the reflectance is lowered, and particularly the reflected colors such as reddish purple and blue are sufficiently reduced.
 なお、本発明においては、低反射膜を構成する各層の屈折率nは、屈折率を求めたい層の単層膜を透明基材の表面に形成し、該単層膜について分光光度計で測定した波長380~780nmの範囲内における最小反射率(いわゆるボトム反射率)Rminと、透明基材の屈折率nsとから、下式(1)によって算出する。
   Rmin=(n-ns)/(n+ns) ・・・(1)。
In the present invention, the refractive index n of each layer constituting the low-reflection film is measured with a spectrophotometer on the surface of the transparent substrate formed by forming a single-layer film of the layer whose refractive index is desired. Based on the minimum reflectance (so-called bottom reflectance) Rmin in the wavelength range of 380 to 780 nm and the refractive index ns of the transparent base material, the following formula (1) is used.
Rmin = (n−ns) 2 / (n + ns) 2 (1).
 下層16の屈折率と上層18の屈折率との差は、0.10~0.27が好ましく、0.11~0.26が特に好ましい。屈折率の差が下限値以上であれば、入射角の大きい光の反射が充分に抑制される。屈折率の差が上限値以下であれば、下層16と上層18との界面における光の反射が充分に抑制される。 The difference between the refractive index of the lower layer 16 and the refractive index of the upper layer 18 is preferably 0.10 to 0.27, and particularly preferably 0.11 to 0.26. If the difference in refractive index is greater than or equal to the lower limit value, reflection of light having a large incident angle is sufficiently suppressed. If the difference in refractive index is less than or equal to the upper limit, light reflection at the interface between the lower layer 16 and the upper layer 18 is sufficiently suppressed.
(下層)
 下層16の屈折率は、1.40~1.44であり、1.40~1.43が好ましい。下層16の屈折率が前記範囲内であれば、反射率が低くなり、特に赤紫、青等の反射色が低減される。また、下層16の屈折率が下限値以上であれば、下層16の屈折率を下層16の空隙率によって調節する場合でも、下層16の空隙率を低くしやすい。これにより、透明基材12まで水分等が浸透しにくくなり、優れた耐候性が得られる。下層16の屈折率が上限値以下であれば、下層16の空隙率が低い場合に発生する透明基材12の反りを抑制しやすい。
(Underlayer)
The refractive index of the lower layer 16 is 1.40 to 1.44, preferably 1.40 to 1.43. When the refractive index of the lower layer 16 is within the above range, the reflectance is lowered, and particularly the reflection colors such as magenta and blue are reduced. Further, if the refractive index of the lower layer 16 is equal to or higher than the lower limit value, the porosity of the lower layer 16 can be easily lowered even when the refractive index of the lower layer 16 is adjusted by the porosity of the lower layer 16. Thereby, it becomes difficult for water | moisture content etc. to osmose | permeate to the transparent base material 12, and the outstanding weather resistance is obtained. If the refractive index of the lower layer 16 is less than or equal to the upper limit value, it is easy to suppress warping of the transparent substrate 12 that occurs when the porosity of the lower layer 16 is low.
 下層16の屈折率は、下層16の空隙率の調節、特定の屈折率を有する物質の下層16への添加によって調節できる。たとえば、下層16の空隙率を高くすることにより下層16の屈折率を低くすることができる。また、下層16に屈折率の低い物質を添加することで、下層16の屈折率を低くすることができる。
 前記屈折率の低い物質としては、たとえば、フッ化マグネシウム等のフッ素化合物が挙げられる。
The refractive index of the lower layer 16 can be adjusted by adjusting the porosity of the lower layer 16 or adding a substance having a specific refractive index to the lower layer 16. For example, the refractive index of the lower layer 16 can be lowered by increasing the porosity of the lower layer 16. Moreover, the refractive index of the lower layer 16 can be lowered by adding a substance having a low refractive index to the lower layer 16.
Examples of the substance having a low refractive index include fluorine compounds such as magnesium fluoride.
 下層16の膜厚は、70~130nmであり、70~120nmが好ましく、80~120nmが特に好ましい。下層16の膜厚が前記範囲内であれば、反射率が低くなり、特に赤紫、青等の反射色が低減される。また、下層16の膜厚が下限値以上であれば、透明基材12まで水分等が浸透しにくくなり、優れた耐候性が得られる。下層16の膜厚が上限値以下であれば、波長が400~1200nmの光の反射率を低く抑えることができる。
 下層16の膜厚は、実施例に記載の方法で測定される。
The film thickness of the lower layer 16 is 70 to 130 nm, preferably 70 to 120 nm, and particularly preferably 80 to 120 nm. When the film thickness of the lower layer 16 is within the above range, the reflectance is lowered, and particularly the reflection colors such as magenta and blue are reduced. Moreover, if the film thickness of the lower layer 16 is more than a lower limit, it will become difficult to permeate | transmit moisture etc. to the transparent base material 12, and the outstanding weather resistance will be obtained. If the film thickness of the lower layer 16 is not more than the upper limit value, the reflectance of light having a wavelength of 400 to 1200 nm can be kept low.
The film thickness of the lower layer 16 is measured by the method described in the examples.
 下層16は、独立した空孔を有し、かつ上層18から透明基材12にわたって連通した空孔を有さないこと、すなわち上層18から透明基材12の間が空隙でつながっていないことが好ましい。連通化した空孔の有無は、下層の断面を走査型電子顕微鏡で観察することで確認できる。下層16における空孔が、上層18から透明基材12にわたって連通した空孔ではなく、ほとんどが独立した空孔であれば、透明基材12まで水分等が浸透しにくくなり、優れた耐候性が得られる。特に透明基材12がガラスの場合に、水分によってガラスからアルカリが溶出して低反射膜14が劣化することを抑制しやすい。 The lower layer 16 preferably has independent pores and does not have pores communicating from the upper layer 18 to the transparent substrate 12, that is, the upper layer 18 and the transparent substrate 12 are preferably not connected by a gap. . The presence or absence of the communicated vacancy can be confirmed by observing the lower section with a scanning electron microscope. If the pores in the lower layer 16 are not pores communicating from the upper layer 18 to the transparent base material 12 but are almost independent pores, moisture or the like hardly penetrates to the transparent base material 12 and has excellent weather resistance. can get. In particular, when the transparent substrate 12 is glass, it is easy to suppress deterioration of the low reflection film 14 due to the elution of alkali from the glass due to moisture.
 下層16の空孔の平均空孔径は、10~100nmが好ましく、20~70nmがより好ましい。前記空孔の平均空孔径が下限値以上であれば、下層16の屈折率を1.44以下にしやすい。空孔の平均空孔径が上限値以下であれば、透明基材12まで水分等が浸透しにくくなり、優れた耐候性が得られる。
 下層の空孔の平均空孔径は、下層の断面を走査型電子顕微鏡で観察して得られる像から計測した100個の空孔の直径を平均することで求められる。
The average pore diameter of the pores in the lower layer 16 is preferably 10 to 100 nm, and more preferably 20 to 70 nm. If the average hole diameter of the holes is equal to or greater than the lower limit value, the refractive index of the lower layer 16 is easily set to 1.44 or less. If the average pore diameter of the pores is not more than the upper limit value, moisture or the like hardly penetrates to the transparent substrate 12, and excellent weather resistance is obtained.
The average pore diameter of the lower layer pores can be obtained by averaging the diameters of 100 pores measured from an image obtained by observing the cross section of the lower layer with a scanning electron microscope.
 下層16の空隙率は、透明基材12まで水分等が浸透しにくくなり、優れた耐候性が得られる点から、15体積%未満が好ましく、13体積%以下が特に好ましい。下層16の空隙率は、下層16の屈折率を1.44以下にしやすい点から、2体積%以上が好ましく、4体積%以上が特に好ましい。
 空隙率は、実施例に記載の方法により算出できる。
The porosity of the lower layer 16 is preferably less than 15% by volume and particularly preferably 13% by volume or less from the viewpoint that moisture or the like hardly penetrates to the transparent substrate 12 and excellent weather resistance is obtained. The porosity of the lower layer 16 is preferably 2% by volume or more, and particularly preferably 4% by volume or more, from the viewpoint that the refractive index of the lower layer 16 can easily be 1.44 or less.
The porosity can be calculated by the method described in the examples.
 下層16としては、比較的屈折率が低く、化学的安定性に優れ、ガラスとの密着性に優れる点から、SiOを主成分とする層が好ましく、実質的にSiOからなる層が特に好ましい。
 本発明においては、SiOを主成分とする層とは、SiOの割合が層全体(100質量%)のうち90質量%以上であることを意味する。実質的にSiOからなる層とは、不可避不純物を除いてSiOのみから構成されている層を意味する。
As the lower layer 16, a layer mainly composed of SiO 2 is preferable from the viewpoint of relatively low refractive index, excellent chemical stability, and excellent adhesion to glass, and a layer substantially composed of SiO 2 is particularly preferable. preferable.
In the present invention, the layer containing SiO 2 as a main component means that the proportion of SiO 2 is 90% by mass or more of the entire layer (100% by mass). The layer substantially composed of SiO 2 means a layer composed only of SiO 2 excluding inevitable impurities.
 下層16は、SiO微粒子およびマトリックスから構成されていることが好ましい。
 下層16に用いるSiO微粒子としては、中空SiO微粒子、中実SiO微粒子が挙げられる。下層16に用いるSiO微粒子としては、独立した空孔を有し、かつ上層18から透明基材12にわたって連通した空孔を有さない下層16を形成できる点から、中空SiO微粒子が好ましい。
The lower layer 16 is preferably composed of SiO 2 fine particles and a matrix.
Examples of the SiO 2 fine particles used for the lower layer 16 include hollow SiO 2 fine particles and solid SiO 2 fine particles. The SiO 2 fine particles used for the lower layer 16 are preferably hollow SiO 2 fine particles because they can form the lower layer 16 having independent pores and not having pores communicating from the upper layer 18 to the transparent substrate 12.
 中空SiO微粒子は、各粒子が独立した状態で存在していてもよく、各粒子が鎖状に連結していてもよく、各粒子が凝集していてもよい。なかでも、中空SiO微粒子としては、各粒子が独立で存在している状態が、連通化した空孔の抑制の観点から好ましい。
 中空SiO微粒子の平均一次粒子径は、5~150nmが好ましく、50~100nmがより好ましい。中空SiO微粒子の平均一次粒子径が下限値以上であれば、低反射膜14の反射率が充分に低くなる。中空SiO微粒子の平均一次粒子径が上限値以下であれば、低反射膜14のヘイズが低く抑えられる。
In the hollow SiO 2 fine particles, each particle may exist in an independent state, each particle may be linked in a chain shape, or each particle may be aggregated. Among them, as the hollow fine SiO 2 particles, a state where the particles are present independently from the viewpoint of suppression of the communication Tonghua the pores.
The average primary particle diameter of the hollow SiO 2 fine particles is preferably 5 to 150 nm, more preferably 50 to 100 nm. If the average primary particle diameter of the hollow SiO 2 fine particles is equal to or greater than the lower limit value, the reflectance of the low reflective film 14 is sufficiently low. If the average primary particle diameter of the hollow SiO 2 fine particles is not more than the upper limit value, the haze of the low reflective film 14 can be suppressed low.
 中実SiO微粒子は、各粒子が独立した状態で存在していてもよく、各粒子が鎖状に連結していてもよく、各粒子が凝集していてもよい。
 中実SiO微粒子の平均一次粒子径は、5~150nmが好ましく、50~100nmがより好ましい。中実SiO微粒子の平均一次粒子径が下限値以上であれば、低反射膜14の反射率が充分に低くなる。中実SiO微粒子の平均一次粒子径が上限値以下であれば、低反射膜14のヘイズが低く抑えられる。
In the solid SiO 2 fine particles, each particle may exist in an independent state, each particle may be linked in a chain shape, or each particle may be aggregated.
The average primary particle diameter of the solid SiO 2 fine particles is preferably 5 to 150 nm, more preferably 50 to 100 nm. If the average primary particle diameter of the solid SiO 2 fine particles is not less than the lower limit value, the reflectance of the low reflective film 14 is sufficiently low. If the average primary particle diameter of the solid SiO 2 fine particles is not more than the upper limit value, the haze of the low reflective film 14 can be suppressed low.
 微粒子の平均一次粒子径は、電子顕微鏡写真から100個の微粒子を無作為に選び出し、各微粒子の粒子径を測定し、100個の微粒子の粒子径を平均して求める。 The average primary particle size of the fine particles is obtained by randomly selecting 100 fine particles from an electron micrograph, measuring the particle size of each fine particle, and averaging the particle sizes of the 100 fine particles.
 マトリックスとしては、アルコキシシランの加水分解物(ゾルゲルシリカ)の焼成物、シラザンの焼成物等が挙げられる。
 マトリックスとしては、アルコキシシランの加水分解物の焼成物が好ましい。
 アルコキシシランの加水分解に用いる触媒としては、SiO微粒子の分散を妨げないものが好ましい。
Examples of the matrix include a calcined product of an alkoxysilane hydrolyzate (sol-gel silica), a silazane calcined product, and the like.
As the matrix, a calcined product of a hydrolyzate of alkoxysilane is preferable.
As a catalyst used for hydrolysis of alkoxysilane, a catalyst that does not hinder the dispersion of SiO 2 fine particles is preferable.
 アルコキシシランとしては、テトラアルコキシシラン(テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン等。)、パーフルオロポリエーテル基を有するアルコキシシラン(パーフルオロポリエーテルトリエトキシシラン等。)、パーフルオロアルキル基を有するアルコキシシラン(パーフルオロエチルトリエトキシシラン等。)、ビニル基を有するアルコキシシラン(ビニルトリメトキシシラン、ビニルトリエトキシシラン等。)、エポキシ基を有するアルコキシシラン(2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン等。)、アクリロイルオキシ基を有するアルコキシシラン(3-アクリロイルオキシプロピルトリメトキシシラン等。)等が挙げられる。 Examples of the alkoxysilane include tetraalkoxysilane (tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, etc.), alkoxysilane having a perfluoropolyether group (perfluoropolyether triethoxysilane, etc.), perfluorosilane. Alkoxysilanes having a fluoroalkyl group (perfluoroethyltriethoxysilane, etc.), alkoxysilanes having a vinyl group (vinyltrimethoxysilane, vinyltriethoxysilane, etc.), alkoxysilanes having an epoxy group (2- (3, 4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysila Etc..) Acryloyloxy group alkoxysilane (3-acryloyloxypropyltrimethoxysilane having like.) And the like.
 アルコキシシランの加水分解は、テトラアルコキシシランの場合、アルコキシシランの4倍モル以上の水、および触媒として酸またはアルカリを用いて行う。
 酸としては、無機酸(硝酸、硫酸、塩酸等。)、有機酸(ギ酸、シュウ酸、モノクロル酢酸、ジクロル酢酸、トリクロル酢酸等。)が挙げられる。アルカリとしては、アンモニア、水酸化ナトリウム、水酸化カリウム等が挙げられる。触媒としては、アルコキシシランの加水分解物の長期保存性の点から、酸が好ましい。
In the case of tetraalkoxysilane, hydrolysis of the alkoxysilane is carried out using 4 times or more moles of water of the alkoxysilane and an acid or alkali as a catalyst.
Examples of the acid include inorganic acids (such as nitric acid, sulfuric acid, and hydrochloric acid) and organic acids (such as formic acid, oxalic acid, monochloroacetic acid, dichloroacetic acid, and trichloroacetic acid). Examples of the alkali include ammonia, sodium hydroxide, potassium hydroxide and the like. The catalyst is preferably an acid from the viewpoint of long-term storage stability of the hydrolyzate of alkoxysilane.
 下層16に中空SiO微粒子を用いる場合、下層を形成するための下層用塗布液中の中空SiO微粒子の平均凝集粒子径(90%体積平均値)(d1)に対する、中空SiO微粒子の平均一次粒子径(d2)の比(d2/d1)は、0.5以上が好ましく、0.52以上が特に好ましい。前記比(d2/d1)が下限値以上であれば、優れた耐候性が得られ、透明基材がガラスの場合でも、水分によってガラスからアルカリが溶出して低反射膜が劣化することを抑制しやすい。
 塗布液中の中空SiO微粒子の平均凝集粒子径(d1)は、実施例に記載の方法で測定される。
If the lower layer 16 using a hollow fine SiO 2 particles, to the average agglomerated particle size of the hollow fine SiO 2 particles in the lower layer coating liquid for forming a lower layer (90% volume average) (d1), the average of the hollow fine SiO 2 particles The ratio (d2 / d1) of the primary particle diameter (d2) is preferably 0.5 or more, particularly preferably 0.52 or more. If the ratio (d2 / d1) is equal to or greater than the lower limit, excellent weather resistance can be obtained, and even when the transparent substrate is glass, alkali is eluted from the glass due to moisture and the low reflective film is prevented from deteriorating. It's easy to do.
The average aggregate particle diameter (d1) of the hollow SiO 2 fine particles in the coating solution is measured by the method described in the examples.
 酸を触媒として得たアルコキシシランの加水分解物を用いて下層16を形成する場合、下層16は、酸濃度が50~200質量ppmの下層用塗布液で形成されることが好ましく、酸濃度が50~100質量ppmの下層用塗布液で形成されることが特に好ましい。また、前記酸濃度が下限値以上であれば、アルコキシシランの加水分解が充分に進行する。前記酸濃度が上限値以下であれば、前記比(d2/d1)を0.5以上にしやすい。これにより、優れた耐候性を有する低反射膜を形成でき、透明基材がガラスの場合でも、水分によってガラスからアルカリが溶出して低反射膜が劣化することを抑制しやすい。 When the lower layer 16 is formed using the hydrolyzate of alkoxysilane obtained using an acid as a catalyst, the lower layer 16 is preferably formed of a lower layer coating solution having an acid concentration of 50 to 200 ppm by mass. It is particularly preferable that the lower layer coating solution is 50 to 100 ppm by mass. Moreover, if the said acid concentration is more than a lower limit, hydrolysis of alkoxysilane will fully advance. If the acid concentration is less than or equal to the upper limit value, the ratio (d2 / d1) is likely to be 0.5 or more. Thereby, a low reflective film having excellent weather resistance can be formed, and even when the transparent base material is glass, it is easy to suppress deterioration of the low reflective film due to alkali elution from the glass due to moisture.
(上層)
 上層18の屈折率は、1.17~1.30であり、1.17~1.29が好ましく、1.17~1.27が特に好ましい。上層18の屈折率が前記範囲内であれば、反射率が低くなり、特に赤紫、青等の反射色が低減される。また、上層18の屈折率が下限値以上であれば、上層18が疎になりすぎず、優れた耐久性が得られる。上層18の屈折率が上限値以下であれば、低反射膜14の反射率を低くできる。
 上層18の屈折率は、下層16の屈折率と同様に、空隙率の調節、特定の屈折率を有する物質の添加によって調節できる。
(Upper layer)
The refractive index of the upper layer 18 is 1.17 to 1.30, preferably 1.17 to 1.29, and particularly preferably 1.17 to 1.27. If the refractive index of the upper layer 18 is within the above range, the reflectance will be low, and in particular, the reflection colors such as reddish purple and blue will be reduced. Moreover, if the refractive index of the upper layer 18 is more than a lower limit, the upper layer 18 will not become sparse too much and the outstanding durability will be obtained. If the refractive index of the upper layer 18 is not more than the upper limit value, the reflectance of the low reflective film 14 can be lowered.
Similar to the refractive index of the lower layer 16, the refractive index of the upper layer 18 can be adjusted by adjusting the porosity and adding a substance having a specific refractive index.
 上層18の膜厚は、70~130nmであり、70~120nmが好ましく、70~110nmが特に好ましい。上層18の膜厚が前記範囲内であれば、反射率が低くなり、特に赤紫、青等の反射色が抑制される。また、上層18の膜厚が上限値以下であれば、実用的な耐摩耗性が確保できる。
 上層18の膜厚は、実施例に記載の方法で測定される。
The film thickness of the upper layer 18 is 70 to 130 nm, preferably 70 to 120 nm, and particularly preferably 70 to 110 nm. When the film thickness of the upper layer 18 is within the above range, the reflectance is lowered, and particularly the reflection colors such as reddish purple and blue are suppressed. Moreover, if the film thickness of the upper layer 18 is not more than the upper limit value, practical wear resistance can be ensured.
The film thickness of the upper layer 18 is measured by the method described in the examples.
 上層18としては、比較的屈折率が低く、化学的安定性に優れ、下層16との密着性に優れる点から、SiOを主成分とする層が好ましく、実質的にSiOからなる層が特に好ましい。
 上層18は、SiO微粒子およびマトリックスから構成されていることが好ましい。
 上層18に用いるSiO微粒子としては、中空SiO微粒子、中実SiO微粒子が挙げられる。上層18に用いるSiO微粒子としては、コスト面で優れる点から、中実SiO微粒子が好ましい。
As the upper layer 18, a layer mainly composed of SiO 2 is preferable from the viewpoint of relatively low refractive index, excellent chemical stability, and excellent adhesion to the lower layer 16, and a layer substantially composed of SiO 2 is preferable. Particularly preferred.
The upper layer 18 is preferably composed of SiO 2 fine particles and a matrix.
Examples of the SiO 2 fine particles used for the upper layer 18 include hollow SiO 2 fine particles and solid SiO 2 fine particles. As the SiO 2 fine particles used for the upper layer 18, solid SiO 2 fine particles are preferable from the viewpoint of cost.
 上層18に用いる中空SiO微粒子、中実SiO微粒子およびマトリックスとしては、たとえば、下層16において挙げたものと同じものが挙げられる。 Examples of the hollow SiO 2 fine particles, the solid SiO 2 fine particles, and the matrix used for the upper layer 18 include the same as those mentioned in the lower layer 16.
(物品の製造方法)
 本発明の物品の製造方法としては、たとえば、透明基材の上に、低反射膜の各層を形成するための塗布液を順次、塗布し、必要に応じて予熱し、最後に焼成する方法が挙げられる。本発明において、焼成とは、透明基材面上に塗布液を塗布することによって得られた塗布膜を加熱して硬化処理することも含むものとする。
 塗布液としては、SiO微粒子の分散液とマトリックス前駆体の溶液(アルコキシシランの加水分解物の溶液、シラザンの溶液等。)との混合物等が挙げられる。
(Product manufacturing method)
As a method for producing the article of the present invention, for example, a coating solution for forming each layer of a low reflection film is sequentially applied on a transparent substrate, preheated as necessary, and finally fired. Can be mentioned. In the present invention, firing includes heating and curing a coating film obtained by coating a coating solution on the transparent substrate surface.
Examples of the coating solution include a mixture of a dispersion of SiO 2 fine particles and a matrix precursor solution (a solution of an alkoxysilane hydrolyzate, a silazane solution, etc.).
 SiO微粒子の分散液の分散媒としては、水、アルコール類、ケトン類、エーテル類、セロソルブ類、エステル類、グリコールエーテル類、含窒素化合物、含硫黄化合物等が挙げられる。
 アルコキシシランの加水分解物の溶液の溶媒としては、水とアルコール類(メタノール、エタノール、イソプロパノール、ブタノール、ジアセトンアルコール等。)との混合溶媒が好ましい。
Examples of the dispersion medium for the dispersion of SiO 2 fine particles include water, alcohols, ketones, ethers, cellosolves, esters, glycol ethers, nitrogen-containing compounds, and sulfur-containing compounds.
As a solvent of the alkoxysilane hydrolyzate solution, a mixed solvent of water and alcohols (methanol, ethanol, isopropanol, butanol, diacetone alcohol, etc.) is preferable.
 塗布液は、添加剤を含んでいてもよい。
 添加剤としては、反射率を低減するためのテルペン誘導体、レベリング性向上のための界面活性剤、塗膜の耐久性向上のための金属化合物等が挙げられる。
The coating liquid may contain an additive.
Examples of the additive include a terpene derivative for reducing reflectance, a surfactant for improving leveling properties, and a metal compound for improving durability of a coating film.
 テルペンとは、イソプレン(C)を構成単位とする(C(ただし、kは1以上の整数である。)の組成の炭化水素を意味する。テルペン誘導体とは、テルペンから誘導される官能基を有するテルペン類を意味する。テルペン誘導体は、不飽和度を異にするものも包含する。
 テルペン誘導体としては、テルペンアルコール(α-テルピネオール、テルピネン4-オール、L-メントール、(±)シトロネロール、ミルテノール、ネロール、ボルネオール、ファルネソール、フィトール等。)、テルペンアルデヒド(シトラール、β-シクロシトラール、ペリラアルデヒド等。)、テルペンケトン((±)しょうのう、β-ヨノン等。)、テルペンカルボン酸(シトロネル酸、アビエチン酸等。)、テルペンエステル(酢酸テルピニル、酢酸メンチル等。)等が挙げられる。
The terpene means a hydrocarbon having a composition of (C 5 H 8 ) k (where k is an integer of 1 or more) having isoprene (C 5 H 8 ) as a structural unit. The terpene derivative means terpenes having a functional group derived from terpene. Terpene derivatives include those with different degrees of unsaturation.
Terpene derivatives include terpene alcohols (α-terpineol, terpinene 4-ol, L-menthol, (±) citronellol, myrtenol, nerol, borneol, farnesol, phytol, etc.), terpene aldehyde (citral, β-cyclocitral, Perylaldehyde, etc.), terpene ketones ((±) camphor, β-ionone, etc.), terpene carboxylic acids (citronellic acid, abietic acid, etc.), terpene esters (terpinyl acetate, menthyl acetate, etc.) and the like. It is done.
 界面活性剤としては、シリコーンオイル系、アクリル系等が挙げられる。
 金属化合物としては、ジルコニウムキレート化合物、チタンキレート化合物、アルミニウムキレート化合物が好ましい。ジルコニウムキレート化合物としては、ジルコニウムテトラアセチルアセトナート、ジルコニウムトリブトキシステアレート等が挙げられる。
Examples of the surfactant include silicone oil and acrylic.
As a metal compound, a zirconium chelate compound, a titanium chelate compound, and an aluminum chelate compound are preferable. Examples of the zirconium chelate compound include zirconium tetraacetylacetonate and zirconium tributoxy systemate.
 塗布液の塗布方法としては、公知のウェットコート法を採用できる。
 ウェットコート法としては、スピンコート法、スプレーコート法、ディップコート法、ダイコート法、カーテンコート法、スクリーンコート法、インクジェット法、フローコート法、グラビアコート法、バーコート法、フレキソコート法、スリットコート法、ロールコート法等が挙げられる。
As a coating method of the coating solution, a known wet coating method can be employed.
Wet coating methods include spin coating, spray coating, dip coating, die coating, curtain coating, screen coating, inkjet coating, flow coating, gravure coating, bar coating, flexo coating, and slit coating. Method, roll coat method and the like.
 下層の形成に中空SiO微粒子を用いる場合、前記比(d2/d1)が前記範囲内となるような下層用塗布液を用いることが好ましい。
 アルコキシシランの加水分解物を得る際に触媒として酸を用いる場合、下層用塗布液中の酸濃度は、50~200質量ppmが好ましく、50~100質量ppmが特に好ましい。
When hollow SiO 2 fine particles are used for forming the lower layer, it is preferable to use a lower layer coating solution in which the ratio (d2 / d1) is within the above range.
When an acid is used as a catalyst when obtaining a hydrolyzate of alkoxysilane, the acid concentration in the lower layer coating solution is preferably 50 to 200 ppm by mass, and particularly preferably 50 to 100 ppm by mass.
 塗布温度は、室温~80℃が好ましく、室温~60℃がより好ましい。
 焼成温度は、30℃以上が好ましく、透明基材、微粒子またはマトリックスの材料に応じて適宜決定すればよい。
The coating temperature is preferably room temperature to 80 ° C., more preferably room temperature to 60 ° C.
The firing temperature is preferably 30 ° C. or higher, and may be appropriately determined according to the material of the transparent substrate, fine particles or matrix.
 たとえば、透明基材の材料が樹脂の場合、焼成温度は樹脂の耐熱温度以下になる。この場合でも、得られた物品は充分な反射防止効果を有する。
 また、透明基材がガラスの場合、焼成温度は200℃以上、ガラスの軟化点温度以下が好ましい。焼成温度が200℃以上であれば、下層が緻密化して耐久性が向上する。焼成温度がガラスの軟化点温度以下(たとえば、800℃以下)であれば、低反射膜中の空孔が消失することなく、低反射膜の反射率が充分に低くなる。
For example, when the material of the transparent substrate is a resin, the firing temperature is equal to or lower than the heat resistant temperature of the resin. Even in this case, the obtained article has a sufficient antireflection effect.
Moreover, when a transparent base material is glass, baking temperature is 200 degreeC or more and below the softening point temperature of glass. When the firing temperature is 200 ° C. or higher, the lower layer is densified and the durability is improved. If the firing temperature is equal to or lower than the softening point temperature of glass (for example, 800 ° C. or lower), voids in the low reflection film are not lost, and the reflectance of the low reflection film is sufficiently low.
(作用効果)
 以上説明した本発明の物品にあっては、透明基材側から順に形成された、屈折率が1.40~1.44で膜厚が70~130nmの下層と、屈折率が1.17~1.30で膜厚が70~130nmの上層とからなる低反射膜を有するため、反射率が低く、特に赤紫、青等の反射色が充分に低減される。人間の目は青系の色に対する感度が高く、低反射膜に青系の反射色がわずかでもあると色味を感じやすい傾向がある。しかし、本発明の物品では、低反射膜を形成する下層の屈折率および膜厚と、上層の屈折率および膜厚とがそれぞれ特定の範囲に制御されることで、人間の目で感じやすい青系の色味が高度に抑制されている。
 また、本発明の物品にあっては、下層の屈折率が前記範囲であるため、下層が緻密であり、透明基材まで水分等が浸透しにくく、耐候性が良好である。
 また、本発明の物品にあっては、低反射膜が2層からなるため、3層以上の低反射膜に比べ摩擦耐久性が良好である。
(Function and effect)
In the article of the present invention described above, a lower layer having a refractive index of 1.40 to 1.44 and a film thickness of 70 to 130 nm formed in order from the transparent substrate side, and a refractive index of 1.17 to Since it has a low reflection film having a thickness of 1.30 and an upper layer of 70 to 130 nm, the reflectivity is low, and the reflected colors such as reddish purple and blue are sufficiently reduced. The human eye has a high sensitivity to blue colors, and if the low reflection film has a slight amount of blue reflection color, it tends to feel the color. However, in the article of the present invention, the refractive index and film thickness of the lower layer that forms the low reflection film and the refractive index and film thickness of the upper layer are controlled in specific ranges, respectively, so that the blue color that is easily perceived by human eyes. The color of the system is highly suppressed.
Moreover, in the article of the present invention, since the refractive index of the lower layer is in the above range, the lower layer is dense, moisture and the like hardly penetrate into the transparent substrate, and weather resistance is good.
Moreover, in the article of the present invention, since the low reflection film is composed of two layers, the friction durability is better than that of the three or more low reflection films.
 本発明の物品における低反射膜の5°入射の光に対する波長380~780nmの平均反射率は、0.7%以下であることが好ましい。また、本発明の物品では、波長380nmと780nmの光における5°入射の反射率がいずれも0.7%以下であって、かつ波長380nm~780nmの範囲の光における反射率の最大値(最大反射率)と最小値(最小反射率)の差が0.5%以下であることがより好ましく、前記差がそれぞれ0.3%以下であることがさらに好ましい。前記条件を満たせば人間の目で見たときに色味を感じにくい。 The average reflectance at a wavelength of 380 to 780 nm with respect to 5 ° incident light of the low reflection film in the article of the present invention is preferably 0.7% or less. In addition, in the article of the present invention, the reflectance at 5 ° incidence for light with a wavelength of 380 nm and 780 nm is 0.7% or less, and the maximum reflectance (maximum value for light with a wavelength in the range of 380 nm to 780 nm). The difference between the (reflectance) and the minimum value (minimum reflectance) is more preferably 0.5% or less, and each difference is more preferably 0.3% or less. If the above conditions are satisfied, it is difficult to feel the color when viewed with human eyes.
 本発明の物品は、車両用透明部品(たとえば、ヘッドライトカバー、サイドミラー、フロント透明基板、サイド透明基板、リア透明基板、インスツルメントパネル等。)、メータ、建築窓、ショーウインドウ、ディスプレイ(たとえば、ノート型パソコン、モニタ、LCD、PDP、ELD、CRT、PDA等。)、LCDカラーフィルタ、タッチパネル用基板、ピックアップレンズ、光学レンズ、眼鏡レンズ、カメラ部品、ビデオ部品、CCD用カバー基板、光ファイバ端面、プロジェクタ部品、複写機部品、太陽電池用カバーガラス、携帯電話窓、バックライトユニット部品(たとえば、導光板、冷陰極管等。)、バックライトユニット部品液晶輝度向上フィルム(たとえば、プリズム、半透過フィルム等。)、液晶輝度向上フィルム、有機EL発光素子部品、無機EL発光素子部品、蛍光体発光素子部品、光学フィルタ、光学部品の端面、照明ランプ、照明器具のカバー、増幅レーザー光源、反射防止フィルム、偏光フィルム、農業用フィルム等として有用である。なかでも、本発明の物品は、太陽電池用カバーガラスとして特に有用である。 Articles of the present invention include vehicle transparent parts (for example, headlight covers, side mirrors, front transparent substrates, side transparent substrates, rear transparent substrates, instrument panels, etc.), meters, architectural windows, show windows, displays ( For example, notebook computers, monitors, LCDs, PDPs, ELDs, CRTs, PDAs, etc.), LCD color filters, touch panel substrates, pickup lenses, optical lenses, eyeglass lenses, camera components, video components, CCD cover substrates, light Fiber end face, projector parts, copier parts, solar cell cover glass, mobile phone window, backlight unit parts (for example, light guide plate, cold cathode tube, etc.), backlight unit parts, liquid crystal brightness enhancement film (for example, prism, Translucent film, etc.), LCD brightness enhancement film Organic EL light-emitting element parts, inorganic EL light-emitting element parts, phosphor light-emitting element parts, optical filters, end faces of optical parts, illumination lamps, covers for lighting fixtures, amplified laser light sources, antireflection films, polarizing films, agricultural films, etc. Useful. Among these, the article of the present invention is particularly useful as a cover glass for solar cells.
 以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によっては限定されない。例1~2は実施例であり、例3~10は比較例である。
 各例における各種の測定方法および各種液、および各液の調整方法は、以下の通りである。
(微粒子の平均凝集粒子径)
 微粒子の平均凝集粒子径(90%体積平均値)は、動的光散乱法粒度分析計(日機装社製、マイクロトラックUPA)を用いて測定した。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by the following description. Examples 1 and 2 are examples, and examples 3 to 10 are comparative examples.
Various measurement methods and various liquids in each example, and adjustment methods of the respective liquids are as follows.
(Average aggregated particle size of fine particles)
The average aggregate particle diameter (90% volume average value) of the fine particles was measured using a dynamic light scattering particle size analyzer (manufactured by Nikkiso Co., Ltd., Microtrac UPA).
(屈折率)
 低反射膜の各層の屈折率nは、以下の方法で測定した。屈折率を求めたい層の単層膜を透明基材の表面に形成し、該透明基材における該単層膜と反対側の表面に黒のビニールテープを、気泡を含まないように貼り付けた。各々の単層膜の形成は、後述する例1~10における下層と上層の形成条件と同様の条件で行った。その後、分光光度計(大塚電子社製、瞬間マルチ測光システムMCPD-3000)により、波長300~780nmの範囲で前記単層膜の反射率を測定し、ボトム反射率Rminと前記透明基材の屈折率nsとから下式(1)によって算出した。
   Rmin=(n-ns)/(n+ns) ・・・(1)
(Refractive index)
The refractive index n of each layer of the low reflection film was measured by the following method. A single-layer film of a layer whose refractive index is desired to be obtained was formed on the surface of a transparent substrate, and a black vinyl tape was attached to the surface of the transparent substrate opposite to the single-layer film so as not to contain bubbles. . Each single-layer film was formed under the same conditions as those for forming the lower layer and the upper layer in Examples 1 to 10 described later. Thereafter, the reflectance of the single-layer film is measured in the wavelength range of 300 to 780 nm with a spectrophotometer (Otsuka Electronics Co., Ltd., instantaneous multi-photometry system MCPD-3000), and the bottom reflectance Rmin and the refractive index of the transparent substrate are measured. It calculated by the following formula (1) from the rate ns.
Rmin = (n−ns) 2 / (n + ns) 2 (1)
(透過率)
 低反射膜を有する物品の透過率(%)は、分光光度計(日本分光社製、V670)を用いて、波長400nm~1100nmにおける光について測定した。光の入射角度は5°とした。
 下式(2)から透過率差Tdを求めた。
   Td=T1-T2 ・・・(2)
 ただし、前記式中、T1は低反射膜を有する物品の透過率であり、T2は透明基材のみの透過率である。
(Transmittance)
The transmittance (%) of the article having a low reflection film was measured for light at a wavelength of 400 nm to 1100 nm using a spectrophotometer (manufactured by JASCO Corporation, V670). The incident angle of light was 5 °.
The transmittance difference Td was determined from the following equation (2).
Td = T1-T2 (2)
However, in the said formula, T1 is the transmittance | permeability of the articles | goods which have a low reflective film, and T2 is the transmittance | permeability of only a transparent base material.
(反射率)
 低反射膜を有する物品の反射率(%)は、以下の方法で測定した。反射率を求めたい2層膜を透明基材の表面に形成し、該透明基材における該2層膜と反対側の表面に黒のビニールテープを、気泡を含まないように貼り付けた。その後、分光光度計(大塚電子社製、瞬間マルチ測光システムMCPD-3000)を用いて、波長380nm~780nmにおける光について測定した。光の入射角度は5°とした。
(Reflectance)
The reflectance (%) of an article having a low reflection film was measured by the following method. A two-layer film whose reflectance is to be obtained was formed on the surface of the transparent substrate, and a black vinyl tape was attached to the surface of the transparent substrate opposite to the two-layer film so as not to contain bubbles. Thereafter, light at a wavelength of 380 nm to 780 nm was measured using a spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., instantaneous multi-photometry system MCPD-3000). The incident angle of light was 5 °.
(空隙率)
 低反射膜の下層の空隙率Pは、空気の屈折率を1、シリカの屈折率を1.46とし、前記式(1)によって算出した下層の屈折率nを用いて、下式(3)によって算出した。
   P=(1.46-n)/0.46×100 ・・・(3)
(Porosity)
The porosity P of the lower layer of the low reflection film is expressed by the following formula (3) using the refractive index n of the lower layer calculated by the above formula (1), where the refractive index of air is 1 and the refractive index of silica is 1.46. Calculated by
P = (1.46-n) /0.46×100 (3)
(膜厚)
 低反射膜の各層の膜厚d(nm)は、膜厚を求めたい層の屈折率nとボトム反射率Rminにおける波長λ(nm)とから下式(4)によって算出した。
   n×d=λ/4 ・・・(4)
(Film thickness)
The film thickness d (nm) of each layer of the low reflection film was calculated by the following equation (4) from the refractive index n and the wavelength λ (nm) at the bottom reflectivity Rmin of the layer whose thickness is to be obtained.
n × d = λ / 4 (4)
(外観)
 低反射膜を有する物品の外観色調を目視にて観察し、下記の基準にて評価した。
  ○:低反射膜の反射色がニュートラルで目立たない。
  △:低反射膜の反射色がやや目立つ。
  ×:低反射膜の反射色がかなり目立つ。
(appearance)
The appearance color tone of the article having the low reflection film was visually observed and evaluated according to the following criteria.
○: The reflection color of the low reflection film is neutral and unnoticeable.
Δ: The reflection color of the low reflection film is slightly conspicuous.
X: The reflection color of the low reflection film is very conspicuous
(マトリックス前駆体の溶液(α-1)の調製)
 変性エタノール(日本アルコール販売社製、ソルミックスAP-11(商品名)、エタノールを主剤とした混合溶媒。以下同様。)の80.4gを撹拌しながら、これにイオン交換水の11.9gと61質量%硝酸の0.1gとの混合液を加え、5分間撹拌した。これに、テトラエトキシシラン(SiO換算固形分濃度:29質量%)の7.6gを加え、室温で30分間撹拌し、SiO換算固形分濃度が2.2質量%のマトリックス前駆体の溶液(α-1)を調製した。
 なお、SiO換算固形分濃度は、テトラエトキシシランのすべてのSiがSiOに転化したときの固形分濃度である。
(Preparation of matrix precursor solution (α-1))
While stirring 80.4 g of denatured ethanol (manufactured by Nippon Alcohol Sales Co., Ltd., Solmix AP-11 (trade name), ethanol-based mixed solvent; the same shall apply hereinafter), 11.9 g of ion-exchanged water and A mixed solution of 61 mass% nitric acid with 0.1 g was added and stirred for 5 minutes. To this, 7.6 g of tetraethoxysilane (SiO 2 equivalent solid content concentration: 29% by mass) was added and stirred at room temperature for 30 minutes, and the solution of the matrix precursor having a SiO 2 equivalent solid content concentration of 2.2% by mass. (Α-1) was prepared.
Incidentally, SiO 2 in terms of solid concentration is a solid content concentration when all Si of tetraethoxysilane was converted to SiO 2.
(マトリックス前駆体の溶液(α-2)の調製)
 変性エタノールの77.6gを撹拌しながら、これにイオン交換水の11.9gと61質量%硝酸の0.1gとの混合液を加え、5分間撹拌した。これに、テトラエトキシシラン(SiO換算固形分濃度:29質量%)の10.4gを加え、室温で30分間撹拌し、SiO換算固形分濃度が3.0質量%のマトリックス前駆体の溶液(α-2)を調製した。
(Preparation of matrix precursor solution (α-2))
While stirring 77.6 g of denatured ethanol, a mixture of 11.9 g of ion-exchanged water and 0.1 g of 61% by mass nitric acid was added thereto and stirred for 5 minutes. To this, 10.4 g of tetraethoxysilane (SiO 2 equivalent solid content concentration: 29% by mass) is added and stirred at room temperature for 30 minutes, and the solution of the matrix precursor having a SiO 2 equivalent solid content concentration of 3.0% by mass. (Α-2) was prepared.
(中空SiO微粒子分散液(β))
 日揮触媒化成工業社製、スルーリア4110(商品名)、SiO換算固形分濃度:20.5質量%、平均一次粒子径:60nm。
(Hollow SiO 2 fine particle dispersion (β))
JGC Catalysts & Chemicals, Sululia 4110 (trade name), solid content concentration in terms of SiO 2 : 20.5% by mass, average primary particle size: 60 nm.
(鎖状中実SiO微粒子分散液(γ))
 日産化学工業社製、スノーテックス OUP(商品名)、SiO換算固形分濃度:15.5質量%、平均一次粒子径:10~20nm、平均凝集粒子径:40~100nm。
(Chain solid SiO 2 fine particle dispersion (γ))
Manufactured by Nissan Chemical Industries, Snowtex OUP (trade name), solid content concentration in terms of SiO 2 : 15.5% by mass, average primary particle size: 10 to 20 nm, average aggregated particle size: 40 to 100 nm.
(下層用塗布液(A)の調製)
 マトリックス前駆体の溶液(α-1)をそのまま用いて、SiO換算固形分濃度が2.2質量%の下層用塗布液(A)を調整した。
(Preparation of coating solution for lower layer (A))
Using the matrix precursor solution (α-1) as it was, a lower layer coating solution (A) having a SiO 2 equivalent solid content concentration of 2.2 mass% was prepared.
(下層用塗布液(B)の調製)
 マトリックス前駆体の溶液(α-1)の93.0gを撹拌しながら、これに変性エタノールの6.2g、中空SiO微粒子分散液(β)の0.8gを加え、SiO換算固形分濃度が2.2質量%の下層用塗布液(B)を調製した。
(Preparation of lower layer coating solution (B))
While stirring 93.0 g of the matrix precursor solution (α-1), 6.2 g of denatured ethanol and 0.8 g of the hollow SiO 2 fine particle dispersion (β) were added thereto, and the solid content concentration in terms of SiO 2 was added. Was 2.2% by mass of the lower layer coating solution (B).
(下層用塗布液(C)および(D)の調製)
 組成を表1に示すとおりに変更した以外は、下層用塗布液(B)と同様にして、SiO換算固形分濃度が2.2質量%の下層用塗布液(C)および(D)を調製した。
(Preparation of lower layer coating solutions (C) and (D))
Except for changing the composition as shown in Table 1, in the same manner as the lower layer coating solution (B), the lower layer coating solutions (C) and (D) having a SiO 2 equivalent solid content concentration of 2.2% by mass were used. Prepared.
(上層用塗布液(E)の調製)
 変性エタノールの10.8gを撹拌しながら、これにイソブチルアルコールの24.0g、ジアセトンアルコールの15.0g、β-ヨノンの1.0g、マトリックス前駆体の溶液(α-2)の37.0g、および鎖状中実SiO微粒子分散液(γ)の12.2gを加え、SiO換算固形分濃度が3.0質量%の上層用塗布液(E)を調製した。
(Preparation of upper layer coating solution (E))
While stirring 10.8 g of denatured ethanol, 24.0 g of isobutyl alcohol, 15.0 g of diacetone alcohol, 1.0 g of β-ionone, and 37.0 g of a solution of matrix precursor (α-2) were added thereto. And 12.2 g of the chain solid SiO 2 fine particle dispersion (γ) were added to prepare an upper layer coating liquid (E) having a solid content concentration of 3.0% by mass as SiO 2 .
(上層用塗布液(F)~(H)の調製)
 組成を表1に示すとおりに変更した以外は、上層用塗布液(E)と同様にして、SiO換算固形分濃度が3.0質量%の上層用塗布液(F)~(H)を調製した。
(Preparation of upper layer coating solutions (F) to (H))
Except for changing the composition as shown in Table 1, in the same manner as the upper layer coating solution (E), the upper layer coating solutions (F) to (H) having a SiO 2 equivalent solid content concentration of 3.0 mass% were used. Prepared.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔例1〕
 透明基材として、型板ガラス(旭硝子社製、Solite(商品名)、低鉄分のソーダライムガラス(白板ガラス)であって、梨地模様が形成された型板ガラス。サイズ:100mm×100mm、厚さ:3.2mm、屈折率:1.46。)を用意した。該型板ガラスの梨地面の表面を酸化セリウム水分散液で研磨し、水で酸化セリウムを洗い流した後、イオン交換水でリンスし、乾燥させた。
[Example 1]
As a transparent substrate, a template glass (manufactured by Asahi Glass Co., Ltd., Solite (trade name), soda lime glass (white plate glass) with a low iron content, on which a satin pattern is formed. Size: 100 mm × 100 mm, thickness: 3.2 mm, refractive index: 1.46). The surface of the pear ground of the template glass was polished with an aqueous cerium oxide dispersion, and the cerium oxide was washed away with water, then rinsed with ion-exchanged water and dried.
 前記型板ガラスを予熱炉(ISUZU社製、VTR-115)にて予熱し、ガラス面温が30℃に保温された状態にて、型板ガラスの梨地面上に、リバースロールコータ(三和精機社製)のコーティングロールによって下層用塗布液(C)を塗布した。塗布条件は、基材の搬送速度:8.5m/分に対して所定の膜厚になるようにコーティングロールの回転速度、ドクターロールの回転速度を変更した。またコーティングロールと搬送ベルトとのギャップを2.9mm、コーティングロールとドクターロールとの押込み厚を0.6mmとした。コーティングロールとしては、表面の硬度(JIS-A)が30のゴム(エチレンプロピレンジエンゴム)がライニングされたゴムライニングロールを用いた。ドクターロールとしては、格子状の溝が表面に形成されたメタルロールを用いた。
 塗布後の型板ガラスを予熱炉にて予熱した後、下層用塗布液(C)の塗布膜上に、同様にしてリバースロールコータによりさらに上層用塗布液(G)を塗布した。その後、大気中、500℃で30分間焼成し、低反射膜を有する物品を得た。
The above-mentioned template glass is preheated in a preheating furnace (VTR-115, manufactured by ISUZU), and a reverse roll coater (Sanwa Seiki Co., Ltd.) is placed on the surface of the template glass while the glass surface temperature is kept at 30 ° C. The coating solution (C) for the lower layer was applied with a coating roll manufactured by the company. The coating conditions were such that the rotation speed of the coating roll and the rotation speed of the doctor roll were changed so as to obtain a predetermined film thickness with respect to the conveyance speed of the substrate: 8.5 m / min. The gap between the coating roll and the conveyor belt was 2.9 mm, and the indentation thickness between the coating roll and the doctor roll was 0.6 mm. As the coating roll, a rubber lining roll lined with rubber (ethylene propylene diene rubber) having a surface hardness (JIS-A) of 30 was used. As the doctor roll, a metal roll having lattice-like grooves formed on the surface thereof was used.
After the template glass after coating was preheated in a preheating furnace, the upper layer coating solution (G) was further coated on the coating film of the lower layer coating solution (C) by a reverse roll coater in the same manner. Thereafter, it was baked at 500 ° C. for 30 minutes in the air to obtain an article having a low reflection film.
〔例2~10〕
 下層用塗布液と上層用塗布液の種類、および膜厚を表2に示すように変更した以外は、例1と同様にして低反射膜を有する物品を得た。なお、表2の第1段目の1~10は、例1~例10を示す。
 例1~10の物品について、上層と下層の屈折率および膜厚、下層の空隙率、透過率差Td、平均反射率(波長380~780nm)、波長380nmおよび780nmの光の反射率、波長380nm~780nmにおける最大反射率、最小反射率、最大反射率と最小反射率の差、ならびに外観の評価結果を表2に示す。また、例1の物品の断面の一部の走査型電子顕微鏡写真を図2に示す。また、例1~10で反射率を測定して得られたスペクトルチャートを図3~12に示す。
[Examples 2 to 10]
An article having a low reflection film was obtained in the same manner as in Example 1 except that the types of the lower layer coating liquid and the upper layer coating liquid and the film thickness were changed as shown in Table 2. Note that 1 to 10 in the first row in Table 2 indicate Examples 1 to 10.
For the articles of Examples 1 to 10, the refractive index and film thickness of the upper layer and the lower layer, the porosity of the lower layer, the transmittance difference Td, the average reflectance (wavelength 380 to 780 nm), the reflectance of light with wavelengths 380 nm and 780 nm, the wavelength 380 nm Table 2 shows the maximum reflectance at 780 nm, the minimum reflectance, the difference between the maximum reflectance and the minimum reflectance, and the appearance evaluation results. A scanning electron micrograph of a part of the cross section of the article of Example 1 is shown in FIG. Further, spectrum charts obtained by measuring the reflectance in Examples 1 to 10 are shown in FIGS.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 下層および上層の屈折率と膜厚が本発明の条件を満たしている例1、2の低反射膜は、反射率が低く、特に赤紫、青等の反射色が充分に低減され、人間の目では色味を感じなかった。
 一方、下層の屈折率または膜厚のいずれかが本発明の条件を満たしていない例3~6の低反射膜と、上層の膜厚が130nmよりも大きい例10の低反射膜では、赤紫、青等の反射色が充分に低減されていなかった。
 また、上層の屈折率が1.17よりも小さい例7の低反射膜は、最大反射率と最小反射率の差が0.5%超であり、赤紫、青等の反射色の低減が不充分であった。また、上層の屈折率が1.30よりも大きい例8の低反射膜は780nmにおける反射率が0.7%超、上層の膜厚が70nmよりも小さい例9の低反射膜は、380nm、780nmにおける反射率が0.7%超、最大反射率と最小反射率の差が0.5%超であり、同じく赤紫、青等の反射色の低減が不充分であり、かつ充分な透過率を得ることができなかった。
The low reflection films of Examples 1 and 2 in which the refractive index and film thickness of the lower layer and the upper layer satisfy the conditions of the present invention have a low reflectance, and particularly the reflection colors such as magenta and blue are sufficiently reduced. I did not feel the color with my eyes.
On the other hand, in the low reflection film of Examples 3 to 6 in which either the refractive index or the film thickness of the lower layer does not satisfy the conditions of the present invention, and the low reflection film of Example 10 in which the upper film thickness is larger than 130 nm, The reflected colors of blue and the like were not sufficiently reduced.
In addition, the low reflection film of Example 7 in which the refractive index of the upper layer is smaller than 1.17 has a difference between the maximum reflectance and the minimum reflectance of more than 0.5%, and the reflection colors such as magenta and blue are reduced. It was insufficient. The low reflection film of Example 8 having an upper layer refractive index greater than 1.30 has a reflectance at 780 nm of more than 0.7%, and the low reflection film of Example 9 having an upper layer film thickness of less than 70 nm is 380 nm. The reflectivity at 780 nm exceeds 0.7%, the difference between the maximum reflectivity and the minimum reflectivity is more than 0.5%, and the reflection colors such as magenta and blue are not sufficiently reduced, and sufficient transmission is achieved. The rate could not be obtained.
 本発明によれば、耐候性および耐久性が良好なうえ、反射率が低く、特に赤紫、青等の反射色が充分に抑制されている低反射膜を有する物品を提供することができ、かかる低反射膜を有する物品は、太陽電池のカバーガラス、各種ディスプレイの前面板、各種窓ガラス、タッチパネルのカバーガラス等として有用である。
 なお、2012年9月14日に出願された日本特許出願2012-203497号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
According to the present invention, it is possible to provide an article having a low reflection film that has good weather resistance and durability, low reflectance, and in particular, reflection colors such as reddish purple and blue are sufficiently suppressed. An article having such a low reflection film is useful as a cover glass for solar cells, a front plate for various displays, various window glasses, a cover glass for touch panels, and the like.
The entire contents of the description, claims, drawings and abstract of Japanese Patent Application No. 2012-203497 filed on September 14, 2012 are incorporated herein by reference. .
 10 物品
 12 透明基材
 14 低反射膜
 16 下層
 18 上層
10 Article 12 Transparent substrate 14 Low reflection film 16 Lower layer 18 Upper layer

Claims (11)

  1.  透明基材と、該透明基材上に形成された低反射膜と、を有し、
     前記低反射膜が、前記透明基材側の下層と、該下層の上に形成された上層の2層からなり、
     前記下層の屈折率が1.40~1.44であり、
     前記下層の膜厚が70~130nmであり、
     前記上層の屈折率が1.17~1.30であり、
     前記上層の膜厚が70~130nmである、低反射膜を有する物品。
    A transparent base material, and a low reflection film formed on the transparent base material,
    The low reflection film is composed of two layers, a lower layer on the transparent substrate side and an upper layer formed on the lower layer,
    The lower layer has a refractive index of 1.40 to 1.44,
    The lower layer has a thickness of 70 to 130 nm,
    The refractive index of the upper layer is 1.17 to 1.30,
    An article having a low reflection film, wherein the upper layer has a thickness of 70 to 130 nm.
  2.  前記下層が、独立した空孔を有し、かつ前記上層から前記透明基材にわたって連通した空孔を有さない、請求項1に記載の物品。 The article according to claim 1, wherein the lower layer has independent pores and does not have pores communicating from the upper layer to the transparent substrate.
  3.  前記下層が、SiOを主成分とする層である、請求項1または2に記載の低反射膜を有する物品。 The lower layer is a layer composed mainly of SiO 2, an article having a low reflection film according to claim 1 or 2.
  4.  前記上層が、SiOを主成分とする層である、請求項1~3のいずれか一項に記載の低反射膜を有する物品。 The article having a low reflection film according to any one of claims 1 to 3, wherein the upper layer is a layer containing SiO 2 as a main component.
  5.  前記下層が、中空SiO微粒子を含む、請求項1~4のいずれか一項に記載の低反射膜を有する物品。 The article having a low reflection film according to any one of claims 1 to 4, wherein the lower layer contains hollow SiO 2 fine particles.
  6.  前記上層が、中実SiO微粒子を含む、請求項1~5のいずれか一項に記載の低反射膜を有する物品。 The article having a low reflection film according to any one of claims 1 to 5, wherein the upper layer contains solid SiO 2 fine particles.
  7.  前記下層の屈折率と前記上層の屈折率との差が、0.10~0.27である、請求項1~6のいずれか一項に記載の低反射膜を有する物品。 The article having a low reflection film according to any one of claims 1 to 6, wherein a difference between a refractive index of the lower layer and a refractive index of the upper layer is 0.10 to 0.27.
  8.  前記下層の空隙率が、15体積%未満である、請求項1~7のいずれか一項に記載の低反射膜を有する物品。 The article having a low reflection film according to any one of claims 1 to 7, wherein the porosity of the lower layer is less than 15% by volume.
  9.  前記下層が、独立した空孔を有し、前記独立した空孔の平均空孔径が、10~100nmである、請求項1~8のいずれか一項に記載の低反射膜を有する物品。 The article having a low reflection film according to any one of claims 1 to 8, wherein the lower layer has independent pores, and the average pore diameter of the independent pores is 10 to 100 nm.
  10.  波長380nmおよび780nmの光における5°入射の反射率がいずれも0.7%以下であり、かつ波長380nm~780nmの範囲の光における反射率の最大値と最小値の差が0.5%以下である、請求項1~9のいずれか一項に記載の低反射膜を有する物品。 The reflectance at 5 ° incidence for light with a wavelength of 380 nm and 780 nm is both 0.7% or less, and the difference between the maximum value and the minimum value for light in the wavelength range of 380 nm to 780 nm is 0.5% or less. The article having a low reflection film according to any one of claims 1 to 9, wherein
  11.  太陽電池用カバーガラスである、請求項1~10のいずれか一項に記載の低反射膜を有する物品。 The article having a low reflection film according to any one of claims 1 to 10, which is a cover glass for a solar cell.
PCT/JP2013/074280 2012-09-14 2013-09-09 Product having low-reflection film WO2014042129A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-203497 2012-09-14
JP2012203497A JP2015222277A (en) 2012-09-14 2012-09-14 Article with low reflection film

Publications (1)

Publication Number Publication Date
WO2014042129A1 true WO2014042129A1 (en) 2014-03-20

Family

ID=50278240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/074280 WO2014042129A1 (en) 2012-09-14 2013-09-09 Product having low-reflection film

Country Status (2)

Country Link
JP (1) JP2015222277A (en)
WO (1) WO2014042129A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161791A (en) * 2014-02-27 2015-09-07 旭硝子株式会社 Base material with anti-reflection film, and article
JP2019109507A (en) * 2015-03-31 2019-07-04 富士フイルム株式会社 Composition for forming optical functional layer, and solid state imaging element and camera module using the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302113A (en) * 2003-03-31 2004-10-28 Nikon Corp Antireflection film, optical member, optical system and projection exposure apparatus, and manufacturing method for antireflection film
JP2006215542A (en) * 2005-01-07 2006-08-17 Pentax Corp Anti-reflection coating and optical element having such anti-reflection coating for imaging system
JP2006335605A (en) * 2005-06-02 2006-12-14 Asahi Glass Co Ltd Method for producing hollow sio2 microparticle liquid dispersion, coating composition and substrate with antireflection coating film
JP2007133386A (en) * 2005-10-13 2007-05-31 Toray Ind Inc Antireflection film and optical filter provided therewith
JP2007284622A (en) * 2006-04-19 2007-11-01 Asahi Kasei Corp Coating composition for surface protective layer
JP2008070459A (en) * 2006-09-12 2008-03-27 Sumitomo Osaka Cement Co Ltd Antireflection film, optical member, and display device
WO2009085878A1 (en) * 2007-12-19 2009-07-09 E. I. Du Pont De Nemours And Company Bilayer anti-reflective films containing nanoparticles
JP2010256636A (en) * 2009-04-24 2010-11-11 Kanagawa Acad Of Sci & Technol Aluminum base material for manufacturing stamper and method for manufacturing stamper

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004302113A (en) * 2003-03-31 2004-10-28 Nikon Corp Antireflection film, optical member, optical system and projection exposure apparatus, and manufacturing method for antireflection film
JP2006215542A (en) * 2005-01-07 2006-08-17 Pentax Corp Anti-reflection coating and optical element having such anti-reflection coating for imaging system
JP2006335605A (en) * 2005-06-02 2006-12-14 Asahi Glass Co Ltd Method for producing hollow sio2 microparticle liquid dispersion, coating composition and substrate with antireflection coating film
JP2007133386A (en) * 2005-10-13 2007-05-31 Toray Ind Inc Antireflection film and optical filter provided therewith
JP2007284622A (en) * 2006-04-19 2007-11-01 Asahi Kasei Corp Coating composition for surface protective layer
JP2008070459A (en) * 2006-09-12 2008-03-27 Sumitomo Osaka Cement Co Ltd Antireflection film, optical member, and display device
WO2009085878A1 (en) * 2007-12-19 2009-07-09 E. I. Du Pont De Nemours And Company Bilayer anti-reflective films containing nanoparticles
JP2010256636A (en) * 2009-04-24 2010-11-11 Kanagawa Acad Of Sci & Technol Aluminum base material for manufacturing stamper and method for manufacturing stamper

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015161791A (en) * 2014-02-27 2015-09-07 旭硝子株式会社 Base material with anti-reflection film, and article
JP2019109507A (en) * 2015-03-31 2019-07-04 富士フイルム株式会社 Composition for forming optical functional layer, and solid state imaging element and camera module using the same

Also Published As

Publication number Publication date
JP2015222277A (en) 2015-12-10

Similar Documents

Publication Publication Date Title
JP5849970B2 (en) Article having a low-reflection film
JP2016018068A (en) Substrate with anti-glare film, and articles having the same
WO2015041257A1 (en) Tempered glass plate with low reflective coating and production method therfor
WO2011027827A1 (en) Article having low-reflection film on surface of base material
WO2015186753A1 (en) Chemically toughened glass plate with function film, method for producing same, and article
JP6586897B2 (en) Base material with antiglare film, coating liquid for film formation and method for producing the same
WO2014061606A1 (en) Antifouling antireflection film, article and method for manufacturing same
WO2010018852A1 (en) Coating compositions and articles with formed coating films
US20170291392A1 (en) Article having low reflection film
JP2015049319A (en) Article having transparent base material and antifouling-antireflection film and manufacturing method thereof
WO2015163330A1 (en) Anti-glare-layer substrate and article
JP2016041481A (en) Transparent base material with antiglare antireflection film, and article
JP7365905B2 (en) coated glass articles
WO2014042129A1 (en) Product having low-reflection film
WO2018199120A1 (en) Film-attached glass substrate, article, and method for producing film-attached glass substrate
JP6164120B2 (en) Base material and article with antireflection film
JP2007277018A (en) Glass sheet with colored film and method of manufacturing the glass sheet with colored film
WO2019039163A1 (en) Transparent screen and display system
JP2011119626A (en) Cover glass for solar panel covered with low reflecting coating and method for manufacturing the same
JP2005001900A (en) Substrate coated with low light reflective coating film, its manufacturing method, and composition for the low light reflective coating film
JP2019101433A (en) Mirror display system
JP2013122949A (en) Article with low-reflection film, and solar battery module
WO2022054943A1 (en) Substrate for led element and image display device
JP2895749B2 (en) Water-repellent reflection reducing glass
JP2016225225A (en) Light guide plate for display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13837265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13837265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP