WO2018101220A1 - Glass plate - Google Patents
Glass plate Download PDFInfo
- Publication number
- WO2018101220A1 WO2018101220A1 PCT/JP2017/042456 JP2017042456W WO2018101220A1 WO 2018101220 A1 WO2018101220 A1 WO 2018101220A1 JP 2017042456 W JP2017042456 W JP 2017042456W WO 2018101220 A1 WO2018101220 A1 WO 2018101220A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- glass plate
- less
- glass
- light
- mass
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/089—Glass compositions containing silica with 40% to 90% silica, by weight containing boron
- C03C3/091—Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S2/00—Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21V—FUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
- F21V9/00—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
- F21V9/08—Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
Definitions
- the present invention relates to a glass plate that can be used for a light guide plate, and more particularly to a glass plate suitable for a light guide plate used for a quantum dot display using a blue LED.
- a quantum dot display white light obtained by combining a blue LED as a blue light source and photoluminescence of quantum dots excited by a blue LED as a green / red light source is used as a backlight of a liquid crystal display.
- a method of arranging quantum dots in the backlight unit there is mainly an edge light method in which a quantum dot assembly in which quantum dots are dispersed in a resin and sealed in a glass tube is arranged between a light source and a light guide plate.
- Patent Document 2 discloses glass suitable for a light guide of an edge light type planar light emitting device.
- the present invention has an object to provide a glass plate having a high internal transmittance of light in the vicinity of a wavelength of 450 nm, which is suitable for a quantum dot display using a blue LED, as compared with a conventional glass plate for a light guide plate.
- the present invention the total iron oxide in terms of Fe 2 O 3 and (t-Fe 2 O 3) containing less than 80 mass ppm, on an oxide basis, the NiO less than 0 1.0 mass ppm, Cr 2 O
- a glass plate containing 3 in excess of 0 and less than 1.0 ppm by mass, MnO 2 in excess of 0 to 5.0 ppm by mass, and iron redox exceeding 30%.
- the glass plate of the present invention emits a blue LED having a high internal transmittance of light in the vicinity of a wavelength of 450 nm and a high luminance as compared with a conventional glass plate for a light guide plate.
- the reduction of visible internal transmittance due to is reduced.
- it has the same optical characteristics as a conventional resin light guide plate, and at the same time has heat resistance enough to withstand high-power blue LEDs. Therefore, the glass plate of this invention is suitable as a glass plate for light-guide plates used for the quantum dot display using blue LED.
- FIG. 1 is a schematic view of the glass plate and blue LED illumination installation conditions when viewed from above, as viewed from above.
- FIG. 2 is an example of the spectrum of a blue LED.
- FIG. 3 is a diagram showing the influence of visible light solarization [difference in average absorbance] by blue LED irradiation due to the amount of MnO 2 in the glass composition.
- Glass composition In this specification, the components of glass are expressed in terms of oxides such as SiO 2 and Al 2 O 3 , and the content (glass composition) of each component with respect to the entire glass is the mass percentage based on oxide or mass ppm (mass) Percentage is simply expressed as%, or mass ppm may be expressed as simply ppm).
- the main factor of light absorption of glass is iron ions contained as impurities. Iron is unavoidably contained as a raw material for industrially produced glass, and it is inevitable that iron is mixed into the glass. In order to obtain a glass suitable for an application having a long optical path length inside the glass such as a light guide plate for edge light, it is preferable to reduce the total iron content in the glass composition and suppress light absorption by iron ions.
- the content of total iron oxide in terms of Fe 2 O 3 is less than 80 ppm by weight, preferably 70 mass ppm or less, more preferably 60 mass ppm or less, more preferably 50 ppm by mass or less, more preferably 40 ppm by mass or less, particularly preferably 30 ppm by mass or less, and most preferably 25 ppm by mass or less.
- the content of t-Fe 2 O 3 is preferably 5 ppm by mass or more in order to suppress the cost of the glass raw material, ensure the solubility of the glass, and prevent the infrared absorption of the glass from being extremely deteriorated. More preferably, it is 8 mass ppm or more, More preferably, it is 10 mass ppm or more, Especially preferably, it is 12 mass ppm or more, Most preferably, it is 15 mass ppm or more.
- the content of t-Fe 2 O 3 in the glass can be adjusted by the amount of iron component added during glass production.
- the iron ion takes the form of divalent iron (Fe 2+ ) and trivalent iron (Fe 3+ ) in the glass (hereinafter, these are collectively referred to as “iron component”).
- the iron component has absorption in the visible region, trivalent iron has an absorption peak near a wavelength of 450 nm, and divalent iron has an absorption peak near a wavelength of 1100 nm.
- the glass according to the present invention has an iron redox of more than 30%, preferably 32% or more, more preferably 34% or more, still more preferably 36% or more, particularly preferably 38% or more, and most preferably 40% or more. is there.
- the iron redox By making the iron redox more than 30%, the ratio of trivalent iron having an absorption peak in the vicinity of a wavelength of 450 nm is lowered, and the internal transmittance of light in the blue, particularly in the vicinity of a wavelength of 450 nm is improved, and a blue LED is used. Optical characteristics suitable for a quantum dot display can be obtained. Examples of methods for increasing iron redox include dissolution at high temperatures and the use of reducing agents such as tin oxide or coke.
- the internal transmittance is decreased, and there is a concern that the preferable color balance as a whole may be lost as described above.
- sulfur (S) becomes negative divalent sulfur when dissolved in a reducing atmosphere in order to increase iron redox.
- the iron redox is preferably 70% or less, more preferably 65% or less, further preferably 60% or less, particularly preferably 55% or less, and most preferably 50% or less.
- Iron redox is the ratio of divalent iron which in terms of Fe 2 O 3 in the total iron oxide in terms of Fe 2 O 3 (Fe 2+), obtained by the following equation (1).
- Iron redox (%) [[content of divalent iron (Fe 2+ ) converted to Fe 2 O 3 (mass ppm)] / [divalent iron (Fe 2+ ) converted to Fe 2 O 3 and trivalent iron Total content of (Fe 3+ ) (mass ppm)]] ⁇ 100 Formula (1)
- the amount of divalent iron (Fe 2+ ) converted to Fe 2 O 3 is 3 mass ppm or more based on oxides in order to increase the heat ray absorption efficiency of the glass melt and improve the solubility when the glass raw material is melted. More preferably, it is 5 mass ppm or more, More preferably, it is 6 mass ppm or more, Most preferably, it is 7 mass ppm or more. Further, the upper limit is preferably 40 ppm by mass or less, more preferably 30 masses in order to increase the internal transmittance in the visible range, to reduce divalent iron that reacts with minus divalent sulfur, and to suppress amber color development. ppm or less, more preferably 20 mass ppm or less, particularly preferably 15 mass ppm or less, and particularly preferably 12 mass ppm or less.
- the amount of trivalent iron (Fe 3+ ) converted to Fe 2 O 3 reduces the transmittance in the ultraviolet light region (UV light region), suppresses UV solarization when containing CeO 2 described later, Since it has the effect of suppressing the generation of structural defects and suppressing the decrease in transmittance in the visible range, it is more than 5 ppm and less than 40 ppm on an oxide basis.
- the amount of iron oxide converted to Fe 2 O 3 is preferably 6 mass ppm or more, more preferably 7 mass ppm or more, still more preferably 8 mass ppm or more, and particularly preferably 9 mass ppm or more.
- the upper limit is preferably 38 mass ppm or less, more preferably 30 mass ppm or less, still more preferably 20 mass ppm or less, and particularly preferably 15 mass ppm or less, in order to suppress absorption in the vicinity of a wavelength of 450 nm. And most preferably 13 ppm by mass or less.
- Nickel (hereinafter also referred to as Ni) has an absorption in the near-infrared region with a wavelength of 800 to 1100 nm, similar to Fe 2+, and thus improves the heat ray absorption efficiency of the glass melt during glass melting. Therefore, by including Ni in the glass, the solubility of the glass can be improved even if the proportion of Fe 2+ in the glass is small.
- the sulfur component when a sulfur component enters during the glass melting process or glass forming process, the sulfur component is combined with Fe in the glass, iron sulfide is generated, causing coloration and reducing internal transmittance.
- the Ni component When the Ni component is present in the glass, nickel sulfide can be selectively formed to suppress the formation of the iron sulfide, thereby reducing the coloration and maintaining the high internal transmittance of the glass.
- the content of oxide-based NiO is more than 0, preferably 0.05 mass ppm or more, more preferably 0.1 mass ppm or more, still more preferably 0.15 mass ppm or more, particularly preferably. It is 0.2 mass ppm or more.
- Ni has absorption near wavelengths of 450 nm and 630 nm, and at the same time, the transmittance of the wavelength of 450 nm is lowered. Become one. Therefore, the content of oxide-based NiO is less than 1 ppm by mass, preferably 0.8 ppm by mass or less, more preferably 0.6 ppm by mass or less, and still more preferably 0.4 ppm by mass or less, Especially preferably, it is 0.3 mass ppm or less.
- Chromium (hereinafter also referred to as Cr) can act as an oxidizing agent to control iron redox.
- the content of oxide-based Cr 2 O 3 is more than 0, preferably 0.05 mass ppm or more, more preferably 0.1 mass ppm or more, still more preferably 0.15 mass ppm or more, particularly preferably 0. .2 mass ppm or more.
- the content of oxide-based Cr 2 O 3 is less than 1.0 mass ppm, preferably 0.8 mass ppm or less, more preferably 0.6 mass ppm or less, and even more preferably 0.5 ppm.
- the total amount of NiO and Cr 2 O 3 is preferably 1.5 mass ppm or less, more preferably 1.3 mass ppm or less, in order to suppress a decrease in transmittance at a wavelength of 450 nm and color unevenness due to the return light described above.
- it is 1.0 mass ppm or less, Most preferably, it is 0.7 mass ppm or less.
- Manganese acts as an oxidizing agent in order to suppress the refining cost of the raw material, and in order to adjust iron redox, the content of oxide-based MnO 2 is more than 0, preferably 0 0.01 mass ppm or more, more preferably 0.05 mass ppm or more, still more preferably 0.1 mass ppm or more, particularly preferably 0.15 mass ppm or more, and most preferably 0.2 mass ppm or more.
- Mn has absorption in the visible light region and emits electrons when irradiated with a blue LED.
- the electrons react with titanium in the glass (hereinafter also referred to as Ti)
- light absorption by Ti is large. And may cause visible light solarization that reduces internal transmittance. For this reason, the fall of internal transmittance can be controlled by reducing the content of Mn.
- visible light solarization in the present specification indicates a change in transmittance before and after irradiation with light having a wavelength of about 450 nm. Examples of the light source include white LEDs and blue LEDs.
- the content of MnO 2 is 5.0 mass ppm or less, preferably 4.0 mass ppm or less, more preferably 3.0 mass ppm or less, still more preferably 2.0 mass ppm or less.
- it is 1.5 mass ppm, Most preferably, it is 1.0 mass ppm or less, Most preferably, it is 0.5 mass ppm or less.
- At least selected from the group consisting of CoO, V 2 O 5 , SeO 2, and CuO having the same characteristic of absorbing light in the wavelength range from the ultraviolet region to the near infrared region
- One kind of component may be included. Since these components function as components that absorb visible light, even if they contain at least one component selected from the group consisting of CoO, V 2 O 5 , SeO 2 and CuO, the content thereof Is preferably 10 ppm by mass or less, more preferably 1 ppm by mass or less based on the oxide. From the viewpoint of not reducing the internal transmittance at a wavelength of 400 to 700 nm, it is preferable that at least one component selected from the group consisting of CoO, V 2 O 5 , SeO 2 and CuO is not substantially contained.
- Yb 2 O 3 and Er 2 O 3 can also be contained because they have the property of absorbing light in the wavelength range from the ultraviolet region to the near infrared region.
- these components have a high rare value and greatly affect the production cost.
- the content is preferably 10 ppm by mass or less, more preferably 1 ppm by mass or less, and preferably substantially not contained, based on the oxide.
- the content of TiO 2 is preferably less than 40 ppm by mass, more preferably 30 ppm by mass or less, still more preferably 20 ppm by mass or less, and particularly preferably 10 ppm by mass or less.
- Ti is a component that absorbs UV light, it has an effect of suppressing UV solarization described later.
- the content of TiO 2 is preferably more than 0, more preferably 1 ppm by mass or more, further preferably 3 ppm by mass or more, and particularly preferably 5 ppm by mass or more.
- composition of the glass according to the present invention is not particularly limited as long as it has the above-described characteristics. Typical examples of preferred compositions for the mother composition are shown below.
- Glass composition A SiO 2 is 60 to 85%, Al 2 O 3 is 0 to 10%, MgO is 0 to 10%, CaO is 0 to 20%, and SrO is 0 to 15 in terms of mass percentage based on oxide. %, BaO 0 to 15%, Na 2 O 2 to 20%, K 2 O 0 to 10% and B 2 O 3 0 to 20%.
- Glass composition B SiO 2 45 to 80%, Al 2 O 3 more than 10% and 30% or less, B 2 O 3 0 to 15%, MgO 0 to 15% in terms of mass percentage based on oxide the CaO 0 ⁇ 6%, the SrO 0 ⁇ 5%, a BaO 0 ⁇ 5%, 2 ⁇ 20% of Na 2 O, the K 2 O 0-10%, a ZrO 2 containing 0-10%.
- Glass composition C SiO 2 45-70%, Al 2 O 3 10-30%, B 2 O 3 0-15% in terms of mass percentage on oxide basis, MgO, CaO, SrO and BaO A total of 5 to 30% of at least one component selected from the group consisting of: and at least one component selected from the group consisting of Li 2 O, Na 2 O and K 2 O Contain less than%.
- Glass composition D SiO 2 50-85%, Al 2 O 3 0-20%, B 2 O 3 0-10%, Na 2 O 1-20% and expressed as a percentage by mass on an oxide basis It contains 0 to 20% or less of K 2 O.
- SiO 2 is the main component of glass.
- the content of SiO 2 is preferably 60% or more, more preferably 62% or more, and still more preferably 63% or more in the glass composition B. Is preferably 45% or more, more preferably 50% or more, still more preferably 55% or more, still more preferably 60% or more.
- the glass composition C preferably 45% or more, more preferably 50% or more.
- the glass composition D it is preferably 50% or more, more preferably 60% or more, and further preferably 65% or more.
- the content of SiO 2 in the glass composition A is preferably 85% or less, more preferably 80% or less, and even more preferably 75% or less. More preferably, it is 72% or less, particularly preferably 68% or less.
- the glass composition B it is preferably 80% or less, more preferably 75% or less, still more preferably 70% or less, and the glass composition C Is preferably 70% or less, more preferably 65% or less.
- the glass composition D it is preferably 85% or less, more preferably 80% or less, and even more preferably 75% or less.
- the content of Al 2 O 3 is preferably 10% or less, more preferably 9% or less, still more preferably 8% or less, still more preferably 7% or less, and particularly preferably 6% or less.
- the glass composition B it is preferably 30% or less, more preferably 25% or less, still more preferably 23% or less, still more preferably 20% or less, and particularly preferably 15% or less.
- the glass composition C preferably 30% or less, more preferably 20% or less
- the glass composition D preferably 20% or less, more preferably 12% or less, even more preferably 10% or less, particularly Preferably it is 7.5% or less.
- Al 2 O 3 is an essential component for improving the weather resistance of glass in the glass compositions B and C due to the effect of reducing non-crosslinked oxygen in the glass.
- the content of Al 2 O 3 in the glass composition A is preferably 0% or more, more preferably 0.5% or more, even more preferably. Is 1% or more, more preferably 2% or more, particularly preferably 2.5% or more.
- the glass composition B preferably more than 10%, more preferably 11% or more, and further preferably 12% or more. More preferably, it is 13% or more.
- the glass composition C it is preferably 10% or more, more preferably 13% or more.
- the glass composition D it is preferably 0% or more, more preferably 0.5%. More preferably, it is 1% or more, more preferably 2% or more, and particularly preferably 2.5% or more.
- most of Al 2 O 3 exists in the form of tetracoordinate ([AlO 4 ] ⁇ ), and binds to alkali metal ions such as Na + . Therefore, the number of alkali metal ions bonded to tetracoordinate iron ([FeO 4 ] ⁇ , that is, Fe 3+ ) is reduced, and the ratio of Fe 3+ is reduced. As a result, the ratio of Fe 2+ can be increased, that is, the iron redox can be increased, and the internal transmittance of light in the vicinity of a wavelength of 450 nm can be improved.
- B 2 O 3 is a component that promotes melting of the glass raw material and improves mechanical properties and weather resistance.
- the content of B 2 O 3 is preferably 20% or less, more preferably 15% or less, even more preferably 10% or less, and particularly preferably 5% or less. More preferably, it is 3% or less, and most preferably it does not contain substantially.
- the glass composition B it is preferably 15% or less, more preferably 12% or less, more preferably 10% or less, still more preferably 7% or less, and particularly preferably 4% or less, and is not substantially contained. Is most preferred.
- the content of B 2 O 3 is preferably 15% or less, more preferably 12% or less.
- the content is preferably 10% or less, more preferably 7% or less, even more preferably. Is most preferably 4% or less and substantially not contained.
- Alkali metal oxides such as Na 2 O, K 2 O, and Li 2 O are useful components for accelerating melting of the glass raw material and adjusting thermal expansion or viscosity.
- the total content of these components is preferably 2% or more, more preferably 3% in the glass compositions A and B in order to maintain the clarity when melted and to maintain the foam quality of the glass to be produced. More preferably, it is 5% or more, more preferably 8% or more.
- the glass composition D it is preferably 5% or more, more preferably 8% or more, and particularly preferably 10% or more.
- the glass compositions A and B in order to keep the coefficient of thermal expansion low and to improve the devitrification property, in the glass compositions A and B, it is preferably 20% or less, more preferably 15% or less, and in the glass composition C, preferably Is 2% or less, more preferably 1% or less. In the glass composition D, it is preferably 25% or less, and more preferably 20% or less.
- the content of Na 2 O is preferably 2% or more, more preferably 3% or more, still more preferably 5% or more, still more preferably 8% or more, and particularly preferably 10% or more.
- the glass composition B it is preferably 2% or more, more preferably 3% or more, further preferably 5% or more, more preferably 8% or more, particularly preferably 10% or more.
- the glass composition D preferably It is preferably 1% or more, more preferably 5% or more, still more preferably 8% or more, and particularly preferably 10% or more.
- the content of Na 2 O is preferably 20% or less in the glass compositions A and B in order to maintain the clarity during melting and maintain the foam quality of the produced glass, and 15% or less.
- the glass composition C it is preferably 3% or less, more preferably 1% or less, and in the glass composition D, it is preferably 20% or less, more preferably 15% or less.
- the ratio in mass percentage based on oxides of Na 2 O and Al 2 O 3 is according to the glass composition in terms of weather resistance and the transmittance control when used as a light guide plate Are preferably controlled.
- (Na 2 O / Al 2 O 3 ) is preferably 7 or less, more preferably 5 or less, even more preferably 3.5 or less, particularly in glass compositions A and D.
- the glass composition B which is preferably 2 or less, it is preferably 1.5 or less, more preferably 1 or less.
- (Na 2 O / Al 2 O 3 ) is preferably 0.1 or more, and preferably 0.2 or more in order to facilitate iron redox control during production and control the transmittance. More preferably, it is more preferably 0.5 or more, and particularly preferably 1.0 or more.
- K 2 O is a component that contributes to weather resistance, but in order to maintain the devitrification properties of the glass, the content of K 2 O is preferably 10% or less, more preferably 7% in the glass compositions A and B. Or less, more preferably 5% or less, even more preferably 2% or less, and may not be contained.
- the glass composition C preferably 2% or less, more preferably 1% or less, and in the glass composition D Preferably, it is 20% or less, more preferably 10% or less, still more preferably 5% or less, and particularly preferably 2% or less.
- Li 2 O is an optional component, but in order to facilitate vitrification, keep the iron content contained as an impurity derived from the raw material low, and keep the raw material cost low, in glass compositions A and B, Li 2 O Is preferably 5% or less, more preferably 3% or less, even more preferably 2% or less, and even more preferably 1% or less.
- Li 2 O can be contained 2% or less.
- the content is preferably 3% or less, more preferably 2% or less, and still more preferably 1% or less.
- CeO 2 has the effect of lowering the redox of iron, and when ultraviolet light (UV light) is irradiated onto the glass, Ce emits electrons, causing UV solarization that causes new absorption, and visible light. It also functions as a component that absorbs. Therefore, the content of CeO 2 is preferably 200 ppm or less, more preferably 150 ppm or less, still more preferably 100 ppm or less, particularly preferably 50 ppm or less, and most preferably not substantially contained. In the case of adding CeO 2 , the content is preferably 5 ppm or more, more preferably 10 ppm or more, from the viewpoint of facilitating suppression of variations in product characteristics and color variations during production.
- Alkaline earth metal oxides such as MgO, CaO, SrO and BaO are useful components for accelerating melting of glass raw materials and adjusting thermal expansion, viscosity and the like.
- MgO has the effect of lowering the viscosity during glass melting and promoting the melting. Moreover, there exists an effect
- the glass composition A is preferably 10% or less, more preferably 8% or less, and even more preferably 5% or less.
- the glass composition B it is preferably 15% or less, more preferably 12% or less, further preferably 10% or less, and in the glass composition C, preferably 10% or less, more preferably 5% or less.
- the glass composition D it is preferably 10% or less, more preferably 8% or less, still more preferably 5% or less, and particularly preferably 3% or less.
- CaO is a component that promotes melting of the glass raw material and adjusts viscosity, thermal expansion, etc., and may be contained.
- the content of CaO is preferably 3% or more, more preferably 5% or more in the glass composition A, and preferably 1% or more, more preferably in the glass composition D. Is 3% or more, more preferably 5% or more.
- the glass composition A is preferably 20% or less, more preferably 10% or less
- the glass composition B is preferably 6% or less, more preferably In the glass composition D, it is preferably 15% or less, more preferably 12% or less, and further preferably 10% or less.
- the glass of the present invention may contain SrO and BaO. These components, like MgO and CaO, are useful components for accelerating melting of the glass raw material and adjusting thermal expansion, viscosity, and the like.
- SrO has the effect of increasing the thermal expansion coefficient and lowering the high temperature viscosity of the glass. In order to obtain such an effect, SrO can be contained.
- the SrO content in the glass compositions A and C is preferably 15% or less, and more preferably 10% or less in order to keep the thermal expansion coefficient of the glass low and not deteriorate the weather resistance.
- glass composition B it is preferably 5% or less, more preferably 3% or less
- glass composition D it is preferably 15% or less, more preferably 12% or less, and even more preferably 10%.
- it is particularly preferably 8% or less.
- BaO like SrO, has the effect of increasing the coefficient of thermal expansion and lowering the high temperature viscosity of the glass.
- BaO can be contained.
- the BaO content in the glass compositions A and C is preferably 15% or less, and more preferably 10% or less, in order to keep the thermal expansion coefficient of the glass low and not deteriorate the weather resistance.
- glass composition B it is preferably 5% or less, more preferably 3% or less.
- glass composition D it is preferably 15% or less, more preferably 12% or less, and even more preferably 10% or less. Especially preferably, it is 8% or less.
- BaO may be contained in an amount of 1% or more, and more preferably 2% or more.
- the total content of these alkaline earth metal oxides is preferably 10% or more in the glass composition A in order to lower the viscosity at the time of melting the glass and promote the melting. More preferably, it is 13% or more.
- the glass composition B it is 1% or more, more preferably 3% or more.
- the glass composition C it is preferably 5% or more, more preferably 10% or more.
- composition D it is preferably at least 5%, more preferably at least 8%, more preferably at least 12%, particularly preferably at least 13%.
- the glass composition A is preferably 30% or less, more preferably 27% or less, and the glass composition B is preferably 15%. Or less, more preferably 10% or less, in the glass composition C, preferably 30% or less, more preferably 20% or less, and in the glass composition D, preferably 25% or less, more preferably 20% or less. More preferably, it is 18% or less, particularly preferably 17% or less.
- ZrO 2 may be contained as an optional component in order to improve the heat resistance and surface hardness of the glass.
- the content thereof is preferably 0.1% or more, more preferably 0.3% or more, and further preferably 0.5% or more in the glass composition D.
- the content of ZrO 2 is preferably 10% or less, more preferably 5% or less in the glass compositions A, B and C, and the glass composition D Is preferably 5% or less, more preferably 3% or less, and still more preferably 2% or less, and it is particularly preferable that it is not substantially contained.
- the glass is less likely to be devitrified if it is 10% or less.
- the glass according to the present invention may contain SO 3 as a fining agent.
- SO 3 when SO 3 is contained, amber coloring occurs as described above, and the transmittance near 450 nm may be reduced. Accordingly, when SO 3 is contained, its content is preferably 0.5% or less. More preferably, it is 0.4% or less, More preferably, it is 0.3% or less, Most preferably, it is 0.25% or less. However, in order to obtain the effect as a fining agent, it is preferable that it is over 0%.
- the glass according to the present invention may contain one or more of Sb 2 O 3 and As 2 O 3 as an oxidizing agent and a clarifying agent.
- the content of Sb 2 O 3 or As 2 O 3 is preferably 0 to 0.5%. 0.2% or less is more preferable, 0.1% or less is more preferable, and it is further more preferable not to contain substantially.
- Sb 2 O 3 and As 2 O 3 act as an oxidizing agent for glass, they may be added within the above range depending on the purpose of adjusting the amount of Fe 2+ in the glass.
- As 2 O 3 is preferably not intentionally contained from the viewpoint of the environment. Since Sb 2 O 3 is colored in a reducing atmosphere and has the property of affecting the internal transmittance in the visible light region, it is preferably not intentionally contained.
- the glass according to the present invention may contain tin oxide as a reducing agent as described above. Tin oxide also has an effect as a fining agent. Tin is present in the glass in a tetravalent and divalent state. When iron redox is low (for example, less than 30%), divalent tin acts as a reducing agent, and iron redox can be increased. On the other hand, when iron redox is high (for example, 70% or more), tetravalent tin acts as an oxidizing agent for iron. Moreover, since tin reduction occurs preferentially over sulfur reduction, amber coloration caused by sulfur reduction can be suppressed. When tin is contained, the content of total tin oxide converted to SnO 2 is preferably 0.5% or less, more preferably 0.3% or less, and particularly preferably 0.2% or less.
- composition of the glass according to the present invention can be measured by the fluorescent X-ray method.
- boron B which is a light element and difficult to measure by the fluorescent X-ray method, and trace elements of 1000 ppm by mass or less can be measured by ICP emission spectroscopic analysis.
- the layer containing tin is polished by about 100 ⁇ m and then measured by the method described later.
- the amount of divalent iron and the transmittance at a wavelength of 800 to 1500 nm in a glass having the same composition containing no tin can be obtained from the spectroscopic analysis by clarifying the above relationship and creating a calibration curve.
- the average internal transmittance ( ⁇ ) of light having a wavelength of 420 to 470 nm at an optical path length of 50 mm is preferably 95% or more, more preferably 97.5% or more, and still more preferably 98%. Above, especially preferably 99% or more.
- the average internal transmittance (alpha), the content of total iron oxide in terms of Fe 2 O 3 (t-Fe 2 O 3), Ni, Cr content and Mn, in the range of iron redox, etc. of the composition It can be achieved by adjusting with.
- the content of t-Fe 2 O 3 is preferably 10 to 65 ppm by mass
- the content of NiO is preferably 0.1 to 0.95 ppm by mass
- the content of Cr 2 O 3 is Preferably 0.1 to 0.95 mass ppm
- the total amount of NiO and Cr 2 O 3 is 0.5 to 1.3 mass ppm
- the content of MnO 2 is preferably 0.3 to 4.8 mass ppm
- the iron redox is preferably more than 30% to 60%.
- the average internal transmittance ( ⁇ ) of light having a wavelength of 520 to 570 nm at an optical path length of 50 mm is preferably 90% or more, more preferably 95% or more, and still more preferably 98%. Above, especially preferably 99% or more.
- the average internal transmittance (beta), the content of total iron oxide in terms of Fe 2 O 3 (t-Fe 2 O 3), Ni, Cr content and Mn, in the range of iron redox, etc. of the composition It can be achieved by adjusting with.
- the content of t-Fe 2 O 3 is preferably 10 to 65 ppm by mass
- the content of NiO is preferably 0.1 to 0.95 ppm by mass
- the content of Cr 2 O 3 is Preferably 0.1 to 0.95 mass ppm
- the total amount of NiO and Cr 2 O 3 is 0.5 to 1.3 mass ppm
- the content of MnO 2 is preferably 0.3 to 4.8 mass ppm
- the iron redox is preferably more than 30% to 60%.
- the average internal transmittance ( ⁇ ) of light having a wavelength of 675 to 725 nm at an optical path length of 50 mm is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more, and still more preferably 93 % Or more, particularly preferably 95% or more.
- the average internal transmittance (gamma), the content of total iron oxide in terms of Fe 2 O 3 (t-Fe 2 O 3), Ni, Cr content and Mn, in the range of iron redox, etc. of the composition It can be achieved by adjusting with.
- the content of t-Fe 2 O 3 is preferably 10 to 65 ppm by mass
- the content of NiO is preferably 0.1 to 0.95 ppm by mass
- the content of Cr 2 O 3 is Preferably 0.1 to 0.95 mass ppm
- the total amount of NiO and Cr 2 O 3 is 0.5 to 1.3 mass ppm
- the content of MnO 2 is preferably 0.3 to 4.8 mass ppm
- the iron redox is preferably more than 30% to 60%.
- a sample having a size of 50 mm in length and 50 mm in width is collected by cleaving from a substantially central portion of a target glass plate in a direction perpendicular to the first main surface of the glass plate.
- the arithmetic average roughness Ra of the first and second fractured surfaces facing each other of this sample is set to 0.03 ⁇ m or less.
- the first and second fractured surfaces are polished with free abrasive grains of colloidal silica or cerium oxide.
- 50 mm spectrometer capable of measuring in length e.g., UH4150: Hitachi High-Technologies Corporation
- the slit or the like smaller than the thickness of the beam width of the incident light And measure.
- Each coefficient B 1 , B 2 , B 3 , C 1 , C 2 , C 3 of the Sellmeier dispersion formula [formula (I) below] is determined by the least square method so as to fit the refractive index value.
- n A of sample A is determined by the least square method so as to fit the refractive index value.
- n A [1+ ⁇ B 1 ⁇ 2 / ( ⁇ 2 ⁇ C 1 ) ⁇ + ⁇ B 2 ⁇ 2 / ( ⁇ 2 ⁇ C 2 ) ⁇ + ⁇ B 3 ⁇ 2 / ( ⁇ 2 ⁇ C 3 ) ⁇ ] 0.5
- ⁇ is a wavelength.
- the average internal transmittance of the glass plate T ave is calculated.
- the average internal transmittance ( ⁇ ) of light having a wavelength of 420 to 470 nm at an optical path length of 50 mm after irradiating the LED under the following conditions is preferably 95% or more, more preferably 96% or more. More preferably, it is 97% or more, particularly preferably 98% or more, and most preferably 98.5% or more.
- the average internal transmittance ( ⁇ ) after irradiation with the high-intensity blue LED is 95% or more, it is possible to suppress a decrease in luminance and unevenness in color of the display device.
- Blue LED illumination Illumination in which blue LED chips with a size of 1 mm square that emit light at a central wavelength of 453 nm are arranged in a line at intervals of 0.2 mm. The length of the line is 50 mm. The illuminance at a distance of 20 mm from the LED chip when no sample is placed is 200,000 Lx.
- Glass plate A glass plate having a rectangular parallelepiped shape with a main surface size of 50 mm square and a thickness of 1.8 mm, and having a main surface and end surfaces mirror-polished.
- an ultra-high brightness linear illumination LLRG500WB, manufactured by ITEC System Co., Ltd. can be mentioned.
- FIG. 1 shows a schematic view seen from above with respect to the installation conditions of the blue LED illumination 3 in which the glass plate 1 and the blue LED chip 2 are arranged in a line at the time of LED irradiation.
- the content of MnO 2 is preferably 0.2 to 4.8 mass ppm
- the content of TiO 2 is Preferably more than 0 to less than 40 ppm by mass
- t-Fe 2 O 3 content is preferably 10 to 65 ppm by mass
- NiO content is preferably 0.1 to 0.95 ppm by mass
- Cr 2 O 3 A method in which the content is preferably 0.1 to 0.95 mass ppm and the total amount of NiO and Cr 2 O 3 is 0.5 to 1.3 ppm by mass can be mentioned.
- the average internal transmittance ( ⁇ ) of light having a wavelength of 520 to 570 nm at an optical path length of 50 mm after irradiating the LED under the above conditions is preferably 90% or more, more preferably 92% or more. More preferably, it is 94% or more, particularly preferably 96% or more, and most preferably 98% or more.
- the average internal transmittance ( ⁇ ) after irradiation with the high-intensity blue LED is 90% or more, deterioration of color unevenness of the display device can be suppressed.
- the content of MnO 2 is preferably 0.2 to 4.8 mass ppm
- the content of TiO 2 is Preferably more than 0 to less than 40 ppm by mass
- t-Fe 2 O 3 content is preferably 10 to 65 ppm by mass
- NiO content is preferably 0.1 to 0.95 ppm by mass
- Cr 2 O 3 A method in which the content is preferably 0.1 to 0.95 mass ppm and the total amount of NiO and Cr 2 O 3 is 0.5 to 1.3 ppm by mass can be mentioned.
- the glass plate according to the present invention preferably has an average internal transmittance ( ⁇ ) of light having a wavelength of 675 to 725 nm at an optical path length of 50 mm after irradiating the LED under the above conditions, preferably 70% or more, more preferably 80%. Or more, more preferably 90% or more, particularly preferably 92% or more, and most preferably 94% or more.
- ⁇ average internal transmittance
- the average internal transmittance ( ⁇ ) after irradiation with the high-intensity blue LED is 70% or more, the deterioration of the color unevenness of the display device can be suppressed.
- the content of MnO 2 is preferably 0.2 to 4.8 mass ppm
- the content of TiO 2 is Preferably more than 0 to less than 40 ppm by mass
- t-Fe 2 O 3 content is preferably 10 to 65 ppm by mass
- NiO content is preferably 0.1 to 0.95 ppm by mass
- Cr 2 O 3 A method in which the content is preferably 0.1 to 0.95 mass ppm and the total amount of NiO and Cr 2 O 3 is 0.5 to 1.3 ppm by mass can be mentioned.
- the glass plate of the present invention can be produced by a usual method. That is, after melting a glass raw material blended so that the composition of the glass to be produced has a desired composition by a conventional method to obtain a molten glass, the molten glass is subjected to a float method, a rollout method, a pulling method, Although a glass plate can be obtained by molding using a molding method such as a cold top method or a fusion method, it is more preferable that the glass plate is produced by a float method capable of large area and mass production.
- the glass plate examples include liquid crystal televisions, displays, light guide plates for in-vehicle liquid crystal display devices, solar cell covers and solar cell back sheets, and glass for architectural use such as window glass.
- permeability of the light in the wavelength 450nm vicinity is high compared with the conventional light-guide plate, it is more preferable to use as a light-guide plate used for the quantum dot display using blue LED. It is also suitable as a light guide plate for a white LED light source with improved internal transmittance of light in the vicinity of 450 nm.
- the size of the glass plate varies depending on the application, but at least one side is preferably 50 mm or more in length, and preferably 0.1 mm or more in thickness.
- at least one side of the glass plate has a length of 200 mm or more.
- the thickness of a glass plate is 0.1 mm or more, More preferably, it is 1 mm or more, More preferably, it is 1.8 mm or more. In use in this application, the thickness is preferably 3.0 mm or less in order to prevent an increase in weight. It is more preferably 2.6 mm or less, and further preferably 2.2 mm or less.
- the glass plate when used for a light guide plate of an in-vehicle liquid crystal display device, the glass plate preferably has a length of at least one side of 50 mm or more.
- the thickness of the glass plate is preferably 1.0 mm or more, more preferably 1.5 mm or more, further preferably 2.0 mm or more, and preferably 10 mm or less.
- the length of the glass plate is at least 50 mm or more, preferably 200 mm or more, more preferably 300 mm or more, and 500 mm or more. And particularly preferred. If the thickness of the glass plate is 1.0 mm or more, the rigidity is ensured, so that the glass plate is difficult to bend. When compared with acrylic, the glass plate is not only excellent in strength but also has a high-class feeling. The thickness may be appropriately selected from 1.8 mm or more, 2.0 mm or more, 2.5 mm or more, 3.5 mm or more, 6.0 mm or more, or 8.0 mm or more depending on the purpose.
- the glass plate according to the present invention preferably has a length of at least one side of 50 mm or more and a thickness of 0.1 mm or more.
- the glass plate according to the present invention may be subjected to a tempering treatment from the viewpoint of improving the strength.
- the strengthening method include air cooling strengthening treatment and chemical strengthening treatment.
- ⁇ Glass plate> (Examples 1-18, 20-32)
- the raw materials of each component were prepared so as to have a target composition, and were melted at a temperature of 1400 ° C. to 1700 ° C. for 3 to 10 hours using a platinum crucible.
- 400 g of the raw material was added in three portions every 20 minutes, a platinum stirrer was inserted into the molten glass, and the mixture was stirred for 1 hour to homogenize the glass.
- the molten glass was poured out and molded into a plate shape, and gradually cooled to room temperature at a cooling rate of 1 ° C. per minute to obtain a glass block. What is necessary is just to select suitably the particle size of a raw material, and the kind and quantity of a clarifying agent.
- the particle size of the raw material is 1 to 1000 ⁇ m
- the raw material types are cinnabar sand, aluminum oxide and sodium carbonate
- the clarifier types are sulfate, tin oxide and nitrate
- the clarifier amount is 0.1 to 0.5 A mass% etc. can be illustrated.
- Each component in the table is indicated by a mass percentage display based on oxide at a depth of 5000 nm or more from the surface of the glass plate.
- Example 19 A sheet of 1.8 mm thickness and 50 mm square made of polymethyl methacrylate (PMMA) was prepared.
- Glass composition About the obtained glass block, the glass composition except boron B and an element of 1000 ppm by mass or less is used to identify the polished glass block by the fluorescent X-ray method using the RSX maker ZSX100e under the following measurement conditions. It was.
- Polishing conditions A part of the obtained glass block was cut, and the measurement surface was polished by 5 ⁇ m or more using a # 1000 grindstone.
- ⁇ Measurement conditions tube voltage 50kV, measurement diameter 30mm ⁇
- the method for measuring the B content in glass is shown below.
- An aqueous sodium hydroxide solution was added to the crushed glass and decomposed by heating, and then nitric acid was added to the decomposition solution to make an acidic solution.
- Ion exchange water was added to the acidic solution to make a certain amount, and the concentration of B was measured by ICP emission spectroscopy.
- the concentration was calculated from a calibration curve prepared using a standard solution.
- the B content in the glass was calculated from the measured concentration and the amount of decomposition of the glass. Measurement was performed using SPS3100 manufactured by Hitachi High-Tech Science Co., Ltd. as an ICP emission photometer.
- the total iron oxide amount (t-Fe 2 O 3 ) was measured as follows.
- the crushed glass was decomposed by adding a mixed acid of hydrofluoric acid and perchloric acid and heating. After decomposition, hydrochloric acid was added to make a certain amount, and the concentration of Fe was measured by ICP emission spectroscopy.
- the above-mentioned crushed glass was obtained by grinding a layer containing tin 100 ⁇ m after grinding.
- the concentration was calculated from a calibration curve prepared using the standard solution. From the measured concentration and the amount of decomposition of the glass, the content of t-Fe 2 O 3 in the glass was calculated. Measurement was performed using SPS3100 manufactured by Hitachi High-Tech Science Co., Ltd. as an ICP emission photometer.
- a method for measuring the Fe 2+ content is shown below. After the crushed glass is decomposed at room temperature with a mixed acid of hydrofluoric acid and hydrochloric acid, a certain amount of the decomposed solution is dispensed into a plastic container, and a 2,2′-dipyridyl solution and an ammonium acetate buffer solution are quickly added. As a result, only Fe 2+ was developed. The color developing solution was made constant with ion-exchanged water, and the absorbance at a wavelength of 522 nm was measured with an absorptiometer.
- the concentration was calculated from a calibration curve prepared using the standard solution. From this measured concentration and the amount of decomposition of the glass, the Fe 2+ content (mass ppm) in the glass converted to Fe 2 O 3 was calculated.
- an absorptiometer UV-1700 manufactured by Shimadzu Corporation was used.
- Fe 3+ (t-Fe 2 O 3 )-(Fe 2+ )
- the amount of divalent iron was determined by the following method.
- a plurality of glasses having the same composition and different amounts of divalent iron to which SnO 2 was not added were prepared, and the amount of divalent iron was determined using the above method.
- each glass was processed into a glass cuboid having a long side of 50.0 mm, a short side of 30.0 mm, and a thickness of 1.8 mm, and all surfaces were polished to a mirror surface.
- Light was transmitted in the direction of the long side of the prepared glass cuboid with a spectrophotometer, and the external transmittance T ( ⁇ ) was measured.
- the spectrophotometer used was a spectrophotometer UH4150 manufactured by Hitachi High-Technologies Corporation. At this time, a spectrophotometer was used in combination with a detector manufactured by the company that can measure long samples. External transmittance T ( ⁇ ) at an optical path length of 50.0 mm was obtained at 1 nm intervals in the measurement wavelength range.
- the wavelength having the lowest transmittance at a wavelength of 800 to 1300 nm was defined as the absorption peak position of divalent iron, and the absorbance was obtained from the following formula.
- the absorbance with respect to the amount of divalent iron was determined by the above method, and a calibration curve was prepared.
- the glass doped with SnO 2 determine the absorbance in the same manner, using a calibration curve prepared was determined divalent iron content.
- the crushed glass was decomposed by adding a mixed acid of hydrofluoric acid and perchloric acid and heating. After decomposition, nitric acid was added to a constant amount, and the concentrations of Ni, Cr and Mn were measured by ICP mass spectrometry. Then, the concentration was calculated from a calibration curve prepared using the standard solution. Each content of Ni, Cr and Mn in the glass was calculated from the measured concentration and the amount of decomposition of the glass.
- the ICP mass spectrometer used was Agilent 8800 manufactured by Agilent Technologies. Ti was analyzed by ICP emission spectroscopy. Then, the concentration was calculated from a calibration curve prepared using the standard solution. In addition, the measurement using Hitachi High-Tech Science SPS3100 was performed as an ICP emission photometer.
- the glass block was processed into a glass cuboid having a long side of 50.0 mm, the other side having a short side of 30.0 mm, and a thickness of 1.8 mm, and all surfaces were polished to a mirror surface.
- Light was transmitted in the direction of the long side of the prepared glass cuboid with a spectrophotometer, and the external transmittance T ( ⁇ ) was measured.
- a spectrophotometer was used in combination with a detector manufactured by the company that can measure long samples.
- External transmittance T ( ⁇ ) at an optical path length of 50.0 mm was obtained at 1 nm intervals in the measurement wavelength range.
- n ( ⁇ ) [1+ ⁇ B 1 ⁇ 2 / ( ⁇ 2 ⁇ C 1 ) ⁇ + ⁇ B 2 ⁇ 2 / ( ⁇ 2 ⁇ C 2 ) ⁇ + ⁇ B 3 ⁇ 2 / ( ⁇ 2 ⁇ C 3 ) ⁇ ] 0.5 (I)
- the reflectance R ( ⁇ ) of one side of the glass cuboid was obtained by the relational expression of the refractive index and the reflectance [the following formula (II)]. .
- the internal transmittance U ( ⁇ ) at a length of 50.0 mm of the glass cuboid was determined by the following formula (III).
- Blue LED illumination Illumination in which blue LED chips with a size of 1 mm square that emit light at a central wavelength of 453 nm are arranged in a line at intervals of 0.2 mm. The length of the line is 50 mm. The illuminance at a distance of 20 mm from the LED chip when no sample is placed is 200,000 Lx.
- Glass plate A glass plate having a rectangular parallelepiped shape with a main surface size of 50 mm square and a thickness of 1.8 mm, and having a main surface and end surfaces mirror-polished.
- Example 12 (State after LED irradiation) The glass block of Example 12 was processed to a thickness of 1.8 mm and a 50 mm square, and the surface and end face were mirror-polished. Further, the polymethyl methacrylate film of Example 19 was used as a comparative example. The LED was irradiated to the glass plate of Example 12 and the film of Example 19 for 21 hours under the following conditions. (Condition) Directly attach one side of a glass plate or film to the following blue LED illumination (Ultra High Brightness Linear Illumination LLRG500WB manufactured by ITEC System Co., Ltd.) so that all light from the LED is incident from the end face of the glass plate or film.
- blue LED illumination Ultra High Brightness Linear Illumination LLRG500WB manufactured by ITEC System Co., Ltd.
- Blue LED illumination Illumination in which blue LED chips with a size of 1 mm square that emit light at a central wavelength of 453 nm are arranged in a line at intervals of 0.2 mm. The length of the line is 50 mm. The illuminance at a distance of 20 mm from the LED chip when no sample is placed is 200,000 Lx.
- ⁇ Cannot be melted by LED irradiation and can be used as a light guide plate.
- X It melt
- the average absorbance at wavelengths of 520 to 570 nm after irradiating the LED under the conditions described above in (Average internal transmittance after LED irradiation) is the wavelength before irradiation.
- the difference in average absorbance divided from the average absorbance at 520 to 570 nm was determined.
- the average absorbance at a wavelength of 520 to 570 nm is obtained by measuring the external transmittance with a spectrophotometer (Spectrum photometer UH4150 manufactured by Hitachi High-Technologies Corporation) at an optical path length of 50.0 mm, and converting it to the internal transmittance by the above method. It calculated
- Average absorbance at wavelengths of 520 to 570 nm ⁇ Log (U ( ⁇ 520 to 570 ) / 100) (IV)
- U ( ⁇ 520 to 570 ) is an average internal transmittance at a wavelength of 520 to 570 nm.
- FIG. 3 is a diagram showing a correlation between the amount of MnO 2 in the glass and the difference in average absorbance at wavelengths of 520 to 570 nm before and after the blue LED irradiation.
- Examples 3 to 16 and 20 to 32 are examples, and examples 1, 2, and 17 to 19 are comparative examples.
- “-” indicates that it has not been evaluated.
- the internal transmittance of light in the vicinity of the wavelength of 450 nm of the glass plate of the example is equal to or greater than the internal transmittance of light in the vicinity of the wavelength of 450 nm of the comparative example, and the visible region after irradiation with the blue LED The decrease in internal transmittance was reduced. From this result, it was found that the glass of the present invention is suitable for a glass plate for a light guide plate of a quantum dot display using a blue LED.
- the amount of change in internal transmittance due to the irradiation of the blue LED is correlated with the amount of Mn contained in the glass, and the content of MnO 2 contained in the glass is 5.0 mass ppm. It was found that the visible light solarization caused by the irradiation of the blue LED can be suppressed by lowering the following. Moreover, since the amount of change varies depending on the illuminance and irradiation time of the blue LED in the visible light solarization, for example, when the LED having lower illuminance than the LED of this test is used, the same applies depending on the irradiation time. Shows behavior.
- the glass plate of Example 12 which is an example, has high internal transmittance equivalent to that of the resin sheet of Example 19, which is a comparative example, and has heat resistance against irradiation of a blue LED. I found out.
- the resin-made sheet of Example 19 was deformed by heat due to the irradiation of the blue LED, and could not be used as a light guide plate using the blue LED as a light source.
- the glass plate of the present invention has a high internal transmittance of light in the vicinity of a wavelength of 450 nm as compared with a conventional glass plate for a light guide plate, and a decrease in internal transmittance in the visible region by irradiating a high-intensity blue LED. Has been reduced.
- the glass plate of this invention can be used suitably as a glass plate for light guide plates, especially a glass plate for light guide plates used for a quantum dot display using a blue LED.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Glass Compositions (AREA)
Abstract
The purpose of the present invention is to provide a glass plate which has a higher internal transmittance of light having a wavelength of about 450 nm, than a conventional glass plate for a light guide plate, and which has optical characteristics suited to a quantum dot display using a blue LED. The present invention pertains to a glass plate containing less than 80 ppm by mass of total iron oxide (t-Fe2O3) in terms of Fe2O3, and more than 0 but less than 1.0 ppm by mass of NiO, more than 0 but less than 1.0 ppm by mass of Cr2O3, and more than 0 but not more than 5.0 ppm by mass of MnO2 on an oxide basis, wherein the proportion of divalent iron (Fe2+) in terms of Fe2O3 in the total iron oxide in terms of Fe2O3 is more than 30%, when expressed as percent by mass.
Description
本発明は、導光板に用いることのできるガラス板に関し、特に青色LEDを用いた量子ドットディスプレイに用いる導光板に好適なガラス板に関する。
The present invention relates to a glass plate that can be used for a light guide plate, and more particularly to a glass plate suitable for a light guide plate used for a quantum dot display using a blue LED.
近年、液晶テレビ等の薄型表示装置の高輝度化、高画質化および省電力化に伴い、従来の白色LEDを用いたディスプレイから、青色LEDを用いた量子ドットディスプレイが検討されている(例えば、特許文献1)。
In recent years, with the increase in brightness, image quality, and power saving of thin display devices such as liquid crystal televisions, quantum dot displays using blue LEDs have been studied from displays using conventional white LEDs (for example, Patent Document 1).
量子ドットディスプレイでは、青色光源としての青色LEDと、緑色・赤色光源としての青色LEDで励起した量子ドットのフォトルミネッセンスとを組み合わせて得た白色光を、液晶ディスプレイのバックライトとして用いている。
In a quantum dot display, white light obtained by combining a blue LED as a blue light source and photoluminescence of quantum dots excited by a blue LED as a green / red light source is used as a backlight of a liquid crystal display.
バックライトユニットに量子ドットを配置する方式として、主に、量子ドットを樹脂に分散させてガラス管に封入させた量子ドットアッセンブリを光源と導光板との間に配置するエッジライト方式等がある。
As a method of arranging quantum dots in the backlight unit, there is mainly an edge light method in which a quantum dot assembly in which quantum dots are dispersed in a resin and sealed in a glass tube is arranged between a light source and a light guide plate.
エッジライト方式の導光板には広くアクリル板が用いられているが、剛性、耐熱性または耐水性の観点からガラス板への置き換えが検討されている。例えば、特許文献2には、エッジライト方式の面状発光体装置の導光体用として好適なガラスが開示されている。
An acrylic plate is widely used as the edge light type light guide plate, but replacement with a glass plate is under consideration from the viewpoint of rigidity, heat resistance or water resistance. For example, Patent Document 2 discloses glass suitable for a light guide of an edge light type planar light emitting device.
本発明者らの検討により、青色LEDを用いた量子ドットディスプレイ用途の観点で下記(1)~(3)に示す課題があることが判明した。
(1)高出力の(例えばLEDチップから50mmの距離で11万Lx)青色LEDを光源とする場合、従来の樹脂からなる導光板は耐熱性が不十分である。
(2)白色LEDに対応した従来の導光板用ガラスでは、青色LEDの発光波長域である450nm近傍における光の内部透過率が不足する。
(3)波長450nm近傍の発光波長を有する高輝度の青色LEDを従来のガラスに照射した際に、可視域における光の内部透過率が不足する。 As a result of investigations by the present inventors, it has been found that the following problems (1) to (3) are present from the viewpoint of the use of a quantum dot display using a blue LED.
(1) When a blue LED having a high output (for example, 110,000 Lx at a distance of 50 mm from the LED chip) is used as a light source, a conventional light guide plate made of resin is insufficient in heat resistance.
(2) In the conventional glass for light guide plates corresponding to white LED, the internal transmittance | permeability of the light in 450 nm vicinity which is the light emission wavelength range of blue LED is insufficient.
(3) When a conventional glass is irradiated with a high-intensity blue LED having an emission wavelength near 450 nm, the internal transmittance of light in the visible range is insufficient.
(1)高出力の(例えばLEDチップから50mmの距離で11万Lx)青色LEDを光源とする場合、従来の樹脂からなる導光板は耐熱性が不十分である。
(2)白色LEDに対応した従来の導光板用ガラスでは、青色LEDの発光波長域である450nm近傍における光の内部透過率が不足する。
(3)波長450nm近傍の発光波長を有する高輝度の青色LEDを従来のガラスに照射した際に、可視域における光の内部透過率が不足する。 As a result of investigations by the present inventors, it has been found that the following problems (1) to (3) are present from the viewpoint of the use of a quantum dot display using a blue LED.
(1) When a blue LED having a high output (for example, 110,000 Lx at a distance of 50 mm from the LED chip) is used as a light source, a conventional light guide plate made of resin is insufficient in heat resistance.
(2) In the conventional glass for light guide plates corresponding to white LED, the internal transmittance | permeability of the light in 450 nm vicinity which is the light emission wavelength range of blue LED is insufficient.
(3) When a conventional glass is irradiated with a high-intensity blue LED having an emission wavelength near 450 nm, the internal transmittance of light in the visible range is insufficient.
本発明は上記課題に鑑み、従来の導光板用ガラス板と比較して、青色LEDを用いた量子ドットディスプレイに適した波長450nm近傍における光の内部透過率が高いガラス板を提供することを目的とする。
In view of the above problems, the present invention has an object to provide a glass plate having a high internal transmittance of light in the vicinity of a wavelength of 450 nm, which is suitable for a quantum dot display using a blue LED, as compared with a conventional glass plate for a light guide plate. And
本発明者らは鋭意検討の結果、特定の組成範囲とすることにより、上記課題を解決できることを見出し、本発明を完成するに至った。
As a result of intensive studies, the present inventors have found that the above problem can be solved by setting the composition range to a specific range, and have completed the present invention.
すなわち本発明は、Fe2O3に換算した全酸化鉄(t-Fe2O3)を80質量ppm未満含有し、酸化物基準で、NiOを0超1.0質量ppm未満、Cr2O3を0超1.0質量ppm未満、MnO2を0超~5.0質量ppm含有し、且つ鉄レドックスが30%超であるガラス板を提供する。
That is, the present invention, the total iron oxide in terms of Fe 2 O 3 and (t-Fe 2 O 3) containing less than 80 mass ppm, on an oxide basis, the NiO less than 0 1.0 mass ppm, Cr 2 O There is provided a glass plate containing 3 in excess of 0 and less than 1.0 ppm by mass, MnO 2 in excess of 0 to 5.0 ppm by mass, and iron redox exceeding 30%.
本発明のガラス板は、特定の組成範囲を有することにより、従来の導光板用ガラス板と比較して、波長450nm近傍における光の内部透過率が高く、且つ高輝度の青色LEDを照射することによる可視域の内部透過率の減少が低減されている。また、従来の樹脂製の導光板と同等の光学特性を有すると同時に、高出力の青色LEDに耐えうる耐熱性を有している。したがって、本発明のガラス板は、青色LEDを用いた量子ドットディスプレイに用いる導光板用ガラス板として好適である。
By having a specific composition range, the glass plate of the present invention emits a blue LED having a high internal transmittance of light in the vicinity of a wavelength of 450 nm and a high luminance as compared with a conventional glass plate for a light guide plate. The reduction of visible internal transmittance due to is reduced. In addition, it has the same optical characteristics as a conventional resin light guide plate, and at the same time has heat resistance enough to withstand high-power blue LEDs. Therefore, the glass plate of this invention is suitable as a glass plate for light-guide plates used for the quantum dot display using blue LED.
以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施できる。また本明細書において数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。本明細書において実質的に含有しないとは、不可避的不純物を除き含有しないことを意味し、具体的には蛍光X線分析法で測定した際の検出限界以下であることを指す。
Hereinafter, the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and can be arbitrarily modified without departing from the gist of the present invention. In the present specification, “to” indicating a numerical range is used in the sense of including the numerical values described before and after the numerical value as a lower limit value and an upper limit value. In the present specification, “substantially not contained” means that it is not contained except for inevitable impurities, and specifically means that it is below the detection limit when measured by fluorescent X-ray analysis.
〔ガラス組成〕
本明細書において、ガラスの成分はSiO2、Al2O3等の酸化物換算で表し、ガラス全体に対する各成分の含有量(ガラス組成)は、酸化物基準の質量百分率、又は質量ppm(質量百分率を単に%、又は質量ppmを単にppmと表記する場合もある)で表す。 [Glass composition]
In this specification, the components of glass are expressed in terms of oxides such as SiO 2 and Al 2 O 3 , and the content (glass composition) of each component with respect to the entire glass is the mass percentage based on oxide or mass ppm (mass) Percentage is simply expressed as%, or mass ppm may be expressed as simply ppm).
本明細書において、ガラスの成分はSiO2、Al2O3等の酸化物換算で表し、ガラス全体に対する各成分の含有量(ガラス組成)は、酸化物基準の質量百分率、又は質量ppm(質量百分率を単に%、又は質量ppmを単にppmと表記する場合もある)で表す。 [Glass composition]
In this specification, the components of glass are expressed in terms of oxides such as SiO 2 and Al 2 O 3 , and the content (glass composition) of each component with respect to the entire glass is the mass percentage based on oxide or mass ppm (mass) Percentage is simply expressed as%, or mass ppm may be expressed as simply ppm).
本発明に係るガラスは、Fe2O3に換算した全酸化鉄(t-Fe2O3)を80質量ppm未満含有し、酸化物基準で、NiOを0超1.0質量ppm未満、Cr2O3を0超1.0質量ppm未満、MnO2を0超~5.0質量ppm含有し、且つ鉄レドックスが30%超であることを特徴とする。
The glasses according to the invention, the total iron oxide in terms of Fe 2 O 3 and (t-Fe 2 O 3) containing less than 80 mass ppm, on an oxide basis, the NiO less than 0 1.0 mass ppm, Cr 2 O 3 is contained more than 0 and less than 1.0 ppm by mass, MnO 2 is contained from 0 to 5.0 ppm by mass, and iron redox is more than 30%.
ガラスの光吸収の主要因は、不純物として含まれる鉄イオンである。鉄は、工業的に生産されるガラスの原料として不可避的に含有されるものであり、ガラス中への鉄の混入は避けられない。エッジライト用の導光板等のガラス内部での光路長の長い用途に好適なガラスとするためには、ガラス組成における総鉄量を減らして鉄イオンによる光吸収を抑制することが好ましい。
The main factor of light absorption of glass is iron ions contained as impurities. Iron is unavoidably contained as a raw material for industrially produced glass, and it is inevitable that iron is mixed into the glass. In order to obtain a glass suitable for an application having a long optical path length inside the glass such as a light guide plate for edge light, it is preferable to reduce the total iron content in the glass composition and suppress light absorption by iron ions.
したがって、Fe2O3に換算した全酸化鉄(t-Fe2O3)の含有量は、80質量ppm未満であり、好ましくは70質量ppm以下、より好ましくは60質量ppm以下、さらに好ましくは50質量ppm以下、ことさらに好ましくは、40質量ppm以下、特に好ましくは30質量ppm以下、最も好ましくは25質量ppm以下である。
Accordingly, the content of total iron oxide in terms of Fe 2 O 3 (t-Fe 2 O 3) is less than 80 ppm by weight, preferably 70 mass ppm or less, more preferably 60 mass ppm or less, more preferably 50 ppm by mass or less, more preferably 40 ppm by mass or less, particularly preferably 30 ppm by mass or less, and most preferably 25 ppm by mass or less.
一方、t-Fe2O3の含有量は、ガラス原料のコストを抑え、ガラスの溶解性を確保し、且つガラスの赤外線の吸収が極端に悪化するのを防ぐために、5質量ppm以上が好ましく、より好ましくは8質量ppm以上、さらに好ましくは10質量ppm以上、特に好ましくは12質量ppm以上、最も好ましくは15質量ppm以上である。なお、ガラス中のt-Fe2O3の含有量は、ガラス製造時に添加する鉄成分の量により調節できる。
On the other hand, the content of t-Fe 2 O 3 is preferably 5 ppm by mass or more in order to suppress the cost of the glass raw material, ensure the solubility of the glass, and prevent the infrared absorption of the glass from being extremely deteriorated. More preferably, it is 8 mass ppm or more, More preferably, it is 10 mass ppm or more, Especially preferably, it is 12 mass ppm or more, Most preferably, it is 15 mass ppm or more. The content of t-Fe 2 O 3 in the glass can be adjusted by the amount of iron component added during glass production.
鉄イオンは、ガラス中において2価鉄(Fe2+)および3価鉄(Fe3+)の形態をとる(以下、これらをまとめて「鉄成分」ともいう)。鉄成分は可視域に吸収が存在し、3価鉄は波長450nm付近に吸収のピークを有し、2価鉄は波長1100nm付近に吸収のピークを有する。
The iron ion takes the form of divalent iron (Fe 2+ ) and trivalent iron (Fe 3+ ) in the glass (hereinafter, these are collectively referred to as “iron component”). The iron component has absorption in the visible region, trivalent iron has an absorption peak near a wavelength of 450 nm, and divalent iron has an absorption peak near a wavelength of 1100 nm.
青色LEDの発光波長域である450nm近傍における光の内部透過率の低下は、輝度に影響を与える。また、青色LED光で量子ドットを励起し得られた白色光の一部はガラスに戻り光として再入射する。そのため、450nm近傍以外の波長域において光の内部透過率が低下すると、この戻り光がガラスに再入射した際に光吸収が増大し、色むらの原因となり、全体として好ましい色バランスが崩れる懸念がある。
The decrease in the internal transmittance of light in the vicinity of 450 nm, which is the emission wavelength region of the blue LED, affects the luminance. Also, part of the white light obtained by exciting the quantum dots with blue LED light returns to the glass and re-enters as light. Therefore, when the internal transmittance of light decreases in a wavelength region other than the vicinity of 450 nm, when this return light re-enters the glass, light absorption increases, causing color unevenness, and there is a concern that a preferable color balance may be lost as a whole. is there.
本発明に係るガラスは、鉄レドックスが30%超であり、好ましくは32%以上、より好ましくは34%以上、さらに好ましくは36%以上、特に好ましくは38%以上、最も好ましくは40%以上である。
The glass according to the present invention has an iron redox of more than 30%, preferably 32% or more, more preferably 34% or more, still more preferably 36% or more, particularly preferably 38% or more, and most preferably 40% or more. is there.
鉄レドックスを30%超とすることにより、波長450nm付近に吸収のピークを有する3価鉄の割合を低くして、青色、特に波長450nm近傍の光の内部透過率を向上させ、青色LEDを用いた量子ドットディスプレイに適した光学特性を得ることができる。鉄レドックスを上げる方法としては、例えば、高温での溶解、および酸化スズまたはコークスなどの還元剤の使用等が挙げられる。
By making the iron redox more than 30%, the ratio of trivalent iron having an absorption peak in the vicinity of a wavelength of 450 nm is lowered, and the internal transmittance of light in the blue, particularly in the vicinity of a wavelength of 450 nm is improved, and a blue LED is used. Optical characteristics suitable for a quantum dot display can be obtained. Examples of methods for increasing iron redox include dissolution at high temperatures and the use of reducing agents such as tin oxide or coke.
また、可視域の長波長側、特に波長600nm付近より長波長側においては内部透過率が逆に低下し、上述したように全体として好ましい色バランスが崩れる懸念がある。また、SO3を含有するガラスの場合、鉄レドックスを高めるために、還元雰囲気下で溶解させると、硫黄(S)はマイナス2価の硫黄となる。その結果、ガラス中のプラス2価の鉄と反応してアンバー発色を生じ、450nm近傍の透過率が低下するおそれがある。そのため、鉄レドックスは70%以下であることが好ましく、より好ましくは65%以下、さらに好ましくは60%以下、特に好ましくは55%以下、最も好ましくは50%以下である。
In addition, on the long wavelength side in the visible region, particularly on the long wavelength side near the wavelength of about 600 nm, the internal transmittance is decreased, and there is a concern that the preferable color balance as a whole may be lost as described above. In the case of glass containing SO 3 , sulfur (S) becomes negative divalent sulfur when dissolved in a reducing atmosphere in order to increase iron redox. As a result, it reacts with plus divalent iron in the glass to cause amber coloration, and the transmittance near 450 nm may be lowered. Therefore, the iron redox is preferably 70% or less, more preferably 65% or less, further preferably 60% or less, particularly preferably 55% or less, and most preferably 50% or less.
鉄レドックスは、Fe2O3に換算した全酸化鉄中のFe2O3に換算した2価鉄(Fe2+)の割合であり、下記式(1)により求める。
Iron redox is the ratio of divalent iron which in terms of Fe 2 O 3 in the total iron oxide in terms of Fe 2 O 3 (Fe 2+), obtained by the following equation (1).
鉄レドックス(%)=〔[Fe2O3に換算した2価鉄(Fe2+)の含有量(質量ppm)]/[Fe2O3に換算した2価鉄(Fe2+)と3価鉄(Fe3+)の合計の含有量(質量ppm)]〕×100…式(1)
Iron redox (%) = [[content of divalent iron (Fe 2+ ) converted to Fe 2 O 3 (mass ppm)] / [divalent iron (Fe 2+ ) converted to Fe 2 O 3 and trivalent iron Total content of (Fe 3+ ) (mass ppm)]] × 100 Formula (1)
Fe2O3に換算した2価鉄(Fe2+)量は、ガラス原料の溶解時にガラス融液の熱線吸収効率を上げ、溶解性を向上させるため、酸化物基準で3質量ppm以上であることが好ましく、より好ましくは5質量ppm以上、さらに好ましくは6質量ppm以上、特に好ましくは7質量ppm以上である。また、上限は可視域における内部透過率を高めるため、マイナス2価の硫黄と反応する2価鉄を減らし、アンバー発色を抑えるために、40質量ppm以下であることが好ましく、より好ましくは30質量ppm以下であり、さらに好ましくは20質量ppm以下であり、特に好ましくは15質量ppm以下であり、特に好ましくは12質量ppm以下である。
The amount of divalent iron (Fe 2+ ) converted to Fe 2 O 3 is 3 mass ppm or more based on oxides in order to increase the heat ray absorption efficiency of the glass melt and improve the solubility when the glass raw material is melted. More preferably, it is 5 mass ppm or more, More preferably, it is 6 mass ppm or more, Most preferably, it is 7 mass ppm or more. Further, the upper limit is preferably 40 ppm by mass or less, more preferably 30 masses in order to increase the internal transmittance in the visible range, to reduce divalent iron that reacts with minus divalent sulfur, and to suppress amber color development. ppm or less, more preferably 20 mass ppm or less, particularly preferably 15 mass ppm or less, and particularly preferably 12 mass ppm or less.
Fe2O3に換算した3価鉄(Fe3+)量は、紫外光域(UV光域)の透過率を低下させ、後述のCeO2含有時のUVソーラリゼーションを抑える効果や、ガラスの構造欠陥の生成を抑え、可視域の透過率の低下を抑制する効果があるため、酸化物基準で5ppm超40ppm未満である。Fe2O3に換算した酸化鉄量は6質量ppm以上であることが好ましく、より好ましくは7質量ppm以上、さらに好ましくは8質量ppm以上、特に好ましくは9質量ppm以上である。また上限は波長450nm近傍の吸収を抑えるために、38質量ppm以下であることが好ましく、より好ましくは30質量ppm以下であり、さらに好ましくは20質量ppm以下であり、特に好ましくは15質量ppm以下であり、最も好ましくは13質量ppm以下である。
The amount of trivalent iron (Fe 3+ ) converted to Fe 2 O 3 reduces the transmittance in the ultraviolet light region (UV light region), suppresses UV solarization when containing CeO 2 described later, Since it has the effect of suppressing the generation of structural defects and suppressing the decrease in transmittance in the visible range, it is more than 5 ppm and less than 40 ppm on an oxide basis. The amount of iron oxide converted to Fe 2 O 3 is preferably 6 mass ppm or more, more preferably 7 mass ppm or more, still more preferably 8 mass ppm or more, and particularly preferably 9 mass ppm or more. The upper limit is preferably 38 mass ppm or less, more preferably 30 mass ppm or less, still more preferably 20 mass ppm or less, and particularly preferably 15 mass ppm or less, in order to suppress absorption in the vicinity of a wavelength of 450 nm. And most preferably 13 ppm by mass or less.
ニッケル(以下Niともいう)はFe2+と同様に波長800~1100nmの近赤外領域に吸収を持つため、ガラス溶解時にガラス融液の熱線吸収効率を向上させる。そのため、Niをガラスに含むことにより、ガラス中のFe2+の割合が少なくてもガラスの溶解性を向上できる。
Nickel (hereinafter also referred to as Ni) has an absorption in the near-infrared region with a wavelength of 800 to 1100 nm, similar to Fe 2+, and thus improves the heat ray absorption efficiency of the glass melt during glass melting. Therefore, by including Ni in the glass, the solubility of the glass can be improved even if the proportion of Fe 2+ in the glass is small.
また、ガラス溶融過程やガラス成形過程において硫黄成分が侵入すると該硫黄成分はガラス中のFeと結合し、硫化鉄が生じて着色の原因となり、内部透過率の低下をきたすことがある。ガラス中にNi成分が存在することにより、選択的に硫化ニッケルを形成して前記硫化鉄の生成を抑制して着色を低減でき、ガラスの内部透過率を高く維持できる。
In addition, when a sulfur component enters during the glass melting process or glass forming process, the sulfur component is combined with Fe in the glass, iron sulfide is generated, causing coloration and reducing internal transmittance. When the Ni component is present in the glass, nickel sulfide can be selectively formed to suppress the formation of the iron sulfide, thereby reducing the coloration and maintaining the high internal transmittance of the glass.
上記理由から、酸化物基準のNiOの含有量は0超であり、好ましくは0.05質量ppm以上、より好ましくは0.1質量ppm以上、さらに好ましくは0.15質量ppm以上、特に好ましくは0.2質量ppm以上である。
For the above reasons, the content of oxide-based NiO is more than 0, preferably 0.05 mass ppm or more, more preferably 0.1 mass ppm or more, still more preferably 0.15 mass ppm or more, particularly preferably. It is 0.2 mass ppm or more.
一方でNiは波長450nmと630nm付近に吸収を持ち、波長450nmの透過率を低下させると同時に、上述の戻り光がガラスに再入射した際、光吸収を増加させて色むらを生じさせる要因のひとつとなる。したがって、酸化物基準のNiOの含有量は1質量ppm未満であり、0.8質量ppm以下であることが好ましく、より好ましくは0.6質量ppm以下、さらに好ましくは0.4質量ppm以下、特に好ましくは0.3質量ppm以下である。
On the other hand, Ni has absorption near wavelengths of 450 nm and 630 nm, and at the same time, the transmittance of the wavelength of 450 nm is lowered. Become one. Therefore, the content of oxide-based NiO is less than 1 ppm by mass, preferably 0.8 ppm by mass or less, more preferably 0.6 ppm by mass or less, and still more preferably 0.4 ppm by mass or less, Especially preferably, it is 0.3 mass ppm or less.
クロム(以下Crともいう)は、酸化剤として作用して、鉄レドックスを制御できる。酸化物基準のCr2O3の含有量は0超であり、好ましくは0.05質量ppm以上、より好ましくは0.1質量ppm以上、さらに好ましくは0.15質量ppm以上、特に好ましくは0.2質量ppm以上である。
Chromium (hereinafter also referred to as Cr) can act as an oxidizing agent to control iron redox. The content of oxide-based Cr 2 O 3 is more than 0, preferably 0.05 mass ppm or more, more preferably 0.1 mass ppm or more, still more preferably 0.15 mass ppm or more, particularly preferably 0. .2 mass ppm or more.
またCrは、Niと同様に波長450nmと630nm付近に吸収を持ち、波長450nmの透過率を低下させる。と同時に、上述の戻り光がガラスに再入射した際に光吸収を増加させて色むらを生じさせる要因のひとつとなる。そのため、酸化物基準のCr2O3の含有量は1.0質量ppm未満であり、好ましくは0.8質量ppm以下であり、より好ましくは0.6質量ppm以下、さらに好ましくは0.5質量ppm以下、特に好ましくは0.4質量ppm以下、最も好ましくは0.35質量ppm以下である。
Cr, like Ni, has absorption near wavelengths of 450 nm and 630 nm, and lowers the transmittance at a wavelength of 450 nm. At the same time, when the above-mentioned return light re-enters the glass, it becomes one of the factors that increase light absorption and cause color unevenness. Therefore, the content of oxide-based Cr 2 O 3 is less than 1.0 mass ppm, preferably 0.8 mass ppm or less, more preferably 0.6 mass ppm or less, and even more preferably 0.5 ppm. The mass ppm or less, particularly preferably 0.4 mass ppm or less, and most preferably 0.35 mass ppm or less.
波長450nmの透過率の低下および上述の戻り光による色むらを抑えるために、NiOとCr2O3の合計量は好ましくは1.5質量ppm以下、より好ましくは1.3質量ppm以下、さらに好ましくは1.0質量ppm以下、特に好ましくは0.7質量ppm以下である。
The total amount of NiO and Cr 2 O 3 is preferably 1.5 mass ppm or less, more preferably 1.3 mass ppm or less, in order to suppress a decrease in transmittance at a wavelength of 450 nm and color unevenness due to the return light described above. Preferably it is 1.0 mass ppm or less, Most preferably, it is 0.7 mass ppm or less.
マンガン(以下Mnともいう)は原料の精製コストを抑えるために、また酸化剤として作用させ、鉄レドックスを調整するために、酸化物基準のMnO2の含有量は0超であり、好ましくは0.01質量ppm以上、より好ましくは0.05質量ppm以上、さらに好ましくは0.1質量ppm以上、特に好ましくは0.15質量ppm以上、最も好ましくは0.2質量ppm以上である。
Manganese (hereinafter also referred to as Mn) acts as an oxidizing agent in order to suppress the refining cost of the raw material, and in order to adjust iron redox, the content of oxide-based MnO 2 is more than 0, preferably 0 0.01 mass ppm or more, more preferably 0.05 mass ppm or more, still more preferably 0.1 mass ppm or more, particularly preferably 0.15 mass ppm or more, and most preferably 0.2 mass ppm or more.
Mnは可視光域に吸収をもつとともに、青色LEDが照射されることにより電子を放出し、該電子がガラス中のチタン(以下Tiともいう)と反応した場合に、Tiによる光の吸収が大きくなり、内部透過率を低下させる可視光ソーラリゼーションの原因となり得る。このため、Mnの含有量を低下させることにより、内部透過率の低下を抑制できる。なお本明細書における「可視光ソーラリゼーション」とは、波長450nm近傍の光の照射前後における透過率変化を示している。光源としては、白色LEDや青色LEDが挙げられる。
Mn has absorption in the visible light region and emits electrons when irradiated with a blue LED. When the electrons react with titanium in the glass (hereinafter also referred to as Ti), light absorption by Ti is large. And may cause visible light solarization that reduces internal transmittance. For this reason, the fall of internal transmittance can be controlled by reducing the content of Mn. Note that “visible light solarization” in the present specification indicates a change in transmittance before and after irradiation with light having a wavelength of about 450 nm. Examples of the light source include white LEDs and blue LEDs.
したがって、MnO2の含有量は5.0質量ppm以下であり、好ましくは4.0質量ppm以下であり、より好ましくは3.0質量ppm以下、さらに好ましくは2.0質量ppm以下、ことさらに好ましくは1.5質量ppm、特に好ましくは1.0質量ppm以下、最も好ましくは0.5質量ppm以下である。
Therefore, the content of MnO 2 is 5.0 mass ppm or less, preferably 4.0 mass ppm or less, more preferably 3.0 mass ppm or less, still more preferably 2.0 mass ppm or less. Preferably it is 1.5 mass ppm, Most preferably, it is 1.0 mass ppm or less, Most preferably, it is 0.5 mass ppm or less.
NiO、Cr2O3およびMnO2に加えて、同様に紫外域から近赤外域の波長範囲で光を吸収する特性を有するCoO、V2O5、SeO2およびCuOからなる群から選ばれる少なくとも1種の成分を含んでいてもよい。これらの成分は、可視光を吸収する成分として機能するので、CoO、V2O5、SeO2およびCuOからなる群から選ばれる少なくとも1種の成分を含有する場合であっても、その含有量は、酸化物基準で10質量ppm以下とするのが好ましく、1質量ppm以下とするのがより好ましい。波長400~700nmにおける内部透過率を低下させない観点からは、CoO、V2O5、SeO2およびCuOからなる群から選ばれる少なくとも1種の成分を実質的に含有しないことが好ましい。
In addition to NiO, Cr 2 O 3 and MnO 2 , at least selected from the group consisting of CoO, V 2 O 5 , SeO 2, and CuO having the same characteristic of absorbing light in the wavelength range from the ultraviolet region to the near infrared region One kind of component may be included. Since these components function as components that absorb visible light, even if they contain at least one component selected from the group consisting of CoO, V 2 O 5 , SeO 2 and CuO, the content thereof Is preferably 10 ppm by mass or less, more preferably 1 ppm by mass or less based on the oxide. From the viewpoint of not reducing the internal transmittance at a wavelength of 400 to 700 nm, it is preferable that at least one component selected from the group consisting of CoO, V 2 O 5 , SeO 2 and CuO is not substantially contained.
上記に加えて、Yb2O3やEr2O3も紫外域から近赤外域の波長範囲で光を吸収する特性を有するため、含有できる。ただし、これらの成分は希少価値が高く、製造コストに大きく影響する。これらを含有する場合であっても、その含有量は、酸化物基準で10質量ppm以下とするのが好ましく、1質量ppm以下とするのがより好ましく、実質的に含有しないことが好ましい。
In addition to the above, Yb 2 O 3 and Er 2 O 3 can also be contained because they have the property of absorbing light in the wavelength range from the ultraviolet region to the near infrared region. However, these components have a high rare value and greatly affect the production cost. Even in the case of containing these, the content is preferably 10 ppm by mass or less, more preferably 1 ppm by mass or less, and preferably substantially not contained, based on the oxide.
また、上述したようにTiがガラス中に含まれていると、可視光ソーラリゼーションを引き起こす他、Tiによる光の吸収が大きくなり、内部透過率を低下させる原因となり得る。したがって、TiO2の含有量は、40質量ppm未満であることが好ましく、より好ましくは30質量ppm以下、さらに好ましくは20質量ppm以下であり、特に好ましくは10質量ppm以下である。
In addition, when Ti is contained in the glass as described above, visible light solarization is caused, light absorption by Ti is increased, and internal transmittance can be reduced. Accordingly, the content of TiO 2 is preferably less than 40 ppm by mass, more preferably 30 ppm by mass or less, still more preferably 20 ppm by mass or less, and particularly preferably 10 ppm by mass or less.
また、TiはUV光を吸収する成分であるため、後述のUVソーラリゼーションを抑える効果がある。TiO2の含有量は0超であることが好ましく、1質量ppm以上であることがより好ましく、さらに好ましくは3質量ppm以上、特に好ましくは5質量ppm以上である。
Further, since Ti is a component that absorbs UV light, it has an effect of suppressing UV solarization described later. The content of TiO 2 is preferably more than 0, more preferably 1 ppm by mass or more, further preferably 3 ppm by mass or more, and particularly preferably 5 ppm by mass or more.
本発明に係るガラスの組成は、前述の特徴を有する限り、その他の組成には特に限定されない。母組成として好ましい組成の代表例を以下に示す。
The composition of the glass according to the present invention is not particularly limited as long as it has the above-described characteristics. Typical examples of preferred compositions for the mother composition are shown below.
ガラス組成A:酸化物基準の質量百分率表示で、SiO2を60~85%、Al2O3を0~10%、MgOを0~10%、CaOを0~20%、SrOを0~15%、BaOを0~15%、Na2Oを2~20%、K2Oを0~10%、B2O3を0~20%含有する。
ガラス組成B:酸化物基準の質量百分率表示で、SiO2を45~80%、Al2O3を10%超30%以下、B2O3を0~15%、MgOを0~15%、CaOを0~6%、SrOを0~5%、BaOを0~5%、Na2Oを2~20%、K2Oを0~10%、ZrO2を0~10%含有する。
ガラス組成C:酸化物基準の質量百分率表示で、SiO2を45~70%、Al2O3を10~30%、B2O3を0~15%含むとともに、MgO、CaO、SrOおよびBaOからなる群から選ばれる少なくとも1種の成分を、合計5~30%含み、さらにLi2O、Na2OおよびK2Oからなる群から選ばれる少なくとも1種の成分を、合計0%以上3%未満含有する。
ガラス組成D:酸化物基準の質量百分率表示で、SiO2を50~85%、Al2O3を0~20%、B2O3を0~10%、Na2Oを1~20%およびK2Oを0~20%以下含有する。 Glass composition A: SiO 2 is 60 to 85%, Al 2 O 3 is 0 to 10%, MgO is 0 to 10%, CaO is 0 to 20%, and SrO is 0 to 15 in terms of mass percentage based on oxide. %,BaO 0 to 15%, Na 2 O 2 to 20%, K 2 O 0 to 10% and B 2 O 3 0 to 20%.
Glass composition B: SiO 2 45 to 80%, Al 2 O 3 more than 10% and 30% or less, B 2 O 3 0 to 15%,MgO 0 to 15% in terms of mass percentage based on oxide the CaO 0 ~ 6%, the SrO 0 ~ 5%, a BaO 0 ~ 5%, 2 ~ 20% of Na 2 O, the K 2 O 0-10%, a ZrO 2 containing 0-10%.
Glass composition C: SiO 2 45-70%, Al 2 O 3 10-30%, B 2 O 3 0-15% in terms of mass percentage on oxide basis, MgO, CaO, SrO and BaO A total of 5 to 30% of at least one component selected from the group consisting of: and at least one component selected from the group consisting of Li 2 O, Na 2 O and K 2 O Contain less than%.
Glass composition D: SiO 2 50-85%, Al 2 O 3 0-20%, B 2 O 3 0-10%, Na 2 O 1-20% and expressed as a percentage by mass on an oxide basis It contains 0 to 20% or less of K 2 O.
ガラス組成B:酸化物基準の質量百分率表示で、SiO2を45~80%、Al2O3を10%超30%以下、B2O3を0~15%、MgOを0~15%、CaOを0~6%、SrOを0~5%、BaOを0~5%、Na2Oを2~20%、K2Oを0~10%、ZrO2を0~10%含有する。
ガラス組成C:酸化物基準の質量百分率表示で、SiO2を45~70%、Al2O3を10~30%、B2O3を0~15%含むとともに、MgO、CaO、SrOおよびBaOからなる群から選ばれる少なくとも1種の成分を、合計5~30%含み、さらにLi2O、Na2OおよびK2Oからなる群から選ばれる少なくとも1種の成分を、合計0%以上3%未満含有する。
ガラス組成D:酸化物基準の質量百分率表示で、SiO2を50~85%、Al2O3を0~20%、B2O3を0~10%、Na2Oを1~20%およびK2Oを0~20%以下含有する。 Glass composition A: SiO 2 is 60 to 85%, Al 2 O 3 is 0 to 10%, MgO is 0 to 10%, CaO is 0 to 20%, and SrO is 0 to 15 in terms of mass percentage based on oxide. %,
Glass composition B: SiO 2 45 to 80%, Al 2 O 3 more than 10% and 30% or less, B 2 O 3 0 to 15%,
Glass composition C: SiO 2 45-70%, Al 2 O 3 10-30%, B 2 O 3 0-15% in terms of mass percentage on oxide basis, MgO, CaO, SrO and BaO A total of 5 to 30% of at least one component selected from the group consisting of: and at least one component selected from the group consisting of Li 2 O, Na 2 O and K 2 O Contain less than%.
Glass composition D: SiO 2 50-85%, Al 2 O 3 0-20%, B 2 O 3 0-10%, Na 2 O 1-20% and expressed as a percentage by mass on an oxide basis It contains 0 to 20% or less of K 2 O.
SiO2はガラスの主成分である。SiO2の含有量は、ガラスの耐候性、失透特性を保つため、ガラス組成Aにおいては、好ましくは60%以上、より好ましくは62%以上、さらに好ましくは63%以上であり、ガラス組成Bにおいては、好ましくは45%以上、より好ましくは50%以上、さらに好ましくは55%以上、いっそう好ましくは60%以上であり、ガラス組成Cにおいては、好ましくは45%以上、より好ましくは50%以上であり、ガラス組成Dにおいては、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは65%以上である。一方、溶解を容易にし、泡品質を良好なものとする観点から、SiO2の含有量は、ガラス組成Aにおいては、好ましくは85%以下、より好ましくは80%以下、さらに好ましくは75%以下、いっそう好ましくは72%以下であり、特に好ましくは68%以下であり、ガラス組成Bにおいては、好ましくは80%以下、より好ましくは75%以下、さらに好ましくは70%以下であり、ガラス組成Cにおいては、好ましくは70%以下、より好ましくは65%以下であり、ガラス組成Dにおいては、好ましくは85%以下、より好ましくは80%以下、さらに好ましくは75%以下である。
SiO 2 is the main component of glass. In order to maintain the weather resistance and devitrification properties of the glass, the content of SiO 2 is preferably 60% or more, more preferably 62% or more, and still more preferably 63% or more in the glass composition B. Is preferably 45% or more, more preferably 50% or more, still more preferably 55% or more, still more preferably 60% or more. In the glass composition C, preferably 45% or more, more preferably 50% or more. In the glass composition D, it is preferably 50% or more, more preferably 60% or more, and further preferably 65% or more. On the other hand, from the viewpoint of facilitating dissolution and improving the foam quality, the content of SiO 2 in the glass composition A is preferably 85% or less, more preferably 80% or less, and even more preferably 75% or less. More preferably, it is 72% or less, particularly preferably 68% or less. In the glass composition B, it is preferably 80% or less, more preferably 75% or less, still more preferably 70% or less, and the glass composition C Is preferably 70% or less, more preferably 65% or less. In the glass composition D, it is preferably 85% or less, more preferably 80% or less, and even more preferably 75% or less.
Al2O3の含有量が多くなると、溶解時の粘性が増加し、泡がぬけにくくなるおそれがある。したがって、Al2O3の含有量は、ガラス組成Aにおいては、好ましくは10%以下、より好ましくは9%以下、さらに好ましくは8%以下、いっそう好ましくは7%以下、特に好ましくは6%以下、最も好ましくは5%以下であり、ガラス組成Bにおいては、好ましくは30%以下、より好ましくは25%以下、さらに好ましくは23%以下、いっそう好ましくは20%以下、特に好ましくは15%以下であり、ガラス組成Cにおいては、好ましくは30%以下、より好ましくは20%以下であり、ガラス組成Dにおいては、好ましくは20%以下、より好ましくは12%以下、さらに好ましくは10%以下、特に好ましくは7.5%以下である。
When the content of Al 2 O 3 increases, the viscosity at the time of dissolution increases, and there is a possibility that bubbles are difficult to escape. Therefore, in the glass composition A, the content of Al 2 O 3 is preferably 10% or less, more preferably 9% or less, still more preferably 8% or less, still more preferably 7% or less, and particularly preferably 6% or less. In the glass composition B, it is preferably 30% or less, more preferably 25% or less, still more preferably 23% or less, still more preferably 20% or less, and particularly preferably 15% or less. Yes, in the glass composition C, preferably 30% or less, more preferably 20% or less, and in the glass composition D, preferably 20% or less, more preferably 12% or less, even more preferably 10% or less, particularly Preferably it is 7.5% or less.
一方でAl2O3は、ガラス組成B及びCにおいてはガラス中の非架橋酸素を減少させる効果によってガラスの耐候性を向上させる必須成分である。本発明のガラスにおいて実用上必要な耐候性を維持するためには、Al2O3の含有量は、ガラス組成Aにおいては、好ましくは0%以上、より好ましくは0.5%以上、さらに好ましくは1%以上、いっそう好ましくは2%以上であり、特に好ましくは2.5%以上であり、ガラス組成Bにおいては、好ましくは10%超、より好ましくは11%以上、さらに好ましくは12%以上、いっそう好ましくは13%以上であり、ガラス組成Cにおいては、好ましくは10%以上、より好ましくは13%以上であり、ガラス組成Dにおいては、好ましくは0%以上、より好ましくは0.5%以上、さらに好ましくは1%以上、いっそう好ましくは2%以上、特に好ましくは2.5%以上である。ガラス中ではAl2O3の大部分は4配位([AlO4]-)の形で存在し、Na+などのアルカリ金属イオンと結合する。そのために、4配位の鉄([FeO4]-、つまりFe3+)と結合するアルカリ金属イオンが減り、Fe3+の割合が減少する。その結果、Fe2+の割合を増加、すなわち鉄レドックスを増加させて、波長450nm近傍の光の内部透過率を向上できる。
On the other hand, Al 2 O 3 is an essential component for improving the weather resistance of glass in the glass compositions B and C due to the effect of reducing non-crosslinked oxygen in the glass. In order to maintain the practically required weather resistance in the glass of the present invention, the content of Al 2 O 3 in the glass composition A is preferably 0% or more, more preferably 0.5% or more, even more preferably. Is 1% or more, more preferably 2% or more, particularly preferably 2.5% or more. In the glass composition B, preferably more than 10%, more preferably 11% or more, and further preferably 12% or more. More preferably, it is 13% or more. In the glass composition C, it is preferably 10% or more, more preferably 13% or more. In the glass composition D, it is preferably 0% or more, more preferably 0.5%. More preferably, it is 1% or more, more preferably 2% or more, and particularly preferably 2.5% or more. In the glass, most of Al 2 O 3 exists in the form of tetracoordinate ([AlO 4 ] − ), and binds to alkali metal ions such as Na + . Therefore, the number of alkali metal ions bonded to tetracoordinate iron ([FeO 4 ] − , that is, Fe 3+ ) is reduced, and the ratio of Fe 3+ is reduced. As a result, the ratio of Fe 2+ can be increased, that is, the iron redox can be increased, and the internal transmittance of light in the vicinity of a wavelength of 450 nm can be improved.
B2O3は、ガラス原料の溶融を促進し、機械的特性や耐候性を向上させる成分であるが、ガラス組成Aのようなソーダライムシリケート系のガラスにおいては、揮発による脈理(ream)の生成、炉壁の侵食等の不都合が生じないために、B2O3の含有量は好ましくは20%以下、より好ましくは15%以下、さらに好ましくは10%以下、特に好ましくは5%以下、いっそう好ましくは3%以下であり、実質的に含有しないことが最も好ましい。また、ガラス組成Bにおいては、好ましくは15%以下、より好ましくは12%以下、より好ましくは10%以下、さらに好ましくは7%以下、特に好ましくは4%以下であり、実質的に含有しないことが最も好ましい。ガラス組成Cにおいては、B2O3の含有量は好ましくは15%以下、より好ましくは12%以下であり、ガラス組成Dにおいては、好ましくは10%以下、より好ましくは7%以下、さらに好ましくは4%以下であり、実質的に含有しないことが最も好ましい。
B 2 O 3 is a component that promotes melting of the glass raw material and improves mechanical properties and weather resistance. However, in a soda lime silicate glass such as the glass composition A, the striae due to volatilization (ream) The content of B 2 O 3 is preferably 20% or less, more preferably 15% or less, even more preferably 10% or less, and particularly preferably 5% or less. More preferably, it is 3% or less, and most preferably it does not contain substantially. Further, in the glass composition B, it is preferably 15% or less, more preferably 12% or less, more preferably 10% or less, still more preferably 7% or less, and particularly preferably 4% or less, and is not substantially contained. Is most preferred. In the glass composition C, the content of B 2 O 3 is preferably 15% or less, more preferably 12% or less. In the glass composition D, the content is preferably 10% or less, more preferably 7% or less, even more preferably. Is most preferably 4% or less and substantially not contained.
Na2O、K2OおよびLi2Oといったアルカリ金属酸化物は、ガラス原料の溶融を促進し、熱膨張または粘性等を調整するのに有用な成分である。これらの成分の合計の含有量は、溶解時の清澄性を保持し、製造されるガラスの泡品質を保つために、ガラス組成A及びBにおいては、好ましくは2%以上、より好ましくは3%以上、さらに好ましくは5%以上、一層好ましくは8%以上であり、ガラス組成Dにおいては、好ましくは5%以上、さらに好ましくは8%以上、特に好ましくは10%以上である。また、熱膨張係数を低く抑え、失透特性を良好にするためには、ガラス組成A及びBにおいては、好ましくは20%以下、より好ましくは15%以下であり、ガラス組成Cにおいては、好ましくは2%以下、より好ましくは1%以下であり、ガラス組成Dにおいては、好ましくは25%以下、さらに好ましくは20%以下である。
Alkali metal oxides such as Na 2 O, K 2 O, and Li 2 O are useful components for accelerating melting of the glass raw material and adjusting thermal expansion or viscosity. The total content of these components is preferably 2% or more, more preferably 3% in the glass compositions A and B in order to maintain the clarity when melted and to maintain the foam quality of the glass to be produced. More preferably, it is 5% or more, more preferably 8% or more. In the glass composition D, it is preferably 5% or more, more preferably 8% or more, and particularly preferably 10% or more. Further, in order to keep the coefficient of thermal expansion low and to improve the devitrification property, in the glass compositions A and B, it is preferably 20% or less, more preferably 15% or less, and in the glass composition C, preferably Is 2% or less, more preferably 1% or less. In the glass composition D, it is preferably 25% or less, and more preferably 20% or less.
Na2Oの含有量は、ガラス組成Aにおいては、好ましくは2%以上、より好ましくは3%以上、さらに好ましくは5%以上、いっそう好ましくは8%以上、特に好ましくは10%以上であり、ガラス組成Bにおいては、好ましくは2%以上、より好ましくは3%以上、さらに好ましくは5%以上、いっそう好ましくは8%以上、特に好ましくは10%以上であり、ガラス組成Dにおいては、好ましくは1%以上であることが好ましく、より好ましくは5%以上、さらに好ましくは8%以上、特に好ましくは10%以上である。ただし、溶解時の清澄性を保持し、製造されるガラスの泡品質を保つため、Na2Oの含有量は、ガラス組成A及びBにおいては、20%以下とするのが好ましく、15%以下とするのがさらに好ましく、ガラス組成Cにおいては、3%以下とするのが好ましく、1%以下とするのがより好ましく、ガラス組成Dにおいては、20%以下とするのが好ましく、より好ましくは15%以下である。
In the glass composition A, the content of Na 2 O is preferably 2% or more, more preferably 3% or more, still more preferably 5% or more, still more preferably 8% or more, and particularly preferably 10% or more. In the glass composition B, it is preferably 2% or more, more preferably 3% or more, further preferably 5% or more, more preferably 8% or more, particularly preferably 10% or more. In the glass composition D, preferably It is preferably 1% or more, more preferably 5% or more, still more preferably 8% or more, and particularly preferably 10% or more. However, the content of Na 2 O is preferably 20% or less in the glass compositions A and B in order to maintain the clarity during melting and maintain the foam quality of the produced glass, and 15% or less. In the glass composition C, it is preferably 3% or less, more preferably 1% or less, and in the glass composition D, it is preferably 20% or less, more preferably 15% or less.
ここで、Na2OとAl2O3の酸化物基準の質量百分率における比率(Na2O/Al2O3)は導光板として用いる際の耐候性および透過率制御の観点からガラス組成に応じて制御されることが好ましい。耐候性を向上させるために、(Na2O/Al2O3)は、ガラス組成AおよびDにおいては、好ましくは7以下、さらに好ましくは5以下、いっそう好まくしくは3.5以下、特に好ましくは2以下である、ガラス組成Bにおいては好ましくは1.5以下、より好ましくは1以下である。一方製造時の鉄レドックス制御を容易にし、透過率を制御させやすくするために、(Na2O/Al2O3)は0.1以上であることが好ましく、0.2以上であることがより好ましく、0.5以上であることがさらに好ましく、1.0以上であることが特に好ましい。
Here, the ratio in mass percentage based on oxides of Na 2 O and Al 2 O 3 (Na 2 O / Al 2 O 3) is according to the glass composition in terms of weather resistance and the transmittance control when used as a light guide plate Are preferably controlled. In order to improve the weather resistance, (Na 2 O / Al 2 O 3 ) is preferably 7 or less, more preferably 5 or less, even more preferably 3.5 or less, particularly in glass compositions A and D. In the glass composition B, which is preferably 2 or less, it is preferably 1.5 or less, more preferably 1 or less. On the other hand, (Na 2 O / Al 2 O 3 ) is preferably 0.1 or more, and preferably 0.2 or more in order to facilitate iron redox control during production and control the transmittance. More preferably, it is more preferably 0.5 or more, and particularly preferably 1.0 or more.
K2Oは耐候性に寄与する成分だが、ガラスの失透特性を維持するために、K2Oの含有量は、ガラス組成A及びBにおいては、好ましくは10%以下、より好ましくは7%以下、さらに好ましくは5%以下、いっそう好ましくは2%以下であり、含まなくてもよく、ガラス組成Cにおいては、好ましくは2%以下、より好ましくは1%以下であり、ガラス組成Dにおいては、好ましくは20%以下、より好ましくは10%以下、さらに好ましくは5%以下、特に好ましくは2%以下であり、含まなくてもよい。
K 2 O is a component that contributes to weather resistance, but in order to maintain the devitrification properties of the glass, the content of K 2 O is preferably 10% or less, more preferably 7% in the glass compositions A and B. Or less, more preferably 5% or less, even more preferably 2% or less, and may not be contained. In the glass composition C, preferably 2% or less, more preferably 1% or less, and in the glass composition D Preferably, it is 20% or less, more preferably 10% or less, still more preferably 5% or less, and particularly preferably 2% or less.
Li2Oは任意成分であるが、ガラス化を容易にし、原料に由来する不純物として含まれる鉄含有量を低く抑え、原料コストを低く抑えるために、ガラス組成AおよびBにおいては、Li2Oを5%以下が好ましく、より好ましくは3%以下、さらに好ましくは2%以下、いっそう好ましくは1%以下含有させることができ、ガラス組成Cにおいて、Li2Oを2%以下含有させることができ、ガラス組成Dにおいては、その含有量は好ましくは3%以下、より好ましくは2%以下、さらに好ましくは1%以下である。
Li 2 O is an optional component, but in order to facilitate vitrification, keep the iron content contained as an impurity derived from the raw material low, and keep the raw material cost low, in glass compositions A and B, Li 2 O Is preferably 5% or less, more preferably 3% or less, even more preferably 2% or less, and even more preferably 1% or less. In the glass composition C, Li 2 O can be contained 2% or less. In the glass composition D, the content is preferably 3% or less, more preferably 2% or less, and still more preferably 1% or less.
CeO2は鉄のレドックスを下げる作用を有するとともに、紫外光(UV光)がガラスに照射された際に、Ceが電子を放出し、新たな吸収を生じるUVソーラリゼーションの原因となり、可視光を吸収する成分としても機能する。したがって、CeO2の含有量は、200ppm以下であることが好ましく、より好ましくは150ppm以下、さらに好ましくは100ppm以下、特に好ましくは50ppm以下であり、実質的に含有しないことが最も好ましい。CeO2を添加する場合は、製造時の製品特性のばらつき、色味のばらつきを抑制し易くする観点から、その含有量は5ppm以上であることが好ましく、より好ましくは10ppm以上である。
CeO 2 has the effect of lowering the redox of iron, and when ultraviolet light (UV light) is irradiated onto the glass, Ce emits electrons, causing UV solarization that causes new absorption, and visible light. It also functions as a component that absorbs. Therefore, the content of CeO 2 is preferably 200 ppm or less, more preferably 150 ppm or less, still more preferably 100 ppm or less, particularly preferably 50 ppm or less, and most preferably not substantially contained. In the case of adding CeO 2 , the content is preferably 5 ppm or more, more preferably 10 ppm or more, from the viewpoint of facilitating suppression of variations in product characteristics and color variations during production.
MgO、CaO、SrOおよびBaOといったアルカリ土類金属酸化物は、ガラス原料の溶融を促進し、熱膨張、粘性等を調整するのに有用な成分である。
Alkaline earth metal oxides such as MgO, CaO, SrO and BaO are useful components for accelerating melting of glass raw materials and adjusting thermal expansion, viscosity and the like.
MgOは、ガラス溶解時の粘性を下げ、溶解を促進する作用がある。また、比重を低減させ、ガラス物品に疵がつきにくいようにする作用がある。一方で、MgOによりガラスの熱膨張係数が増加し、失透特性が悪化するおそれがある。また、Mgイオンのイオン半径はFe2+イオンのイオン半径と近いため、MgイオンがFe2+イオンサイトを占有し、Fe2+の割合が減ることで鉄レドックスが減少するおそれがある。ガラスの鉄レドックスを高め、熱膨張係数を低く、失透特性を良好なものとするために、ガラス組成Aにおいては、好ましくは10%以下、より好ましくは8%以下、さらに好ましくは5%以下であり、ガラス組成Bにおいては、好ましくは15%以下、より好ましくは12%以下、さらに好ましくは10%以下であり、ガラス組成Cにおいては、好ましくは10%以下、より好ましくは5%以下であり、ガラス組成Dにおいては、好ましくは10%以下、より好ましくは8%以下、さらに好ましくは5%以下、特に好ましくは3%以下である。
MgO has the effect of lowering the viscosity during glass melting and promoting the melting. Moreover, there exists an effect | action which reduces specific gravity and makes a glass article hard to be wrinkled. On the other hand, MgO increases the coefficient of thermal expansion of the glass and may deteriorate the devitrification characteristics. In addition, since the ion radius of Mg ions is close to the ion radius of Fe 2+ ions, Mg ions occupy Fe 2+ ion sites, and the ratio of Fe 2+ may decrease, which may reduce iron redox. In order to increase the iron redox of the glass, lower the thermal expansion coefficient, and improve the devitrification properties, the glass composition A is preferably 10% or less, more preferably 8% or less, and even more preferably 5% or less. In the glass composition B, it is preferably 15% or less, more preferably 12% or less, further preferably 10% or less, and in the glass composition C, preferably 10% or less, more preferably 5% or less. In the glass composition D, it is preferably 10% or less, more preferably 8% or less, still more preferably 5% or less, and particularly preferably 3% or less.
CaOは、ガラス原料の溶融を促進し、また粘性、熱膨張等を調整する成分であり、含有してもよい。前記の作用を得るためには、CaOの含有量は、ガラス組成Aにおいては、好ましくは3%以上、より好ましくは5%以上であり、ガラス組成Dにおいては、好ましくは1%以上、より好ましくは3%以上、さらに好ましくは5%以上である。また、失透を良好にするためには、ガラス組成Aにおいては、好ましくは20%以下、より好ましくは10%以下であり、ガラス組成Bにおいては、好ましくは6%以下であり、より好ましくは4%以下であり、ガラス組成Dにおいては、好ましくは15%以下、より好ましくは12%以下、さらに好ましくは10%以下である。
CaO is a component that promotes melting of the glass raw material and adjusts viscosity, thermal expansion, etc., and may be contained. In order to obtain the above action, the content of CaO is preferably 3% or more, more preferably 5% or more in the glass composition A, and preferably 1% or more, more preferably in the glass composition D. Is 3% or more, more preferably 5% or more. In order to improve devitrification, the glass composition A is preferably 20% or less, more preferably 10% or less, and the glass composition B is preferably 6% or less, more preferably In the glass composition D, it is preferably 15% or less, more preferably 12% or less, and further preferably 10% or less.
本発明のガラスはSrOおよびBaOを含んでいてもよい。これらの成分はMgOやCaOと同様に、ガラス原料の溶融を促進し、熱膨張、粘性等を調整するのに有用な成分である。
The glass of the present invention may contain SrO and BaO. These components, like MgO and CaO, are useful components for accelerating melting of the glass raw material and adjusting thermal expansion, viscosity, and the like.
SrOは、熱膨張係数の増大およびガラスの高温粘度を下げる効果がある。かかる効果を得るために、SrOを含有させることができる。但し、ガラスの熱膨張係数を低く抑え、耐候性を悪化させないため、SrOの含有量は、ガラス組成A及びCにおいては、15%以下とするのが好ましく、10%以下とするのがより好ましく、ガラス組成Bにおいては、5%以下とするのが好ましく、3%以下とするのがより好ましく、ガラス組成Dにおいては、好ましくは15%以下、より好ましくは12%以下、さらに好ましくは10%以下、特に好ましくは8%以下である。
SrO has the effect of increasing the thermal expansion coefficient and lowering the high temperature viscosity of the glass. In order to obtain such an effect, SrO can be contained. However, the SrO content in the glass compositions A and C is preferably 15% or less, and more preferably 10% or less in order to keep the thermal expansion coefficient of the glass low and not deteriorate the weather resistance. In glass composition B, it is preferably 5% or less, more preferably 3% or less, and in glass composition D, it is preferably 15% or less, more preferably 12% or less, and even more preferably 10%. Hereinafter, it is particularly preferably 8% or less.
BaOは、SrO同様に熱膨張係数の増大及びガラスの高温粘度を下げる効果がある。上記の効果を得るためにBaOを含有させることができる。但し、ガラスの熱膨張係数を低く抑え、耐候性を悪化させないため、BaOの含有量は、ガラス組成A及びCにおいては、15%以下とするのが好ましく、10%以下とするのがより好ましく、ガラス組成Bにおいては5%以下とするのが好ましく、3%以下とするのがより好ましく、ガラス組成Dにおいては、好ましくは15%以下、より好ましくは12%以下、さらに好ましくは10%以下、特に好ましくは8%以下である。ガラス組成A、Bにおいて粘性を調整するためには、BaOを1%以上含有してもよく、2%以上含有するのがより好ましい。
BaO, like SrO, has the effect of increasing the coefficient of thermal expansion and lowering the high temperature viscosity of the glass. In order to obtain the above effect, BaO can be contained. However, the BaO content in the glass compositions A and C is preferably 15% or less, and more preferably 10% or less, in order to keep the thermal expansion coefficient of the glass low and not deteriorate the weather resistance. In glass composition B, it is preferably 5% or less, more preferably 3% or less. In glass composition D, it is preferably 15% or less, more preferably 12% or less, and even more preferably 10% or less. Especially preferably, it is 8% or less. In order to adjust the viscosity in the glass compositions A and B, BaO may be contained in an amount of 1% or more, and more preferably 2% or more.
また、これらアルカリ土類金属酸化物(MgO、CaO、SrOおよびBaO)の合計含有量は、ガラス溶解時の粘性を下げ、溶解を促進するために、ガラス組成Aにおいては、好ましくは10%以上、より好ましくは13%以上であり、ガラス組成Bにおいては1%以上、より好ましくは3%以上であり、ガラス組成Cにおいては、好ましくは5%以上、より好ましくは10%以上であり、ガラス組成Dにおいては、好ましくは5%以上、さらに好ましくは8%以上、より好ましくは12%以上、特に好ましくは13%以上である。また、熱膨張係数を低く抑え、失透特性を良好にするためには、ガラス組成Aにおいては30%以下が好ましく、より好ましくは27%以下であり、ガラス組成Bにおいては、好ましくは15%以下、より好ましくは10%以下であり、ガラス組成Cにおいては、好ましくは30%以下、より好ましくは20%以下であり、ガラス組成Dにおいては、好ましくは25%以下、より好ましくは20%以下、さらに好ましくは18%以下、特に好ましくは17%以下である。
Further, the total content of these alkaline earth metal oxides (MgO, CaO, SrO and BaO) is preferably 10% or more in the glass composition A in order to lower the viscosity at the time of melting the glass and promote the melting. More preferably, it is 13% or more. In the glass composition B, it is 1% or more, more preferably 3% or more. In the glass composition C, it is preferably 5% or more, more preferably 10% or more. In composition D, it is preferably at least 5%, more preferably at least 8%, more preferably at least 12%, particularly preferably at least 13%. In order to keep the coefficient of thermal expansion low and to improve the devitrification property, the glass composition A is preferably 30% or less, more preferably 27% or less, and the glass composition B is preferably 15%. Or less, more preferably 10% or less, in the glass composition C, preferably 30% or less, more preferably 20% or less, and in the glass composition D, preferably 25% or less, more preferably 20% or less. More preferably, it is 18% or less, particularly preferably 17% or less.
本発明に係るガラスの組成においては、ガラスの耐熱性および表面硬度の向上のために、任意成分としてZrO2を含有させてもよい。ZrO2を含有する場合、その含有量はガラス組成Dにおいては、好ましくは0.1%以上、より好ましくは0.3%以上、さらに好ましくは0.5%以上である。ただし、失透特性の維持、低密度の維持の点から、ZrO2の含有量は、ガラス組成A、B及びCにおいて、好ましくは10%以下、より好ましくは5%以下であり、ガラス組成Dにおいては、好ましくは5%以下、より好ましくは3%以下、さらに好ましくは2%以下であり、実質的に含有しないことが特に好ましい。ガラス組成A、B、C、Dのいずれにおいても、10%以下であると、ガラスが失透しにくくなるので、好ましい。
In the composition of the glass according to the present invention, ZrO 2 may be contained as an optional component in order to improve the heat resistance and surface hardness of the glass. When ZrO 2 is contained, the content thereof is preferably 0.1% or more, more preferably 0.3% or more, and further preferably 0.5% or more in the glass composition D. However, from the standpoint of maintaining devitrification characteristics and maintaining low density, the content of ZrO 2 is preferably 10% or less, more preferably 5% or less in the glass compositions A, B and C, and the glass composition D Is preferably 5% or less, more preferably 3% or less, and still more preferably 2% or less, and it is particularly preferable that it is not substantially contained. In any of the glass compositions A, B, C, and D, the glass is less likely to be devitrified if it is 10% or less.
また、本発明に係るガラスは、清澄剤としてSO3を含有してもよい。ただし、SO3を含有する場合、上述のようにアンバー発色を生じ、450nm近傍の透過率が低下するおそれがある。したがって、SO3を含有する場合、その含有量は、0.5%以下が好ましい。より好ましくは0.4%以下、さらに好ましくは0.3%以下、特に好ましくは0.25%以下である。ただし、清澄剤としての効果を得るために0%超であることが好ましい。
The glass according to the present invention may contain SO 3 as a fining agent. However, when SO 3 is contained, amber coloring occurs as described above, and the transmittance near 450 nm may be reduced. Accordingly, when SO 3 is contained, its content is preferably 0.5% or less. More preferably, it is 0.4% or less, More preferably, it is 0.3% or less, Most preferably, it is 0.25% or less. However, in order to obtain the effect as a fining agent, it is preferable that it is over 0%.
また、本発明に係るガラスは、酸化剤および清澄剤としてSb2O3およびAs2O3のうちの一つ以上を含有してもよい。この場合、Sb2O3またはAs2O3の含有量は、0~0.5%が好ましい。0.2%以下がより好ましく、0.1%以下がさらに好ましく、実質的に含有しないことがさらに好ましい。
The glass according to the present invention may contain one or more of Sb 2 O 3 and As 2 O 3 as an oxidizing agent and a clarifying agent. In this case, the content of Sb 2 O 3 or As 2 O 3 is preferably 0 to 0.5%. 0.2% or less is more preferable, 0.1% or less is more preferable, and it is further more preferable not to contain substantially.
ただし、Sb2O3およびAs2O3は、ガラスの酸化剤として作用するため、ガラスのFe2+の量を調節する目的により上記範囲内で添加してもよい。ただし、As2O3は、環境面から意図的に含有させないことが好ましい。Sb2O3は還元雰囲気下において着色し、可視光域の内部透過率に影響する性質を有するため、意図的には含有させないことが好ましい。
However, since Sb 2 O 3 and As 2 O 3 act as an oxidizing agent for glass, they may be added within the above range depending on the purpose of adjusting the amount of Fe 2+ in the glass. However, As 2 O 3 is preferably not intentionally contained from the viewpoint of the environment. Since Sb 2 O 3 is colored in a reducing atmosphere and has the property of affecting the internal transmittance in the visible light region, it is preferably not intentionally contained.
本発明に係るガラスは、上述のように還元剤として酸化スズを含有しても良い。酸化スズは清澄剤としての効果も持つ。スズは4価と2価の状態でガラス中に存在する。鉄レドックスが低い(例えば30%未満)場合は、2価のスズが還元剤として作用し、鉄レドックスを高めることができる。一方で、鉄レドックスが高い(例えば70%以上)場合は、4価のスズが鉄の酸化剤として作用する。また、スズの還元は硫黄の還元よりも優先的に起こるため、硫黄の還元が原因で生じるアンバー発色を抑制できる。スズを含有する場合、SnO2に換算した全酸化スズの含有量は0.5%以下が好ましく、さらに0.3%以下が好ましく、0.2%以下が特に好ましい。
The glass according to the present invention may contain tin oxide as a reducing agent as described above. Tin oxide also has an effect as a fining agent. Tin is present in the glass in a tetravalent and divalent state. When iron redox is low (for example, less than 30%), divalent tin acts as a reducing agent, and iron redox can be increased. On the other hand, when iron redox is high (for example, 70% or more), tetravalent tin acts as an oxidizing agent for iron. Moreover, since tin reduction occurs preferentially over sulfur reduction, amber coloration caused by sulfur reduction can be suppressed. When tin is contained, the content of total tin oxide converted to SnO 2 is preferably 0.5% or less, more preferably 0.3% or less, and particularly preferably 0.2% or less.
なお、本発明に係るガラスの組成は、蛍光X線法により測定できる。また、軽元素であり蛍光X線法での測定が困難なホウ素Bと、1000質量ppm以下の微量元素についてはICP発光分光分析法により測定可能である。
The composition of the glass according to the present invention can be measured by the fluorescent X-ray method. Further, boron B, which is a light element and difficult to measure by the fluorescent X-ray method, and trace elements of 1000 ppm by mass or less can be measured by ICP emission spectroscopic analysis.
また、フロート法により製造したガラスの2価鉄量を測定する際には、スズを含有する層を100μm程度研磨した後に、後述する方法により測定する。また、製造方法によらず、添加剤として酸化スズを含有するガラスの2価鉄量を測定する場合は、スズを含まない同組成のガラスにおいて、2価鉄量と波長800~1500nmの透過率の関係を明らかにし、検量線を作成することで、分光分析から2価鉄量を求めることができる。
Moreover, when measuring the amount of divalent iron in the glass produced by the float method, the layer containing tin is polished by about 100 μm and then measured by the method described later. In addition, when measuring the amount of divalent iron in a glass containing tin oxide as an additive regardless of the production method, the amount of divalent iron and the transmittance at a wavelength of 800 to 1500 nm in a glass having the same composition containing no tin. The amount of divalent iron can be obtained from the spectroscopic analysis by clarifying the above relationship and creating a calibration curve.
〔内部透過率〕
本発明に係るガラス板は、光路長50mmにおける波長420~470nmの光の平均内部透過率(α)が95%以上であることが好ましく、より好ましくは97.5%以上、さらに好ましくは98%以上、特に好ましくは99%以上である。 [Internal transmittance]
In the glass plate according to the present invention, the average internal transmittance (α) of light having a wavelength of 420 to 470 nm at an optical path length of 50 mm is preferably 95% or more, more preferably 97.5% or more, and still more preferably 98%. Above, especially preferably 99% or more.
本発明に係るガラス板は、光路長50mmにおける波長420~470nmの光の平均内部透過率(α)が95%以上であることが好ましく、より好ましくは97.5%以上、さらに好ましくは98%以上、特に好ましくは99%以上である。 [Internal transmittance]
In the glass plate according to the present invention, the average internal transmittance (α) of light having a wavelength of 420 to 470 nm at an optical path length of 50 mm is preferably 95% or more, more preferably 97.5% or more, and still more preferably 98%. Above, especially preferably 99% or more.
前記平均内部透過率(α)は、Fe2O3に換算した全酸化鉄(t-Fe2O3)の含有量、Ni、CrおよびMnの含有量、鉄レドックス等を上記組成の範囲内で調整することにより達成できる。具体的には、例えば、t-Fe2O3の含有量を好ましくは10~65質量ppm、NiOの含有量を好ましくは0.1~0.95質量ppm、Cr2O3の含有量を好ましくは0.1~0.95質量ppm、NiOとCr2O3との合計量が0.5~1.3質量ppm、MnO2の含有量を好ましくは0.3~4.8質量ppm、鉄レドックスを好ましくは30%超~60%とする方法が挙げられる。
The average internal transmittance (alpha), the content of total iron oxide in terms of Fe 2 O 3 (t-Fe 2 O 3), Ni, Cr content and Mn, in the range of iron redox, etc. of the composition It can be achieved by adjusting with. Specifically, for example, the content of t-Fe 2 O 3 is preferably 10 to 65 ppm by mass, the content of NiO is preferably 0.1 to 0.95 ppm by mass, and the content of Cr 2 O 3 is Preferably 0.1 to 0.95 mass ppm, the total amount of NiO and Cr 2 O 3 is 0.5 to 1.3 mass ppm, and the content of MnO 2 is preferably 0.3 to 4.8 mass ppm Further, there is a method in which the iron redox is preferably more than 30% to 60%.
本発明に係るガラス板は、さらに、光路長50mmにおける波長520~570nmの光の平均内部透過率(β)が90%以上であることが好ましく、より好ましくは95%以上、さらに好ましくは98%以上、特に好ましくは99%以上である。
In the glass plate according to the present invention, the average internal transmittance (β) of light having a wavelength of 520 to 570 nm at an optical path length of 50 mm is preferably 90% or more, more preferably 95% or more, and still more preferably 98%. Above, especially preferably 99% or more.
前記平均内部透過率(β)は、Fe2O3に換算した全酸化鉄(t-Fe2O3)の含有量、Ni、CrおよびMnの含有量、鉄レドックス等を上記組成の範囲内で調整することにより達成できる。具体的には、例えば、t-Fe2O3の含有量を好ましくは10~65質量ppm、NiOの含有量を好ましくは0.1~0.95質量ppm、Cr2O3の含有量を好ましくは0.1~0.95質量ppm、NiOとCr2O3との合計量が0.5~1.3質量ppm、MnO2の含有量を好ましくは0.3~4.8質量ppm、鉄レドックスを好ましくは30%超~60%とする方法が挙げられる。
The average internal transmittance (beta), the content of total iron oxide in terms of Fe 2 O 3 (t-Fe 2 O 3), Ni, Cr content and Mn, in the range of iron redox, etc. of the composition It can be achieved by adjusting with. Specifically, for example, the content of t-Fe 2 O 3 is preferably 10 to 65 ppm by mass, the content of NiO is preferably 0.1 to 0.95 ppm by mass, and the content of Cr 2 O 3 is Preferably 0.1 to 0.95 mass ppm, the total amount of NiO and Cr 2 O 3 is 0.5 to 1.3 mass ppm, and the content of MnO 2 is preferably 0.3 to 4.8 mass ppm Further, there is a method in which the iron redox is preferably more than 30% to 60%.
さらにまた、光路長50mmにおける波長675~725nmの光の平均内部透過率(γ)が70%以上であることが好ましく、より好ましくは80%以上、さらに好ましくは90%以上、ことさらに好ましくは93%以上、特に好ましくは95%以上である。
Furthermore, the average internal transmittance (γ) of light having a wavelength of 675 to 725 nm at an optical path length of 50 mm is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more, and still more preferably 93 % Or more, particularly preferably 95% or more.
前記平均内部透過率(γ)は、Fe2O3に換算した全酸化鉄(t-Fe2O3)の含有量、Ni、CrおよびMnの含有量、鉄レドックス等を上記組成の範囲内で調整することにより達成できる。具体的には、例えば、t-Fe2O3の含有量を好ましくは10~65質量ppm、NiOの含有量を好ましくは0.1~0.95質量ppm、Cr2O3の含有量を好ましくは0.1~0.95質量ppm、NiOとCr2O3との合計量が0.5~1.3質量ppm、MnO2の含有量を好ましくは0.3~4.8質量ppm、鉄レドックスを好ましくは30%超~60%とする方法が挙げられる。
The average internal transmittance (gamma), the content of total iron oxide in terms of Fe 2 O 3 (t-Fe 2 O 3), Ni, Cr content and Mn, in the range of iron redox, etc. of the composition It can be achieved by adjusting with. Specifically, for example, the content of t-Fe 2 O 3 is preferably 10 to 65 ppm by mass, the content of NiO is preferably 0.1 to 0.95 ppm by mass, and the content of Cr 2 O 3 is Preferably 0.1 to 0.95 mass ppm, the total amount of NiO and Cr 2 O 3 is 0.5 to 1.3 mass ppm, and the content of MnO 2 is preferably 0.3 to 4.8 mass ppm Further, there is a method in which the iron redox is preferably more than 30% to 60%.
平均内部透過率は次の手順で測定する。まず、対象となるガラス板の略中央部分から、ガラス板の第1の主表面に垂直な方向で割断することにより、縦50mm×横50mmの寸法のサンプルを採取する。
Measure the average internal transmittance according to the following procedure. First, a sample having a size of 50 mm in length and 50 mm in width is collected by cleaving from a substantially central portion of a target glass plate in a direction perpendicular to the first main surface of the glass plate.
次に、このサンプルの相互に対向する第1および第2の割断面の算術平均粗さRaを、0.03μm以下とする。算術平均粗さRaが0.03μmより大きい場合、第1および第2の割断面をコロイダルシリカまたは酸化セリウムの遊離砥粒で研磨する。
Next, the arithmetic average roughness Ra of the first and second fractured surfaces facing each other of this sample is set to 0.03 μm or less. When the arithmetic average roughness Ra is larger than 0.03 μm, the first and second fractured surfaces are polished with free abrasive grains of colloidal silica or cerium oxide.
次に、このサンプルAにおいて、第1の割断面に対して、該第1の割断面の法線方向で、50mm長での、測定波長範囲における透過率TAを測定する。透過率TAの測定においては、50mm長での測定が可能な分光測定装置(たとえば、UH4150:日立ハイテクノロジーズ社製)を使用し、スリット等によって、入射光のビーム幅を板厚よりも狭くして測定する。
Next, in the sample A, the first fractured face, the normal direction of the first split section, at 50mm length, measuring the transmittance T A in the measurement wavelength range. In the measurement of the transmittance T A, 50 mm spectrometer capable of measuring in length (e.g., UH4150: Hitachi High-Technologies Corporation) was used, the slit or the like, smaller than the thickness of the beam width of the incident light And measure.
次に、Vブロック法によって、サンプルAの、g線(435.8nm)、F線(486.1nm)、e線(546.1nm)、d線(587.6nm)、C線(656.3nm)の各波長における屈折率を、精密屈折計により室温で測定する。
Next, the g-line (435.8 nm), F-line (486.1 nm), e-line (546.1 nm), d-line (587.6 nm), C-line (656.3 nm) of sample A by the V-block method. ) Is measured at room temperature with a precision refractometer.
前記屈折率の値にフィットするようにSellmeierの分散式[下記の(I)式]の各係数B1、B2、B3、C1、C2、C3を最小二乗法によって決定することにより、サンプルAの屈折率nAを得る:
Each coefficient B 1 , B 2 , B 3 , C 1 , C 2 , C 3 of the Sellmeier dispersion formula [formula (I) below] is determined by the least square method so as to fit the refractive index value. To obtain the refractive index n A of sample A:
nA=[1+{B1λ2/(λ2-C1)}+{B2λ2/(λ2-C2)}+{B3λ2/(λ2-C3)}]0.5 (I)式
なお、(I)式において、λは波長である。 n A = [1+ {B 1 λ 2 / (λ 2 −C 1 )} + {B 2 λ 2 / (λ 2 −C 2 )} + {B 3 λ 2 / (λ 2 −C 3 )}] 0.5 Formula (I) In formula (I), λ is a wavelength.
なお、(I)式において、λは波長である。 n A = [1+ {B 1 λ 2 / (λ 2 −C 1 )} + {B 2 λ 2 / (λ 2 −C 2 )} + {B 3 λ 2 / (λ 2 −C 3 )}] 0.5 Formula (I) In formula (I), λ is a wavelength.
サンプルAの該第1および該第2の割断面における反射率RAを、下記の理論式[(II)式]によって求める:
RA=(1-nA)2/(1+nA)2 (II)式 The reflectance R A at the first and second fractured surfaces of the sample A is determined by the following theoretical formula [formula (II)]:
R A = (1-n A ) 2 / (1 + n A ) 2 (II) Formula
RA=(1-nA)2/(1+nA)2 (II)式 The reflectance R A at the first and second fractured surfaces of the sample A is determined by the following theoretical formula [formula (II)]:
R A = (1-n A ) 2 / (1 + n A ) 2 (II) Formula
次に、下記の(III)式を用いて、サンプルAの50mm長での透過率TAから、反射の影響を除外することにより、サンプルAにおける、該第1の割断面から法線方向の50mm長での内部透過率Tinを得る:
Tin=[-(1-RA)2+{(1-RA)4+4TA 2RA 2}0.5]
/(2TARA 2) (III)式 Next, with reference to formula (III) below, from the transmittance T A at 50mm length sample A, by excluding the influence of reflection, the sample A, from the first split section in the normal direction Obtain the internal transmittance T in at 50 mm length:
T in = [− (1−R A ) 2 + {(1−R A ) 4 + 4T A 2 R A 2 } 0.5 ]
/ (2T A R A 2 ) (III) Formula
Tin=[-(1-RA)2+{(1-RA)4+4TA 2RA 2}0.5]
/(2TARA 2) (III)式 Next, with reference to formula (III) below, from the transmittance T A at 50mm length sample A, by excluding the influence of reflection, the sample A, from the first split section in the normal direction Obtain the internal transmittance T in at 50 mm length:
T in = [− (1−R A ) 2 + {(1−R A ) 4 + 4T A 2 R A 2 } 0.5 ]
/ (2T A R A 2 ) (III) Formula
各波長で得られた内部透過率Tinを測定波長域にわたって平均化することにより、ガラス板の平均内部透過率Taveが算定される。
By averaging the internal transmittance T in obtained at each wavelength over the measurement wavelength range, the average internal transmittance of the glass plate T ave is calculated.
〔LED照射後の平均内部透過率〕
本発明に係るガラス板は、下記条件によりLEDを照射後の光路長50mmにおける波長420~470nmの光の平均内部透過率(α)が95%以上であることが好ましく、より好ましくは96%以上であり、さらに好ましくは97%以上であり、特に好ましくは98%以上であり、最も好ましくは98.5%以上である。高輝度の青色LED照射後の平均内部透過率(α)が95%以上であることにより、表示装置の輝度の低下、色むらの悪化を抑制できる。 [Average internal transmittance after LED irradiation]
In the glass plate according to the present invention, the average internal transmittance (α) of light having a wavelength of 420 to 470 nm at an optical path length of 50 mm after irradiating the LED under the following conditions is preferably 95% or more, more preferably 96% or more. More preferably, it is 97% or more, particularly preferably 98% or more, and most preferably 98.5% or more. When the average internal transmittance (α) after irradiation with the high-intensity blue LED is 95% or more, it is possible to suppress a decrease in luminance and unevenness in color of the display device.
本発明に係るガラス板は、下記条件によりLEDを照射後の光路長50mmにおける波長420~470nmの光の平均内部透過率(α)が95%以上であることが好ましく、より好ましくは96%以上であり、さらに好ましくは97%以上であり、特に好ましくは98%以上であり、最も好ましくは98.5%以上である。高輝度の青色LED照射後の平均内部透過率(α)が95%以上であることにより、表示装置の輝度の低下、色むらの悪化を抑制できる。 [Average internal transmittance after LED irradiation]
In the glass plate according to the present invention, the average internal transmittance (α) of light having a wavelength of 420 to 470 nm at an optical path length of 50 mm after irradiating the LED under the following conditions is preferably 95% or more, more preferably 96% or more. More preferably, it is 97% or more, particularly preferably 98% or more, and most preferably 98.5% or more. When the average internal transmittance (α) after irradiation with the high-intensity blue LED is 95% or more, it is possible to suppress a decrease in luminance and unevenness in color of the display device.
(条件)下記ガラス板の1辺を下記青色LED照明に直付けして、LEDのすべての光がガラス板の端面から入射するように位置を調整した上で、LEDをガラス板に21時間照射する。
青色LED照明:中心波長453nmで発光する、サイズ1mm角の青色LEDチップが、0.2mm間隔で、ライン状に並んだ照明。ラインの長さは50mmである。サンプルを置かない場合の、LEDチップから20mmの距離における照度が20万Lxである。
ガラス板:主面サイズ50mm角、厚み1.8mmの直方体形状であり、主表面および端面を鏡面研磨したガラス板。なお、LED照射装置の一例としては、アイテックシステム社製の超高輝度直線照明、LLRG500WBが挙げられる。図1にLED照射時のガラス板1、青色LEDチップ2がライン状に並んだ青色LED照明3の設置条件について、上から見た模式図を示す。 (Condition) Directly attach one side of the following glass plate to the following blue LED illumination, adjust the position so that all the light from the LED enters from the end face of the glass plate, and then irradiate the glass plate for 21 hours To do.
Blue LED illumination: Illumination in which blue LED chips with a size of 1 mm square that emit light at a central wavelength of 453 nm are arranged in a line at intervals of 0.2 mm. The length of the line is 50 mm. The illuminance at a distance of 20 mm from the LED chip when no sample is placed is 200,000 Lx.
Glass plate: A glass plate having a rectangular parallelepiped shape with a main surface size of 50 mm square and a thickness of 1.8 mm, and having a main surface and end surfaces mirror-polished. In addition, as an example of the LED irradiation device, an ultra-high brightness linear illumination, LLRG500WB, manufactured by ITEC System Co., Ltd. can be mentioned. FIG. 1 shows a schematic view seen from above with respect to the installation conditions of theblue LED illumination 3 in which the glass plate 1 and the blue LED chip 2 are arranged in a line at the time of LED irradiation.
青色LED照明:中心波長453nmで発光する、サイズ1mm角の青色LEDチップが、0.2mm間隔で、ライン状に並んだ照明。ラインの長さは50mmである。サンプルを置かない場合の、LEDチップから20mmの距離における照度が20万Lxである。
ガラス板:主面サイズ50mm角、厚み1.8mmの直方体形状であり、主表面および端面を鏡面研磨したガラス板。なお、LED照射装置の一例としては、アイテックシステム社製の超高輝度直線照明、LLRG500WBが挙げられる。図1にLED照射時のガラス板1、青色LEDチップ2がライン状に並んだ青色LED照明3の設置条件について、上から見た模式図を示す。 (Condition) Directly attach one side of the following glass plate to the following blue LED illumination, adjust the position so that all the light from the LED enters from the end face of the glass plate, and then irradiate the glass plate for 21 hours To do.
Blue LED illumination: Illumination in which blue LED chips with a size of 1 mm square that emit light at a central wavelength of 453 nm are arranged in a line at intervals of 0.2 mm. The length of the line is 50 mm. The illuminance at a distance of 20 mm from the LED chip when no sample is placed is 200,000 Lx.
Glass plate: A glass plate having a rectangular parallelepiped shape with a main surface size of 50 mm square and a thickness of 1.8 mm, and having a main surface and end surfaces mirror-polished. In addition, as an example of the LED irradiation device, an ultra-high brightness linear illumination, LLRG500WB, manufactured by ITEC System Co., Ltd. can be mentioned. FIG. 1 shows a schematic view seen from above with respect to the installation conditions of the
前記条件によりLED照射後の平均内部透過率(α)を95%以上とする方法としては、例えば、MnO2の含有量を好ましくは0.2~4.8質量ppm、TiO2の含有量を好ましくは0超~40質量ppm未満、t-Fe2O3の含有量を好ましくは10~65質量ppm、NiOの含有量を好ましくは0.1~0.95質量ppm、Cr2O3の含有量を好ましくは0.1~0.95質量ppm、NiOとCr2O3との合計量が0.5~1.3質量ppmとする方法が挙げられる。
As a method of setting the average internal transmittance (α) after LED irradiation to 95% or more under the above conditions, for example, the content of MnO 2 is preferably 0.2 to 4.8 mass ppm, and the content of TiO 2 is Preferably more than 0 to less than 40 ppm by mass, t-Fe 2 O 3 content is preferably 10 to 65 ppm by mass, NiO content is preferably 0.1 to 0.95 ppm by mass, Cr 2 O 3 A method in which the content is preferably 0.1 to 0.95 mass ppm and the total amount of NiO and Cr 2 O 3 is 0.5 to 1.3 ppm by mass can be mentioned.
本発明に係るガラス板は、前記条件によりLEDを照射後の光路長50mmにおける波長520~570nmの光の平均内部透過率(β)が90%以上であることが好ましく、より好ましくは92%以上であり、さらに好ましくは94%以上であり、特に好ましくは96%以上であり、最も好ましくは98%以上である。高輝度の青色LED照射後の平均内部透過率(β)が90%以上であることにより、表示装置の色むらの悪化を抑制できる。
In the glass plate according to the present invention, the average internal transmittance (β) of light having a wavelength of 520 to 570 nm at an optical path length of 50 mm after irradiating the LED under the above conditions is preferably 90% or more, more preferably 92% or more. More preferably, it is 94% or more, particularly preferably 96% or more, and most preferably 98% or more. When the average internal transmittance (β) after irradiation with the high-intensity blue LED is 90% or more, deterioration of color unevenness of the display device can be suppressed.
前記条件によりLED照射後の平均内部透過率(β)を90%以上とする方法としては、例えば、MnO2の含有量を好ましくは0.2~4.8質量ppm、TiO2の含有量を好ましくは0超~40質量ppm未満、t-Fe2O3の含有量を好ましくは10~65質量ppm、NiOの含有量を好ましくは0.1~0.95質量ppm、Cr2O3の含有量を好ましくは0.1~0.95質量ppm、NiOとCr2O3との合計量が0.5~1.3質量ppmとする方法が挙げられる。
As a method of setting the average internal transmittance (β) after LED irradiation to 90% or more under the above conditions, for example, the content of MnO 2 is preferably 0.2 to 4.8 mass ppm, and the content of TiO 2 is Preferably more than 0 to less than 40 ppm by mass, t-Fe 2 O 3 content is preferably 10 to 65 ppm by mass, NiO content is preferably 0.1 to 0.95 ppm by mass, Cr 2 O 3 A method in which the content is preferably 0.1 to 0.95 mass ppm and the total amount of NiO and Cr 2 O 3 is 0.5 to 1.3 ppm by mass can be mentioned.
本発明に係るガラス板は、前記条件によりLEDを照射後の光路長50mmにおける波長675~725nmの光の平均内部透過率(γ)について、70%以上であることが好ましく、より好ましくは80%以上であり、さらに好ましくは90%以上であり、特に好ましくは92%以上であり、最も好ましくは94%以上である。高輝度の青色LED照射後の平均内部透過率(γ)が70%以上であることにより、表示装置の色むらの悪化を抑制できる。
The glass plate according to the present invention preferably has an average internal transmittance (γ) of light having a wavelength of 675 to 725 nm at an optical path length of 50 mm after irradiating the LED under the above conditions, preferably 70% or more, more preferably 80%. Or more, more preferably 90% or more, particularly preferably 92% or more, and most preferably 94% or more. When the average internal transmittance (γ) after irradiation with the high-intensity blue LED is 70% or more, the deterioration of the color unevenness of the display device can be suppressed.
前記条件によりLED照射後の平均内部透過率(γ)を70%以上とする方法としては、例えば、MnO2の含有量を好ましくは0.2~4.8質量ppm、TiO2の含有量を好ましくは0超~40質量ppm未満、t-Fe2O3の含有量を好ましくは10~65質量ppm、NiOの含有量を好ましくは0.1~0.95質量ppm、Cr2O3の含有量を好ましくは0.1~0.95質量ppm、NiOとCr2O3との合計量が0.5~1.3質量ppmとする方法が挙げられる。
As a method of setting the average internal transmittance (γ) after LED irradiation to 70% or more under the above conditions, for example, the content of MnO 2 is preferably 0.2 to 4.8 mass ppm, and the content of TiO 2 is Preferably more than 0 to less than 40 ppm by mass, t-Fe 2 O 3 content is preferably 10 to 65 ppm by mass, NiO content is preferably 0.1 to 0.95 ppm by mass, Cr 2 O 3 A method in which the content is preferably 0.1 to 0.95 mass ppm and the total amount of NiO and Cr 2 O 3 is 0.5 to 1.3 ppm by mass can be mentioned.
〔製造方法〕
本発明のガラス板は通常の方法により作製できる。すなわち、常法により、製造されるガラスの組成が所望の組成となるように配合したガラス原料を溶解して溶融ガラスを得た後、該溶融ガラスを、フロート法、ロールアウト法、引き上げ法、コールドトップ法、又はフュージョン法等の成形法を用いて成形し、ガラス板を得ることができるが、大面積かつ大量生産可能なフロート法で製造されることがより好ましい。 〔Production method〕
The glass plate of the present invention can be produced by a usual method. That is, after melting a glass raw material blended so that the composition of the glass to be produced has a desired composition by a conventional method to obtain a molten glass, the molten glass is subjected to a float method, a rollout method, a pulling method, Although a glass plate can be obtained by molding using a molding method such as a cold top method or a fusion method, it is more preferable that the glass plate is produced by a float method capable of large area and mass production.
本発明のガラス板は通常の方法により作製できる。すなわち、常法により、製造されるガラスの組成が所望の組成となるように配合したガラス原料を溶解して溶融ガラスを得た後、該溶融ガラスを、フロート法、ロールアウト法、引き上げ法、コールドトップ法、又はフュージョン法等の成形法を用いて成形し、ガラス板を得ることができるが、大面積かつ大量生産可能なフロート法で製造されることがより好ましい。 〔Production method〕
The glass plate of the present invention can be produced by a usual method. That is, after melting a glass raw material blended so that the composition of the glass to be produced has a desired composition by a conventional method to obtain a molten glass, the molten glass is subjected to a float method, a rollout method, a pulling method, Although a glass plate can be obtained by molding using a molding method such as a cold top method or a fusion method, it is more preferable that the glass plate is produced by a float method capable of large area and mass production.
〔用途〕
ガラス板としては、例えば、液晶テレビ、ディスプレイ、車載用液晶表示装置用の導光板、太陽電池用カバーおよび太陽電池用バックシート、並びに窓ガラス等の建築用途のガラス等が挙げられる。中でも、従来の導光板と比較して、波長450nm近傍における光の内部透過率が高いことから、青色LEDを用いた量子ドットディスプレイに用いる導光板として用いることがより好ましい。また、450nm近傍の光の内部透過率が改善された白色LED光源の導光板としても、好適である。 [Use]
Examples of the glass plate include liquid crystal televisions, displays, light guide plates for in-vehicle liquid crystal display devices, solar cell covers and solar cell back sheets, and glass for architectural use such as window glass. Especially, since the internal transmittance | permeability of the light in the wavelength 450nm vicinity is high compared with the conventional light-guide plate, it is more preferable to use as a light-guide plate used for the quantum dot display using blue LED. It is also suitable as a light guide plate for a white LED light source with improved internal transmittance of light in the vicinity of 450 nm.
ガラス板としては、例えば、液晶テレビ、ディスプレイ、車載用液晶表示装置用の導光板、太陽電池用カバーおよび太陽電池用バックシート、並びに窓ガラス等の建築用途のガラス等が挙げられる。中でも、従来の導光板と比較して、波長450nm近傍における光の内部透過率が高いことから、青色LEDを用いた量子ドットディスプレイに用いる導光板として用いることがより好ましい。また、450nm近傍の光の内部透過率が改善された白色LED光源の導光板としても、好適である。 [Use]
Examples of the glass plate include liquid crystal televisions, displays, light guide plates for in-vehicle liquid crystal display devices, solar cell covers and solar cell back sheets, and glass for architectural use such as window glass. Especially, since the internal transmittance | permeability of the light in the wavelength 450nm vicinity is high compared with the conventional light-guide plate, it is more preferable to use as a light-guide plate used for the quantum dot display using blue LED. It is also suitable as a light guide plate for a white LED light source with improved internal transmittance of light in the vicinity of 450 nm.
ガラス板のサイズはその用途によって様々であるが、少なくとも一辺の長さが50mm以上であることが好ましく、厚さが0.1mm以上であることが好ましい。例えばガラス板として、エッジライト方式の液晶テレビの導光板に使用する場合、該ガラス板は少なくとも一辺の長さが200mm以上であることが好ましい。またガラス板の厚さは0.1mm以上であることが好ましく、より好ましくは1mm以上であり、さらに好ましくは1.8mm以上である。この用途での使用においては、重量の増加を防ぐために厚さは3.0mm以下であることが好ましい。2.6mm以下であることがより好ましく、2.2mm以下であることがさらに好ましい。
The size of the glass plate varies depending on the application, but at least one side is preferably 50 mm or more in length, and preferably 0.1 mm or more in thickness. For example, when the glass plate is used for a light guide plate of an edge-light type liquid crystal television, it is preferable that at least one side of the glass plate has a length of 200 mm or more. Moreover, it is preferable that the thickness of a glass plate is 0.1 mm or more, More preferably, it is 1 mm or more, More preferably, it is 1.8 mm or more. In use in this application, the thickness is preferably 3.0 mm or less in order to prevent an increase in weight. It is more preferably 2.6 mm or less, and further preferably 2.2 mm or less.
またガラス板として、車載用液晶表示装置の導光板に使用する場合、該ガラス板は少なくとも一辺の長さが50mm以上であることが好ましい。またガラス板の厚さが1.0mm以上とすることが好ましく、1.5mm以上がより好ましく、2.0mm以上がさらに好ましく、10mm以下が好ましい。
Further, when the glass plate is used for a light guide plate of an in-vehicle liquid crystal display device, the glass plate preferably has a length of at least one side of 50 mm or more. The thickness of the glass plate is preferably 1.0 mm or more, more preferably 1.5 mm or more, further preferably 2.0 mm or more, and preferably 10 mm or less.
またガラス板として、建築ガラスに使用する場合、該ガラス板は少なくとも一辺の長さが50mm以上であることが好ましく、200mm以上であることが好ましく、300mm以上であるとさらに好ましく、500mm以上であると特に好ましい。ガラス板の厚さは、厚さが1.0mm以上であれば剛性が確保されるため撓みにくくなり、アクリルと比べた際に強度的に優れるだけでなく高級感を得られる。厚さは目的によって例えば1.8mm以上、2.0mm以上、2.5mm以上、3.5mm以上、6.0mm以上、8.0mm以上と適宜選択してよい。
Moreover, when using for architectural glass as a glass plate, it is preferable that the length of the glass plate is at least 50 mm or more, preferably 200 mm or more, more preferably 300 mm or more, and 500 mm or more. And particularly preferred. If the thickness of the glass plate is 1.0 mm or more, the rigidity is ensured, so that the glass plate is difficult to bend. When compared with acrylic, the glass plate is not only excellent in strength but also has a high-class feeling. The thickness may be appropriately selected from 1.8 mm or more, 2.0 mm or more, 2.5 mm or more, 3.5 mm or more, 6.0 mm or more, or 8.0 mm or more depending on the purpose.
上記のとおり、用途によって好ましいサイズや厚みが異なるものの、本発明に係るガラス板は、少なくとも一辺の長さが50mm以上であり、厚さが0.1mm以上であることが好ましい。
As described above, although the preferred size and thickness differ depending on the application, the glass plate according to the present invention preferably has a length of at least one side of 50 mm or more and a thickness of 0.1 mm or more.
本発明に係るガラス板は強度向上の観点から、強化処理が施されていてもよい。強化方法としては、風冷強化処理や化学強化処理等が挙げられる。
The glass plate according to the present invention may be subjected to a tempering treatment from the viewpoint of improving the strength. Examples of the strengthening method include air cooling strengthening treatment and chemical strengthening treatment.
以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
<ガラス板>
(例1~18、20~32)
各成分の原料を目標組成になるように調合し、白金坩堝を用いて、1400℃~1700℃の温度で3~10時間溶解した。溶解にあたっては、400gの原料を3回に分けて20分おきに投入し、白金スターラーを溶融ガラス中に挿入し、1時間撹拌してガラスを均質化した。次いで溶融ガラスを流し出して板状に成型し、毎分1℃の冷却速度で室温まで徐冷してガラスブロックを得た。原料の粒度、清澄剤の種類と量は適宜選択すればよい。 <Glass plate>
(Examples 1-18, 20-32)
The raw materials of each component were prepared so as to have a target composition, and were melted at a temperature of 1400 ° C. to 1700 ° C. for 3 to 10 hours using a platinum crucible. In the melting, 400 g of the raw material was added in three portions every 20 minutes, a platinum stirrer was inserted into the molten glass, and the mixture was stirred for 1 hour to homogenize the glass. Next, the molten glass was poured out and molded into a plate shape, and gradually cooled to room temperature at a cooling rate of 1 ° C. per minute to obtain a glass block. What is necessary is just to select suitably the particle size of a raw material, and the kind and quantity of a clarifying agent.
(例1~18、20~32)
各成分の原料を目標組成になるように調合し、白金坩堝を用いて、1400℃~1700℃の温度で3~10時間溶解した。溶解にあたっては、400gの原料を3回に分けて20分おきに投入し、白金スターラーを溶融ガラス中に挿入し、1時間撹拌してガラスを均質化した。次いで溶融ガラスを流し出して板状に成型し、毎分1℃の冷却速度で室温まで徐冷してガラスブロックを得た。原料の粒度、清澄剤の種類と量は適宜選択すればよい。 <Glass plate>
(Examples 1-18, 20-32)
The raw materials of each component were prepared so as to have a target composition, and were melted at a temperature of 1400 ° C. to 1700 ° C. for 3 to 10 hours using a platinum crucible. In the melting, 400 g of the raw material was added in three portions every 20 minutes, a platinum stirrer was inserted into the molten glass, and the mixture was stirred for 1 hour to homogenize the glass. Next, the molten glass was poured out and molded into a plate shape, and gradually cooled to room temperature at a cooling rate of 1 ° C. per minute to obtain a glass block. What is necessary is just to select suitably the particle size of a raw material, and the kind and quantity of a clarifying agent.
原料の粒度としては1~1000μm、原料種類としては硅砂、酸化アルミニウムおよび炭酸ナトリウム等、清澄剤の種類としては硫酸塩、酸化スズおよび硝酸塩等、清澄剤の量としては0.1~0.5質量%等が例示できる。
The particle size of the raw material is 1 to 1000 μm, the raw material types are cinnabar sand, aluminum oxide and sodium carbonate, the clarifier types are sulfate, tin oxide and nitrate, and the clarifier amount is 0.1 to 0.5 A mass% etc. can be illustrated.
表中の各成分は、ガラス板の表面からの深さ5000nm以上における酸化物基準の質量百分率表示で示す。
Each component in the table is indicated by a mass percentage display based on oxide at a depth of 5000 nm or more from the surface of the glass plate.
(例19)
ポリメチルメタクリレート(PMMA)からなる厚み1.8mm、50mm角のシートを用意した。 (Example 19)
A sheet of 1.8 mm thickness and 50 mm square made of polymethyl methacrylate (PMMA) was prepared.
ポリメチルメタクリレート(PMMA)からなる厚み1.8mm、50mm角のシートを用意した。 (Example 19)
A sheet of 1.8 mm thickness and 50 mm square made of polymethyl methacrylate (PMMA) was prepared.
<評価>
(ガラス組成)
得られたガラスブロックについて、ホウ素Bおよび1000質量ppm以下の元素を除くガラス組成は、研磨後のガラスブロックを、Rigaku社製ZSX100eを用いて蛍光X線法により、下記測定条件にて同定を行った。 <Evaluation>
(Glass composition)
About the obtained glass block, the glass composition except boron B and an element of 1000 ppm by mass or less is used to identify the polished glass block by the fluorescent X-ray method using the RSX maker ZSX100e under the following measurement conditions. It was.
(ガラス組成)
得られたガラスブロックについて、ホウ素Bおよび1000質量ppm以下の元素を除くガラス組成は、研磨後のガラスブロックを、Rigaku社製ZSX100eを用いて蛍光X線法により、下記測定条件にて同定を行った。 <Evaluation>
(Glass composition)
About the obtained glass block, the glass composition except boron B and an element of 1000 ppm by mass or less is used to identify the polished glass block by the fluorescent X-ray method using the RSX maker ZSX100e under the following measurement conditions. It was.
・研磨条件:得られたガラスブロックを一部切断し、測定面を#1000の砥石を用いて5μm以上研磨した。
・測定条件:管電圧50kV、測定径30mmφ Polishing conditions: A part of the obtained glass block was cut, and the measurement surface was polished by 5 μm or more using a # 1000 grindstone.
・ Measurement conditions: tube voltage 50kV, measurement diameter 30mmφ
・測定条件:管電圧50kV、測定径30mmφ Polishing conditions: A part of the obtained glass block was cut, and the measurement surface was polished by 5 μm or more using a # 1000 grindstone.
・ Measurement conditions: tube voltage 50kV, measurement diameter 30mmφ
ガラス中のB含有量の測定方法を以下に示す。粉砕したガラスに水酸化ナトリウム水溶液を添加し加熱して分解した後、分解液に硝酸を添加して酸性溶液にした。該酸性溶液にイオン交換水を添加して一定量にし、ICP発光分光分析法でBの濃度を測定した。
The method for measuring the B content in glass is shown below. An aqueous sodium hydroxide solution was added to the crushed glass and decomposed by heating, and then nitric acid was added to the decomposition solution to make an acidic solution. Ion exchange water was added to the acidic solution to make a certain amount, and the concentration of B was measured by ICP emission spectroscopy.
そして標準液を用いて作製された検量線より濃度を計算した。この測定濃度とガラスの分解量よりガラス中のB含有量を算出した。ICP発光光度計として日立ハイテクサイエンス社製SPS3100を用いた測定を行った。
The concentration was calculated from a calibration curve prepared using a standard solution. The B content in the glass was calculated from the measured concentration and the amount of decomposition of the glass. Measurement was performed using SPS3100 manufactured by Hitachi High-Tech Science Co., Ltd. as an ICP emission photometer.
(t-Fe2O3量、Fe2+量、Fe3+量)
全酸化鉄量(t-Fe2O3)は以下のようにして測定を行った。粉砕したガラスにフッ化水素酸と過塩素酸の混酸を添加し加熱して分解した。分解後、塩酸を添加して一定量にし、ICP発光分光分析法でFeの濃度を測定した。なお上述の粉砕したガラスは、スズを含有する層を100μm研磨してから粉砕することによって得た。 (T-Fe 2 O 3 content, Fe 2+ content, Fe 3+ content)
The total iron oxide amount (t-Fe 2 O 3 ) was measured as follows. The crushed glass was decomposed by adding a mixed acid of hydrofluoric acid and perchloric acid and heating. After decomposition, hydrochloric acid was added to make a certain amount, and the concentration of Fe was measured by ICP emission spectroscopy. The above-mentioned crushed glass was obtained by grinding a layer containing tin 100 μm after grinding.
全酸化鉄量(t-Fe2O3)は以下のようにして測定を行った。粉砕したガラスにフッ化水素酸と過塩素酸の混酸を添加し加熱して分解した。分解後、塩酸を添加して一定量にし、ICP発光分光分析法でFeの濃度を測定した。なお上述の粉砕したガラスは、スズを含有する層を100μm研磨してから粉砕することによって得た。 (T-Fe 2 O 3 content, Fe 2+ content, Fe 3+ content)
The total iron oxide amount (t-Fe 2 O 3 ) was measured as follows. The crushed glass was decomposed by adding a mixed acid of hydrofluoric acid and perchloric acid and heating. After decomposition, hydrochloric acid was added to make a certain amount, and the concentration of Fe was measured by ICP emission spectroscopy. The above-mentioned crushed glass was obtained by grinding a layer containing tin 100 μm after grinding.
そして標準液を用いて作製された検量線より濃度を計算した。この測定濃度とガラスの分解量よりガラス中のt-Fe2O3の含有量を算出した。ICP発光光度計として日立ハイテクサイエンス社製SPS3100を用いた測定を行った。
Then, the concentration was calculated from a calibration curve prepared using the standard solution. From the measured concentration and the amount of decomposition of the glass, the content of t-Fe 2 O 3 in the glass was calculated. Measurement was performed using SPS3100 manufactured by Hitachi High-Tech Science Co., Ltd. as an ICP emission photometer.
Fe2+含有量の測定方法を以下に示す。粉砕したガラスをフッ化水素酸と塩酸の混酸により室温で分解した後、分解液のうち、一定量をプラスチック容器に分取し、速やかに2,2’-ジピリジル溶液および酢酸アンモニウム緩衝液を添加してFe2+のみを発色させた。発色液はイオン交換水で一定量にして、吸光光度計で波長522nmでの吸光度を測定した。
A method for measuring the Fe 2+ content is shown below. After the crushed glass is decomposed at room temperature with a mixed acid of hydrofluoric acid and hydrochloric acid, a certain amount of the decomposed solution is dispensed into a plastic container, and a 2,2′-dipyridyl solution and an ammonium acetate buffer solution are quickly added. As a result, only Fe 2+ was developed. The color developing solution was made constant with ion-exchanged water, and the absorbance at a wavelength of 522 nm was measured with an absorptiometer.
そして標準液を用いて作製された検量線より濃度を計算した。この測定濃度とガラスの分解量よりFe2O3に換算したガラス中Fe2+含有量(質量ppm)を算出した。なお、吸光光度計として、島津製作所製UV-1700を用いた。
Then, the concentration was calculated from a calibration curve prepared using the standard solution. From this measured concentration and the amount of decomposition of the glass, the Fe 2+ content (mass ppm) in the glass converted to Fe 2 O 3 was calculated. As an absorptiometer, UV-1700 manufactured by Shimadzu Corporation was used.
Fe3+の含有量(質量ppm)は、下記式で表されるように、上記で求めた全酸化鉄量とFe2+の含有量の差分より求め、Fe2O3に換算して表記した。
Fe3+=(t-Fe2O3)-(Fe2+) The content (mass ppm) of Fe 3+ was calculated from the difference between the total iron oxide content determined above and the content of Fe 2+ as expressed by the following formula, and expressed in terms of Fe 2 O 3 .
Fe 3+ = (t-Fe 2 O 3 )-(Fe 2+ )
Fe3+=(t-Fe2O3)-(Fe2+) The content (mass ppm) of Fe 3+ was calculated from the difference between the total iron oxide content determined above and the content of Fe 2+ as expressed by the following formula, and expressed in terms of Fe 2 O 3 .
Fe 3+ = (t-Fe 2 O 3 )-(Fe 2+ )
(SnO2を添加したガラスの二価鉄の分析方法)
SnO2を添加剤として加えたガラスでは、以下の方法で二価鉄量を求めた。SnO2を添加していない同組成かつ二価鉄量が異なるガラスを複数個準備し、上記方法を用いて2価鉄量をそれぞれ求めた。その後、各ガラスを長辺が50.0mmであり、他の辺は短辺が30.0mm、厚さが1.8mmであるガラス直方体に加工し、すべての面を鏡面に研磨した。分光光度計によって、用意したガラス直方体の長辺の方向に光を透過させ、外部透過率T(λ)を測定した。 (Analyzing method of divalent iron in glass added with SnO 2 )
In the glass added with SnO 2 as an additive, the amount of divalent iron was determined by the following method. A plurality of glasses having the same composition and different amounts of divalent iron to which SnO 2 was not added were prepared, and the amount of divalent iron was determined using the above method. Then, each glass was processed into a glass cuboid having a long side of 50.0 mm, a short side of 30.0 mm, and a thickness of 1.8 mm, and all surfaces were polished to a mirror surface. Light was transmitted in the direction of the long side of the prepared glass cuboid with a spectrophotometer, and the external transmittance T (λ) was measured.
SnO2を添加剤として加えたガラスでは、以下の方法で二価鉄量を求めた。SnO2を添加していない同組成かつ二価鉄量が異なるガラスを複数個準備し、上記方法を用いて2価鉄量をそれぞれ求めた。その後、各ガラスを長辺が50.0mmであり、他の辺は短辺が30.0mm、厚さが1.8mmであるガラス直方体に加工し、すべての面を鏡面に研磨した。分光光度計によって、用意したガラス直方体の長辺の方向に光を透過させ、外部透過率T(λ)を測定した。 (Analyzing method of divalent iron in glass added with SnO 2 )
In the glass added with SnO 2 as an additive, the amount of divalent iron was determined by the following method. A plurality of glasses having the same composition and different amounts of divalent iron to which SnO 2 was not added were prepared, and the amount of divalent iron was determined using the above method. Then, each glass was processed into a glass cuboid having a long side of 50.0 mm, a short side of 30.0 mm, and a thickness of 1.8 mm, and all surfaces were polished to a mirror surface. Light was transmitted in the direction of the long side of the prepared glass cuboid with a spectrophotometer, and the external transmittance T (λ) was measured.
分光光度計は、日立ハイテクノロジーズ社製分光光度計UH4150用いた。この時、分光光度計に、長尺試料が測定できる同社製の検知器を組み合わせて使用した。光路長50.0mmにおける外部透過率T(λ)は、測定波長範囲において、1nm間隔で取得した。
The spectrophotometer used was a spectrophotometer UH4150 manufactured by Hitachi High-Technologies Corporation. At this time, a spectrophotometer was used in combination with a detector manufactured by the company that can measure long samples. External transmittance T (λ) at an optical path length of 50.0 mm was obtained at 1 nm intervals in the measurement wavelength range.
得られた測定結果から、波長800~1300nmにおいて最も透過率が低い波長を二価鉄の吸収ピーク位置とし、その吸光度を下記式より求めた。
吸光度:-Log(T/100) From the obtained measurement results, the wavelength having the lowest transmittance at a wavelength of 800 to 1300 nm was defined as the absorption peak position of divalent iron, and the absorbance was obtained from the following formula.
Absorbance: -Log (T / 100)
吸光度:-Log(T/100) From the obtained measurement results, the wavelength having the lowest transmittance at a wavelength of 800 to 1300 nm was defined as the absorption peak position of divalent iron, and the absorbance was obtained from the following formula.
Absorbance: -Log (T / 100)
各ガラスについて上記の方法で二価鉄量に対する吸光度を求め、検量線を作成した。SnO2を添加したガラスについて、同様の方法で吸光度を求め、作成した検量線を用いて、二価鉄量を求めた。
For each glass, the absorbance with respect to the amount of divalent iron was determined by the above method, and a calibration curve was prepared. The glass doped with SnO 2, determine the absorbance in the same manner, using a calibration curve prepared was determined divalent iron content.
(Ni、Cr、MnおよびTi量)
粉砕したガラスにフッ化水素酸と過塩素酸の混酸を添加し加熱して分解した。分解後、硝酸を添加して一定量にし、ICP質量分析法でNi、CrおよびMnの濃度を測定した。そして標準液を用いて作製された検量線より濃度を計算した。この測定濃度とガラスの分解量よりガラス中のNi、CrおよびMnの各々の含有量を算出した。なおICP質量分析計は、アジレント・テクノロジー社製Agilent8800を用いた。またTiについてはICP発光分光分析法で分析した。そして標準液を用いて作製された検量線より濃度を計算した。なおICP発光光度計として日立ハイテクサイエンス社製SPS3100を用いた測定を行った。 (Ni, Cr, Mn and Ti amount)
The crushed glass was decomposed by adding a mixed acid of hydrofluoric acid and perchloric acid and heating. After decomposition, nitric acid was added to a constant amount, and the concentrations of Ni, Cr and Mn were measured by ICP mass spectrometry. Then, the concentration was calculated from a calibration curve prepared using the standard solution. Each content of Ni, Cr and Mn in the glass was calculated from the measured concentration and the amount of decomposition of the glass. The ICP mass spectrometer used was Agilent 8800 manufactured by Agilent Technologies. Ti was analyzed by ICP emission spectroscopy. Then, the concentration was calculated from a calibration curve prepared using the standard solution. In addition, the measurement using Hitachi High-Tech Science SPS3100 was performed as an ICP emission photometer.
粉砕したガラスにフッ化水素酸と過塩素酸の混酸を添加し加熱して分解した。分解後、硝酸を添加して一定量にし、ICP質量分析法でNi、CrおよびMnの濃度を測定した。そして標準液を用いて作製された検量線より濃度を計算した。この測定濃度とガラスの分解量よりガラス中のNi、CrおよびMnの各々の含有量を算出した。なおICP質量分析計は、アジレント・テクノロジー社製Agilent8800を用いた。またTiについてはICP発光分光分析法で分析した。そして標準液を用いて作製された検量線より濃度を計算した。なおICP発光光度計として日立ハイテクサイエンス社製SPS3100を用いた測定を行った。 (Ni, Cr, Mn and Ti amount)
The crushed glass was decomposed by adding a mixed acid of hydrofluoric acid and perchloric acid and heating. After decomposition, nitric acid was added to a constant amount, and the concentrations of Ni, Cr and Mn were measured by ICP mass spectrometry. Then, the concentration was calculated from a calibration curve prepared using the standard solution. Each content of Ni, Cr and Mn in the glass was calculated from the measured concentration and the amount of decomposition of the glass. The ICP mass spectrometer used was Agilent 8800 manufactured by Agilent Technologies. Ti was analyzed by ICP emission spectroscopy. Then, the concentration was calculated from a calibration curve prepared using the standard solution. In addition, the measurement using Hitachi High-Tech Science SPS3100 was performed as an ICP emission photometer.
(可視域の内部透過率)
得られたガラスブロックの、測定波長範囲における内部透過率は日立ハイテクノロジーズ社製分光光度計UH4150用いて、下記測定条件により測定した。 (Internal transmittance in the visible range)
The internal transmittance in the measurement wavelength range of the obtained glass block was measured under the following measurement conditions using a spectrophotometer UH4150 manufactured by Hitachi High-Technologies Corporation.
得られたガラスブロックの、測定波長範囲における内部透過率は日立ハイテクノロジーズ社製分光光度計UH4150用いて、下記測定条件により測定した。 (Internal transmittance in the visible range)
The internal transmittance in the measurement wavelength range of the obtained glass block was measured under the following measurement conditions using a spectrophotometer UH4150 manufactured by Hitachi High-Technologies Corporation.
ガラスブロックを、長辺が50.0mmであり、他の辺は短辺が30.0mm、厚さが1.8mmであるガラス直方体に加工し、すべての面を鏡面に研磨した。分光光度計によって、用意したガラス直方体の長辺の方向に光を透過させ、外部透過率T(λ)を測定した。この時、分光光度計に、長尺試料が測定できる同社製の検知器を組み合わせて使用した。光路長50.0mmにおける外部透過率T(λ)は、測定波長範囲において、1nm間隔で取得した。
The glass block was processed into a glass cuboid having a long side of 50.0 mm, the other side having a short side of 30.0 mm, and a thickness of 1.8 mm, and all surfaces were polished to a mirror surface. Light was transmitted in the direction of the long side of the prepared glass cuboid with a spectrophotometer, and the external transmittance T (λ) was measured. At this time, a spectrophotometer was used in combination with a detector manufactured by the company that can measure long samples. External transmittance T (λ) at an optical path length of 50.0 mm was obtained at 1 nm intervals in the measurement wavelength range.
次いで、該ガラス直方体の少なくともg線(435.8nm)、F線(486.1nm)、e線(546.1nm)、d線(587.6nm)、C線(656.3nm)の各波長における屈折率を、島津製作所社製精密屈折計KPR-2000によって、Vブロック法で測定し、それらの値をもとにSellmeierの分散式[下記式(I)]の各係数B1、B2、B3、C1、C2、C3を最小二乗法によって決定した。これにより、該ガラスの屈折率n(λ)を得た。
Then, at least each wavelength of g line (435.8 nm), F line (486.1 nm), e line (546.1 nm), d line (587.6 nm), and C line (656.3 nm) of the glass cuboid The refractive index was measured by a precision refractometer KPR-2000 manufactured by Shimadzu Corporation by the V-block method, and each coefficient B 1 , B 2 of the Sellmeier's dispersion formula [Formula (I) below] B 3 , C 1 , C 2 , C 3 were determined by the least square method. Thereby, the refractive index n (λ) of the glass was obtained.
n(λ)=[1+{B1λ2/(λ2-C1)}+{B2λ2/(λ2-C2)}+{B3λ2/(λ2-C3)}]0.5 (I)
n (λ) = [1+ {B 1 λ 2 / (λ 2 −C 1 )} + {B 2 λ 2 / (λ 2 −C 2 )} + {B 3 λ 2 / (λ 2 −C 3 ) }] 0.5 (I)
式(I)で得られた屈折率n(λ)を元に、屈折率と反射率の関係式[下記式(II)]により、該ガラス直方体の片面の反射率R(λ)を求めた。
Based on the refractive index n (λ) obtained by the formula (I), the reflectance R (λ) of one side of the glass cuboid was obtained by the relational expression of the refractive index and the reflectance [the following formula (II)]. .
R(λ)=(n(λ)-1)2/(n(λ)+1)2 (II)
R (λ) = (n (λ) −1) 2 / (n (λ) +1) 2 (II)
外部透過率T(λ)は、ガラス直方体の表面反射の影響を受けた測定値であるので、内部透過率U(λ)を得るために、表面反射の影響を除く必要がある。そこで、該ガラス直方体の50.0mm長における内部透過率U(λ)を下記式(III)によって求めた。
Since the external transmittance T (λ) is a measured value affected by the surface reflection of the glass cuboid, it is necessary to exclude the influence of the surface reflection in order to obtain the internal transmittance U (λ). Therefore, the internal transmittance U (λ) at a length of 50.0 mm of the glass cuboid was determined by the following formula (III).
U(λ)=-[(1-R(λ))2+{(1-R(λ))4+4R(λ)2T(λ)2}0.5]/2R(λ)2T(λ) (III)
U (λ) = − [(1−R (λ)) 2 + {(1−R (λ)) 4 + 4R (λ) 2 T (λ) 2 } 0.5 ] / 2R (λ) 2 T ( λ) (III)
(LED照射後の平均内部透過率)
下記条件によりLEDを照射後の光路長50mmにおける各波長域(420~470nm、520~570nmまたは675~725nm)の光の平均内部透過率を調べた。また、各波長域について、照射前の平均内部透過率から照射後の平均内部透過率を除してΔTを求めた。
(条件)下記ガラス板の1辺を下記青色LED照明(アイテックシステム社製超高輝度直線照明LLRG500WB)に直付けして、LEDのすべての光がガラス板の端面から入射するように位置を調整した上で、LEDをガラス板に21時間照射する。
青色LED照明:中心波長453nmで発光する、サイズ1mm角の青色LEDチップが、0.2mm間隔で、ライン状に並んだ照明。ラインの長さは50mmである。サンプルを置かない場合の、LEDチップから20mmの距離における照度が20万Lxである。
ガラス板:主面サイズ50mm角、厚み1.8mmの直方体形状であり、主表面および端面を鏡面研磨したガラス板。 (Average internal transmittance after LED irradiation)
Under the following conditions, the average internal transmittance of light in each wavelength region (420 to 470 nm, 520 to 570 nm, or 675 to 725 nm) at an optical path length of 50 mm after irradiation with the LED was examined. For each wavelength region, ΔT was determined by dividing the average internal transmittance after irradiation from the average internal transmittance before irradiation.
(Condition) Directly attach one side of the following glass plate to the following blue LED illumination (Ultra High Brightness Linear Illumination LLRG500WB manufactured by ITEC System) and adjust the position so that all the light from the LED is incident from the end face of the glass plate Then, the LED is irradiated on the glass plate for 21 hours.
Blue LED illumination: Illumination in which blue LED chips with a size of 1 mm square that emit light at a central wavelength of 453 nm are arranged in a line at intervals of 0.2 mm. The length of the line is 50 mm. The illuminance at a distance of 20 mm from the LED chip when no sample is placed is 200,000 Lx.
Glass plate: A glass plate having a rectangular parallelepiped shape with a main surface size of 50 mm square and a thickness of 1.8 mm, and having a main surface and end surfaces mirror-polished.
下記条件によりLEDを照射後の光路長50mmにおける各波長域(420~470nm、520~570nmまたは675~725nm)の光の平均内部透過率を調べた。また、各波長域について、照射前の平均内部透過率から照射後の平均内部透過率を除してΔTを求めた。
(条件)下記ガラス板の1辺を下記青色LED照明(アイテックシステム社製超高輝度直線照明LLRG500WB)に直付けして、LEDのすべての光がガラス板の端面から入射するように位置を調整した上で、LEDをガラス板に21時間照射する。
青色LED照明:中心波長453nmで発光する、サイズ1mm角の青色LEDチップが、0.2mm間隔で、ライン状に並んだ照明。ラインの長さは50mmである。サンプルを置かない場合の、LEDチップから20mmの距離における照度が20万Lxである。
ガラス板:主面サイズ50mm角、厚み1.8mmの直方体形状であり、主表面および端面を鏡面研磨したガラス板。 (Average internal transmittance after LED irradiation)
Under the following conditions, the average internal transmittance of light in each wavelength region (420 to 470 nm, 520 to 570 nm, or 675 to 725 nm) at an optical path length of 50 mm after irradiation with the LED was examined. For each wavelength region, ΔT was determined by dividing the average internal transmittance after irradiation from the average internal transmittance before irradiation.
(Condition) Directly attach one side of the following glass plate to the following blue LED illumination (Ultra High Brightness Linear Illumination LLRG500WB manufactured by ITEC System) and adjust the position so that all the light from the LED is incident from the end face of the glass plate Then, the LED is irradiated on the glass plate for 21 hours.
Blue LED illumination: Illumination in which blue LED chips with a size of 1 mm square that emit light at a central wavelength of 453 nm are arranged in a line at intervals of 0.2 mm. The length of the line is 50 mm. The illuminance at a distance of 20 mm from the LED chip when no sample is placed is 200,000 Lx.
Glass plate: A glass plate having a rectangular parallelepiped shape with a main surface size of 50 mm square and a thickness of 1.8 mm, and having a main surface and end surfaces mirror-polished.
(LED照射後の状態)
例12のガラスブロックを、厚み1.8mm、50mm角に加工し、表面および端面を鏡面研磨した。また、比較例として例19のポリメチルメタクリレート製フィルムを用いた。例12のガラス板および例19のフィルムに対し、下記条件によりLEDを21時間照射した。
(条件)ガラス板またはフィルムの1辺を下記青色LED照明(アイテックシステム社製超高輝度直線照明LLRG500WB)に直付けして、LEDのすべての光がガラス板またはフィルムの端面から入射するように位置を調整した上で、LEDをガラス板またはフィルムに21時間照射する。
青色LED照明:中心波長453nmで発光する、サイズ1mm角の青色LEDチップが、0.2mm間隔で、ライン状に並んだ照明。ラインの長さは50mmである。サンプルを置かない場合の、LEDチップから20mmの距離における照度が20万Lxである。 (State after LED irradiation)
The glass block of Example 12 was processed to a thickness of 1.8 mm and a 50 mm square, and the surface and end face were mirror-polished. Further, the polymethyl methacrylate film of Example 19 was used as a comparative example. The LED was irradiated to the glass plate of Example 12 and the film of Example 19 for 21 hours under the following conditions.
(Condition) Directly attach one side of a glass plate or film to the following blue LED illumination (Ultra High Brightness Linear Illumination LLRG500WB manufactured by ITEC System Co., Ltd.) so that all light from the LED is incident from the end face of the glass plate or film. After adjusting the position, the LED is irradiated on the glass plate or film for 21 hours.
Blue LED illumination: Illumination in which blue LED chips with a size of 1 mm square that emit light at a central wavelength of 453 nm are arranged in a line at intervals of 0.2 mm. The length of the line is 50 mm. The illuminance at a distance of 20 mm from the LED chip when no sample is placed is 200,000 Lx.
例12のガラスブロックを、厚み1.8mm、50mm角に加工し、表面および端面を鏡面研磨した。また、比較例として例19のポリメチルメタクリレート製フィルムを用いた。例12のガラス板および例19のフィルムに対し、下記条件によりLEDを21時間照射した。
(条件)ガラス板またはフィルムの1辺を下記青色LED照明(アイテックシステム社製超高輝度直線照明LLRG500WB)に直付けして、LEDのすべての光がガラス板またはフィルムの端面から入射するように位置を調整した上で、LEDをガラス板またはフィルムに21時間照射する。
青色LED照明:中心波長453nmで発光する、サイズ1mm角の青色LEDチップが、0.2mm間隔で、ライン状に並んだ照明。ラインの長さは50mmである。サンプルを置かない場合の、LEDチップから20mmの距離における照度が20万Lxである。 (State after LED irradiation)
The glass block of Example 12 was processed to a thickness of 1.8 mm and a 50 mm square, and the surface and end face were mirror-polished. Further, the polymethyl methacrylate film of Example 19 was used as a comparative example. The LED was irradiated to the glass plate of Example 12 and the film of Example 19 for 21 hours under the following conditions.
(Condition) Directly attach one side of a glass plate or film to the following blue LED illumination (Ultra High Brightness Linear Illumination LLRG500WB manufactured by ITEC System Co., Ltd.) so that all light from the LED is incident from the end face of the glass plate or film. After adjusting the position, the LED is irradiated on the glass plate or film for 21 hours.
Blue LED illumination: Illumination in which blue LED chips with a size of 1 mm square that emit light at a central wavelength of 453 nm are arranged in a line at intervals of 0.2 mm. The length of the line is 50 mm. The illuminance at a distance of 20 mm from the LED chip when no sample is placed is 200,000 Lx.
LED照射後の状態を目視により観察し、下記基準により評価した。
○:LED照射により溶けず、導光板として使用可能である。
×:LED照射により溶けて導光板として使用不可である。 The state after LED irradiation was observed visually and evaluated according to the following criteria.
○: Cannot be melted by LED irradiation and can be used as a light guide plate.
X: It melt | dissolves by LED irradiation and cannot be used as a light-guide plate.
○:LED照射により溶けず、導光板として使用可能である。
×:LED照射により溶けて導光板として使用不可である。 The state after LED irradiation was observed visually and evaluated according to the following criteria.
○: Cannot be melted by LED irradiation and can be used as a light guide plate.
X: It melt | dissolves by LED irradiation and cannot be used as a light-guide plate.
(LED照射前後の波長520~570nmの平均吸光度の差)
例1、5、12および17のガラスからなるガラス板について、(LED照射後の平均内部透過率)の項で上記した条件によりLEDを照射後の波長520~570nmの平均吸光度を照射前の波長520~570nm平均吸光度から除した平均吸光度の差分を求めた。波長520~570nmの平均吸光度は、光路長50.0mmにて、分光光度計(日立ハイテクノロジーズ社製分光光度計UH4150)により外部透過率を測定し、上述の方法で内部透過率に換算、得られた内部透過率から下記式(IV)を用いて、求めた。
波長520~570nmの平均吸光度=-Log(U(λ520~570)/100)(IV)
ここでU(λ520~570)は、波長520~570nmの平均内部透過率である。 (Difference in average absorbance at wavelengths of 520 to 570 nm before and after LED irradiation)
For glass plates made of the glass of Examples 1, 5, 12 and 17, the average absorbance at wavelengths of 520 to 570 nm after irradiating the LED under the conditions described above in (Average internal transmittance after LED irradiation) is the wavelength before irradiation. The difference in average absorbance divided from the average absorbance at 520 to 570 nm was determined. The average absorbance at a wavelength of 520 to 570 nm is obtained by measuring the external transmittance with a spectrophotometer (Spectrum photometer UH4150 manufactured by Hitachi High-Technologies Corporation) at an optical path length of 50.0 mm, and converting it to the internal transmittance by the above method. It calculated | required from the obtained internal transmittance | permeability using following formula (IV).
Average absorbance at wavelengths of 520 to 570 nm = −Log (U (λ 520 to 570 ) / 100) (IV)
Here, U (λ 520 to 570 ) is an average internal transmittance at a wavelength of 520 to 570 nm.
例1、5、12および17のガラスからなるガラス板について、(LED照射後の平均内部透過率)の項で上記した条件によりLEDを照射後の波長520~570nmの平均吸光度を照射前の波長520~570nm平均吸光度から除した平均吸光度の差分を求めた。波長520~570nmの平均吸光度は、光路長50.0mmにて、分光光度計(日立ハイテクノロジーズ社製分光光度計UH4150)により外部透過率を測定し、上述の方法で内部透過率に換算、得られた内部透過率から下記式(IV)を用いて、求めた。
波長520~570nmの平均吸光度=-Log(U(λ520~570)/100)(IV)
ここでU(λ520~570)は、波長520~570nmの平均内部透過率である。 (Difference in average absorbance at wavelengths of 520 to 570 nm before and after LED irradiation)
For glass plates made of the glass of Examples 1, 5, 12 and 17, the average absorbance at wavelengths of 520 to 570 nm after irradiating the LED under the conditions described above in (Average internal transmittance after LED irradiation) is the wavelength before irradiation. The difference in average absorbance divided from the average absorbance at 520 to 570 nm was determined. The average absorbance at a wavelength of 520 to 570 nm is obtained by measuring the external transmittance with a spectrophotometer (Spectrum photometer UH4150 manufactured by Hitachi High-Technologies Corporation) at an optical path length of 50.0 mm, and converting it to the internal transmittance by the above method. It calculated | required from the obtained internal transmittance | permeability using following formula (IV).
Average absorbance at wavelengths of 520 to 570 nm = −Log (U (λ 520 to 570 ) / 100) (IV)
Here, U (λ 520 to 570 ) is an average internal transmittance at a wavelength of 520 to 570 nm.
結果を表1~5および図3に示す。図3は、ガラス中のMnO2量と青色LED照射前後の波長520~570nmの平均吸光度の差分との相関関係を示す図である。なお、例3~16、20~32は実施例、例1、2、17~19は比較例である。また、表において「-」は未評価であることを示す。
The results are shown in Tables 1 to 5 and FIG. FIG. 3 is a diagram showing a correlation between the amount of MnO 2 in the glass and the difference in average absorbance at wavelengths of 520 to 570 nm before and after the blue LED irradiation. Examples 3 to 16 and 20 to 32 are examples, and examples 1, 2, and 17 to 19 are comparative examples. In the table, “-” indicates that it has not been evaluated.
表1および2に示すように、実施例のガラス板の波長450nm近傍における光の内部透過率は、比較例の波長450nm近傍における光の内部透過率以上であり、且つ青色LED照射後の可視域における内部透過率の減少が低減されていた。この結果から、本発明のガラスは青色LEDを用いた量子ドットディスプレイの導光板用ガラス板に適していることがわかった。
As shown in Tables 1 and 2, the internal transmittance of light in the vicinity of the wavelength of 450 nm of the glass plate of the example is equal to or greater than the internal transmittance of light in the vicinity of the wavelength of 450 nm of the comparative example, and the visible region after irradiation with the blue LED The decrease in internal transmittance was reduced. From this result, it was found that the glass of the present invention is suitable for a glass plate for a light guide plate of a quantum dot display using a blue LED.
表3および図3に示すように、青色LEDの照射による内部透過率の変化量とガラスに含まれるMn量とは相関関係があり、ガラスに含まれるMnO2の含有量を5.0質量ppm以下と低くすることにより、青色LEDの照射により生じる可視光ソーラリゼーションを抑制できることが分かった。また、可視光ソーラリゼーションは青色LEDの照度や照射時間に応じて、変化量は変動するため、例えば、本試験のLEDよりも照度の弱いLEDを使用した場合も照射時間に応じて同様の挙動を示す。
As shown in Table 3 and FIG. 3, the amount of change in internal transmittance due to the irradiation of the blue LED is correlated with the amount of Mn contained in the glass, and the content of MnO 2 contained in the glass is 5.0 mass ppm. It was found that the visible light solarization caused by the irradiation of the blue LED can be suppressed by lowering the following. Moreover, since the amount of change varies depending on the illuminance and irradiation time of the blue LED in the visible light solarization, for example, when the LED having lower illuminance than the LED of this test is used, the same applies depending on the irradiation time. Shows behavior.
表4に示すように、実施例である例12のガラス板は、比較例である例19の樹脂製のシートと同等の高い内部透過率を有するとともに、青色LEDの照射に対する耐熱性を有していることがわかった。一方、例19の樹脂製のシートは、青色LEDの照射により熱で変形してしまい、青色LEDを光源とする導光板として使用不可であった。
As shown in Table 4, the glass plate of Example 12, which is an example, has high internal transmittance equivalent to that of the resin sheet of Example 19, which is a comparative example, and has heat resistance against irradiation of a blue LED. I found out. On the other hand, the resin-made sheet of Example 19 was deformed by heat due to the irradiation of the blue LED, and could not be used as a light guide plate using the blue LED as a light source.
本発明のガラス板は、従来の導光板用ガラス板と比較して、波長450nm近傍における光の内部透過率が高く、且つ高輝度の青色LEDを照射することによる可視域の内部透過率の減少が低減されている。また、従来の樹脂製の導光板と同等の光学特性を有するとともに、高出力の青色LEDに耐えうる耐熱性を有している。したがって、本発明のガラス板は、導光板用ガラス板、特に青色LEDを用いた量子ドットディスプレイに用いる導光板用ガラス板として好適に用いることが出来る。
The glass plate of the present invention has a high internal transmittance of light in the vicinity of a wavelength of 450 nm as compared with a conventional glass plate for a light guide plate, and a decrease in internal transmittance in the visible region by irradiating a high-intensity blue LED. Has been reduced. In addition, it has the same optical characteristics as a conventional resin light guide plate and has heat resistance that can withstand a high-power blue LED. Therefore, the glass plate of this invention can be used suitably as a glass plate for light guide plates, especially a glass plate for light guide plates used for a quantum dot display using a blue LED.
本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
本出願は、2016年12月1日に日本国特許庁に出願した特願2016-234120号に基づく優先権を主張するものであり、特願2016-234120号の全内容を本出願に援用する。 Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application claims priority based on Japanese Patent Application No. 2016-234120 filed with the Japan Patent Office on December 1, 2016, and the entire contents of Japanese Patent Application No. 2016-234120 are incorporated herein by reference. .
本出願は、2016年12月1日に日本国特許庁に出願した特願2016-234120号に基づく優先権を主張するものであり、特願2016-234120号の全内容を本出願に援用する。 Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application claims priority based on Japanese Patent Application No. 2016-234120 filed with the Japan Patent Office on December 1, 2016, and the entire contents of Japanese Patent Application No. 2016-234120 are incorporated herein by reference. .
1 ガラス
2 青色LEDチップ
3 青色LED照明 1Glass 2 Blue LED chip 3 Blue LED lighting
2 青色LEDチップ
3 青色LED照明 1
Claims (11)
- Fe2O3に換算した全酸化鉄(t-Fe2O3)を80質量ppm未満含有し、
酸化物基準で、NiOを0超1.0質量ppm未満、Cr2O3を0超1.0質量ppm未満、MnO2を0超~5.0質量ppm含有し、且つ鉄レドックスが30%超であるガラス板。 Total iron oxide in terms of Fe 2 O 3 and (t-Fe 2 O 3) containing less than 80 mass ppm,
On the oxide basis, it contains NiO more than 0 and less than 1.0 mass ppm, Cr 2 O 3 contains more than 0 and less than 1.0 mass ppm, MnO 2 contains more than 0 and 5.0 mass ppm, and iron redox is 30%. A glass plate that is super. - 酸化物基準でTiO2を0超40質量ppm未満含有する請求項1に記載のガラス板。 Glass plate according to claim 1 which contains less than the TiO 2 0 super 40 mass ppm on an oxide basis.
- 酸化物基準の質量百分率表示で、SiO2を50~85%、Al2O3を0~20%、B2O3を0~10%、Na2Oを1~20%およびK2Oを0~20%以下含有する請求項1または2に記載のガラス板。 Oxide-based mass percentage display, SiO 2 50-85%, Al 2 O 3 0-20%, B 2 O 3 0-10%, Na 2 O 1-20% and K 2 O The glass plate according to claim 1 or 2, which contains 0 to 20% or less.
- 光路長50mmにおける波長420~470nmの光の平均内部透過率(α)が95%以上である請求項1~3のいずれか1項に記載のガラス板。 The glass plate according to any one of claims 1 to 3, wherein the average internal transmittance (α) of light having a wavelength of 420 to 470 nm at an optical path length of 50 mm is 95% or more.
- 光路長50mmにおける波長520~570nmの光の平均内部透過率(β)が90%以上である請求項4に記載のガラス板。 The glass plate according to claim 4, wherein the average internal transmittance (β) of light having a wavelength of 520 to 570 nm at an optical path length of 50 mm is 90% or more.
- 光路長50mmにおける波長675~725nmの光の平均内部透過率(γ)が70%以上である請求項4または5に記載のガラス板。 6. The glass plate according to claim 4, wherein an average internal transmittance (γ) of light having a wavelength of 675 to 725 nm at an optical path length of 50 mm is 70% or more.
- 下記条件により青色LEDを照射後の光路長50mmにおける波長420~470nmの光の平均内部透過率(α)が95%以上である請求項1~6のいずれか1項に記載のガラス板。
(条件)下記ガラス板の1辺を下記青色LED照明に直付けして、LEDのすべての光がガラス板の端面から入射するように位置を調整した上で、LEDをガラス板に21時間照射する。
青色LED照明:中心波長453nmで発光する、サイズ1mm角の青色LEDチップが、0.2mm間隔で、ライン状に並んだ照明。ラインの長さは50mmである。サンプルを置かない場合の、LEDチップから20mmの距離における照度が20万Lxである。
ガラス板:主面サイズ50mm角、厚み1.8mmの直方体形状であり、主表面および端面を鏡面研磨したガラス板。 The glass plate according to any one of claims 1 to 6, wherein an average internal transmittance (α) of light having a wavelength of 420 to 470 nm at an optical path length of 50 mm after irradiation with a blue LED is 95% or more under the following conditions.
(Condition) Directly attach one side of the following glass plate to the following blue LED illumination, adjust the position so that all the light from the LED enters from the end face of the glass plate, and then irradiate the glass plate for 21 hours To do.
Blue LED illumination: Illumination in which blue LED chips with a size of 1 mm square that emit light at a central wavelength of 453 nm are arranged in a line at intervals of 0.2 mm. The length of the line is 50 mm. The illuminance at a distance of 20 mm from the LED chip when no sample is placed is 200,000 Lx.
Glass plate: A glass plate having a rectangular parallelepiped shape with a main surface size of 50 mm square and a thickness of 1.8 mm, and having a main surface and end surfaces mirror-polished. - 下記条件によりLEDを照射後の光路長50mmにおける波長520~570nmの光の平均内部透過率(β)が90%以上である請求項1~6のいずれか1項に記載のガラス板。
(条件)下記ガラス板の1辺を下記青色LED照明に直付けして、LEDのすべての光がガラス板の端面から入射するように位置を調整した上で、LEDをガラス板に21時間照射する。
青色LED照明:中心波長453nmで発光する、サイズ1mm角の青色LEDチップが、0.2mm間隔で、ライン状に並んだ照明。ラインの長さは50mmである。サンプルを置かない場合の、LEDチップから20mmの距離における照度が20万Lxである。
ガラス板:主面サイズ50mm角、厚み1.8mmの直方体形状であり、主表面および端面を鏡面研磨したガラス板。 The glass plate according to any one of claims 1 to 6, wherein an average internal transmittance (β) of light having a wavelength of 520 to 570 nm at an optical path length of 50 mm after irradiation with the LED is 90% or more under the following conditions.
(Condition) Directly attach one side of the following glass plate to the following blue LED illumination, adjust the position so that all the light from the LED enters from the end face of the glass plate, and then irradiate the glass plate for 21 hours To do.
Blue LED illumination: Illumination in which blue LED chips with a size of 1 mm square that emit light at a central wavelength of 453 nm are arranged in a line at intervals of 0.2 mm. The length of the line is 50 mm. The illuminance at a distance of 20 mm from the LED chip when no sample is placed is 200,000 Lx.
Glass plate: A glass plate having a rectangular parallelepiped shape with a main surface size of 50 mm square and a thickness of 1.8 mm, and having a main surface and end surfaces mirror-polished. - 下記条件によりLEDを照射後の光路長50mmにおける波長675~725nmの光の平均内部透過率(γ)が70%以上である請求項1~6のいずれか1項に記載のガラス板。
(条件)下記ガラス板の1辺を下記青色LED照明に直付けして、LEDのすべての光がガラス板の端面から入射するように位置を調整した上で、LEDをガラス板に21時間照射する。
青色LED照明:中心波長453nmで発光する、サイズ1mm角の青色LEDチップが、0.2mm間隔で、ライン状に並んだ照明。ラインの長さは50mmである。サンプルを置かない場合の、LEDチップから20mmの距離における照度が20万Lxである。
ガラス板:主面サイズ50mm角、厚み1.8mmの直方体形状であり、主表面および端面を鏡面研磨したガラス板。 The glass plate according to any one of claims 1 to 6, wherein an average internal transmittance (γ) of light having a wavelength of 675 to 725 nm at an optical path length of 50 mm after irradiation with the LED is 70% or more under the following conditions.
(Condition) Directly attach one side of the following glass plate to the following blue LED illumination, adjust the position so that all the light from the LED enters from the end face of the glass plate, and then irradiate the glass plate for 21 hours To do.
Blue LED illumination: Illumination in which blue LED chips with a size of 1 mm square that emit light at a central wavelength of 453 nm are arranged in a line at intervals of 0.2 mm. The length of the line is 50 mm. The illuminance at a distance of 20 mm from the LED chip when no sample is placed is 200,000 Lx.
Glass plate: A glass plate having a rectangular parallelepiped shape with a main surface size of 50 mm square and a thickness of 1.8 mm, and having a main surface and end surfaces mirror-polished. - 酸化物基準で、CeO2の含有量が200質量ppm以下である請求項1~9のいずれか1項に記載のガラス板。 The glass plate according to any one of claims 1 to 9, wherein the content of CeO 2 is 200 ppm by mass or less on an oxide basis.
- 請求項1~10のいずれか1項に記載のガラス板からなり、且つ青色LEDを用いた量子ドットディスプレイに用いる導光板。 A light guide plate made of the glass plate according to any one of claims 1 to 10 and used for a quantum dot display using a blue LED.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016234120 | 2016-12-01 | ||
JP2016-234120 | 2016-12-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018101220A1 true WO2018101220A1 (en) | 2018-06-07 |
Family
ID=62242740
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/042456 WO2018101220A1 (en) | 2016-12-01 | 2017-11-27 | Glass plate |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018101220A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019045024A1 (en) * | 2017-09-04 | 2019-03-07 | Agc株式会社 | Glass plate |
CN110673254A (en) * | 2019-09-20 | 2020-01-10 | 宁波东旭成新材料科技有限公司 | Quantum dot glass light guide plate |
CN113109303A (en) * | 2021-05-07 | 2021-07-13 | 郑州市欣创玻璃技术有限公司 | Method and equipment for detecting explosive substances in glass |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005075705A (en) * | 2003-09-03 | 2005-03-24 | Nippon Electric Glass Co Ltd | Sheath tube for fluorescent lamp and fluorescent lamp |
JP2006512596A (en) * | 2002-09-11 | 2006-04-13 | サン−ゴバン グラス フランス | Diffusion substrate |
WO2015186486A1 (en) * | 2014-06-04 | 2015-12-10 | 旭硝子株式会社 | Glass plate for light-guide plate |
WO2015195435A2 (en) * | 2014-06-19 | 2015-12-23 | Corning Incorporated | Aluminosilicate glasses |
WO2016031345A1 (en) * | 2014-08-28 | 2016-03-03 | 旭硝子株式会社 | Glass plate |
JP2016181474A (en) * | 2015-03-25 | 2016-10-13 | 大日本印刷株式会社 | Light guide member, surface light source device and display device |
-
2017
- 2017-11-27 WO PCT/JP2017/042456 patent/WO2018101220A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006512596A (en) * | 2002-09-11 | 2006-04-13 | サン−ゴバン グラス フランス | Diffusion substrate |
JP2005075705A (en) * | 2003-09-03 | 2005-03-24 | Nippon Electric Glass Co Ltd | Sheath tube for fluorescent lamp and fluorescent lamp |
WO2015186486A1 (en) * | 2014-06-04 | 2015-12-10 | 旭硝子株式会社 | Glass plate for light-guide plate |
WO2015195435A2 (en) * | 2014-06-19 | 2015-12-23 | Corning Incorporated | Aluminosilicate glasses |
WO2016031345A1 (en) * | 2014-08-28 | 2016-03-03 | 旭硝子株式会社 | Glass plate |
JP2016181474A (en) * | 2015-03-25 | 2016-10-13 | 大日本印刷株式会社 | Light guide member, surface light source device and display device |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019045024A1 (en) * | 2017-09-04 | 2019-03-07 | Agc株式会社 | Glass plate |
CN110673254A (en) * | 2019-09-20 | 2020-01-10 | 宁波东旭成新材料科技有限公司 | Quantum dot glass light guide plate |
CN113109303A (en) * | 2021-05-07 | 2021-07-13 | 郑州市欣创玻璃技术有限公司 | Method and equipment for detecting explosive substances in glass |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5146897B2 (en) | Glass for lighting | |
KR20230085952A (en) | High transmission glasses | |
US7667791B2 (en) | Ultraviolet absorbing glass, glass tube for fluorescent lamp using same, and method for producing ultraviolet absorbing glass for fluorescent lamp | |
KR20170018443A (en) | Aluminosilicate glasses | |
WO2015186486A1 (en) | Glass plate for light-guide plate | |
US10435327B2 (en) | Glass article | |
WO2016031345A1 (en) | Glass plate | |
WO2018101220A1 (en) | Glass plate | |
JP6566024B2 (en) | Glass article and light guide | |
TWI753147B (en) | High transmission glasses | |
WO2019198363A1 (en) | Light guiding panel | |
WO2019045024A1 (en) | Glass plate | |
CN114014538A (en) | Silicate glass and preparation method and application thereof | |
US20180170795A1 (en) | High-transmission glass | |
JP5095620B2 (en) | Ultraviolet absorbing glass tube for fluorescent lamp and fluorescent tube glass tube using the same | |
JP4919399B2 (en) | Ultraviolet absorbing glass for fluorescent lamp, glass tube for fluorescent lamp using the same, and method for producing ultraviolet absorbing glass for fluorescent lamp | |
JP2002068775A (en) | Glass envelope for illumination | |
EP1970355B1 (en) | Lighting glass | |
KR20210002654A (en) | Low alkali high transmission glass | |
JP6075713B2 (en) | Cover glass for display | |
JP2006265068A (en) | Ultraviolet absorbing glass and glass tube for fluorescent lamp using the same | |
JP2007186404A (en) | Glass for illumination |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17875269 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17875269 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |