JP2008129319A - Light-transmissive substrate with light-scattering film - Google Patents

Light-transmissive substrate with light-scattering film Download PDF

Info

Publication number
JP2008129319A
JP2008129319A JP2006314128A JP2006314128A JP2008129319A JP 2008129319 A JP2008129319 A JP 2008129319A JP 2006314128 A JP2006314128 A JP 2006314128A JP 2006314128 A JP2006314128 A JP 2006314128A JP 2008129319 A JP2008129319 A JP 2008129319A
Authority
JP
Japan
Prior art keywords
light
scattering film
fine particles
oxide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006314128A
Other languages
Japanese (ja)
Inventor
Teruyuki Sasaki
輝幸 佐々木
Kazutaka Kamiya
和孝 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2006314128A priority Critical patent/JP2008129319A/en
Publication of JP2008129319A publication Critical patent/JP2008129319A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light-transmissive substrate with light-scattering film provided with a light-scattering film excellent in wear resistance. <P>SOLUTION: The light-transmissive substrate with light-scattering film includes: a light-transmissive substrate; and the light-scattering film which is a silica type film formed on the principal surface of the substrate according to a sol-gel method and contains light-transmissive fine particles in the film, wherein the fine particles are contained in the light-scattering film while forming at least secondary particles, and the surface of the light-scattering film has the ruggedness that reflects the fine particles and the secondary particles. The light-transmissive substrate with light-scattering film is characterized in that the Haze value is 15% or more, total light transmittance is ≥20%, parallel light transmittance is ≤80% and the light-scattering film does not peel from the light-transmissive substrate after performing a taper abrasion test stipulated by JIS R 3212 with respect to the surface of the light-scattering film. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光散乱膜付き透光性基板に関する。   The present invention relates to a translucent substrate with a light scattering film.

例えば、透過型の液晶表示装置では、液晶表示装置の後方から照明する必要がある。この後方からの照明(以下、バックライトともいう)には、液晶表示装置の全面において、できるだけ均一な明るさが求められている。そこで、電球などの点光源や蛍光灯などの線光源を用いたバックライトでは、光散乱板を用いて、均一な光源となるようにしている。   For example, a transmissive liquid crystal display device needs to be illuminated from behind the liquid crystal display device. The illumination from behind (hereinafter also referred to as a backlight) is required to have as uniform brightness as possible over the entire surface of the liquid crystal display device. Therefore, in a backlight using a point light source such as a light bulb or a linear light source such as a fluorescent lamp, a uniform light source is formed using a light scattering plate.

このような光散乱板としては、透光性樹脂に光散乱性微粒子を含ませた樹脂タイプと、透光性基板上に光散乱性微粒子を含む光散乱膜を形成した膜タイプとがある。前者では基板の材料が限られるが、後者ではガラス基板にも透光性樹脂基板にも適用できる。   As such a light scattering plate, there are a resin type in which light scattering fine particles are contained in a light transmitting resin and a film type in which a light scattering film including light scattering fine particles is formed on a light transmitting substrate. In the former, the material of the substrate is limited, but in the latter, it can be applied to a glass substrate and a translucent resin substrate.

透光性基板上に光散乱性微粒子を含む光散乱膜としては、例えば、特開平6−347618号公報には、「アルミナなどの光散乱性粒子をシリカ母材中に分散してなる光散乱性被膜」が開示されている。また、実用新案登録第3104582号公報では、「ガラス基板および拡散粒子層により構成される拡散粒子層を有する拡散板」が開示されている。   As a light-scattering film containing light-scattering fine particles on a light-transmitting substrate, for example, Japanese Patent Laid-Open No. 6-347618 discloses “light scattering formed by dispersing light-scattering particles such as alumina in a silica base material. ”Is disclosed. In addition, Japanese Utility Model Registration No. 3104582 discloses “a diffusion plate having a diffusion particle layer composed of a glass substrate and a diffusion particle layer”.

さらに、特開2002−040210号公報には、「透明粒子と透明バインダーとからなり、前記透明粒子がランダム凝集し、前記透明バインダーによって前記透明粒子の径以上のランダムな凹凸状に形成され、且つ多孔質化されている、ことを特徴とする反射防止膜」が開示されている。   Further, JP-A-2002-040210 discloses “consisting of transparent particles and a transparent binder, wherein the transparent particles are randomly agglomerated, and are formed into random irregularities having a diameter larger than the diameter of the transparent particles by the transparent binder, and An antireflection film characterized by being made porous is disclosed.

また本出願人も、特開2003−186004号公報などにて、ゾルゲル法において相分離を利用して多数の凸状を形成する凸状膜の形成方法を提案している。
特開平6−347618号公報 実用新案登録第3104582号公報 特開2002−040210号公報 特開2003−186004号公報
Also, the present applicant has proposed a method for forming a convex film in which a large number of convex shapes are formed using phase separation in a sol-gel method in Japanese Patent Application Laid-Open No. 2003-186004.
JP-A-6-347618 Utility Model Registration No. 3104582 JP 2002-040210 A JP 2003-186004 A

上述した膜タイプの光散乱板は、透光性基板上に光散乱性微粒子を含む光散乱膜を形成しているので、透光性基板の種類を選ばない利点がある。   The film-type light scattering plate described above has an advantage that the kind of the light-transmitting substrate is not selected because the light-scattering film containing the light-scattering fine particles is formed on the light-transmitting substrate.

ところで磨りガラスは、透光性や機械的特性などガラス基板の持つ特性を有し、かつ簡便な光散乱板である。特に上述した膜タイプの光散乱板に比べ、無機材料であるガラスからなるので、耐摩耗性に優れている。しかし、その製法により表面に細かな傷をつけることになるので、元となるガラス基板よりも、機械的強度がやや劣る嫌いがある。   By the way, polished glass is a simple light scattering plate having the characteristics of a glass substrate such as translucency and mechanical characteristics. In particular, compared to the film-type light scattering plate described above, it is made of glass, which is an inorganic material, and therefore has excellent wear resistance. However, since the surface is finely scratched by the manufacturing method, the mechanical strength is somewhat inferior to that of the original glass substrate.

特開平6−347618号公報に記載された光散乱性被膜は、高温での焼成が必要とされる。
実用新案登録第3104582号公報に開示された技術では、ガラス基板に高分子化合物を介して拡散粒子層を形成しており、シリカ系のバインダー層を有しない。
The light-scattering coating described in JP-A-6-347618 requires firing at a high temperature.
In the technique disclosed in Japanese Utility Model Registration No. 3104582, a diffusion particle layer is formed on a glass substrate via a polymer compound and does not have a silica-based binder layer.

特開2002−040210号公報に開示された反射防止膜は、シリカの透明バインダー中にシリカ粒子をランダムに凝集させることにより、散乱効果を得ている。
また、上述した特開2003−186004号公報による光散乱膜について追試したところ、テーバー摩耗試験により、光散乱膜が基板から剥離した。
The antireflection film disclosed in JP-A-2002-040210 obtains a scattering effect by randomly agglomerating silica particles in a transparent binder of silica.
Further, when the light scattering film according to the above-mentioned Japanese Patent Application Laid-Open No. 2003-186004 was additionally tested, the light scattering film was peeled off from the substrate by the Taber abrasion test.

そこで本発明は、耐摩耗性に優れている光散乱膜を備えた光散乱膜付き透光性基板を提供する。   Therefore, the present invention provides a light-transmitting substrate with a light-scattering film provided with a light-scattering film having excellent wear resistance.

上述の課題を解決するために、本発明による光散乱膜付き透光性基板は、
透光性基板と、
該基板の主表面上に、ゾルゲル法により形成されたシリカ系膜で、当該膜中に透光性微粒子を含み構成される光散乱膜とを、含んでなる光散乱膜付き透光性基板において、
前記微粒子が、少なくとも2次粒子を形成した状態で前記光散乱膜中に含まれ、
前記光散乱膜の表面が前記微粒子および前記2次粒子を反映した凹凸を有しており、
前記光散乱膜付き透光性基板における、ヘーズ率が15%以上、全光透過率が20%以上、かつ平行光線透過率が80%以下であり、
前記光散乱膜の表面に対して、JIS R 3212に規定されたテーバー摩耗試験を行った後に、前記光散乱膜が前記透光性基板から剥離しないことを特徴とする。
In order to solve the above-described problems, a light-transmitting substrate with a light-scattering film according to the present invention,
A translucent substrate;
In a light-transmitting substrate with a light-scattering film, comprising a silica-based film formed by a sol-gel method on the main surface of the substrate, and a light-scattering film comprising light-transmitting fine particles in the film ,
The fine particles are included in the light scattering film in a state where at least secondary particles are formed;
The surface of the light scattering film has irregularities reflecting the fine particles and the secondary particles,
In the translucent substrate with the light scattering film, the haze rate is 15% or more, the total light transmittance is 20% or more, and the parallel light transmittance is 80% or less,
The surface of the light scattering film is characterized in that the light scattering film does not peel from the translucent substrate after a Taber abrasion test specified in JIS R 3212 is performed.

以上のように、本発明による光散乱膜付き透光性基板は、テーバー摩耗試験を行った後でも、光散乱膜が透光性基板から剥離しないという、優れた耐摩耗性を有している。また、磨りガラスのような基板における機械的強度の低下もない。   As described above, the light transmissive substrate with the light scattering film according to the present invention has excellent wear resistance that the light scattering film does not peel from the light transmissive substrate even after the Taber abrasion test. . In addition, there is no decrease in mechanical strength in a substrate such as polished glass.

[コーティング液の原材料]
(基本ゾルゲル溶液)
まず、以下に述べる実施例・比較例において、基本となるゾルゲル溶液は、加水分解可能なシリコン化合物としてテトラエトキシシラン(信越化学工業製、以下TEOSともいう)と、溶媒として純水とエチルアルコール(片山化学製)と、酸触媒として濃塩酸(35質量%、関東化学製)と、混合撹拌して調製した。
[Raw material of coating liquid]
(Basic sol-gel solution)
First, in Examples and Comparative Examples described below, a basic sol-gel solution is composed of tetraethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd., hereinafter referred to as TEOS) as a hydrolyzable silicon compound, and pure water and ethyl alcohol (as a solvent). Katayama Chemical Co., Ltd.) and concentrated hydrochloric acid (35% by mass, manufactured by Kanto Chemical Co., Ltd.) as an acid catalyst were mixed and stirred.

(微粒子)
本発明による光散乱膜付き透光性基板は、光散乱膜中に透光性微粒子を含んでいる。またこの透光性微粒子が、膜中で2次粒子を形成している。本発明では、光散乱膜の表面が、膜中に含まれている微粒子および2次粒子を反映した凹凸を有している。本発明における光散乱は、まずこの表面凹凸により発現される。さらに、透光性微粒子とシリカ系膜とに屈折率差が存在すると、この屈折率差によっても、光散乱性がもたらされる。
(Fine particles)
The light-transmitting substrate with a light-scattering film according to the present invention includes light-transmitting fine particles in the light-scattering film. The translucent fine particles form secondary particles in the film. In the present invention, the surface of the light scattering film has irregularities reflecting fine particles and secondary particles contained in the film. The light scattering in the present invention is first manifested by the surface irregularities. Furthermore, if there is a difference in refractive index between the light-transmitting fine particles and the silica-based film, this difference in refractive index also provides light scattering properties.

光散乱膜に含まれる透光性微粒子の割合は、光散乱膜に対する微粒子の質量割合で、0.4%〜70%であることが好ましい。この質量割合が0.4未満であれば、透光性微粒子を含ませることの効果が十分でなくなる。一方この質量割合が70%を超えると、光散乱膜において微粒子の割合が多くなり、バインダーとなるシリカ系膜部分が少なくなるので、耐摩耗性が低下するので好ましくない。   The ratio of the translucent fine particles contained in the light scattering film is preferably 0.4% to 70% in terms of the mass ratio of the fine particles to the light scattering film. If this mass ratio is less than 0.4, the effect of including translucent fine particles is not sufficient. On the other hand, when the mass ratio exceeds 70%, the ratio of fine particles in the light scattering film increases, and the silica-based film portion serving as a binder decreases, which is not preferable because the wear resistance decreases.

この透光性微粒子の1次粒子径は、100nm以上であることが好ましい。1次粒子径が100nm未満であると、表面凹凸の形成が十分でなくなる。   The primary particle diameter of the translucent fine particles is preferably 100 nm or more. If the primary particle diameter is less than 100 nm, surface irregularities are not sufficiently formed.

この透光性微粒子は、金属酸化物からなる微粒子であることが好ましい。金属酸化物からなる微粒子であると、無機材料から構成できるので好適である。   The translucent fine particles are preferably fine particles made of a metal oxide. Fine particles made of a metal oxide are preferable because they can be made of an inorganic material.

また金属酸化物からなる微粒子は、シリカ微粒子以外の微粒子であることが好ましい。透光性微粒子がシリカ微粒子であると、透光性微粒子とシリカ系膜とに屈折率差が存在せず、屈折率差による光散乱性が得られないからである。   Further, the fine particles made of metal oxide are preferably fine particles other than silica fine particles. This is because if the light-transmitting fine particles are silica fine particles, there is no difference in refractive index between the light-transmitting fine particles and the silica-based film, and light scattering due to the difference in refractive index cannot be obtained.

具体的な透光性微粒子としては、酸化亜鉛、酸化アルミニウム、酸化ビスマス、酸化セリウム、酸化鉄、酸化コバルト、酸化銅、酸化ガドリニウム、酸化イットリウム、酸化マンガン、酸化ニッケル、酸化ジルコニウム、酸化チタン、チタン酸バリウム、酸化錫、インジウム錫酸化物から選ばれる少なくとも1種からなる微粒子を例示することができる。   Specific translucent fine particles include zinc oxide, aluminum oxide, bismuth oxide, cerium oxide, iron oxide, cobalt oxide, copper oxide, gadolinium oxide, yttrium oxide, manganese oxide, nickel oxide, zirconium oxide, titanium oxide, titanium. Examples of the fine particles include at least one selected from barium acid, tin oxide, and indium tin oxide.

また透光性微粒子は、フッ化マグネシウムからなる微粒子でもよく、樹脂微粒子でもよい。   The translucent fine particles may be fine particles made of magnesium fluoride or resin fine particles.

以下に述べる実施例・比較例において、具体的な微粒子として以下のものを用いた。
(1)メラミン樹脂とシリカからなる複合微粒子(以下、複合微粒子ともいう)
・日産化学製:オプトビーズ500S(屈折率1.65、粒子径0.5μm)、オプトビーズ2000M(屈折率1.65、粒子径2.0μm)
(2)チタニア微粒子
・石原産業製:TTO−51(粒子径0.01〜0.03μm)、
・テイカ製:TITANIX JR−800(粒子径0.27μm)、MT−500SA(粒子径0.035μm)
・昭和電工製:スーパータイタニアF−1(粒子径0.09μm)、F−10(粒子径0.15μm)
(3)ポリメタクリル酸メチル系架橋物微粒子
・日本触媒製:エポスターMA1002(屈折率1.49、粒子径2〜3μm)
In the examples and comparative examples described below, the following were used as specific fine particles.
(1) Composite fine particles comprising melamine resin and silica (hereinafter also referred to as composite fine particles)
・ Nissan Chemical: Optobead 500S (refractive index 1.65, particle size 0.5 μm), Optobead 2000M (refractive index 1.65, particle size 2.0 μm)
(2) Titania fine particles, manufactured by Ishihara Sangyo: TTO-51 (particle diameter 0.01 to 0.03 μm),
・ Taika: TITANIX JR-800 (particle size 0.27 μm), MT-500SA (particle size 0.035 μm)
・ Showa Denko: Super Titania F-1 (particle size 0.09 μm), F-10 (particle size 0.15 μm)
(3) Cross-linked polymethyl methacrylate-based fine particles manufactured by Nippon Shokubai: E-poster MA1002 (refractive index 1.49, particle diameter 2 to 3 μm)

ここで、日産化学製のオプトビーズはメラミン樹脂を主成分としてなり、メラミン樹脂からなる微粒子が、少なくともシリカ層により被覆された微粒子である。このシリカ層をさらにメラミン樹脂で被覆したタイプの微粒子もある。このオプトビーズは約1.65と高い屈折率を持ち、シャープな粒度分布を持つ単分散粒子と謳われている。   Here, the opto beads manufactured by Nissan Chemical are mainly composed of melamine resin, and the fine particles made of melamine resin are fine particles coated with at least a silica layer. There is also a type of fine particles in which this silica layer is further coated with a melamine resin. This optobead is said to be a monodisperse particle having a high refractive index of about 1.65 and a sharp particle size distribution.

(親水性有機ポリマー)
本発明の光散乱膜付き透光性基板を製造する方法において、その特徴の一つは、ゾルゲル溶液に親水性有機ポリマーを含ませていることである。この親水性有機ポリマーとしては、ポリエーテルリン酸エステル系ポリマーである、日本ルーブリゾール製ソルスパース41000を用いた。
なお比較例では、親水性ポリマーであるポリエチレングリコール200(関東化学製)も用いた。
(Hydrophilic organic polymer)
One feature of the method for producing a light-transmitting substrate with a light scattering film of the present invention is that a hydrophilic organic polymer is included in the sol-gel solution. As this hydrophilic organic polymer, a polyether phosphate polymer, Solsperse 41000 manufactured by Nippon Lubrizol, was used.
In the comparative example, polyethylene glycol 200 (manufactured by Kanto Chemical), which is a hydrophilic polymer, was also used.

本発明における光散乱膜の膜厚は、500nm以上10μm以下であることが好ましい。膜厚が500nm未満であると、耐摩耗性と十分な散乱性能を得るのが困難である。一方、膜厚が10μmを超える光散乱膜の形成は、ゾルゲル法では困難となる。   The film thickness of the light scattering film in the present invention is preferably 500 nm or more and 10 μm or less. When the film thickness is less than 500 nm, it is difficult to obtain wear resistance and sufficient scattering performance. On the other hand, it is difficult to form a light scattering film with a film thickness exceeding 10 μm by the sol-gel method.

本発明における透光性基板は、ガラス基板または樹脂基板であることが好ましい。   The translucent substrate in the present invention is preferably a glass substrate or a resin substrate.

(実施例A1〜A6)
実施例A1〜A6では、微粒子として、メラミン樹脂とシリカからなる複合微粒子を用いた。
コーティング溶液の組成を表1Aに示した。溶液中における、微粒子の含有量、シリコンアルコキシドの固形分(シリカ換算)、有機ポリマーの含有量、プロトン濃度、水の含有量を表1Bに示した。また後述する実施例A7〜A11も併せて示した。
(Examples A1 to A6)
In Examples A1 to A6, composite fine particles composed of melamine resin and silica were used as the fine particles.
The composition of the coating solution is shown in Table 1A. Table 1B shows the fine particle content, silicon alkoxide solid content (silica conversion), organic polymer content, proton concentration, and water content in the solution. Examples A7 to A11 described later are also shown.

コーティング溶液は、具体的に以下のようにして調製した。純水、ソルスパース41000、エチルアルコール、テトラエトキシシラン、濃塩酸、複合微粒子を混合撹拌して、コーティング溶液を得た。   Specifically, the coating solution was prepared as follows. Pure water, Solsperse 41000, ethyl alcohol, tetraethoxysilane, concentrated hydrochloric acid, and composite fine particles were mixed and stirred to obtain a coating solution.

実施例A2では、実施例A1におけるコーティング溶液中の微粒子含有量を低下させた。
実施例A3では、実施例A1におけるコーティング溶液中のシリカおよび有機ポリマー濃度を低下させた。
実施例A4では、実施例A1におけるコーティング溶液中の微粒子として、より粒子径の大きな微粒子(粒子径2μm)を用いた。
実施例A5およびA6では、実施例A1およびA4におけるコーティング溶液中の微粒子含有量を増加させた。
In Example A2, the content of fine particles in the coating solution in Example A1 was reduced.
In Example A3, the silica and organic polymer concentrations in the coating solution in Example A1 were reduced.
In Example A4, fine particles having a larger particle diameter (particle diameter 2 μm) were used as the fine particles in the coating solution in Example A1.
In Examples A5 and A6, the fine particle content in the coating solution in Examples A1 and A4 was increased.

なお、水の含有量には、エチルアルコール中に含まれる水分(0.35質量%)を加えて計算している。プロトン濃度は、塩酸に含まれるプロトンがすべて解離したとして算出した。水の含有量およびプロトン濃度の計算方法は、以下のすべての実施例、比較例において同一である。   The water content is calculated by adding water (0.35% by mass) contained in ethyl alcohol. The proton concentration was calculated on the assumption that all protons contained in hydrochloric acid were dissociated. The calculation method of water content and proton concentration is the same in all of the following Examples and Comparative Examples.

次いで、洗浄したソーダ石灰珪酸塩ガラス基板(100×100mm、厚み:2.1mm)上に、相対湿度(以下、単に「湿度」という)30%、室温下で、上述の各コーティング溶液をフローコート法にて塗布した。そのまま、室温(20℃)で約30分程度乾燥した後、予め160℃に昇温したオーブンに投入し15分加熱し、その後冷却して、光散乱膜付き透光性基板を得た。   Next, the above-mentioned coating solutions are flow-coated on a cleaned soda-lime silicate glass substrate (100 × 100 mm, thickness: 2.1 mm) at a relative humidity of 30% (hereinafter simply referred to as “humidity”) at room temperature. Was applied. As it was, it was dried at room temperature (20 ° C.) for about 30 minutes, put in an oven preheated to 160 ° C., heated for 15 minutes, and then cooled to obtain a light-transmitting substrate with a light scattering film.

得られた光散乱膜付き透光性基板における、ヘーズ率、全光線透過率、拡散透過率および平行光線透過率は、スガ試験機社製ヘーズコンピューター HZ−1Sを用い、JIS K 7105およびJIS R 3212に準拠した方法にて測定した。なおこの測定方法では、光散乱能を有する物品を測定した場合、測定原理上、全光線透過率が100%を超えることがありうる。   The haze rate, total light transmittance, diffuse transmittance, and parallel light transmittance in the obtained light-transmitting film-attached translucent substrate were measured using JIS K 7105 and JIS R using a haze computer HZ-1S manufactured by Suga Test Instruments Co., Ltd. It was measured by a method based on 3212. In this measurement method, when an article having light scattering ability is measured, the total light transmittance may exceed 100% due to the measurement principle.

膜の硬さの評価は、JIS R 3212に準拠した摩耗試験によって行った。すなわち、市販のテーバー摩耗試験機(TABER INDUSTRIES社製 5150 ABRASER)を用い、500gの荷重で1000回摩耗を行った。膜厚、クラックの有無、テーバー試験後の膜剥離の有無を表2に示す。   The hardness of the film was evaluated by an abrasion test in accordance with JIS R 3212. That is, wear was performed 1000 times with a load of 500 g using a commercially available Taber abrasion tester (5150 ABRASER manufactured by TABER INDUSTRIES). Table 2 shows the film thickness, the presence or absence of cracks, and the presence or absence of film peeling after the Taber test.

光学特性は、分光光度計(島津製作所製 UV-3000PC)を用いて測定し、ISO(1990)で規定された紫外線透過率(Tuv(%))によって判定した。
以下の実施例や比較例でも、同様にして各特性の測定を行った。
The optical characteristics were measured using a spectrophotometer (Shimadzu Corporation UV-3000PC), and judged by ultraviolet transmittance (Tuv (%)) defined by ISO (1990).
In the following examples and comparative examples, each characteristic was measured in the same manner.

この光散乱膜付きガラス板は、テーバー試験後の膜剥離が全くなく、自動車用、建築用の窓ガラスとして十分な実用性を有していた。   This glass plate with a light scattering film had no film peeling after the Taber test, and had sufficient utility as a window glass for automobiles and buildings.

(実施例A7〜A9)
実施例A7〜A9では、実施例A5におけるコーティング溶液中の微粒子として、より屈折率の高いチタニア微粒子を用いた。
(Examples A7 to A9)
In Examples A7 to A9, titania fine particles having a higher refractive index were used as the fine particles in the coating solution in Example A5.

(実施例A10およびA11)
実施例A10およびA11では、実施例A1およびA5におけるコーティング溶液中の微粒子として、より屈折率の低いポリメタクリル酸メチル系架橋物微粒子(屈折率1.49、粒子径2〜3μm)を用いた。
(Examples A10 and A11)
In Examples A10 and A11, polymethyl methacrylate-based crosslinked fine particles having a lower refractive index (refractive index: 1.49, particle diameter of 2 to 3 μm) were used as the fine particles in the coating solutions in Examples A1 and A5.

(実施例B1〜B10)
実施例B1〜B10では、基板両面に光散乱膜を形成した。
(実施例B1)
実施例B1では、実施例A6におけるコーティング溶液中の酸濃度を低下し、基板両面に膜を形成した。
(実施例B2)
実施例B2では、実施例A5におけるコーティング溶液中の酸濃度を低下、微粒子含有量を増加し、基板両面に膜を形成した。
(実施例B3)
実施例B3では、実施例B1におけるコーティング溶液中の微粒子含有量を増加し、基板両面に膜を形成した。
(実施例B4およびB5)
実施例B4およびB5では、実施例B2およびB3におけるコーティング溶液中の微粒子として、より屈折率が高いチタニア微粒子を用い、実施例B1と同様にして、基板両面に膜を形成した。
(実施例B6)
実施例B6では、実施例B1におけるコーティング溶液中の微粒子として、より屈折率が低いポリメタクリル酸メチル系架橋物微粒子を用いた。
(実施例B7)
実施例B7では、実施例B6におけるコーティング溶液中の微粒子含有量を低下させた。
(実施例B8〜B11)
実施例8〜B11では、実施例B2〜B5におけるコーティング溶液中の微粒子として、複合微粒子およびチタニア微粒子を質量比1:1で併用した。
(Examples B1 to B10)
In Examples B1 to B10, light scattering films were formed on both surfaces of the substrate.
(Example B1)
In Example B1, the acid concentration in the coating solution in Example A6 was reduced, and films were formed on both sides of the substrate.
(Example B2)
In Example B2, the acid concentration in the coating solution in Example A5 was decreased, the fine particle content was increased, and films were formed on both surfaces of the substrate.
(Example B3)
In Example B3, the fine particle content in the coating solution in Example B1 was increased, and films were formed on both sides of the substrate.
(Examples B4 and B5)
In Examples B4 and B5, titania fine particles having a higher refractive index were used as the fine particles in the coating solution in Examples B2 and B3, and films were formed on both surfaces of the substrate in the same manner as in Example B1.
(Example B6)
In Example B6, polymethyl methacrylate crosslinked fine particles having a lower refractive index were used as the fine particles in the coating solution in Example B1.
(Example B7)
In Example B7, the content of fine particles in the coating solution in Example B6 was reduced.
(Examples B8 to B11)
In Examples 8 to B11, composite fine particles and titania fine particles were used in combination at a mass ratio of 1: 1 as the fine particles in the coating solution in Examples B2 to B5.

これら実施例におけるコーティング溶液の組成や、溶液中の含有量などを、それぞれ表3A、表3Bに示した。得られた光散乱膜付きガラス板の膜厚および各種特性を表4に示した。また、紫外線透過率は、分光光度計(島津製作所製 UV−3000PC)を用いて測定した。   The compositions of the coating solutions and the contents in the solutions in these examples are shown in Table 3A and Table 3B, respectively. Table 4 shows the film thickness and various characteristics of the obtained glass plate with a light scattering film. Moreover, the ultraviolet-ray transmittance was measured using the spectrophotometer (Shimadzu Corporation UV-3000PC).

これら光散乱膜付きガラス板は、光散乱性能に加え、テーバー試験後の膜剥離が全くなく、自動車用、建築用の窓ガラスとしても十分な実用性を有していた。   These glass plates with a light-scattering film had no practical use as a window glass for automobiles and buildings because they had no film peeling after the Taber test in addition to light scattering performance.

本発明による光散乱膜付き基体は、その用途が限られるわけではないが、例えば各種照明器具や液晶ディスプレイにおけるバックライト用拡散板として、光源の映りこみを低減し、光源からの光をパネル全体に広げることができる。   The substrate with the light-scattering film according to the present invention is not limited in its application. For example, as a backlight diffusion plate in various lighting fixtures and liquid crystal displays, the reflection of the light source is reduced, and the light from the light source is transmitted to the entire panel. Can be spread.

実施例B4やB5で得られた膜は、紫外線遮蔽能を有するチタニア微粒子が含まれている。実施例B4におけるTuvは0.4%であり、実施例B5におけるTuvは0.6%であった。   The films obtained in Examples B4 and B5 contain titania fine particles having ultraviolet shielding ability. The Tuv in Example B4 was 0.4%, and the Tuv in Example B5 was 0.6%.

実施例B4やB5では、チタニア微粒子が含まれているため、紫外線透過率が低く、優れた紫外線カット性能を有している。
そのため、多くの樹脂部品から構成されている液晶ディスプレイのような樹脂を含むデバイスにおいて、紫外線による樹脂部品の劣化問題に、顕著な効果を発揮しうる。
In Examples B4 and B5, since titania fine particles are contained, the ultraviolet ray transmittance is low and the ultraviolet ray cutting performance is excellent.
Therefore, in a device including a resin such as a liquid crystal display composed of many resin parts, a remarkable effect can be exerted on the problem of deterioration of the resin parts due to ultraviolet rays.

(比較例1)
比較例1では、プロトン濃度を極度に低下させ、コーティング溶液をガラス基板の両面に塗布して膜を形成した。以下の比較例も同様に、ガラス基板の両面に膜を形成した。
(比較例2)
比較例2では、コーティング溶液における水の含有量を極度に低下させた。
(比較例3)
比較例3では、コーティング溶液に微粒子を添加しなかった。
(比較例4)
比較例4では、コーティング溶液における微粒子含有量を極度に低下させた。
(比較例5)
比較例5では、微粒子としてチタニア微粒子を用いた。
(比較例6)
比較例6では、微粒子としてシリカ微粒子を用いた。
(Comparative Example 1)
In Comparative Example 1, the proton concentration was extremely reduced, and the coating solution was applied to both surfaces of the glass substrate to form a film. Similarly, in the following comparative examples, films were formed on both surfaces of the glass substrate.
(Comparative Example 2)
In Comparative Example 2, the water content in the coating solution was extremely reduced.
(Comparative Example 3)
In Comparative Example 3, no fine particles were added to the coating solution.
(Comparative Example 4)
In Comparative Example 4, the content of fine particles in the coating solution was extremely reduced.
(Comparative Example 5)
In Comparative Example 5, titania fine particles were used as the fine particles.
(Comparative Example 6)
In Comparative Example 6, silica fine particles were used as the fine particles.

(比較例7)
比較例7は、上述の実施例・比較例で用いたTEOSに代えて、シリケート加水分解物であるHAS−6(コルコート社製)を用いた例である。コーティング溶液は、ソルスパース41000、エチルアルコール、HAS−6、複合微粒子を混合撹拌して調製した。
(Comparative Example 7)
Comparative Example 7 is an example in which HAS-6 (manufactured by Colcoat Co.), which is a silicate hydrolyzate, was used instead of TEOS used in the above-mentioned Examples and Comparative Examples. The coating solution was prepared by mixing and stirring Solsperse 41000, ethyl alcohol, HAS-6, and composite fine particles.

HAS−6とは、シリケート加水分解液として、TEOSなどシリケートモノマーを酸性条件下で加水分解縮合反応させたものである。SiO2成分を17.6〜18.4質量%含み、残存酸分は70〜100ppmである。含有溶媒はエタノール 79.5%、メタノール 2.5%以下である。なおSiO2固形分は、HAS−6中のSiO2成分が18.0質量%であるとし、水の含有量には、エチルアルコール中に含まれる水分(0.35質量%)を加えて計算している。プロトン濃度は、HAS−6中に含まれる残存酸分を、最も分子量の小さい強酸である塩酸と仮定し、上述の残存酸分の濃度から85ppm含まれるとし、すべてプロトンに解離しているとして算出した。 HAS-6 is obtained by subjecting a silicate monomer such as TEOS to a hydrolytic condensation reaction under acidic conditions as a silicate hydrolyzed solution. It contains 17.6 to 18.4% by mass of SiO 2 component, and the residual acid content is 70 to 100 ppm. The contained solvent is 79.5% ethanol and 2.5% or less methanol. The SiO 2 solid content is calculated by adding 18.0% by mass of the SiO 2 component in HAS-6, and adding water (0.35% by mass) contained in ethyl alcohol to the water content. Yes. The proton concentration is calculated assuming that the residual acid content contained in HAS-6 is hydrochloric acid, which is the strongest acid with the smallest molecular weight, and that 85 ppm is included from the above-mentioned residual acid content, and all are dissociated into protons. did.

これら比較例におけるコーティング溶液の組成や、溶液中の含有量などを、それぞれ表5A、表5Bに示した。得られた光散乱膜付きガラス板の膜厚および各種特性を表6に示した。これら比較例も、実施例B系列と同様に基板の両面にコーティング溶液を塗布して、膜を形成した。   The compositions of the coating solutions and the contents in the solutions in these comparative examples are shown in Table 5A and Table 5B, respectively. Table 6 shows the film thickness and various characteristics of the obtained glass plate with a light scattering film. In these comparative examples, a coating solution was applied to both surfaces of the substrate in the same manner as in Example B series to form a film.

比較例1や2で得られた光散乱膜付き透光性基板に対して、テーバー摩耗試験を実施したところ、摩耗試験後、光散乱膜が基板から剥離した。   When the Taber abrasion test was implemented with respect to the translucent board | substrate with a light-scattering film obtained by the comparative examples 1 and 2, the light-scattering film peeled from the board | substrate after the abrasion test.

比較例3〜5で得られた光散乱膜付き透光性基板は、微粒子を含まない、微粒子含有量が少なすぎる、あるいは微粒子とマトリクスとの屈折率差が小さいために、膜内部での光散乱が小さいことや微粒子に反映される膜表面の凹凸度合いが低いため、ヘーズ率および拡散透過率が低く、光散乱性能に乏しかった。   The light-transmitting substrate with a light scattering film obtained in Comparative Examples 3 to 5 does not contain fine particles, the fine particle content is too small, or the difference in refractive index between the fine particles and the matrix is small, so Since the degree of unevenness of the film surface reflected by the fine particles is low because of the small scattering, the haze rate and the diffuse transmittance are low, and the light scattering performance is poor.

実施例B3にて得られた光散乱膜付き透光性基板の走査型電子顕微鏡による観察結果である。It is an observation result by the scanning electron microscope of the translucent board | substrate with a light-scattering film | membrane obtained in Example B3. 実施例B5にて得られた光散乱膜付き透光性基板の走査型電子顕微鏡による観察結果である。It is an observation result by the scanning electron microscope of the translucent board | substrate with a light-scattering film | membrane obtained in Example B5. 実施例B8にて得られた光散乱膜付き透光性基板の走査型電子顕微鏡による観察結果である。It is an observation result by the scanning electron microscope of the translucent board | substrate with a light-scattering film | membrane obtained in Example B8.

Claims (10)

透光性基板と、
該基板の主表面上に、ゾルゲル法により形成されたシリカ系膜で、当該膜中に透光性微粒子を含み構成される光散乱膜とを、含んでなる光散乱膜付き透光性基板において、
前記微粒子が、少なくとも2次粒子を形成した状態で前記光散乱膜中に含まれ、
前記光散乱膜の表面が前記微粒子および前記2次粒子を反映した凹凸を有しており、
前記光散乱膜付き透光性基板における、ヘーズ率が15%以上、全光透過率が20%以上、かつ平行光線透過率が80%以下であり、
前記光散乱膜の表面に対して、JIS R 3212に規定されたテーバー摩耗試験を行った後に、前記光散乱膜が前記透光性基板から剥離しないことを特徴とする光散乱膜付き透光性基板。
A translucent substrate;
In a light-transmitting substrate with a light-scattering film, comprising a silica-based film formed by a sol-gel method on the main surface of the substrate, and a light-scattering film comprising light-transmitting fine particles in the film ,
The fine particles are included in the light scattering film in a state where at least secondary particles are formed;
The surface of the light scattering film has irregularities reflecting the fine particles and the secondary particles,
In the translucent substrate with the light scattering film, the haze rate is 15% or more, the total light transmittance is 20% or more, and the parallel light transmittance is 80% or less,
The light-scattering film with a light-scattering film, wherein the light-scattering film does not peel from the light-transmitting substrate after performing the Taber abrasion test specified in JIS R 3212 on the surface of the light-scattering film substrate.
前記光散乱膜に対する前記微粒子の質量割合が0.4%〜70%である請求項1に記載の光散乱膜付き透光性基板。   The translucent substrate with a light scattering film according to claim 1, wherein a mass ratio of the fine particles to the light scattering film is 0.4% to 70%. 前記微粒子の1次粒子径が100nm以上である請求項1に記載の光散乱膜付き透光性基板。   The translucent substrate with a light scattering film according to claim 1, wherein a primary particle diameter of the fine particles is 100 nm or more. 前記微粒子が金属酸化物からなる微粒子である請求項1に記載の光散乱膜付き透光性基板。   The translucent substrate with a light scattering film according to claim 1, wherein the fine particles are fine particles made of a metal oxide. 前記金属酸化物からなる微粒子が、シリカ微粒子以外の微粒子である請求項4に記載の光散乱膜付き透光性基板。   The translucent substrate with a light scattering film according to claim 4, wherein the fine particles comprising the metal oxide are fine particles other than silica fine particles. 前記微粒子が、酸化亜鉛、酸化アルミニウム、酸化ビスマス、酸化セリウム、酸化鉄、酸化コバルト、酸化銅、酸化ガドリニウム、酸化イットリウム、酸化マンガン、酸化ニッケル、酸化ジルコニウム、酸化チタン、チタン酸バリウム、酸化錫、インジウム錫酸化物から選ばれる少なくとも1種からなる請求項4に記載の光散乱膜付き透光性基板。   The fine particles are zinc oxide, aluminum oxide, bismuth oxide, cerium oxide, iron oxide, cobalt oxide, copper oxide, gadolinium oxide, yttrium oxide, manganese oxide, nickel oxide, zirconium oxide, titanium oxide, barium titanate, tin oxide, The translucent substrate with a light scattering film according to claim 4, comprising at least one selected from indium tin oxide. 前記微粒子がフッ化マグネシウムからなる請求項1に記載の光散乱膜付き透光性基板。   The translucent substrate with a light scattering film according to claim 1, wherein the fine particles are made of magnesium fluoride. 前記微粒子が樹脂微粒子からなる請求項1に記載の光散乱膜付き透光性基板。   The translucent substrate with a light scattering film according to claim 1, wherein the fine particles are made of resin fine particles. 前記光散乱膜の膜厚が500nm以上10μm以下である請求項1に記載の光散乱膜付き透光性基板。   The translucent substrate with a light scattering film according to claim 1, wherein the light scattering film has a thickness of 500 nm to 10 μm. 前記透光性基板がガラス基板または樹脂基板である請求項1に記載の光散乱膜付き透光性基板。   The translucent substrate with a light scattering film according to claim 1, wherein the translucent substrate is a glass substrate or a resin substrate.
JP2006314128A 2006-11-21 2006-11-21 Light-transmissive substrate with light-scattering film Pending JP2008129319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006314128A JP2008129319A (en) 2006-11-21 2006-11-21 Light-transmissive substrate with light-scattering film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006314128A JP2008129319A (en) 2006-11-21 2006-11-21 Light-transmissive substrate with light-scattering film

Publications (1)

Publication Number Publication Date
JP2008129319A true JP2008129319A (en) 2008-06-05

Family

ID=39555186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006314128A Pending JP2008129319A (en) 2006-11-21 2006-11-21 Light-transmissive substrate with light-scattering film

Country Status (1)

Country Link
JP (1) JP2008129319A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9117967B2 (en) 2011-08-30 2015-08-25 El-Seed Corporation Method of manufacturing glass substrate with concave-convex film using dry etching, glass substrate with concave-convex film, solar cell, and method of manufacturing solar cell
WO2017047055A1 (en) * 2015-09-15 2017-03-23 日本板硝子株式会社 Light-diffusing and -transmitting sheet
CN109581577A (en) * 2019-01-03 2019-04-05 Oppo(重庆)智能科技有限公司 Display screen component and electronic device with it

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9117967B2 (en) 2011-08-30 2015-08-25 El-Seed Corporation Method of manufacturing glass substrate with concave-convex film using dry etching, glass substrate with concave-convex film, solar cell, and method of manufacturing solar cell
WO2017047055A1 (en) * 2015-09-15 2017-03-23 日本板硝子株式会社 Light-diffusing and -transmitting sheet
JPWO2017047055A1 (en) * 2015-09-15 2018-03-29 日本板硝子株式会社 Light diffusion transmission sheet
CN107924000A (en) * 2015-09-15 2018-04-17 日本板硝子株式会社 Light diffused transmission piece
CN109581577A (en) * 2019-01-03 2019-04-05 Oppo(重庆)智能科技有限公司 Display screen component and electronic device with it

Similar Documents

Publication Publication Date Title
JP5849970B2 (en) Article having a low-reflection film
TWI515393B (en) White reflective film
EP1942162A1 (en) Anti-UV coating composition and the use thereof
US7911699B2 (en) Optical diffuser with UV blocking coating
FR2844364A1 (en) Diffusing substrate for back-lighting system is made of a glass substrate and a diffusing layer with a high light transmission value
TW201606357A (en) Substrate with anti-glare film and article thereof
JP2006221173A (en) Diffusing structure with uv absorbing properties
WO2017010217A1 (en) Dispersion liquid for forming transparent light-dispersing layer of transparent screen, transparent screen, and producing method for transparent screen
WO2006137454A1 (en) Transparent article and process for production thereof
CN109564301A (en) Visuality improves film, has the image display device that the visuality improves the laminated body of film and has visuality raising film
WO2007081484A1 (en) Optical diffuser having frit based coating with inorganic light diffusing pigments with variable particle size therein
CN112327394A (en) Anti-glare film with high wear resistance and low flash point
JPH0956549A (en) Anti-fogging mirror
JP2007112121A (en) Film for surface light source reflecting member
TW201606356A (en) Anti-glare-layer substrate and article
TW200839304A (en) Light diffusion plate, light diffusion layer forming liquid, and light diffusion plate manufacturing method
WO2017130868A1 (en) Light diffusion plate
JP2002275430A (en) Coating composition and coat thereof
KR102520352B1 (en) Barrier film, and wavelength conversion sheet, backlight and liquid crystal display using the same
JP2008129319A (en) Light-transmissive substrate with light-scattering film
JP2007256876A (en) Application liquid for forming reflection film, reflection film, base material with reflection film and surface light source
JP6736049B2 (en) Glass composite, transparent screen including the same, and image projection system including the same
KR101785329B1 (en) Liquid crystal display reflector
JP2010025996A (en) Anti-reflection film and method for manufacturing the same
WO2022039014A1 (en) Barrier film, and wavelength conversion sheet, backlight, and liquid crystal display device in which same is used, as well as method for selecting barrier film

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080411