WO2017130868A1 - Light diffusion plate - Google Patents

Light diffusion plate Download PDF

Info

Publication number
WO2017130868A1
WO2017130868A1 PCT/JP2017/002012 JP2017002012W WO2017130868A1 WO 2017130868 A1 WO2017130868 A1 WO 2017130868A1 JP 2017002012 W JP2017002012 W JP 2017002012W WO 2017130868 A1 WO2017130868 A1 WO 2017130868A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
main surface
glass plate
transmittance
plate
Prior art date
Application number
PCT/JP2017/002012
Other languages
French (fr)
Japanese (ja)
Inventor
雄一 ▲桑▼原
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2017130868A1 publication Critical patent/WO2017130868A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a light diffusing plate used for a direct type or edge light type backlight unit in a display element such as a liquid crystal television and a liquid crystal monitor.
  • the use of a transparent material allows light to pass through because it transmits light.
  • a material is used that does not impair the brightness of the light source without recognizing the shape of the light source behind the plate.
  • the light source is a light emitting diode (LED) or the like.
  • the direct type backlight unit will be described below as an example, but is not limited to the direct type backlight unit.
  • Patent Literature 1 discloses a material in which a polymer or inorganic particle having a refractive index different from that of a thermoplastic resin forming a continuous phase is blended as a dispersed phase.
  • Patent Document 2 discloses a light diffusion plate made of a polycarbonate resin in which diffusivity, reflectance, and luminance unevenness are in specific ranges.
  • liquid crystal televisions, liquid crystal monitors, and the like have a tendency to increase in size, and light diffusion plates used in backlight units are required to have high brightness uniformity.
  • light diffusion plates used in backlight units are required to have high brightness uniformity.
  • the conventional resin light diffusing plate has low heat resistance and light resistance, so if the distance between the light source and the light diffusing plate is too close, it will be deformed over time, and the shape of the light source will become conspicuous, There are problems such as difficulty in maintaining uniformity of brightness.
  • the coefficient of thermal expansion is large, it is necessary to secure space for expansion corresponding to the temperature rise and space for heat dissipation, which makes it difficult to narrow the frame.
  • the resin light diffusing plate has a low rigidity and has a problem that the strength of the outer frame must be increased.
  • the resin light diffusing plate has low water resistance, there is a problem that when it is stored for a long period of time, water that has entered from the periphery of the light diffusing plate absorbs water and swells and deforms.
  • the present invention provides a light diffusing plate used in a backlight unit that has high heat resistance, light resistance and water resistance, exhibits excellent rigidity and display quality, and is suitable for thin plate, narrow frame size and large size.
  • the purpose is to do.
  • the present inventors have a first main surface and a second main surface facing the first main surface as a member of a light diffusion plate used in a backlight unit, and the first main surface
  • the present invention has been completed by finding that the above-mentioned problems can be solved by using a glass plate having a thermal expansion coefficient in a specific range while transmitting the incident light to the second main surface while diffusing it.
  • this invention provides the light diffusing plate which has the following structures, and its manufacturing method.
  • a glass plate having a first main surface and a second main surface facing the first main surface, the second main surface being diffused while diffusing light incident on the first main surface.
  • a light diffusing plate to be emitted from a surface The glass plate is provided with a light scattering film on at least one of the first main surface and the second main surface, and has a thermal expansion coefficient of ⁇ 100 ⁇ 10 ⁇ 7 / ° C. to 500 ⁇ 10 ⁇ 7 / ° C.
  • the light scattering film includes a matrix and particles, the matrix includes an organic-inorganic composite compound, and the particles are inorganic oxide particles having a refractive index smaller than that of the matrix.
  • Diffusion plate [2] The light diffusing plate according to [1], wherein the light scattering film has a thickness of 0.1 to 100 ⁇ m. [3] The light diffusing plate according to [1] or [2], wherein the organic-inorganic composite compound is an organopolysiloxane. [4] The inorganic oxide particles according to any one of [1] to [3], having an average particle diameter of 0.1 to 50 ⁇ m and fine pores having a pore diameter peak value of 2 to 50 nm. The light diffusing plate of description. [5] The light diffusing plate according to any one of [1] to [4], wherein the volume ratio of the inorganic oxide particles in the light scattering film is 25 to 95 vol%.
  • the average transmittance of light having a wavelength of 400 to 700 nm transmitted in the direction of 30 ° with respect to the normal of the glass plate is The light diffusing plate according to any one of [1] to [7], which is 0.2% or more.
  • Ratio of total light reflectance and total light transmittance in a wavelength range of 400 to 700 nm when incident light from the normal direction to the first main surface of the glass plate is transmitted total light reflectance / total
  • the light diffusing plate according to any one of [1] to [8], wherein the light transmittance) is 0.25 or more.
  • a light diffusing plate for applying a dispersion containing an organopolysiloxane precursor and inorganic oxide particles having a refractive index of 1.45 or less to a glass plate, and curing the dispersion to form a light scattering film.
  • Production method [14] The method for producing a light diffusing plate according to [13], wherein the dispersion is cured by heat and the heat is cured at a heat treatment temperature of 100 to 800 ° C.
  • the light diffusing plate of the present invention by including a glass plate having high heat resistance and light resistance, it becomes possible to reduce the distance between the light source and the light diffusing plate when used in the backlight unit. Homogeneity, thinning, and narrow frame are easy to achieve. Moreover, since the light diffusing plate of this invention contains a glass plate, it is excellent in rigidity compared with a resin-made light diffusing plate, and when used in a backlight unit, it is easy to handle in the manufacturing process.
  • FIG. 1 is a schematic cross-sectional view of a direct type backlight using the light diffusion plate of the present invention.
  • FIG. 2 is a schematic cross-sectional view showing an example of the light diffusion plate of the present invention.
  • the present invention comprises a glass plate having a first main surface and a second main surface opposite to the first main surface, and the second main surface while diffusing light incident on the first main surface.
  • the present invention relates to a light diffusing plate emitted from a main surface.
  • a light scattering film is provided on at least one of the first main surface and the second main surface of the glass plate, and the thermal expansion coefficient of the glass plate is ⁇ 100 ⁇ 10 ⁇ 7 to 500 ⁇ 10. -7 / ° C.
  • the light diffusing plate of the present invention is useful as a member of a backlight unit in a display element such as a liquid crystal television and a liquid crystal monitor.
  • the first main surface of the glass plate is a surface on the light source side when used in the backlight unit.
  • the 2nd main surface of a glass plate is a surface which opposes a 1st main surface, and when it uses for a backlight unit, it is a surface used as the liquid crystal panel side.
  • FIG. 1 shows a cross-sectional view of a backlight unit using the light diffusion plate of the present invention.
  • the light source 3 is provided on the reflecting plate 2 at a predetermined interval, and the light diffusion plate 4 is provided thereon. Light emitted from the light source 3 is diffused by the light diffusion plate 4.
  • the light diffusing plate 4 includes a glass plate, and the surface of the glass plate on the light source 3 side is the first main surface.
  • the light diffusing plate of the present invention transmits incident light to the first main surface while diffusing it from the second main surface.
  • “transmitting from the second main surface while diffusing the incident light to the first main surface” means that the light diffusing plate has an appropriate haze by having an appropriate haze, By having an appropriate total light transmittance, it means expressing an appropriate light transmittance.
  • FIG. 2 is a schematic cross-sectional view showing an example of the light diffusion plate of the present invention.
  • the light diffusing plate 4 shown in FIG. 2 has a glass plate 40 and a light scattering film 41 provided on one main surface of the glass plate 40.
  • the surface of the glass plate 40 on which the light scattering film 41 is provided may be the first main surface, the second main surface, or both main surfaces of the glass plate 40.
  • membrane 41 shown in FIG. 2 contains the matrix 42 and the particle
  • the thermal expansion coefficient of the light diffusing plate of the present invention can be made a preferable thermal expansion coefficient when the thermal expansion coefficient of the glass plate is ⁇ 100 ⁇ 10 ⁇ 7 to 500 ⁇ 10 ⁇ 7 / ° C.
  • the thermal expansion coefficient of the glass plate is ⁇ 100 ⁇ 10 ⁇ 7 to 500 ⁇ 10 ⁇ 7 / ° C., preferably ⁇ 10 ⁇ 10 ⁇ 7 to 300 ⁇ 10 ⁇ 7 / ° C., and more preferably 1 ⁇ 10 10 It is ⁇ 7 to 200 ⁇ 10 ⁇ 7 / ° C., and more preferably 50 ⁇ 10 ⁇ 7 to 150 ⁇ 10 ⁇ 7 / ° C.
  • the thermal expansion coefficient of the glass plate is 500 ⁇ 10 ⁇ 7 / ° C. or lower, the deformation when the distance between the light source and the light diffusion plate is reduced can be suppressed to improve the light diffusion performance, and the shape of the light source is less noticeable. Therefore, the luminance uniformity can be achieved.
  • the thermal expansion coefficient of the glass plate is ⁇ 100 ⁇ 10 ⁇ 7 / ° C. or higher because productivity is improved and costs are reduced.
  • thermal expansion coefficient means a value obtained by measurement based on ISO 7991 (1987).
  • the thermal expansion coefficient of the glass plate can be adjusted by the glass composition.
  • the glass plate in the light diffusion plate of the present invention preferably has a glass transition point Tg of 200 ° C. or higher, more preferably 300 ° C. or higher, further preferably 400 ° C. or higher, and further preferably 500 ° C. or higher. .
  • the glass transition point Tg of the said glass plate is 850 degrees C or less, More preferably, it is 800 degrees C or less, More preferably, it is 750 degrees C or less, Most preferably, it is 700 degrees C or less.
  • the glass transition point Tg of the glass plate is 200 ° C. or higher, the glass plate is not easily deformed by heat, and therefore when used in a backlight unit, the distance between the light source and the light diffusion plate can be reduced. Uniformity in brightness is easy to achieve compared to a light diffuser made of light. Moreover, productivity of glass improves that a glass transition point is 850 degrees C or less.
  • glass transition point means a temperature corresponding to a bending point in a thermal expansion curve.
  • the glass plate in the light diffusion plate of the present invention preferably has a yield point of 200 ° C. or higher, more preferably 300 ° C. or higher, and still more preferably 400 ° C. or higher.
  • the yield point of the glass plate is preferably 950 ° C. or lower.
  • the yield point of a glass plate can be measured using a differential thermal dilatometer.
  • the glass plate in the light diffusing plate of the present invention preferably has a Young's modulus of 10 GPa or more, more preferably 20 GPa or more, further preferably 50 GPa or more, and further preferably 70 GPa or more. Moreover, it is preferable that the said glass plate is 500 GPa or less in Young's modulus, More preferably, it is 200 GPa or less, More preferably, it is 150 GPa or less.
  • the Young's modulus of the glass plate is 10 GPa or more
  • the light diffusion plate is excellent in rigidity, and when used in a backlight unit, it is easier to handle than a resin light diffusion plate. Moreover, it is excellent in productivity as the Young's modulus of the said glass plate is 500 GPa or less.
  • the bending strength of the glass plate in the light diffusing plate of the present invention is preferably 10 MPa or more, more preferably 20 MPa or more, further preferably 30 MPa or more, and further preferably 100 MPa or more.
  • the bending strength of the glass plate is 10 MPa or more, excellent rigidity is obtained, and when used in a backlight unit, the glass plate is easier to handle than a resin light diffusion plate.
  • the bending strength of the glass plate is usually 300 MPa or less. The bending strength of the glass plate can be measured by the method described later in the examples.
  • the glass plate in the light diffusing plate of the present invention preferably has a surface resistance value of 1.0 ⁇ 10 5 ⁇ / ⁇ or more, more preferably 1.0 ⁇ 10 7 ⁇ / ⁇ or more, and further preferably 1 0.0 ⁇ 10 9 ⁇ / ⁇ or more, more preferably 1.0 ⁇ 10 11 ⁇ / ⁇ or more. Further, it is preferably 1.0 ⁇ 10 15 ⁇ / ⁇ or less, more preferably 1.0 ⁇ 10 14 ⁇ / ⁇ or less, and further preferably 1.0 ⁇ 10 13 ⁇ / ⁇ or less.
  • the surface resistance value of the glass plate is 10 5 ⁇ / ⁇ or more, the leakage current is reduced and the safety is improved. Further, when it is 1.0 ⁇ 10 15 ⁇ / ⁇ or less, static electricity is hardly generated, and handling is easy as compared with a light diffusion plate made of resin.
  • the surface resistance value of the glass plate can be measured by the method described in JIS K6911 (2006).
  • the glass plate is preferably silicate glass.
  • the silicate glass include soda lime silicate glass (hereinafter referred to as soda lime glass), alkali aluminosilicate glass, alkali-free aluminosilicate glass, and alkali borosilicate glass.
  • soda lime glass soda lime silicate glass
  • alkali aluminosilicate glass alkali-free aluminosilicate glass
  • alkali borosilicate glass alkali borosilicate glass.
  • a diffusion plate having physical properties suitable for the light diffusion plate can be obtained.
  • SiO 2 is 60 to 75%
  • Al 2 O 3 is 2 to 12%
  • MgO is 2 to 11%
  • CaO is 0 to 10%
  • SrO is expressed in terms of mass percentage based on oxide.
  • Examples include a composition containing 0 to 3%, BaO 0 to 3%, Na 2 O 10 to 18%, K 2 O 0 to 8%, and ZrO 2 0 to 4%. 100% or less, usually 95% or more).
  • Alkali aluminosilicate glass is SiO 2 61 to 70%, Al 2 O 3 1 to 18%, MgO 0 to 15%, CaO 0 to 5%, SrO 0
  • the composition contains ⁇ 1%, BaO 0 ⁇ 1%, Na 2 O 8 ⁇ 18%, K 2 O 0 ⁇ 6%, ZrO 2 0 ⁇ 4%, B 2 O 3 0 ⁇ 8%. Can be mentioned.
  • the alkali-free aluminosilicate glass is expressed in terms of mass percentage on the basis of oxide, with SiO 2 being 39 to 70%, Al 2 O 3 being 3 to 25%, B 2 O 3 being 1 to 30%, and MgO being 0 to 10 %, CaO 0 to 17%, SrO 0 to 20% and BaO 0 to 30%.
  • SiO 2 is 65 to 78%
  • B 2 O 3 is 8 to 30%
  • Li 2 O + Na 2 O + K 2 O is 1 to 18%
  • the method for producing a glass plate in the present invention is not particularly limited.
  • a suitable amount of various raw materials are prepared, heated to about 1500 to 1800 ° C. and melted, and then homogenized by defoaming, stirring, etc. It is produced by forming into a plate shape or the like by casting down, pressing or rolling out, or forming into a block shape after slow cooling and then processing into an arbitrary shape.
  • a light scattering film is provided on at least one main surface of the glass plate.
  • a light diffusing plate that diffuses the incident light on the first main surface and transmits the light from the second main surface is obtained.
  • the light scattering film may be provided on both main surfaces of the glass plate.
  • the light scattering film used in the light diffusion plate of the present invention preferably has a thickness of 0.1 to 100.0 ⁇ m, more preferably 1 to 30 ⁇ m. When the film thickness of the light scattering film is within the above range, excellent diffusion performance can be secured.
  • the light scattering film preferably contains a matrix and particles.
  • the matrix preferably contains an organic-inorganic composite compound.
  • the particles are preferably inorganic oxide particles, and the refractive index of the particles is preferably smaller than the refractive index of the matrix. Since the matrix constituting the light scattering film contains an organic-inorganic composite compound, the matrix has higher heat resistance than a conventional organic film, and cracks are less likely to occur as compared with a film made of only an inorganic material.
  • the light scattering film preferably has a weight change rate of 10% or less when heated at 400 ° C. for 30 minutes, more preferably 5% or less. Further, it is preferable that the color does not change when heated at 400 ° C. for 30 minutes.
  • Such a film has high heat resistance and can be used in the immediate vicinity of a backlight.
  • organopolysiloxane is preferable at the point which is excellent in stability.
  • the organopolysiloxane can be obtained, for example, by hydrolytic condensation of one or more alkoxysilanes in a mixed solution of water and alcohol.
  • alkoxysilane a compound represented by the following formula (1) is preferable.
  • R 1 4-n- Si- (OR 2 ) n
  • n is an integer of 0 to 4
  • R 1 is an alkyl group having 1 to 3, 6, 8, or 10 carbon atoms, a vinyl group, an amino group, a styryl group, a methacryl group, an acrylic group
  • An organic group such as an epoxy group or a phenyl group, preferably a methyl group, an ethyl group, a propyl group or a phenyl group
  • R 2 is a methyl group, an ethyl group or a propyl group, preferably a methyl group or an ethyl group.
  • alkoxysilane tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, phenyltrimethoxysilane and the like are more preferable. These may be used alone or in combination of two or more.
  • a cohydrolyzed condensate of tetraethoxysilane and methyltrimethoxysilane is more preferable.
  • the molar ratio of tetraethoxysilane to methyltrimethoxysilane in the cohydrolyzed condensate is particularly preferably 2/8 to 8/2.
  • Inorganic oxide particles are preferred because they are stable to heat.
  • the refractive index of the inorganic oxide particles is preferably smaller than the refractive index of the matrix. If the refractive index of the inorganic oxide particles is smaller than that of the matrix, excessive refraction of light can be suppressed and light can be diffused forward. However, inorganic oxide particles having a refractive index higher than that of the matrix may be included as long as the forward diffusion of light is not inhibited.
  • Examples of the inorganic oxide include silica, alumina, titania, and zirconia.
  • the inorganic oxide particles may be composite oxide particles such as mullite, calcite, dolomite, forsterite, enstatite, cordierite, and steatite. Inorganic oxide particles are particularly preferred because of their low refractive index and availability.
  • the refractive index of the inorganic oxide particles is preferably 1.45 or less.
  • “refractive index” means a refractive index at a wavelength of 550 nm.
  • the refractive index difference between the inorganic oxide particles in the light scattering film and the surrounding matrix is large.
  • the refractive index difference is preferably 0.0001 or more, more preferably 0.001 or more, and still more preferably 0.01 or more.
  • the average particle diameter of the inorganic oxide particles is preferably 0.1 ⁇ m or more and more preferably 0.2 ⁇ m or more in order to obtain good light scattering properties.
  • the average particle diameter of the inorganic oxide particles is preferably 50 ⁇ m or less, and more preferably 10 ⁇ m or less.
  • the “average particle size” means the median size (50% particle size of the integrated particle size distribution curve) in the volume-based particle size distribution measured by the dynamic light scattering method.
  • the inorganic oxide particles preferably have fine pores having a pore diameter peak value of 2 to 50 nm.
  • the peak value of the pore diameter is preferably 2 nm or more and more preferably 3 nm or more in order to obtain good light scattering properties.
  • the peak value of the pore diameter is preferably 50 nm or less, and more preferably 40 nm or less.
  • the “peak value of pore diameter” means the most frequent pore diameter in the pore diameter distribution measured by a mercury porosimeter.
  • the volume ratio of the inorganic oxide particles in the light scattering film is preferably 25 vol% or more, and more preferably 30 vol% or more. In order to increase the film strength, the volume ratio of the inorganic oxide particles in the light scattering film is preferably 95% by volume or less, more preferably 80% by volume or less.
  • the volume ratio of the inorganic oxide particles is obtained from the ratio of the particles by calculating the ratio of the particles distributed on the glass surface from the SEM observation photograph.
  • the light diffusion plate of the present invention preferably has a water absorption of less than 0.1%, more preferably 0.01% or less, and even more preferably 0.001% or less.
  • a water absorption rate of the glass plate By setting the water absorption rate of the glass plate to less than 0.1%, there is no risk of water absorption and swelling when used in a backlight unit, so performance can be maintained even when stored for a long period of time.
  • the light diffusing plate is hardly warped, display unevenness is reduced, and display quality is improved.
  • the water absorption is a value measured based on JIS K7209 (2000).
  • the pencil hardness of the light scattering film is preferably HB or more, more preferably 2H or more. If the pencil hardness is HB or higher, damage to the film being handled can be suppressed.
  • the light diffusing plate of the present invention preferably has a haze of 90% or more, more preferably 93% or more when incident light from the normal direction to the first main surface of the glass plate is transmitted. Preferably it is 96% or more.
  • the haze is 90% or more, moderate diffusibility can be secured when used in a backlight unit.
  • the average value of the straight transmittance at a wavelength of 400 to 700 nm transmitted in the incident direction out of the incident light from the normal direction to the first main surface is 15% or less. More preferably, it is 10% or less, More preferably, it is 5% or less.
  • the average value of the straight transmittance is 15% or less, luminance unevenness hardly occurs when the light diffusing plate is used in the backlight unit.
  • the average value of the straight transmittance can be obtained from the following equation by measuring the straight transmittance Ts at a wavelength of 400 to 700 nm for each wavelength of 1 nm.
  • n is an integer of 400 to 700.
  • the average value of the total light transmittance at a wavelength of 400 to 700 nm transmitted in the incident direction is 4% or more.
  • it is 5% or more, more preferably 10% or more, particularly preferably 20% or more, and most preferably 30% or more.
  • the average value of the total light transmittance is preferably as high as possible, but it is preferably 90% or less because the diffusibility is not impaired. More preferably, it is 85% or less, More preferably, it is 80% or less, Most preferably, it is 75% or less.
  • the average value of the total light transmittance can be obtained from the following equation by measuring the total light transmittance Tt for each wavelength of 1 nm at a wavelength of 400 to 700 nm.
  • n is an integer of 400 to 700.
  • the total light transmittance of the glass at a wavelength of 400 nm to 700 nm can be measured with a spectrophotometer or the like.
  • the difference in the definition of the two types of transmittance (straight-line transmittance Ts and total light transmittance Tt) described in the present invention will be described.
  • the transmittance of this transmitted light is defined as the total light transmittance Tt.
  • the total light transmitted light is divided into diffuse transmitted light diffused by the object and straight transmitted light that travels straight in the incident direction, and the transmittance of the straight transmitted light is defined as a straight transmitted transmittance Ts.
  • the light diffusing plate of the present invention preferably has a total light reflectance of 10% or more in a wavelength range of 400 to 700 nm when incident light from a normal direction to the first main surface is transmitted through the glass plate. More preferably, it is 20% or more, more preferably 25% or more, and further preferably 30% or more. Moreover, it is preferable that it is 96% or less, More preferably, it is 95% or less, More preferably, it is 90% or less.
  • the total light reflectance when incident light from the normal direction to the first main surface is transmitted is 10% or more, luminance unevenness hardly occurs when the light diffusing plate is used in the backlight unit. Further, when the total light reflectance is 90% or less, luminance necessary for a backlight can be obtained.
  • the total light reflectance when incident light from the normal direction to the first main surface is transmitted means the average value of the reflectance of each wavelength measured in the wavelength range of 400 nm to 700 nm.
  • the light diffusing plate of the present invention has an average transmittance of incident light from the normal direction to the first principal surface at a wavelength of 400 to 700 nm transmitted in the direction of 30 ° with respect to the normal of the glass plate. Is preferably 0.2% or more, more preferably 0.3% or more, and still more preferably 0.4% or more. Further, it is preferably 10% or less, more preferably 8% or less, and further preferably 5% or less.
  • the average value of the transmittance of incident light from the normal direction to the first main surface at a wavelength of 400 to 700 nm transmitted in the direction of 30 ° with respect to the normal line of the glass plate is 0.2% or more.
  • the luminance necessary for the backlight can be obtained.
  • moderate light diffusibility can be ensured because the transmittance is 10% or less.
  • the transmittance of light transmitted in the direction of 30 ° with respect to the normal of the glass plate by incident light from the normal direction to the first main surface at a wavelength of 400 to 700 nm depends on the thickness of the glass plate.
  • the thickness of the glass plate is the thickness of the target light diffusion plate, and the transmittance at the thickness of the light diffusion plate is the transmittance.
  • the light diffusing plate of the present invention is a ratio of the total light reflectance to the total light transmittance in the wavelength range of 400 to 700 nm when the incident light from the normal direction to the first main surface is transmitted (total light reflectance /
  • the total light transmittance is preferably 0.25 or more, more preferably 0.3 or more, and still more preferably 0.4 or more. When the ratio is 0.25 or more, luminance necessary for a backlight can be obtained.
  • an upper limit is not specifically limited, It is preferable that it is 2 or less.
  • the light diffusing plate of the present invention has a transmittance (30 ° in the direction of 30 ° with respect to the normal in the wavelength range of 400 to 700 nm when incident light from the normal direction to the first main surface is transmitted.
  • the ratio between the transmittance) and the transmittance in the straight line direction (straight forward transmittance) (30 ° transmittance / straight forward transmittance) is preferably 0.05 or more, more preferably 0.2 or more, and still more preferably. It is 0.5 or more. When the ratio is 0.05 or more, light from the backlight can be diffused favorably.
  • the glass plate in the light diffusion plate of the present invention may have an uneven surface on the surface of the first main surface in order to increase the light diffusibility of the light diffusion plate.
  • the arithmetic average roughness (Ra) of the first main surface is not particularly limited, but is preferably 0.05 nm or more, more preferably 0.1 nm or more. It is.
  • an upper limit is not specifically limited, It is preferable that it is 3000 nm or less, More preferably, it is 2000 nm or less, More preferably, it is 1000 nm or less.
  • the arithmetic average roughness Ra of the glass plate on the first main surface of the glass plate can be adjusted by selecting the abrasive grains or the polishing method.
  • the light diffusing plate of the present invention has a light scattering film on at least one of the first main surface and the second main surface of the glass plate, and the main surface having or not having the light scattering film.
  • other coatings may be applied as necessary. Examples of other coatings include silica, titania, and alumina coatings.
  • the arithmetic average roughness Ra of the first main surface of the glass plate can be measured based on JIS B0601 (1994).
  • the arithmetic mean roughness Ra of the second main surface of the glass plate is not particularly limited, and may be the same as or different from the first main surface.
  • the glass plate used for the light diffusing plate of the present invention preferably has a thickness of 0.05 to 3 mm, more preferably 0.1 to 2.5 mm, and still more preferably 0.5 to 2 mm. .
  • the thickness of the glass plate By setting the thickness of the glass plate to 0.05 mm or more, the strength as a light diffusion plate can be maintained and an appropriate function can be exhibited.
  • fever from a light source can fully be weakened by the plate
  • the glass plate used for the light diffusion plate of the present invention preferably has a dimension of at least one side of 200 mm or more, more preferably 240 mm or more. Moreover, it is preferable that it is 2500 mm or less. By setting the size of at least one side of the glass plate to 200 mm or more, it is possible to provide a diffusion plate that takes advantage of the rigidity of the glass.
  • the wavelength dependence of the total light transmittance of the glass plate used in the light diffusing plate of the present invention is that when the light source used is an LED, it passes through the light diffusing plate and other optical sheets from the viewpoint of the wavelength spectrum of the emission line. It is preferable that the total light transmittance of the light diffusing plate has wavelength dependency so that the emitted light is white.
  • the wavelength dependency of the total light transmittance of the glass plate used for the light diffusing plate of the present invention can be adjusted as appropriate depending on the glass composition.
  • the light diffusion plate of the present invention can be suitably used for a backlight unit such as a liquid crystal television or a liquid crystal monitor.
  • a backlight unit such as a liquid crystal television or a liquid crystal monitor.
  • a light diffusion sheet 5, a prism sheet 6, and a polarization separation sheet 7 are sequentially provided on the light diffusion plate 4.
  • an electromagnetic wave shielding sheet for shielding electromagnetic waves emitted from the light source may be provided between the light diffusion plate 4 and the light diffusion sheet 5.
  • the light diffusing plate of the present invention can have the function of a light diffusing sheet.
  • the light diffusing plate of the present invention has the function of the light diffusing sheet 5
  • the light diffusing sheet 5 can be omitted.
  • the light diffusion plate of the present invention has high heat resistance and light resistance, when used in a backlight unit, the distance between the light source and the light diffusion plate can be reduced to improve the luminance uniformity. Therefore, the light diffusing plate of the present invention can improve the uniformity of luminance as compared with the conventional resin light diffusing plate.
  • the distance between the light source and the light diffusion plate is preferably less than 10 mm.
  • the production method of the present invention includes a step of applying a dispersion containing an organopolysiloxane precursor and particles to a glass plate, and a step of obtaining a light scattering film by curing the dispersion applied to the glass plate.
  • the dispersion includes an organopolysiloxane precursor and inorganic oxide particles.
  • the organopolysiloxane precursor is a substance that forms an organopolysiloxane by dehydration condensation by hydrolysis, and is specifically alkoxysilane.
  • alkoxysilane a compound represented by the following formula (1) is preferable.
  • R 1 4-n- Si- (OR 2 ) n
  • n is an integer of 0 to 4
  • R 1 is an alkyl group having 1 to 3, 6, 8, or 10 carbon atoms, a vinyl group, an amino group, a styryl group, a methacryl group, an acrylic group
  • An organic group such as an epoxy group or a phenyl group, preferably a methyl group, an ethyl group, a propyl group, or a phenyl group
  • R 2 is a methyl group, an ethyl group, or a propyl group, preferably a methyl group or an ethyl group.
  • alkoxysilane tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, phenyltrimethoxysilane and the like are more preferable. These may be used alone or in combination of two or more as long as they form an organopolysiloxane by dehydration condensation. More preferred is a mixture of tetraethoxysilane and methyltrimethoxysilane. The molar ratio of tetraethoxysilane to methyltrimethoxysilane in the above mixture is particularly preferably 2/8 to 8/2.
  • the refractive index of the inorganic oxide particles is preferably 1.45 or less, more preferably 1.43 or less. Since the inorganic oxide particles have already been described, the description thereof will be omitted.
  • the application method is not particularly limited, and examples thereof include spin coating, spray coating, die coating, roll coating, bar coating, squeegee coating, and ink jet method. It is done.
  • the method for curing the dispersion is not particularly limited, and photocuring or heat curing can be applied.
  • light curing ultraviolet curing is preferable.
  • Thermosetting is more preferable.
  • the heat curing is preferably performed at 100 ° C. to 800 ° C.
  • the heat treatment temperature is more preferably 150 ° C. to 700 ° C., further preferably 200 ° C. to 600 ° C.
  • the heat treatment temperature is 100 ° C. or higher, sufficient film strength can be easily obtained, and by increasing the heat treatment temperature, the organic components in the organopolysiloxane are thermally decomposed to improve water resistance and light resistance. If the heat treatment temperature is 800 ° C. or lower, breakage and deformation of the glass plate can be suppressed.
  • Example 1 Manufacture of light diffusion plate] 0.54 parts by mass of 11.31 parts by mass of water and 10% by mass nitric acid aqueous solution were added to 49.69 parts by mass of industrial alcohol (manufactured by Nippon Alcohol Sales Co., Ltd., trade name: Solmix AP1). Thereafter, 19.42 parts by mass of tetraethoxysilane (TEOS) and 19.04 parts by mass of methyltrimethoxysilane (MTMS) were added and stirred at room temperature for 1 hour to obtain a binder liquid.
  • TEOS tetraethoxysilane
  • MTMS methyltrimethoxysilane
  • This binder liquid contains 14.0 mass% of solid content converted to silica in 100 mass% of the binder liquid, and the molar ratio of MTMS to TEOS (MTMS / TEOS) is 6/4.
  • This binder liquid forms an organic-inorganic composite compound (organopolysiloxane) by hydrolysis and condensation. 60 parts by mass of the obtained binder liquid, 24 parts by mass of porous silica particles (manufactured by Nissan Chemical Industries, trade name: Light Star LA-23A) and 36 parts by mass of 2-propanol were mixed to obtain a dispersion.
  • the porous silica particles have an average particle diameter of 0.65 ⁇ m, a specific surface area of 240 m 2 / g, and a peak value of pore diameter of 16 nm.
  • the above dispersion was applied to the surface of a 2 mm thick soda lime glass plate (Asahi Glass Co., Ltd., trade name: transparent float plate glass AS) using a bar coater (Imoto Seisakusho Co., Ltd., product number: DOS50), and then at 150 ° C. Sample 1 was obtained by heat treatment for 10 minutes, then at 300 ° C. for 30 minutes, and further at 150 ° C. for 10 minutes.
  • Example 2 48.54 parts by mass of TEOS was added to 39.61 parts by mass of industrial alcohol (Japan Alcohol Sales Company, trade name: Solmix AP1) to obtain a binder liquid.
  • Sample 2 was obtained in the same manner as in Example 1 except that this binder solution was used.
  • This binder liquid forms an organic-inorganic composite by hydrolysis condensation.
  • Examples 3 to 5 The amounts of TEOS and MTMS were adjusted so that the molar ratio of MTMS to TEOS (MTMS / TEOS) in the binder solution was the value shown in Table 1, respectively.
  • Samples 3 to 5 were obtained in the same manner as in Example 1 except that this binder solution was used. These binder liquids form an organic-inorganic composite compound (organopolysiloxane) by hydrolysis and condensation.
  • Example 6 and 7 The amount of porous silica particles added to the binder liquid was changed so that the particle content in the dispersion would be the value shown in Table 2, respectively.
  • Samples 6 and 7 were obtained in the same manner as in Example 1 except that this binder solution was used.
  • Samples 8 and 9 were obtained in the same manner as in Example 1 except that the bar coater used when applying the dispersion was changed and the film thickness was changed to the value shown in Table 2.
  • the bar coater used was Imoto Seisakusho, product number: DOS30, and in Example 9, Imoto Seisakusho, product number: DOS9.
  • Example 10 A sample was obtained in the same manner as in Example 1 except that 60 parts by mass of the binder liquid, 24 parts by mass of spherical titania particles (product number: ST-41, manufactured by Ishihara Sangyo Co., Ltd.) and 36 parts by mass of 2-propanol were mixed. 10 was obtained. The spherical titania particles used are not porous but dense.
  • Sample 11 was obtained in the same manner as in Example 1 except that polyvinyl alcohol (trade name; polyvinyl alcohol 2000, manufactured by Kanto Chemical Co., Inc.) was used instead of the binder liquid.
  • Total light transmittance The light is incident on the surface of each sample where the light scattering film is formed, and the total light transmittance is measured using an integrating sphere in the wavelength range of 400 nm to 700 nm. The average value of transmittance was determined. A spectrophotometer (trade name: U-4100, manufactured by Hitachi, Ltd.) was used for the measurement. (5) Total light reflectivity Light is incident on the surface of each sample on which the light scattering film is formed at an incident angle of 5 °, and the total light is applied using an integrating sphere in the wavelength range of 400 nm to 700 nm. The reflectance was measured, and the average value of the reflectance at each wavelength was determined. A spectrophotometer (trade name: U-4100, manufactured by Hitachi, Ltd.) was used for the measurement.
  • Example 2 in which MTMS was not used, cracks occurred. Since the matrix of the light-scattering film is an inorganic substance (silica), the Young's modulus is increased, and the stress generated by solvent drying or film curing shrinkage cannot be alleviated and cracks are likely to occur.
  • Example 11 using polyvinyl alcohol instead of the binder liquid showed a large weight reduction and discoloration in the heat resistance test. It is considered that the heat resistance was insufficient because the matrix of the light scattering film was made of an organic substance.
  • Example 10 using dense titania particles has higher total light reflectivity than total light transmittance compared to Example 13 and the like. It is considered that light is refracted excessively and returns to the incident light side because the refractive index of the particles is large with respect to the matrix.
  • the light diffusing plate of the present invention is useful as a member of a backlight unit in a display element such as a liquid crystal television and a liquid crystal monitor. It should be noted that the entire content of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2016-11213 filed on January 25, 2016 is cited herein as the disclosure of the specification of the present invention. Incorporate.

Abstract

The objective of the present invention is to provide a light diffusion plate used in a direct backlight unit, the light diffusion plate: having high heat resistance, light resistance, and water resistance; exhibiting excellent rigidity and display quality; and being suitable for designing thinner plates, narrower bezels, and increased size. A light diffusion plate provided with a glass plate having a first main surface and a second main surface, the heat expansion coefficient of the glass plate being -100×10-7 to 500×10-7/°C, a light dispersion film that includes a matrix and particles being provided on at least one main surface of the glass substrate, the matrix including an organic-inorganic composite compound, the particles being inorganic oxide particles having a lower refractive index than the refractive index of the matrix, and light incident on the first main surface being transmitted from the second main surface while being diffused.

Description

光拡散板Light diffusion plate
 本発明は、液晶テレビおよび液晶モニター等の表示素子における直下型またはエッジライト型バックライトユニットに使用される光拡散板に関する。 The present invention relates to a light diffusing plate used for a direct type or edge light type backlight unit in a display element such as a liquid crystal television and a liquid crystal monitor.
 液晶テレビおよび液晶モニター等の表示素子における直下型バックライトユニットに使用される光拡散板の材料としては、透明な材料を使用すると光を透過するため光源が透けて見えてしまうことから、光拡散板の背後にある光源の形状を認識させることなく、また光源の輝度が損なわれない材料が使用される。ここで光源は発光ダイオード(LED)等である。 As a material for the light diffusing plate used in direct-type backlight units in display elements such as liquid crystal televisions and liquid crystal monitors, the use of a transparent material allows light to pass through because it transmits light. A material is used that does not impair the brightness of the light source without recognizing the shape of the light source behind the plate. Here, the light source is a light emitting diode (LED) or the like.
 また、液晶テレビおよび液晶モニター等の表示素子におけるエッジライト型バックライトユニットに使用される光拡散板の材料としては、透明な材料を使用すると拡散板に入射する光を出射する導光板の輝度むらが見えてしまうことから、光拡散板の背後にある導光板の輝度むらを認識させない材料が使用される。直下型バックライトユニットに使用される拡散板も同様の課題を抱えていることから、以降は直下型バックライトユニットを例に説明を行うが、直下型バックライトユニットに限定されるものではない。 In addition, as a material of a light diffusing plate used for an edge light type backlight unit in a display element such as a liquid crystal television and a liquid crystal monitor, the luminance unevenness of the light guide plate that emits light incident on the diffusing plate when a transparent material is used. Therefore, a material that does not recognize the luminance unevenness of the light guide plate behind the light diffusion plate is used. Since the diffusion plate used in the direct type backlight unit also has the same problem, the direct type backlight unit will be described below as an example, but is not limited to the direct type backlight unit.
 光拡散板の材料としては、従来技術では連続相を形成する熱可塑性樹脂に、それとは屈折率が異なる高分子系または無機系の粒子を分散相として配合した材料が用いられている(特許文献1)。また、特許文献2には、拡散度、反射率および輝度ムラが特定範囲であるポリカーボネート樹脂製の光拡散板が開示されている。 As a material for the light diffusing plate, in the prior art, a material in which a polymer or inorganic particle having a refractive index different from that of a thermoplastic resin forming a continuous phase is blended as a dispersed phase is used (Patent Literature). 1). Patent Document 2 discloses a light diffusion plate made of a polycarbonate resin in which diffusivity, reflectance, and luminance unevenness are in specific ranges.
日本特許第3100853号公報Japanese Patent No. 3100853 特開2006-339033号公報JP 2006-339033 A
 近年、液晶テレビおよび液晶モニター等は大型化する傾向にあり、バックライトユニットに用いられる光拡散板には高い輝度の均質性が求められている。光の拡散性能を高めるため、さらにはデザイン上さらに薄型化するため、光源と光拡散板との距離を近づけたいという要望がある。 In recent years, liquid crystal televisions, liquid crystal monitors, and the like have a tendency to increase in size, and light diffusion plates used in backlight units are required to have high brightness uniformity. In order to improve the light diffusing performance and to further reduce the thickness of the design, there is a demand for reducing the distance between the light source and the light diffusing plate.
 しかし、従来の樹脂製の光拡散板は、その耐熱性および耐光性が低いため、光源と光拡散板との距離を近づけすぎると経時的に変形し、光源の形状が目立つようになること、輝度の均質性を維持しにくいこと等の問題がある。また、熱膨張係数が大きいため、温度上昇に伴う膨張相当分のスペース、放熱のためのスペース確保も必要であり、狭額縁化が困難になるという問題がある。また、樹脂製の光拡散板は剛性が低く、外枠の強度を高めなければならないという問題がある。さらに、樹脂製の光拡散板は耐水性が低いため、長期間保管すると光拡散板の周辺から侵入した水を吸水することにより膨潤して変形するという問題がある。 However, the conventional resin light diffusing plate has low heat resistance and light resistance, so if the distance between the light source and the light diffusing plate is too close, it will be deformed over time, and the shape of the light source will become conspicuous, There are problems such as difficulty in maintaining uniformity of brightness. In addition, since the coefficient of thermal expansion is large, it is necessary to secure space for expansion corresponding to the temperature rise and space for heat dissipation, which makes it difficult to narrow the frame. Further, the resin light diffusing plate has a low rigidity and has a problem that the strength of the outer frame must be increased. Furthermore, since the resin light diffusing plate has low water resistance, there is a problem that when it is stored for a long period of time, water that has entered from the periphery of the light diffusing plate absorbs water and swells and deforms.
 これらの問題は、液晶テレビおよび液晶モニター等の大型化に伴い、面内の温度分布や、外気からの湿気の面内の流入分布が生じやすく、樹脂製の光拡散板の反りに伴う表示むらが生じやすいことにつながる。 These problems are caused by the increase in size of liquid crystal televisions and liquid crystal monitors, and in-plane temperature distribution and inflow distribution of moisture from the outside air are likely to occur, and display unevenness due to warping of the resin light diffusion plate. This is likely to occur.
 したがって、本発明は、耐熱性、耐光性および耐水性が高く、優れた剛性、表示品質を示し、薄板化、狭額縁化、大型化に適したバックライトユニットに使用される光拡散板を提供することを目的とする。 Therefore, the present invention provides a light diffusing plate used in a backlight unit that has high heat resistance, light resistance and water resistance, exhibits excellent rigidity and display quality, and is suitable for thin plate, narrow frame size and large size. The purpose is to do.
 本発明者らは、バックライトユニットに用いられる光拡散板の部材として、第一の主面と該第一の主面に対向する第二の主面とを有し、該第一の主面への入射光を拡散させながら前記第二の主面から透過させるとともに、特定範囲の熱膨張係数を有するガラス板を用いることにより、上記課題を解決できることを見出し、本発明を完成させた。 The present inventors have a first main surface and a second main surface facing the first main surface as a member of a light diffusion plate used in a backlight unit, and the first main surface The present invention has been completed by finding that the above-mentioned problems can be solved by using a glass plate having a thermal expansion coefficient in a specific range while transmitting the incident light to the second main surface while diffusing it.
 すなわち、本発明は以下の構成を有する光拡散板およびその製造方法を提供する。
 [1] 第一の主面と該第一の主面に対向する第二の主面とを有するガラス板を備え、前記第一の主面へ入射した光を拡散させながら前記第二の主面から出射させる光拡散板であって、
 前記ガラス板は、前記第一の主面と前記第二の主面の少なくとも一方に、光散乱膜が設けられ、熱膨張係数が-100×10-7/℃~500×10-7/℃であり、
 前記光散乱膜は、マトリックスと粒子とを含み、前記マトリックスは有機無機複合化合物を含み、前記粒子は、その屈折率が前記マトリックスの屈折率より小さい無機酸化物粒子であることを特徴とする光拡散板。
 [2] 光散乱膜の膜厚が0.1~100μmである、[1]に記載の光拡散板。
 [3] 前記有機無機複合化合物が、オルガノポリシロキサンである、[1]または[2]に記載の光拡散板。
 [4] 前記無機酸化物粒子は、平均粒子径が0.1~50μmであり、細孔直径のピーク値が2~50nmである微細孔を有する、[1]~[3]のいずれかに記載の光拡散板。
 [5] 前記光散乱膜における無機酸化物粒子の体積の割合が25~95vol%である、[1]~[4]のいずれかに記載の光拡散板。
 [6] 前記ガラス板の第一の主面に対する法線方向からの入射光が透過したときのヘイズが90%以上である、[1]~[5]のいずれかに記載の光拡散板。
 [7] 前記ガラス板の第一の主面に対する法線方向からの入射光のうち、該入射方向に透過した波長400~700nmにおける全光線透過率の平均値が4%以上である、[1]~[6]のいずれかに記載の光拡散板。
 [8] 前記ガラス板の第一の主面に対する法線方向からの入射光のうち、ガラス板の法線に対して30°方向に透過した波長400~700nmの光線の透過率の平均値が0.2%以上である、[1]~[7]のいずれかに記載の光拡散板。
 [9] 前記ガラス板の第一の主面に対する法線方向からの入射光が透過するときの波長400~700nmの範囲における全光線反射率と全光線透過率の比率(全光線反射率/全光線透過率)が0.25以上である、[1]~[8]のいずれかに記載の光拡散板。
 [10] 前記ガラス板の第一の主面に対する法線方向からの入射光が透過するときの波長400~700nmの範囲における、法線に対して30°の方向への透過率(30°透過率)と、直進方向の透過率(直進透過率)の比率(30°透過率/直進透過率)が0.05以上である、[1]~[9]のいずれかに記載の光拡散板。
 [11] 前記ガラス板の板厚が0.05~3mmである[1]~[10]のいずれかに記載の光拡散板。
 [12] 前記ガラス板の少なくとも一辺の寸法が200mm以上である[1]~[11]のいずれかに記載の光拡散板。
 [13] ガラス板に、オルガノポリシロキサン前駆体及び屈折率が1.45以下の無機酸化物粒子を含む分散液を塗布し、前記分散液を硬化して光散乱膜を形成する光拡散板の製造方法。
 [14] 前記分散液の硬化が熱硬化であり、熱硬化は100~800℃の熱処理温度で行う、[13]に記載の光拡散板の製造方法。
That is, this invention provides the light diffusing plate which has the following structures, and its manufacturing method.
[1] A glass plate having a first main surface and a second main surface facing the first main surface, the second main surface being diffused while diffusing light incident on the first main surface. A light diffusing plate to be emitted from a surface,
The glass plate is provided with a light scattering film on at least one of the first main surface and the second main surface, and has a thermal expansion coefficient of −100 × 10 −7 / ° C. to 500 × 10 −7 / ° C. And
The light scattering film includes a matrix and particles, the matrix includes an organic-inorganic composite compound, and the particles are inorganic oxide particles having a refractive index smaller than that of the matrix. Diffusion plate.
[2] The light diffusing plate according to [1], wherein the light scattering film has a thickness of 0.1 to 100 μm.
[3] The light diffusing plate according to [1] or [2], wherein the organic-inorganic composite compound is an organopolysiloxane.
[4] The inorganic oxide particles according to any one of [1] to [3], having an average particle diameter of 0.1 to 50 μm and fine pores having a pore diameter peak value of 2 to 50 nm. The light diffusing plate of description.
[5] The light diffusing plate according to any one of [1] to [4], wherein the volume ratio of the inorganic oxide particles in the light scattering film is 25 to 95 vol%.
[6] The light diffusing plate according to any one of [1] to [5], wherein a haze is 90% or more when incident light from a normal direction to the first main surface of the glass plate is transmitted.
[7] Of the incident light from the normal direction to the first main surface of the glass plate, the average value of the total light transmittance at a wavelength of 400 to 700 nm transmitted in the incident direction is 4% or more. ] The light diffusing plate according to any one of [6] to [6].
[8] Of the incident light from the normal direction to the first principal surface of the glass plate, the average transmittance of light having a wavelength of 400 to 700 nm transmitted in the direction of 30 ° with respect to the normal of the glass plate is The light diffusing plate according to any one of [1] to [7], which is 0.2% or more.
[9] Ratio of total light reflectance and total light transmittance in a wavelength range of 400 to 700 nm when incident light from the normal direction to the first main surface of the glass plate is transmitted (total light reflectance / total The light diffusing plate according to any one of [1] to [8], wherein the light transmittance) is 0.25 or more.
[10] Transmittance in the direction of 30 ° with respect to the normal in the wavelength range of 400 to 700 nm when incident light from the normal direction to the first main surface of the glass plate is transmitted (30 ° transmission) The light diffusion plate according to any one of [1] to [9], wherein a ratio of the transmittance in the straight direction (straight forward transmittance) (30 ° transmittance / straight forward transmittance) is 0.05 or more .
[11] The light diffusing plate according to any one of [1] to [10], wherein the glass plate has a thickness of 0.05 to 3 mm.
[12] The light diffusing plate according to any one of [1] to [11], wherein a dimension of at least one side of the glass plate is 200 mm or more.
[13] A light diffusing plate for applying a dispersion containing an organopolysiloxane precursor and inorganic oxide particles having a refractive index of 1.45 or less to a glass plate, and curing the dispersion to form a light scattering film. Production method.
[14] The method for producing a light diffusing plate according to [13], wherein the dispersion is cured by heat and the heat is cured at a heat treatment temperature of 100 to 800 ° C.
 本発明の光拡散板によれば、高い耐熱性および耐光性を有するガラス板を含むことにより、バックライトユニットに用いた場合に光源と光拡散板との距離を近づけることが可能となり、そのため輝度の均質性、薄型化、狭額縁が図り易い。また、本発明の光拡散板はガラス板を含むことから、樹脂製の光拡散板と比較して剛性に優れており、バックライトユニットに用いた場合に製造工程において取扱いが容易である。 According to the light diffusing plate of the present invention, by including a glass plate having high heat resistance and light resistance, it becomes possible to reduce the distance between the light source and the light diffusing plate when used in the backlight unit. Homogeneity, thinning, and narrow frame are easy to achieve. Moreover, since the light diffusing plate of this invention contains a glass plate, it is excellent in rigidity compared with a resin-made light diffusing plate, and when used in a backlight unit, it is easy to handle in the manufacturing process.
図1は、本発明の光拡散板を用いた直下型バックライトの模式断面図である。FIG. 1 is a schematic cross-sectional view of a direct type backlight using the light diffusion plate of the present invention. 図2は、本発明の光拡散板の一例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the light diffusion plate of the present invention.
 本発明は、第一の主面と該第一の主面に対向する第二の主面とを有するガラス板を備え、前記第一の主面へ入射した光を拡散させながら前記第二の主面から出射させる光拡散板に関する。本発明の光拡散板は、ガラス板の第一の主面と第二の主面の少なくとも一方に光散乱膜が設けられ、ガラス板の熱膨張係数が-100×10-7~500×10-7/℃である。本発明の光拡散板は、液晶テレビおよび液晶モニター等の表示素子におけるバックライトユニットの部材として有用である。 The present invention comprises a glass plate having a first main surface and a second main surface opposite to the first main surface, and the second main surface while diffusing light incident on the first main surface. The present invention relates to a light diffusing plate emitted from a main surface. In the light diffusion plate of the present invention, a light scattering film is provided on at least one of the first main surface and the second main surface of the glass plate, and the thermal expansion coefficient of the glass plate is −100 × 10 −7 to 500 × 10. -7 / ° C. The light diffusing plate of the present invention is useful as a member of a backlight unit in a display element such as a liquid crystal television and a liquid crystal monitor.
 ここで、ガラス板の第一の主面とは、バックライトユニットに用いた場合に、光源側となる面である。ガラス板の第二の主面とは、第一の主面に対向する面であり、バックライトユニットに用いた場合に、液晶パネル側となる面である。 Here, the first main surface of the glass plate is a surface on the light source side when used in the backlight unit. The 2nd main surface of a glass plate is a surface which opposes a 1st main surface, and when it uses for a backlight unit, it is a surface used as the liquid crystal panel side.
 図1に、本発明の光拡散板を用いたバックライトユニットの断面図を示す。図1に示されるバックライトユニット1においては、反射板2の上に光源3が所定の間隔を隔てて設けられ、その上に光拡散板4が設けられている。光源3から出た光は光拡散板4により拡散する。光拡散板4はガラス板を含み、該ガラス板の光源3側の面が第一の主面である。 FIG. 1 shows a cross-sectional view of a backlight unit using the light diffusion plate of the present invention. In the backlight unit 1 shown in FIG. 1, the light source 3 is provided on the reflecting plate 2 at a predetermined interval, and the light diffusion plate 4 is provided thereon. Light emitted from the light source 3 is diffused by the light diffusion plate 4. The light diffusing plate 4 includes a glass plate, and the surface of the glass plate on the light source 3 side is the first main surface.
 本発明の光拡散板は、第一の主面への入射光を拡散させながら第二の主面から透過させる。ここで、「第一の主面への入射光を拡散させながら第二の主面から透過させる」とは、光拡散板が適度なヘイズを有することで適度な光散乱性を発現するとともに、適度な全光線透過率を有することで適度な光透過性を発現することを意味する。 The light diffusing plate of the present invention transmits incident light to the first main surface while diffusing it from the second main surface. Here, “transmitting from the second main surface while diffusing the incident light to the first main surface” means that the light diffusing plate has an appropriate haze by having an appropriate haze, By having an appropriate total light transmittance, it means expressing an appropriate light transmittance.
 図2は、本発明の光拡散板の一例を示す模式断面図である。図2に示される光拡散板4は、ガラス板40とガラス板40の一方の主面に設けられた光散乱膜41を有している。光散乱膜41が設けられているガラス板40の面は第一の主面でもよく、第二の主面でもよく、更にはガラス板40の両方の主面でもよい。また、図2に示す光散乱膜41はマトリックス42と粒子43を含んでいるが、本発明はこれに限定されない。 FIG. 2 is a schematic cross-sectional view showing an example of the light diffusion plate of the present invention. The light diffusing plate 4 shown in FIG. 2 has a glass plate 40 and a light scattering film 41 provided on one main surface of the glass plate 40. The surface of the glass plate 40 on which the light scattering film 41 is provided may be the first main surface, the second main surface, or both main surfaces of the glass plate 40. Moreover, although the light-scattering film | membrane 41 shown in FIG. 2 contains the matrix 42 and the particle | grains 43, this invention is not limited to this.
 本発明の光拡散板の熱膨張係数は、ガラス板の熱膨張係数が-100×10-7~500×10-7/℃であることにより、好ましい熱膨張係数とすることができる。 The thermal expansion coefficient of the light diffusing plate of the present invention can be made a preferable thermal expansion coefficient when the thermal expansion coefficient of the glass plate is −100 × 10 −7 to 500 × 10 −7 / ° C.
 ガラス板の熱膨張係数は、-100×10-7~500×10-7/℃であり、好ましくは-10×10-7~300×10-7/℃であり、より好ましくは1×10-7~200×10-7/℃であり、さらに好ましくは、50×10-7~150×10-7/℃である。ガラス板の熱膨張係数が500×10-7/℃以下であると、光拡散性能を高めるために光源と光拡散板の距離を近づける際の変形を抑えることができ、光源の形状が目立ちにくくなり、輝度の均質性をはかることができる。また、変形分を見越した余分なスペースが不要となり、狭額縁化や薄型化に対応できる。また、ガラス板の熱膨張係数が-100×10-7/℃以上であると、生産性が向上しコストが低下するので好ましい。 The thermal expansion coefficient of the glass plate is −100 × 10 −7 to 500 × 10 −7 / ° C., preferably −10 × 10 −7 to 300 × 10 −7 / ° C., and more preferably 1 × 10 10 It is −7 to 200 × 10 −7 / ° C., and more preferably 50 × 10 −7 to 150 × 10 −7 / ° C. When the thermal expansion coefficient of the glass plate is 500 × 10 −7 / ° C. or lower, the deformation when the distance between the light source and the light diffusion plate is reduced can be suppressed to improve the light diffusion performance, and the shape of the light source is less noticeable. Therefore, the luminance uniformity can be achieved. In addition, an extra space in anticipation of deformation is not required, and it is possible to cope with narrowing and thinning of the frame. Further, it is preferable that the thermal expansion coefficient of the glass plate is −100 × 10 −7 / ° C. or higher because productivity is improved and costs are reduced.
 本発明において、「熱膨張係数」とは、ISO7991(1987年)に準拠した測定による値を意味する。ガラス板の熱膨張係数は、ガラス組成により調節することが可能である。 In the present invention, “thermal expansion coefficient” means a value obtained by measurement based on ISO 7991 (1987). The thermal expansion coefficient of the glass plate can be adjusted by the glass composition.
 本発明の光拡散板におけるガラス板はガラス転移点Tgが200℃以上であることが好ましく、より好ましくは300℃以上であり、さらに好ましくは400℃以上であり、さらに好ましくは500℃以上である。また、前記ガラス板のガラス転移点Tgは、850℃以下であることが好ましく、より好ましくは800℃以下であり、さらに好ましくは750℃以下であり、特に好ましくは700℃以下である。 The glass plate in the light diffusion plate of the present invention preferably has a glass transition point Tg of 200 ° C. or higher, more preferably 300 ° C. or higher, further preferably 400 ° C. or higher, and further preferably 500 ° C. or higher. . Moreover, it is preferable that the glass transition point Tg of the said glass plate is 850 degrees C or less, More preferably, it is 800 degrees C or less, More preferably, it is 750 degrees C or less, Most preferably, it is 700 degrees C or less.
 前記ガラス板のガラス転移点Tgが200℃以上であると、ガラス板が熱により変形しにくいため、バックライトユニットに用いた場合に光源と光拡散板の距離を近づけることが可能であり、樹脂製の光拡散板と比較して輝度の均質性が図り易い。また、ガラス転移点が850℃以下であると、ガラスの生産性が向上する。 When the glass transition point Tg of the glass plate is 200 ° C. or higher, the glass plate is not easily deformed by heat, and therefore when used in a backlight unit, the distance between the light source and the light diffusion plate can be reduced. Uniformity in brightness is easy to achieve compared to a light diffuser made of light. Moreover, productivity of glass improves that a glass transition point is 850 degrees C or less.
 本発明において、「ガラス転移点」は、熱膨張曲線における屈曲点に相当する温度を意味する。 In the present invention, “glass transition point” means a temperature corresponding to a bending point in a thermal expansion curve.
 本発明の光拡散板におけるガラス板は屈伏点が200℃以上であることが好ましく、より好ましくは300℃以上であり、さらに好ましくは400℃以上である。前記ガラス板の屈伏点は950℃以下であることが好ましい。ガラス板の屈伏点が200℃以上であることにより、樹脂製の光拡散板と比較して耐熱性に優れ、輝度の均質性が図り易い。ガラス板の屈伏点は、示差熱膨張計を用いて測定できる。 The glass plate in the light diffusion plate of the present invention preferably has a yield point of 200 ° C. or higher, more preferably 300 ° C. or higher, and still more preferably 400 ° C. or higher. The yield point of the glass plate is preferably 950 ° C. or lower. When the yield point of the glass plate is 200 ° C. or higher, the glass plate is excellent in heat resistance as compared with the resin light diffusion plate, and it is easy to achieve luminance uniformity. The yield point of a glass plate can be measured using a differential thermal dilatometer.
 本発明の光拡散板におけるガラス板はヤング率が10GPa以上であることが好ましく、より好ましくは20GPa以上であり、さらに好ましくは50GPa以上であり、さらに好ましくは、70GPa以上である。また、前記ガラス板はヤング率が500GPa以下であることが好ましく、より好ましくは200GPa以下であり、さらに好ましくは150GPa以下である。 The glass plate in the light diffusing plate of the present invention preferably has a Young's modulus of 10 GPa or more, more preferably 20 GPa or more, further preferably 50 GPa or more, and further preferably 70 GPa or more. Moreover, it is preferable that the said glass plate is 500 GPa or less in Young's modulus, More preferably, it is 200 GPa or less, More preferably, it is 150 GPa or less.
 前記ガラス板のヤング率が10GPa以上であると、光拡散板の剛性が優れ、バックライトユニットに用いた場合に、樹脂製の光拡散板と比較して取扱いが容易である。また、前記ガラス板のヤング率が500GPa以下であると、生産性に優れる。 When the Young's modulus of the glass plate is 10 GPa or more, the light diffusion plate is excellent in rigidity, and when used in a backlight unit, it is easier to handle than a resin light diffusion plate. Moreover, it is excellent in productivity as the Young's modulus of the said glass plate is 500 GPa or less.
 本発明の光拡散板におけるガラス板の曲げ強度は、10MPa以上であることが好ましく、より好ましくは20MPa以上であり、さらに好ましくは30MPa以上であり、さらに好ましくは100MPa以上である。ガラス板の曲げ強度が10MPa以上であることにより優れた剛性が得られ、バックライトユニットに用いた場合に、樹脂製の光拡散板と比較して取扱いが容易である。また、ガラス板の曲げ強度は通常300MPa以下である。ガラス板の曲げ強度は実施例における後述する方法により測定できる。 The bending strength of the glass plate in the light diffusing plate of the present invention is preferably 10 MPa or more, more preferably 20 MPa or more, further preferably 30 MPa or more, and further preferably 100 MPa or more. When the bending strength of the glass plate is 10 MPa or more, excellent rigidity is obtained, and when used in a backlight unit, the glass plate is easier to handle than a resin light diffusion plate. Further, the bending strength of the glass plate is usually 300 MPa or less. The bending strength of the glass plate can be measured by the method described later in the examples.
 本発明の光拡散板におけるガラス板は表面抵抗値が1.0×10Ω/□以上であることが好ましく、より好ましくは1.0×10Ω/□以上であり、さらに好ましくは1.0×10Ω/□以上であり、いっそう好ましくは1.0×1011Ω/□以上である。また、1.0×1015Ω/□以下であることが好ましく、より好ましくは1.0×1014Ω/□以下であり、さらに好ましくは1.0×1013Ω/□以下である。 The glass plate in the light diffusing plate of the present invention preferably has a surface resistance value of 1.0 × 10 5 Ω / □ or more, more preferably 1.0 × 10 7 Ω / □ or more, and further preferably 1 0.0 × 10 9 Ω / □ or more, more preferably 1.0 × 10 11 Ω / □ or more. Further, it is preferably 1.0 × 10 15 Ω / □ or less, more preferably 1.0 × 10 14 Ω / □ or less, and further preferably 1.0 × 10 13 Ω / □ or less.
 前記ガラス板の表面抵抗値が10Ω/□以上であると、漏電電流が小さくなり安全性が高まる。また、1.0×1015Ω/□以下であると、静電気が生じにくく、樹脂製の光拡散板と比較して取扱いが容易である。ガラス板の表面抵抗値は、JIS K6911(2006年)に記載の方法により測定できる。 When the surface resistance value of the glass plate is 10 5 Ω / □ or more, the leakage current is reduced and the safety is improved. Further, when it is 1.0 × 10 15 Ω / □ or less, static electricity is hardly generated, and handling is easy as compared with a light diffusion plate made of resin. The surface resistance value of the glass plate can be measured by the method described in JIS K6911 (2006).
 具体的には、ガラス板は、シリケートガラスが好ましい。シリケートガラスとしては、ソーダライムシリケートガラス(以下、ソーダライムガラスと言う。)、アルカリアルミノシリケートガラス、無アルカリアルミノシリケートガラス、アルカリボロシリケートガラス等が挙げられる。ガラス組成を適切に選択することにより、光拡散板に適した物性を有する拡散板とすることができる。
 例えば、ソーダライムガラスとしては、酸化物基準の質量百分率表示でSiOを60~75%、Alを2~12%、MgOを2~11%、CaOを0~10%、SrOを0~3%、BaOを0~3%、NaOを10~18%、KOを0~8%、ZrOを0~4%含有する組成が挙げられる(以上の成分の合計は100%以下であり、通常95%以上である)。
 アルカリアルミノシリケートガラスとしては、酸化物基準のモル百分率表示でSiOを61~70%、Alを1~18%、MgOを0~15%、CaOを0~5%、SrOを0~1%、BaOを0~1%、NaOを8~18%、KOを0~6%、ZrOを0~4%、Bを0~8%含有する組成が挙げられる。
 無アルカリアルミノシリケートガラスとしては、酸化物基準の質量百分率表示で、SiOを39~70%、Alを3~25%、Bを1~30%、MgOを0~10%、CaOを0~17%、SrOを0~20%、BaOを0~30%、を含有する組成が挙げられる。
 また、アルカリボロシリケートガラスとしては、酸化物基準の質量百分率表示で、SiOを65~78%、Bを8~30%、LiO+NaO+KOを1~18%、Alを0~10%、CeOを0~5%、SnOを0~2%、CaOを0~7%含有する組成が挙げられる(以上の成分の合計は100%以下であり、また通常95%以上である)。
Specifically, the glass plate is preferably silicate glass. Examples of the silicate glass include soda lime silicate glass (hereinafter referred to as soda lime glass), alkali aluminosilicate glass, alkali-free aluminosilicate glass, and alkali borosilicate glass. By appropriately selecting the glass composition, a diffusion plate having physical properties suitable for the light diffusion plate can be obtained.
For example, for soda lime glass, SiO 2 is 60 to 75%, Al 2 O 3 is 2 to 12%, MgO is 2 to 11%, CaO is 0 to 10%, and SrO is expressed in terms of mass percentage based on oxide. Examples include a composition containing 0 to 3%, BaO 0 to 3%, Na 2 O 10 to 18%, K 2 O 0 to 8%, and ZrO 2 0 to 4%. 100% or less, usually 95% or more).
Alkali aluminosilicate glass is SiO 2 61 to 70%, Al 2 O 3 1 to 18%, MgO 0 to 15%, CaO 0 to 5%, SrO 0 The composition contains ~ 1%, BaO 0 ~ 1%, Na 2 O 8 ~ 18%, K 2 O 0 ~ 6%, ZrO 2 0 ~ 4%, B 2 O 3 0 ~ 8%. Can be mentioned.
The alkali-free aluminosilicate glass is expressed in terms of mass percentage on the basis of oxide, with SiO 2 being 39 to 70%, Al 2 O 3 being 3 to 25%, B 2 O 3 being 1 to 30%, and MgO being 0 to 10 %, CaO 0 to 17%, SrO 0 to 20% and BaO 0 to 30%.
In addition, as alkali borosilicate glass, SiO 2 is 65 to 78%, B 2 O 3 is 8 to 30%, Li 2 O + Na 2 O + K 2 O is 1 to 18%, Al 2 in terms of mass percentage based on oxide. the 2 O 3 0 ~ 10%, the CeO 2 0 ~ 5% of SnO 2 0 ~ 2% total of CaO 0-7 percent composition containing the like (or more components is 100% or less, It is usually 95% or more).
 本発明におけるガラス板の製造方法は特に限定されないが、例えば種々の原料を適量調合し、約1500~1800℃に加熱し溶融した後、脱泡、撹拌などにより均質化し、周知の、フロート法、ダウンドロー法、プレス法またはロールアウト法などによって板状等に、またはキャストしてブロック状に成形し、徐冷後、任意の形状に加工を施して製造される。 The method for producing a glass plate in the present invention is not particularly limited. For example, a suitable amount of various raw materials are prepared, heated to about 1500 to 1800 ° C. and melted, and then homogenized by defoaming, stirring, etc. It is produced by forming into a plate shape or the like by casting down, pressing or rolling out, or forming into a block shape after slow cooling and then processing into an arbitrary shape.
 本発明では、ガラス板の少なくとも一方の主面上には光散乱膜が設けられる。それにより、第一の主面への入射光を拡散させながら該第二の主面から透過させる光拡散板が得られる。光散乱膜は、ガラス板の両方の主面に設けられてもよい。ガラス板の両方の主面に光散乱膜を設けると、特徴の異なる複数の光散乱層を一定の間隔で設けることができる。 In the present invention, a light scattering film is provided on at least one main surface of the glass plate. As a result, a light diffusing plate that diffuses the incident light on the first main surface and transmits the light from the second main surface is obtained. The light scattering film may be provided on both main surfaces of the glass plate. When light scattering films are provided on both main surfaces of the glass plate, a plurality of light scattering layers having different characteristics can be provided at regular intervals.
 本発明の光拡散板に使用される光散乱膜は、膜厚が0.1~100.0μmであることが好ましく、より好ましくは1~30μmである。光散乱膜の膜厚が上記範囲内であると、優れた拡散性能を確保できる。 The light scattering film used in the light diffusion plate of the present invention preferably has a thickness of 0.1 to 100.0 μm, more preferably 1 to 30 μm. When the film thickness of the light scattering film is within the above range, excellent diffusion performance can be secured.
 光散乱膜は、マトリックスと粒子を含むことが好ましい。前記マトリックスは有機無機複合化合物を含むことが好ましい。また前記粒子は、無機酸化物粒子であることが好ましく、前記粒子の屈折率は前記マトリックスの屈折率よりも小さいことが好ましい。
 光散乱膜を構成する前記マトリックスは、有機無機複合化合物を含むことにより、従来の有機フィルムより高い耐熱性を有し、かつ無機物のみからなる膜と比較してクラックが生じにくい。
The light scattering film preferably contains a matrix and particles. The matrix preferably contains an organic-inorganic composite compound. The particles are preferably inorganic oxide particles, and the refractive index of the particles is preferably smaller than the refractive index of the matrix.
Since the matrix constituting the light scattering film contains an organic-inorganic composite compound, the matrix has higher heat resistance than a conventional organic film, and cracks are less likely to occur as compared with a film made of only an inorganic material.
 前記光散乱膜は400℃で30分間加熱したときの重量変化率が10%以下であることが好ましく、5%以下がより好ましい。また、400℃で30分間加熱したときに変色しないことが好ましい。そのような膜は耐熱性が高いので、バックライトの直近で使用できる。 The light scattering film preferably has a weight change rate of 10% or less when heated at 400 ° C. for 30 minutes, more preferably 5% or less. Further, it is preferable that the color does not change when heated at 400 ° C. for 30 minutes. Such a film has high heat resistance and can be used in the immediate vicinity of a backlight.
 前記有機無機複合化合物としては、安定性に優れる点でオルガノポリシロキサンが好ましい。オルガノポリシロキサンは、たとえば一種以上のアルコキシシランを水とアルコールの混合溶液中で加水分解縮合することで得られる。アルコキシシランとしては、下式(1)で表される化合物が好ましい。
   (R4-n-Si-(OR   (1)
 (式(1)中、nは0~4の整数であり、Rは炭素数1~3、6、8若しくは10のアルキル基、ビニル基、アミノ基、スチリル基、メタクリル基、アクリル基、エポキシ基、フェニル基などの有機基であり、メチル基、エチル基、プロピル基またはフェニル基が好ましい。Rは、メチル基、エチル基、プロピル基であり、メチル基、エチル基が好ましい。
As said organic inorganic composite compound, organopolysiloxane is preferable at the point which is excellent in stability. The organopolysiloxane can be obtained, for example, by hydrolytic condensation of one or more alkoxysilanes in a mixed solution of water and alcohol. As the alkoxysilane, a compound represented by the following formula (1) is preferable.
(R 1 ) 4-n- Si- (OR 2 ) n (1)
(In the formula (1), n is an integer of 0 to 4, and R 1 is an alkyl group having 1 to 3, 6, 8, or 10 carbon atoms, a vinyl group, an amino group, a styryl group, a methacryl group, an acrylic group, An organic group such as an epoxy group or a phenyl group, preferably a methyl group, an ethyl group, a propyl group or a phenyl group, and R 2 is a methyl group, an ethyl group or a propyl group, preferably a methyl group or an ethyl group.
 アルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、フェニルトリメトキシシラン等がより好ましい。これらは1種を単独で用いても2種以上を併用してもよい。アルコキシシランとしては、テトラエトキシシランとメチルトリメトキシシランの共加水分解縮合物が更に好ましい。
 上記共加水分解縮合物における、テトラエトキシシランとメチルトリメトキシシランとのモル比は、2/8~8/2が特に好ましい。テトラエトキシシランがこの範囲にあれば機械的強度が向上し、またメチルトリメトキシシランがこの範囲にあればクラックが入りにくく、クラックによる光散乱性の低下を抑えられる。
As the alkoxysilane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, phenyltrimethoxysilane and the like are more preferable. These may be used alone or in combination of two or more. As the alkoxysilane, a cohydrolyzed condensate of tetraethoxysilane and methyltrimethoxysilane is more preferable.
The molar ratio of tetraethoxysilane to methyltrimethoxysilane in the cohydrolyzed condensate is particularly preferably 2/8 to 8/2. If tetraethoxysilane is in this range, the mechanical strength is improved, and if methyltrimethoxysilane is in this range, cracks are difficult to occur, and a decrease in light scattering due to cracks can be suppressed.
 無機酸化物粒子は、熱に対して安定なので好ましい。無機酸化物粒子の屈折率は、マトリックスの屈折率より小さいことが好ましい。無機酸化物粒子の屈折率がマトリックスよりも小さいと、光の過剰な屈折を抑制し、光を前方に拡散させることができる。ただし、光の前方への拡散を阻害しない範囲で、一部マトリックスよりも屈折率が高い無機酸化物粒子を含んでいても良い。
 無機酸化物としては、たとえばシリカ、アルミナ、チタニア、ジルコニアが挙げられる。無機酸化物粒子は、ムライト、カルサイト、ドロマイト、フォルステライト、エンスタタイト、コーディエライト、ステアタイト等の複合酸化物粒子でもよい。無機酸化物粒子は、屈折率が小さくかつ入手しやすい点で、シリカが特に好ましい。
Inorganic oxide particles are preferred because they are stable to heat. The refractive index of the inorganic oxide particles is preferably smaller than the refractive index of the matrix. If the refractive index of the inorganic oxide particles is smaller than that of the matrix, excessive refraction of light can be suppressed and light can be diffused forward. However, inorganic oxide particles having a refractive index higher than that of the matrix may be included as long as the forward diffusion of light is not inhibited.
Examples of the inorganic oxide include silica, alumina, titania, and zirconia. The inorganic oxide particles may be composite oxide particles such as mullite, calcite, dolomite, forsterite, enstatite, cordierite, and steatite. Inorganic oxide particles are particularly preferred because of their low refractive index and availability.
 マトリックスがオルガノポリシロキサンを含有する場合には、無機酸化物粒子の屈折率は1.45以下が好ましい。なお、本明細書において「屈折率」は、波長550nmにおける屈折率を意味する。 When the matrix contains organopolysiloxane, the refractive index of the inorganic oxide particles is preferably 1.45 or less. In the present specification, “refractive index” means a refractive index at a wavelength of 550 nm.
 適度な光散乱性を発現するためには、光散乱膜における無機酸化物粒子とその周りのマトリックスとの屈折率差が大きいことが好ましい。該屈折率差は0.0001以上であることが好ましく、より好ましくは0.001以上であり、さらに好ましくは0.01以上である。 In order to develop an appropriate light scattering property, it is preferable that the refractive index difference between the inorganic oxide particles in the light scattering film and the surrounding matrix is large. The refractive index difference is preferably 0.0001 or more, more preferably 0.001 or more, and still more preferably 0.01 or more.
 無機酸化物粒子の平均粒子径は、良好な光散乱性が得られるために、0.1μm以上が好ましく、0.2μm以上がより好ましい。また、均質な分散液が得られるために、無機酸化物粒子の平均粒子径は50μm以下が好ましく、10μm以下がより好ましい。
 なお、「平均粒子径」とは、動的光散乱法により測定された体積基準の粒度分布におけるメジアン径(積算粒度分布曲線の50%粒径)を意味する。
 また、無機酸化物粒子は、細孔直径のピーク値が2~50nmである微細孔を有することが好ましい。細孔直径のピーク値は、良好な光散乱性が得られるために、2nm以上が好ましく、3nm以上がより好ましい。また、良好な機械強度が得られるために、細孔直径のピーク値は50nm以下が好ましく、40nm以下がより好ましい。
 なお、「細孔直径のピーク値」とは、水銀ポロシメーターにより測定された細孔直径分布における、もっとも頻度の高い細孔直径を意味する。
The average particle diameter of the inorganic oxide particles is preferably 0.1 μm or more and more preferably 0.2 μm or more in order to obtain good light scattering properties. In order to obtain a homogeneous dispersion, the average particle diameter of the inorganic oxide particles is preferably 50 μm or less, and more preferably 10 μm or less.
The “average particle size” means the median size (50% particle size of the integrated particle size distribution curve) in the volume-based particle size distribution measured by the dynamic light scattering method.
The inorganic oxide particles preferably have fine pores having a pore diameter peak value of 2 to 50 nm. The peak value of the pore diameter is preferably 2 nm or more and more preferably 3 nm or more in order to obtain good light scattering properties. Further, in order to obtain good mechanical strength, the peak value of the pore diameter is preferably 50 nm or less, and more preferably 40 nm or less.
The “peak value of pore diameter” means the most frequent pore diameter in the pore diameter distribution measured by a mercury porosimeter.
 適度な光散乱性を発現するためには、光散乱膜における無機酸化物粒子の体積の割合が25vol%以上であることが好ましく、30vol%以上であることがより好ましい。また、膜強度を高くするためには、光散乱膜における無機酸化物粒子の体積の割合が95vol%以下であることが好ましく、80vol%以下がより好ましい。ここで、無機酸化物粒子の体積の割合は、SEM観察写真からガラス表面に分布している粒子の割合を計算し、該粒子の割合から求められる。 In order to express an appropriate light scattering property, the volume ratio of the inorganic oxide particles in the light scattering film is preferably 25 vol% or more, and more preferably 30 vol% or more. In order to increase the film strength, the volume ratio of the inorganic oxide particles in the light scattering film is preferably 95% by volume or less, more preferably 80% by volume or less. Here, the volume ratio of the inorganic oxide particles is obtained from the ratio of the particles by calculating the ratio of the particles distributed on the glass surface from the SEM observation photograph.
 本発明の光拡散板は吸水率が0.1%未満であることが好ましく、より好ましくは0.01%以下であり、さらに好ましくは0.001%以下である。ガラス板の吸水率を0.1%未満とすることにより、バックライトユニットに用いた場合に、吸水して膨潤するおそれがないため、長期間保管した場合にも性能を保つことができる。光拡散板の反りが生じにくく、表示むらが小さくなり、表示品質が向上する。
 本発明において、吸水率は、JIS K7209(2000年)に基づいて測定した値である。
The light diffusion plate of the present invention preferably has a water absorption of less than 0.1%, more preferably 0.01% or less, and even more preferably 0.001% or less. By setting the water absorption rate of the glass plate to less than 0.1%, there is no risk of water absorption and swelling when used in a backlight unit, so performance can be maintained even when stored for a long period of time. The light diffusing plate is hardly warped, display unevenness is reduced, and display quality is improved.
In the present invention, the water absorption is a value measured based on JIS K7209 (2000).
 本発明の光拡散板は、光散乱膜の鉛筆硬度がHB以上であることが好ましく、より好ましくは2H以上である。該鉛筆硬度がHB以上であれば、取扱中の膜の破損が抑制できる。 In the light diffusion plate of the present invention, the pencil hardness of the light scattering film is preferably HB or more, more preferably 2H or more. If the pencil hardness is HB or higher, damage to the film being handled can be suppressed.
 本発明の光拡散板は、ガラス板の第一の主面に対する法線方向からの入射光が透過するときのヘイズが90%以上であることが好ましく、より好ましくは93%以上であり、さらに好ましくは96%以上である。当該ヘイズが90%以上であることにより、バックライトユニットに用いた場合に適度な拡散性を確保できる。 The light diffusing plate of the present invention preferably has a haze of 90% or more, more preferably 93% or more when incident light from the normal direction to the first main surface of the glass plate is transmitted. Preferably it is 96% or more. When the haze is 90% or more, moderate diffusibility can be secured when used in a backlight unit.
 本発明の光拡散板は、第一の主面に対する法線方向からの入射光のうち、該入射方向に透過した波長400~700nmにおける直進透過率の平均値が15%以下であることが好ましく、より好ましくは10%以下であり、さらに好ましくは5%以下である。該直進透過率の平均値が15%以下であることにより、光拡散板をバックライトユニットに用いた場合に輝度ムラが生じにくい。 In the light diffusing plate of the present invention, it is preferable that the average value of the straight transmittance at a wavelength of 400 to 700 nm transmitted in the incident direction out of the incident light from the normal direction to the first main surface is 15% or less. More preferably, it is 10% or less, More preferably, it is 5% or less. When the average value of the straight transmittance is 15% or less, luminance unevenness hardly occurs when the light diffusing plate is used in the backlight unit.
 前記直進透過率の平均値は、波長400~700nmにおける直進透過率Tsを波長1nmごとに測定し、下記式により求めることができる。 The average value of the straight transmittance can be obtained from the following equation by measuring the straight transmittance Ts at a wavelength of 400 to 700 nm for each wavelength of 1 nm.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 前記式において、nは400~700の整数である。 In the above formula, n is an integer of 400 to 700.
 本発明の光拡散板は、第一の主面に対する法線方向からの入射光のうち、該入射方向に透過した波長400~700nmにおける全光線透過率の平均値が4%以上であることが好ましく、より好ましくは5%以上であり、さらに好ましくは10%以上であり、特に好ましくは20%以上であり、最も好ましくは30%以上である。 In the light diffusing plate of the present invention, of the incident light from the normal direction to the first main surface, the average value of the total light transmittance at a wavelength of 400 to 700 nm transmitted in the incident direction is 4% or more. Preferably, it is 5% or more, more preferably 10% or more, particularly preferably 20% or more, and most preferably 30% or more.
 前記全光線透過率の平均値を4%以上とすることにより、バックライトとして好ましい輝度が得られる。全光線透過率の平均値は高ければ高いほど好ましいが、90%以下であれば拡散性が損なわれないので好ましい。より好ましくは85%以下、さらに好ましくは80%以下、特に好ましくは75%以下である。 When the average value of the total light transmittance is 4% or more, a luminance preferable for a backlight can be obtained. The average value of the total light transmittance is preferably as high as possible, but it is preferably 90% or less because the diffusibility is not impaired. More preferably, it is 85% or less, More preferably, it is 80% or less, Most preferably, it is 75% or less.
 前記全光線透過率の平均値は、波長400~700nmにおける波長1nmごとの全光線透過率Ttを測定し、下記式により求めることができる。 The average value of the total light transmittance can be obtained from the following equation by measuring the total light transmittance Tt for each wavelength of 1 nm at a wavelength of 400 to 700 nm.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 前記式において、nは400~700の整数である。
 波長400nm~700nmにおけるガラスの全光線透過率は、分光光度計等により測定できる。
In the above formula, n is an integer of 400 to 700.
The total light transmittance of the glass at a wavelength of 400 nm to 700 nm can be measured with a spectrophotometer or the like.
 本発明において記載されている2種類の透過率(直進透過率Tsと全光線透過率Tt)の定義の違いについて説明する。物体に光が当たると、その光の一部は反射され、物体に入った光の一部は物体内で吸収され、残りが透過された光として出射される。この透過光の透過率を全光線透過率Ttと定義する。全光線透過光は、物体によって拡散された拡散透過光と入射された方向に直進する直進透過光とに分けられ、直進透過光の透過率を直進透過率Tsと定義する。 The difference in the definition of the two types of transmittance (straight-line transmittance Ts and total light transmittance Tt) described in the present invention will be described. When light hits an object, a part of the light is reflected, a part of the light entering the object is absorbed in the object, and the rest is emitted as transmitted light. The transmittance of this transmitted light is defined as the total light transmittance Tt. The total light transmitted light is divided into diffuse transmitted light diffused by the object and straight transmitted light that travels straight in the incident direction, and the transmittance of the straight transmitted light is defined as a straight transmitted transmittance Ts.
 本発明の光拡散板は、第一の主面に対する法線方向からの入射光が前記ガラス板を透過するときの波長400から700nmの範囲における全光線反射率が10%以上であることが好ましく、より好ましくは20%以上であり、より好ましくは25%以上であり、さらに好ましくは30%以上である。また、96%以下であることが好ましく、より好ましくは95%以下であり、さらに好ましくは90%以下である。 The light diffusing plate of the present invention preferably has a total light reflectance of 10% or more in a wavelength range of 400 to 700 nm when incident light from a normal direction to the first main surface is transmitted through the glass plate. More preferably, it is 20% or more, more preferably 25% or more, and further preferably 30% or more. Moreover, it is preferable that it is 96% or less, More preferably, it is 95% or less, More preferably, it is 90% or less.
 第一の主面に対する法線方向からの入射光が透過するときの全光線反射率が10%以上であることにより、光拡散板をバックライトユニットに用いた場合に輝度ムラが生じにくい。また、該全光線反射率が90%以下であることにより、バックライトとして必要な輝度を得られる。 Since the total light reflectance when incident light from the normal direction to the first main surface is transmitted is 10% or more, luminance unevenness hardly occurs when the light diffusing plate is used in the backlight unit. Further, when the total light reflectance is 90% or less, luminance necessary for a backlight can be obtained.
 本発明において、第一の主面に対する法線方向からの入射光が透過するときの全光線反射率は、波長400nm~700nmの範囲で測定した各波長の反射率の平均値を意味する。  In the present invention, the total light reflectance when incident light from the normal direction to the first main surface is transmitted means the average value of the reflectance of each wavelength measured in the wavelength range of 400 nm to 700 nm. *
 本発明の光拡散板は、光の波長400~700nmにおける、第一の主面に対する法線方向からの入射光が前記ガラス板の法線に対して30°方向に透過した透過率の平均値が0.2%以上であることが好ましく、より好ましくは0.3%以上であり、さらに好ましくは0.4%以上である。また、好ましくは10%以下であり、より好ましくは8%以下であり、さらに好ましくは5%以下である。 The light diffusing plate of the present invention has an average transmittance of incident light from the normal direction to the first principal surface at a wavelength of 400 to 700 nm transmitted in the direction of 30 ° with respect to the normal of the glass plate. Is preferably 0.2% or more, more preferably 0.3% or more, and still more preferably 0.4% or more. Further, it is preferably 10% or less, more preferably 8% or less, and further preferably 5% or less.
 波長400~700nmにおける第一の主面に対する法線方向からの入射光が前記ガラス板の法線に対して30°方向に透過した光の透過率の平均値を0.2%以上とすることにより、バックライトとして必要な輝度が得られる。また、該透過率が10%以下であることにより、適度な光拡散性を確保できる。 The average value of the transmittance of incident light from the normal direction to the first main surface at a wavelength of 400 to 700 nm transmitted in the direction of 30 ° with respect to the normal line of the glass plate is 0.2% or more. Thus, the luminance necessary for the backlight can be obtained. Moreover, moderate light diffusibility can be ensured because the transmittance is 10% or less.
 波長400~700nmにおける第一の主面に対する法線方向からの入射光が前記ガラス板の法線に対して30°方向に透過した光の透過率はガラス板の厚みに依存するが、本発明のガラス板の厚みは対象とする光拡散板の厚みとし、該光拡散板の厚みにおける該透過率を、該透過率とする。 The transmittance of light transmitted in the direction of 30 ° with respect to the normal of the glass plate by incident light from the normal direction to the first main surface at a wavelength of 400 to 700 nm depends on the thickness of the glass plate. The thickness of the glass plate is the thickness of the target light diffusion plate, and the transmittance at the thickness of the light diffusion plate is the transmittance.
 本発明の光拡散板は、第一の主面に対する法線方向からの入射光が透過するときの波長400から700nmの範囲における全光線反射率と全光線透過率の比率(全光線反射率/全光線透過率)が0.25以上であることが好ましく、より好ましくは0.3以上であり、さらに好ましくは0.4以上である。該比率が0.25以上であることにより、バックライトとして必要な輝度が得られる。上限は特に限定されないが、2以下であることが好ましい。 The light diffusing plate of the present invention is a ratio of the total light reflectance to the total light transmittance in the wavelength range of 400 to 700 nm when the incident light from the normal direction to the first main surface is transmitted (total light reflectance / The total light transmittance) is preferably 0.25 or more, more preferably 0.3 or more, and still more preferably 0.4 or more. When the ratio is 0.25 or more, luminance necessary for a backlight can be obtained. Although an upper limit is not specifically limited, It is preferable that it is 2 or less.
 本発明の光拡散板は、第一の主面に対する法線方向からの入射光が透過するときの波長400から700nmの範囲における、法線に対して30°の方向への透過率(30°透過率)と、直進方向の透過率(直進透過率)の比率(30°透過率/直進透過率)が0.05以上であると好ましく、より好ましくは0.2以上であり、さらに好ましくは0.5以上である。該比率が0.05以上であることにより、バックライトからの光を良好に拡散できる。 The light diffusing plate of the present invention has a transmittance (30 ° in the direction of 30 ° with respect to the normal in the wavelength range of 400 to 700 nm when incident light from the normal direction to the first main surface is transmitted. The ratio between the transmittance) and the transmittance in the straight line direction (straight forward transmittance) (30 ° transmittance / straight forward transmittance) is preferably 0.05 or more, more preferably 0.2 or more, and still more preferably. It is 0.5 or more. When the ratio is 0.05 or more, light from the backlight can be diffused favorably.
 本発明の光拡散板におけるガラス板は、光拡散板の光拡散性を上げるため、第一の主面の表面に凹凸面を有していてもよい。第一の主面の表面に凹凸面を有する場合、第一の主面の算術平均粗さ(Ra)は特に限定されないが、0.05nm以上であることが好ましく、より好ましくは0.1nm以上である。また、上限も特に限定されないが、3000nm以下であることが好ましく、より好ましくは2000nm以下であり、さらに好ましくは1000nm以下である。 The glass plate in the light diffusion plate of the present invention may have an uneven surface on the surface of the first main surface in order to increase the light diffusibility of the light diffusion plate. When the surface of the first main surface has an uneven surface, the arithmetic average roughness (Ra) of the first main surface is not particularly limited, but is preferably 0.05 nm or more, more preferably 0.1 nm or more. It is. Moreover, although an upper limit is not specifically limited, It is preferable that it is 3000 nm or less, More preferably, it is 2000 nm or less, More preferably, it is 1000 nm or less.
 ガラス板の第一の主面のガラス板の算術平均粗さRaは、研磨砥粒または研磨方法等の選択により調整可能である。また、本発明の光拡散板はガラス板の第一の主面と前記第二の主面の少なくとも一方に光散乱膜を有するが、光散乱膜を有する主面または有しない主面のいずれについても、必要に応じて他のコーティングを施してもよい。他のコーティングとしては、シリカ、チタニア、アルミナ等のコーティングが挙げられる。 The arithmetic average roughness Ra of the glass plate on the first main surface of the glass plate can be adjusted by selecting the abrasive grains or the polishing method. The light diffusing plate of the present invention has a light scattering film on at least one of the first main surface and the second main surface of the glass plate, and the main surface having or not having the light scattering film. Alternatively, other coatings may be applied as necessary. Examples of other coatings include silica, titania, and alumina coatings.
 ガラス板の第一の主面の算術平均粗さRaは、JIS B0601(1994年)に基づいて測定できる。一方、ガラス板の第二の主面の算術平均粗さRaも特に限定されるものではなく、第一の主面と同じであってもよく、異なっていてもよい。 The arithmetic average roughness Ra of the first main surface of the glass plate can be measured based on JIS B0601 (1994). On the other hand, the arithmetic mean roughness Ra of the second main surface of the glass plate is not particularly limited, and may be the same as or different from the first main surface.
 本発明の光拡散板に用いられるガラス板は、板厚が0.05~3mmであることが好ましく、より好ましくは0.1mm~2.5mmであり、さらに好ましくは0.5mm~2mmである。ガラス板の板厚を0.05mm以上とすることにより、光拡散板としての強度を保持し、適切な機能を発揮し得る。また、ガラス板の板厚を3mm以下とすることにより、光源からの熱による板厚方向の温度分布による応力を十分に弱めることができる。 The glass plate used for the light diffusing plate of the present invention preferably has a thickness of 0.05 to 3 mm, more preferably 0.1 to 2.5 mm, and still more preferably 0.5 to 2 mm. . By setting the thickness of the glass plate to 0.05 mm or more, the strength as a light diffusion plate can be maintained and an appropriate function can be exhibited. Moreover, the stress by the temperature distribution of the thickness direction by the heat | fever from a light source can fully be weakened by the plate | board thickness of a glass plate being 3 mm or less.
 本発明の光拡散板に用いられるガラス板は、少なくとも一辺の寸法が200mm以上であることが好ましく、より好ましくは240mm以上である。また、2500mm以下であることが好ましい。ガラス板の少なくとも一辺の寸法を200mm以上とすることで、ガラスの剛性を生かした拡散板を提供できる。 The glass plate used for the light diffusion plate of the present invention preferably has a dimension of at least one side of 200 mm or more, more preferably 240 mm or more. Moreover, it is preferable that it is 2500 mm or less. By setting the size of at least one side of the glass plate to 200 mm or more, it is possible to provide a diffusion plate that takes advantage of the rigidity of the glass.
 本発明の光拡散板に用いられるガラス板の全光線透過率の波長依存性は、用いる光源がLEDの場合、その発光線の波長スペクトルの観点からは、光拡散板及び他の光学シートを通過した光が白色となるように、光拡散板の全光線透過率が波長依存性を有することが好ましい。 The wavelength dependence of the total light transmittance of the glass plate used in the light diffusing plate of the present invention is that when the light source used is an LED, it passes through the light diffusing plate and other optical sheets from the viewpoint of the wavelength spectrum of the emission line. It is preferable that the total light transmittance of the light diffusing plate has wavelength dependency so that the emitted light is white.
 本発明の光拡散板に用いられるガラス板の全光線透過率の波長依存性は、ガラスの組成)等により適宜調整できる。 The wavelength dependency of the total light transmittance of the glass plate used for the light diffusing plate of the present invention can be adjusted as appropriate depending on the glass composition.
 本発明の光拡散板は、液晶テレビまたは液晶モニター等のバックライトユニットに好適に用いることができる。図1に示されるバックライトユニット1においては、光拡散板4の上に光拡散シート5、プリズムシート6、偏光分離シート7が順に設けられている。なお、図1には示されていないが、光拡散板4と光拡散シート5との間に光源から出る電磁波を遮断するための電磁波遮断シートが設けられていてもよい。 The light diffusion plate of the present invention can be suitably used for a backlight unit such as a liquid crystal television or a liquid crystal monitor. In the backlight unit 1 shown in FIG. 1, a light diffusion sheet 5, a prism sheet 6, and a polarization separation sheet 7 are sequentially provided on the light diffusion plate 4. Although not shown in FIG. 1, an electromagnetic wave shielding sheet for shielding electromagnetic waves emitted from the light source may be provided between the light diffusion plate 4 and the light diffusion sheet 5.
 本発明の光拡散板には、光拡散シートの機能を持たせることができる。本発明の光拡散板に光拡散シート5の機能を持たせる場合は、光拡散シート5は省略できる。 The light diffusing plate of the present invention can have the function of a light diffusing sheet. When the light diffusing plate of the present invention has the function of the light diffusing sheet 5, the light diffusing sheet 5 can be omitted.
 本発明の光拡散板は高い耐熱性および耐光性を有するため、バックライトユニットに用いた場合に、光源と光拡散板との距離を近づけて輝度の均質性を向上させることが可能である。したがって、本発明の光拡散板は、従来の樹脂製の光拡散板と比較して、輝度の均質性を高めることができる。具体的には、光源と光拡散板との距離は10mm未満が好ましい。 Since the light diffusion plate of the present invention has high heat resistance and light resistance, when used in a backlight unit, the distance between the light source and the light diffusion plate can be reduced to improve the luminance uniformity. Therefore, the light diffusing plate of the present invention can improve the uniformity of luminance as compared with the conventional resin light diffusing plate. Specifically, the distance between the light source and the light diffusion plate is preferably less than 10 mm.
 次に、本発明の光拡散板の製造方法について説明する。
 本発明の製造方法は、ガラス板にオルガノポリシロキサン前駆体と粒子とを含む分散液を塗布する工程と、前記ガラス板に塗布した分散液を硬化して光散乱膜を得る工程とを有する。
Next, the manufacturing method of the light diffusing plate of this invention is demonstrated.
The production method of the present invention includes a step of applying a dispersion containing an organopolysiloxane precursor and particles to a glass plate, and a step of obtaining a light scattering film by curing the dispersion applied to the glass plate.
 ガラス板については、すでに説明したので、説明を省略する。
 上記分散液は、オルガノポリシロキサン前駆体と無機酸化物粒子とを含む。オルガノポリシロキサン前駆体とは、加水分解により脱水縮合してオルガノポリシロキサンを形成する物質であり、具体的にはアルコキシシランである。アルコキシシランとしては、下式(1)で表される化合物が好ましい。
   (R4-n-Si-(OR   (1)
 (式(1)中、nは0~4の整数であり、Rは炭素数1~3、6、8若しくは10のアルキル基、ビニル基、アミノ基、スチリル基、メタクリル基、アクリル基、エポキシ基またはフェニル基などの有機基であり、メチル基、エチル基、プロピル基、フェニル基が好ましい。Rは、メチル基、エチル基、プロピル基であり、メチル基、エチル基が好ましい。
Since the glass plate has already been described, the description thereof is omitted.
The dispersion includes an organopolysiloxane precursor and inorganic oxide particles. The organopolysiloxane precursor is a substance that forms an organopolysiloxane by dehydration condensation by hydrolysis, and is specifically alkoxysilane. As the alkoxysilane, a compound represented by the following formula (1) is preferable.
(R 1 ) 4-n- Si- (OR 2 ) n (1)
(In the formula (1), n is an integer of 0 to 4, and R 1 is an alkyl group having 1 to 3, 6, 8, or 10 carbon atoms, a vinyl group, an amino group, a styryl group, a methacryl group, an acrylic group, An organic group such as an epoxy group or a phenyl group, preferably a methyl group, an ethyl group, a propyl group, or a phenyl group, and R 2 is a methyl group, an ethyl group, or a propyl group, preferably a methyl group or an ethyl group.
 アルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、フェニルトリメトキシシラン等がより好ましい。これらは、脱水縮合してオルガノポリシロキサンを形成する限り1種を単独で用いても2種以上を併用してもよい。テトラエトキシシランとメチルトリメトキシシランの混合物が更に好ましい。
 上記混合物における、テトラエトキシシランとメチルトリメトキシシランとのモル比は、2/8~8/2が特に好ましい。テトラエトキシシランがこの範囲にあれば機械的強度が向上し、またメチルトリメトキシシランがこの範囲にあればクラックが入りにくく、クラックによる光散乱性の低下を抑えられる。
As the alkoxysilane, tetramethoxysilane, tetraethoxysilane, methyltrimethoxysilane, phenyltrimethoxysilane and the like are more preferable. These may be used alone or in combination of two or more as long as they form an organopolysiloxane by dehydration condensation. More preferred is a mixture of tetraethoxysilane and methyltrimethoxysilane.
The molar ratio of tetraethoxysilane to methyltrimethoxysilane in the above mixture is particularly preferably 2/8 to 8/2. If tetraethoxysilane is in this range, the mechanical strength is improved, and if methyltrimethoxysilane is in this range, cracks are difficult to occur, and a decrease in light scattering due to cracks can be suppressed.
 無機酸化物粒子の屈折率は1.45以下が好ましく、より好ましくは1.43以下である。無機酸化物粒子については、すでに説明したので説明を省略する。 The refractive index of the inorganic oxide particles is preferably 1.45 or less, more preferably 1.43 or less. Since the inorganic oxide particles have already been described, the description thereof will be omitted.
 ガラス板に前記分散液を塗布する工程において、塗布方法は特に限定されず、例えば、スピンコート法、スプレーコート法、ダイコート法、ロールコート法、バーコート法、スキージコート法、インクジェット法等が挙げられる。 In the step of applying the dispersion on the glass plate, the application method is not particularly limited, and examples thereof include spin coating, spray coating, die coating, roll coating, bar coating, squeegee coating, and ink jet method. It is done.
 ガラス板に塗布した分散液を硬化して光散乱膜を得る工程において、分散液の硬化方法は特に限定されず、光硬化または熱硬化が適用できる。光硬化としては紫外線硬化が好ましい。熱硬化がより好ましい。 In the step of curing the dispersion applied to the glass plate to obtain a light scattering film, the method for curing the dispersion is not particularly limited, and photocuring or heat curing can be applied. As light curing, ultraviolet curing is preferable. Thermosetting is more preferable.
 熱硬化は、100℃~800℃で加熱処理することが好ましい。熱処理温度は、150℃~700℃がより好ましく、200℃~600℃がさらに好ましい。熱処理温度が100℃以上であると十分な膜強度が得られやすく、また熱処理温度を高くすることでオルガノポリシロキサン中の有機成分が熱分解されて耐水性、耐光性が向上する。熱処理温度が800℃以下であれば、ガラス板の破損や変形が抑制できる。 The heat curing is preferably performed at 100 ° C. to 800 ° C. The heat treatment temperature is more preferably 150 ° C. to 700 ° C., further preferably 200 ° C. to 600 ° C. When the heat treatment temperature is 100 ° C. or higher, sufficient film strength can be easily obtained, and by increasing the heat treatment temperature, the organic components in the organopolysiloxane are thermally decomposed to improve water resistance and light resistance. If the heat treatment temperature is 800 ° C. or lower, breakage and deformation of the glass plate can be suppressed.
 以下、実施例を用いて本発明を説明するが、本発明はこれに限定されない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
[光拡散板の製造]
(例1)
 工業用アルコール(日本アルコール販売社製、商品名:ソルミックスAP1)49.69質量部に水11.31質量部と硝酸10質量%水溶液を0.54質量部添加した。その後、テトラエトキシシラン(TEOS)19.42質量部と、メチルトリメトキシシラン(MTMS)19.04質量部を加え、室温で1時間攪拌してバインダー液を得た。このバインダー液は、バインダー液100質量%中に、シリカに換算した固形分を14.0質量%含有し、MTMSとTEOSのモル比(MTMS/TEOS)が6/4である。このバインダー液は加水分解縮合によって有機無機複合化合物(オルガノポリシロキサン)を形成する。
 得られたバインダー液60質量部と、多孔質シリカ粒子(日産化学工業社製、商品名:ライトスターLA-23A)24質量部と2-プロパノール36質量部を混合して分散液を得た。多孔質シリカ粒子は、平均粒子径が0.65μm、比表面積が240m/g、細孔直径のピーク値が16nmである。
 前述の分散液を厚さ2mmのソーダライムガラス板(旭硝子社製、商品名:透明フロート板ガラス AS)の表面にバーコータ(井元製作所社製、品番:DOS50)を用いて塗布した後、150℃で10分間、次いで300℃で30分間、さらに150℃で10分間加熱処理してサンプル1を得た。
[Manufacture of light diffusion plate]
(Example 1)
0.54 parts by mass of 11.31 parts by mass of water and 10% by mass nitric acid aqueous solution were added to 49.69 parts by mass of industrial alcohol (manufactured by Nippon Alcohol Sales Co., Ltd., trade name: Solmix AP1). Thereafter, 19.42 parts by mass of tetraethoxysilane (TEOS) and 19.04 parts by mass of methyltrimethoxysilane (MTMS) were added and stirred at room temperature for 1 hour to obtain a binder liquid. This binder liquid contains 14.0 mass% of solid content converted to silica in 100 mass% of the binder liquid, and the molar ratio of MTMS to TEOS (MTMS / TEOS) is 6/4. This binder liquid forms an organic-inorganic composite compound (organopolysiloxane) by hydrolysis and condensation.
60 parts by mass of the obtained binder liquid, 24 parts by mass of porous silica particles (manufactured by Nissan Chemical Industries, trade name: Light Star LA-23A) and 36 parts by mass of 2-propanol were mixed to obtain a dispersion. The porous silica particles have an average particle diameter of 0.65 μm, a specific surface area of 240 m 2 / g, and a peak value of pore diameter of 16 nm.
The above dispersion was applied to the surface of a 2 mm thick soda lime glass plate (Asahi Glass Co., Ltd., trade name: transparent float plate glass AS) using a bar coater (Imoto Seisakusho Co., Ltd., product number: DOS50), and then at 150 ° C. Sample 1 was obtained by heat treatment for 10 minutes, then at 300 ° C. for 30 minutes, and further at 150 ° C. for 10 minutes.
(例2)
 工業用アルコール(日本アルコール販売社、商品名:ソルミックスAP1)39.61質量部に、TEOS48.54質量部を加えてバインダー液を得た。このバインダー液を使用した他は例1と同様にしてサンプル2を得た。このバインダー液は、加水分解縮合によって有機無機複合物を形成する。
(例3~5)
 バインダー液中のMTMSとTEOSのモル比(MTMS/TEOS)がそれぞれ表1に示した値になるようにTEOSとMTMSの量を調整した。このバインダー液を使用した他は例1と同様にしてサンプル3~5を得た。これらのバインダー液は、加水分解縮合によって有機無機複合化合物(オルガノポリシロキサン)を形成する。
(Example 2)
48.54 parts by mass of TEOS was added to 39.61 parts by mass of industrial alcohol (Japan Alcohol Sales Company, trade name: Solmix AP1) to obtain a binder liquid. Sample 2 was obtained in the same manner as in Example 1 except that this binder solution was used. This binder liquid forms an organic-inorganic composite by hydrolysis condensation.
(Examples 3 to 5)
The amounts of TEOS and MTMS were adjusted so that the molar ratio of MTMS to TEOS (MTMS / TEOS) in the binder solution was the value shown in Table 1, respectively. Samples 3 to 5 were obtained in the same manner as in Example 1 except that this binder solution was used. These binder liquids form an organic-inorganic composite compound (organopolysiloxane) by hydrolysis and condensation.
(例6、7)
 分散液中の粒子含量がそれぞれ表2に示す値となるようにバインダー液に加える多孔質シリカ粒子の量を変更した。このバインダー液を使用した他は例1と同様にしてサンプル6および7を得た。
(例8、9)
 分散液を塗布するときに用いるバーコータを変えて膜厚を表2に示す値とした他は例1と同様にしてサンプル8、9を得た。使用したバーコータは、例8では井元製作所社製、品番:DOS30、例9では井元製作所社製、品番:DOS9である。
(Examples 6 and 7)
The amount of porous silica particles added to the binder liquid was changed so that the particle content in the dispersion would be the value shown in Table 2, respectively. Samples 6 and 7 were obtained in the same manner as in Example 1 except that this binder solution was used.
(Examples 8 and 9)
Samples 8 and 9 were obtained in the same manner as in Example 1 except that the bar coater used when applying the dispersion was changed and the film thickness was changed to the value shown in Table 2. In Example 8, the bar coater used was Imoto Seisakusho, product number: DOS30, and in Example 9, Imoto Seisakusho, product number: DOS9.
(例10)
 バインダー液60質量部と、球状チタニア粒子(石原産業社製、品番:ST-41)24質量部と2-プロパノール36質量部を混合して分散液を得た他は例1と同様にしてサンプル10を得た。用いた球状チタニア粒子は、多孔質ではなく緻密である。
(例11)
 バインダー液のかわりにポリビニルアルコール(関東化学社製、商品名;ポリビニルアルコール2000)を用いた他は例1と同様にしてサンプル11を得た。
(Example 10)
A sample was obtained in the same manner as in Example 1 except that 60 parts by mass of the binder liquid, 24 parts by mass of spherical titania particles (product number: ST-41, manufactured by Ishihara Sangyo Co., Ltd.) and 36 parts by mass of 2-propanol were mixed. 10 was obtained. The spherical titania particles used are not porous but dense.
(Example 11)
Sample 11 was obtained in the same manner as in Example 1 except that polyvinyl alcohol (trade name; polyvinyl alcohol 2000, manufactured by Kanto Chemical Co., Inc.) was used instead of the binder liquid.
[評価方法]
 得られた例1~11のサンプルの特性を以下の方法で評価した。
 なお、得られた光拡散板のガラス板及び光散乱膜の厚みは、光拡散板の一部をカッターで切り取り、露出したガラス板表面と光散乱膜表面との高低差をレーザー顕微鏡(キーエンス社製、商品名:レーザーマイクロスコープ VK-X110)を用いて測定した。
[Evaluation methods]
The characteristics of the obtained samples of Examples 1 to 11 were evaluated by the following methods.
In addition, the thickness of the glass plate and the light scattering film of the obtained light diffusing plate was obtained by cutting a part of the light diffusing plate with a cutter and measuring the difference in height between the exposed glass plate surface and the light scattering film surface with a laser microscope (Keyence Corporation). (Trade name: Laser microscope VK-X110).
(1)耐熱性
 各サンプルから、カッターナイフを用いて光散乱膜の一部を剥離した。剥離した光散乱膜について、熱分析装置(リガク社製、商品名:TG-DTA サーモプラスEVO)を用い、室温から400℃まで昇温速度10/分で加熱した後、400℃に30分保持して重量変化率を測定した。また、測定後の光散乱膜の色を目視で観察した。
(2)鉛筆硬度
 JIS K5600-5-4(1999年)に準拠して光散乱膜の鉛筆硬度を測定した。測定には、荷重変動型摩擦摩耗システム(新東科学社製、商品名:HHS-2000)を用いた。
(3)ヘイズ
 光拡散板のヘイズ値は、ヘーズメーター(スガ試験機社製、商品名:HZ-2)により、JIS K7136(2000年)に準拠した方法で測定した。
(1) Heat resistance A part of the light scattering film was peeled off from each sample using a cutter knife. The peeled light scattering film was heated from room temperature to 400 ° C. at a heating rate of 10 / min using a thermal analyzer (trade name: TG-DTA Thermoplus EVO, manufactured by Rigaku Corporation) and then held at 400 ° C. for 30 minutes. The weight change rate was measured. Moreover, the color of the light-scattering film | membrane after a measurement was observed visually.
(2) Pencil hardness The pencil hardness of the light scattering film was measured according to JIS K5600-5-4 (1999). For the measurement, a load variation type friction wear system (manufactured by Shinto Kagaku Co., Ltd., trade name: HHS-2000) was used.
(3) Haze The haze value of the light diffusing plate was measured by a haze meter (trade name: HZ-2, manufactured by Suga Test Instruments Co., Ltd.) by a method based on JIS K7136 (2000).
(4)全光線透過率
 各サンプルの光散乱膜が形成されている側の面に光を入射させ、400nm~700nmの波長域で、積分球を用いて全光線透過率を測定し、各波長における透過率の平均値を求めた。測定には分光光度計(日立製作所社製、商品名:U-4100)を用いた。
(5)全光線反射率
 各サンプルの光散乱膜が形成されている側の面に対して、入射角5°で光を入射させ、400nm~700nmの波長域で、積分球を用いて全光線反射率を測定し、各波長における反射率の平均値を求めた。測定には分光光度計(日立製作所社製、商品名:U-4100)を用いた。
(4) Total light transmittance The light is incident on the surface of each sample where the light scattering film is formed, and the total light transmittance is measured using an integrating sphere in the wavelength range of 400 nm to 700 nm. The average value of transmittance was determined. A spectrophotometer (trade name: U-4100, manufactured by Hitachi, Ltd.) was used for the measurement.
(5) Total light reflectivity Light is incident on the surface of each sample on which the light scattering film is formed at an incident angle of 5 °, and the total light is applied using an integrating sphere in the wavelength range of 400 nm to 700 nm. The reflectance was measured, and the average value of the reflectance at each wavelength was determined. A spectrophotometer (trade name: U-4100, manufactured by Hitachi, Ltd.) was used for the measurement.
(6)直進透過率および30%透過率
 各サンプルの光散乱膜を形成した側に光が入射するように設置し、サンプルの法線に対して同一水平面上に0°(直進透過率)と30°(30%透過率)の方向に透過した波長400nm~700nmの光の透過率を測定し、各波長における透過率の平均値を求めた。測定には、紫外可視赤外分光光度計(日本分光社製、商品名:V-670DS)および自動絶対反射率測定ユニット(日本分光社製、品番:ARMN-735)を用いた。
(7)クラック
 光学顕微鏡を用いて各サンプルの膜表面を倍率100倍で観察し、クラックの有無を判定した。
(6) Straight transmittance and 30% transmittance Installed so that light is incident on the side where the light scattering film of each sample is formed, and 0 ° (straight transmittance) on the same horizontal plane with respect to the normal of the sample. The transmittance of light having a wavelength of 400 nm to 700 nm transmitted in the direction of 30 ° (30% transmittance) was measured, and the average value of the transmittance at each wavelength was determined. For the measurement, an ultraviolet-visible infrared spectrophotometer (manufactured by JASCO Corporation, product name: V-670DS) and an automatic absolute reflectance measurement unit (manufactured by JASCO Corporation, product number: ARMN-735) were used.
(7) Cracks The film surface of each sample was observed at a magnification of 100 times using an optical microscope to determine the presence or absence of cracks.
 上記の評価結果を表1および表2に示す。表1および表2において、「-」は未評価であることを示す。 The above evaluation results are shown in Tables 1 and 2. In Tables 1 and 2, “-” indicates that it has not been evaluated.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 MTMSを用いなかった例2はクラックが発生した。光散乱膜のマトリックスが無機物(シリカ)であるためにヤング率が高くなり、溶媒乾燥や膜の硬化収縮により発生する応力を緩和しきれず、クラックが発生しやすいと考えられる。
 バインダー液のかわりにポリビニルアルコールを用いた例11は、耐熱性試験において大きな重量減少と変色を示した。光散乱膜のマトリックスが有機物からなるために耐熱性が不十分だったと考えられる。
In Example 2 in which MTMS was not used, cracks occurred. Since the matrix of the light-scattering film is an inorganic substance (silica), the Young's modulus is increased, and the stress generated by solvent drying or film curing shrinkage cannot be alleviated and cracks are likely to occur.
Example 11 using polyvinyl alcohol instead of the binder liquid showed a large weight reduction and discoloration in the heat resistance test. It is considered that the heat resistance was insufficient because the matrix of the light scattering film was made of an organic substance.
 緻密なチタニア粒子を用いた例10は、例13等と比較すると全光線透過率に対して全光線反射率が高い。マトリックスに対して粒子の屈折率が大きいために光が過剰に屈折してしまい、入射光側に戻ってしまうと考えられる。 Example 10 using dense titania particles has higher total light reflectivity than total light transmittance compared to Example 13 and the like. It is considered that light is refracted excessively and returns to the incident light side because the refractive index of the particles is large with respect to the matrix.
 本発明の光拡散板は、液晶テレビおよび液晶モニター等の表示素子におけるバックライトユニットの部材として有用である。
 なお、2016年1月25日に出願された日本特許出願2016-11213号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The light diffusing plate of the present invention is useful as a member of a backlight unit in a display element such as a liquid crystal television and a liquid crystal monitor.
It should be noted that the entire content of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2016-11213 filed on January 25, 2016 is cited herein as the disclosure of the specification of the present invention. Incorporate.
1:直下型バックライトユニット、2:反射板、3:光源、4:光拡散板、5:光拡散シート、6:プリズムシート、7:偏光分離シート、40:ガラス板、41:光散乱膜、42:マトリックス、43:粒子 1: Direct type backlight unit, 2: Reflecting plate, 3: Light source, 4: Light diffusion plate, 5: Light diffusion sheet, 6: Prism sheet, 7: Polarization separation sheet, 40: Glass plate, 41: Light scattering film 42: Matrix 43: Particles

Claims (14)

  1.  第一の主面と該第一の主面に対向する第二の主面とを有するガラス板を備え、前記第一の主面へ入射した光を拡散させながら前記第二の主面から出射させる光拡散板であって、
     前記ガラス板は、前記第一の主面と前記第二の主面の少なくとも一方に、光散乱膜が設けられ、熱膨張係数が-100×10-7~500×10-7/℃であり、
     前記光散乱膜は、マトリックスと粒子とを含み、前記マトリックスは有機無機複合化合物を含み、前記粒子は、その屈折率が前記マトリックスの屈折率より小さい無機酸化物粒子であることを特徴とする光拡散板。
    A glass plate having a first main surface and a second main surface opposite to the first main surface is provided, and is emitted from the second main surface while diffusing light incident on the first main surface. A light diffusing plate,
    The glass plate is provided with a light scattering film on at least one of the first main surface and the second main surface, and has a thermal expansion coefficient of −100 × 10 −7 to 500 × 10 −7 / ° C. ,
    The light scattering film includes a matrix and particles, the matrix includes an organic-inorganic composite compound, and the particles are inorganic oxide particles having a refractive index smaller than that of the matrix. Diffusion plate.
  2.  光散乱膜の膜厚が0.1~100μmである、請求項1に記載の光拡散板。 2. The light diffusing plate according to claim 1, wherein the light scattering film has a thickness of 0.1 to 100 μm.
  3.  前記有機無機複合化合物が、オルガノポリシロキサンである、請求項1または2に記載の光拡散板。 The light diffusing plate according to claim 1 or 2, wherein the organic-inorganic composite compound is an organopolysiloxane.
  4.  前記無機酸化物粒子は、平均粒子径が0.1~50μmであり、細孔直径のピーク値が2~50nmである微細孔を有する、請求項1~3のいずれかに1項に記載の光拡散板。 The inorganic oxide particles according to any one of claims 1 to 3, wherein the inorganic oxide particles have fine pores having an average particle diameter of 0.1 to 50 µm and a peak value of the pore diameter of 2 to 50 nm. Light diffusion plate.
  5.  前記光散乱膜における無機酸化物粒子の体積の割合が25~95vol%である、請求項1~4のいずれか1項に記載の光拡散板。 The light diffusion plate according to any one of claims 1 to 4, wherein the volume ratio of the inorganic oxide particles in the light scattering film is 25 to 95 vol%.
  6.  前記ガラス板の第一の主面に対する法線方向からの入射光が透過したときのヘイズが90%以上である、請求項1~5のいずれか1項に記載の光拡散板。 The light diffusing plate according to any one of claims 1 to 5, wherein a haze is 90% or more when incident light from a normal direction to the first main surface of the glass plate is transmitted.
  7.  前記ガラス板の第一の主面に対する法線方向からの入射光のうち、該入射方向に透過した波長400~700nmにおける全光線透過率の平均値が4%以上である、請求項1~6のいずれか1項に記載の光拡散板。 The incident light from the normal direction to the first main surface of the glass plate has an average value of total light transmittance of 4% or more at a wavelength of 400 to 700 nm transmitted in the incident direction. The light diffusing plate according to any one of the above.
  8.  前記ガラス板の第一の主面に対する法線方向からの入射光のうち、ガラス板の法線に対して30°方向に透過した波長400~700nmの光線の透過率の平均値が0.2%以上である、請求項1~7のいずれか1項に記載の光拡散板。 Of the incident light from the normal direction to the first main surface of the glass plate, the average transmittance of light having a wavelength of 400 to 700 nm transmitted in the direction of 30 ° with respect to the normal of the glass plate is 0.2. The light diffusion plate according to any one of claims 1 to 7, wherein the light diffusion plate is at least%.
  9.  前記ガラス板の第一の主面に対する法線方向からの入射光が透過するときの波長400~700nmの範囲における全光線反射率と全光線透過率の比率(全光線反射率/全光線透過率)が0.25以上である、請求項1~8のいずれか1項に記載の光拡散板。 Ratio of total light reflectance and total light transmittance in a wavelength range of 400 to 700 nm when incident light from the normal direction to the first main surface of the glass plate is transmitted (total light reflectance / total light transmittance). The light diffusing plate according to any one of claims 1 to 8, wherein) is 0.25 or more.
  10.  前記ガラス板の第一の主面に対する法線方向からの入射光が透過するときの波長400~700nmの範囲における、法線に対して30°の方向への透過率(30°透過率)と、直進方向の透過率(直進透過率)の比率(30°透過率/直進透過率)が0.05以上である、請求項1~9のいずれか1項に記載の光拡散板。 A transmittance in a direction of 30 ° with respect to the normal (30 ° transmittance) in a wavelength range of 400 to 700 nm when incident light from the normal direction to the first main surface of the glass plate is transmitted; The light diffusing plate according to any one of claims 1 to 9, wherein a ratio of transmittance in a straight traveling direction (straight traveling transmittance) (30 ° transmittance / straight traveling transmittance) is 0.05 or more.
  11.  前記ガラス板の板厚が0.05~3mmである請求項1~10のいずれか1項に記載の光拡散板。 The light diffusing plate according to any one of claims 1 to 10, wherein a thickness of the glass plate is 0.05 to 3 mm.
  12.  前記ガラス板の少なくとも一辺の寸法が200mm以上である請求項1~11のいずれか1項に記載の光拡散板。 The light diffusing plate according to any one of claims 1 to 11, wherein a dimension of at least one side of the glass plate is 200 mm or more.
  13.  ガラス板に、オルガノポリシロキサン前駆体及び屈折率が1.45以下の無機酸化物粒子を含む分散液を塗布し、前記分散液を硬化して光散乱膜を形成する光拡散板の製造方法。 A method for producing a light diffusing plate, wherein a dispersion containing an organopolysiloxane precursor and inorganic oxide particles having a refractive index of 1.45 or less is applied to a glass plate, and the dispersion is cured to form a light scattering film.
  14.  前記分散液の硬化が熱硬化であり、熱硬化は100~800℃の熱処理温度で行う、請求項13に記載の光拡散板の製造方法。 The method for producing a light diffusing plate according to claim 13, wherein the dispersion is cured by thermosetting, and the thermosetting is performed at a heat treatment temperature of 100 to 800 ° C.
PCT/JP2017/002012 2016-01-25 2017-01-20 Light diffusion plate WO2017130868A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-011213 2016-01-25
JP2016011213A JP2019053093A (en) 2016-01-25 2016-01-25 Light diffusion plate

Publications (1)

Publication Number Publication Date
WO2017130868A1 true WO2017130868A1 (en) 2017-08-03

Family

ID=59398840

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002012 WO2017130868A1 (en) 2016-01-25 2017-01-20 Light diffusion plate

Country Status (2)

Country Link
JP (1) JP2019053093A (en)
WO (1) WO2017130868A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109239977A (en) * 2018-11-12 2019-01-18 厦门天马微电子有限公司 A kind of backlight and display panel
WO2020031598A1 (en) * 2018-08-07 2020-02-13 三井金属鉱業株式会社 Light diffusion member, and light diffusion structure and light emitting structure, each of which uses same
CN112068353A (en) * 2020-09-09 2020-12-11 深圳创维-Rgb电子有限公司 Liquid crystal display module and liquid crystal splicing screen

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4010761A4 (en) 2020-03-13 2022-10-19 Samsung Electronics Co., Ltd. Display apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133285A1 (en) * 2007-04-24 2008-11-06 Asahi Glass Company, Limited Substrate with film, substrate with transparent conductive film, and light-emitting device
WO2015111660A1 (en) * 2014-01-24 2015-07-30 旭硝子株式会社 Base material with anti-glare layer and production method therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008133285A1 (en) * 2007-04-24 2008-11-06 Asahi Glass Company, Limited Substrate with film, substrate with transparent conductive film, and light-emitting device
WO2015111660A1 (en) * 2014-01-24 2015-07-30 旭硝子株式会社 Base material with anti-glare layer and production method therefor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020031598A1 (en) * 2018-08-07 2020-02-13 三井金属鉱業株式会社 Light diffusion member, and light diffusion structure and light emitting structure, each of which uses same
JPWO2020031598A1 (en) * 2018-08-07 2021-03-18 三井金属鉱業株式会社 Light diffusing member, and light diffusing structure and light emitting structure using this
CN109239977A (en) * 2018-11-12 2019-01-18 厦门天马微电子有限公司 A kind of backlight and display panel
CN112068353A (en) * 2020-09-09 2020-12-11 深圳创维-Rgb电子有限公司 Liquid crystal display module and liquid crystal splicing screen

Also Published As

Publication number Publication date
JP2019053093A (en) 2019-04-04

Similar Documents

Publication Publication Date Title
JP5849970B2 (en) Article having a low-reflection film
WO2017130868A1 (en) Light diffusion plate
TWI657276B (en) Light guide plate and display device comprising glass article
JP5447612B2 (en) Method for producing protective film for polarizing plate
CN103176229B (en) Compound optical reflecting film
US20060176429A1 (en) Diffusing structure with UV absorbing properties
JP7117165B2 (en) SUBSTRATE WITH ANTIGLARE FILM, IMAGE DISPLAY DEVICE, AND DIGITAL SIGNAGE
JP5176958B2 (en) Light diffusion layer forming coating solution and light diffusion plate
JP5052900B2 (en) Liquid crystal display
US20140002901A1 (en) Method for producing anti-glare film, anti-glare film, polarizing plate, and image display
CN107922245B (en) Glass light guide plate
KR20070095359A (en) Optical laminated film for liquid crystal display device
TW200839304A (en) Light diffusion plate, light diffusion layer forming liquid, and light diffusion plate manufacturing method
US20170291392A1 (en) Article having low reflection film
WO2015163330A1 (en) Anti-glare-layer substrate and article
WO2018031892A1 (en) Method and apparatus for laminated backlight unit
JP2019008906A (en) Wavelength conversion film and backlight unit
WO2018199120A1 (en) Film-attached glass substrate, article, and method for producing film-attached glass substrate
TW201908788A (en) Backlight units comprising a glass light guide plate and a coupling medium
JP2007272052A (en) Optical film
US20180031904A1 (en) Angular filters and display devices comprising the same
KR20180028798A (en) Glass light guide plate, backlight unit and display device including the same
TW202146944A (en) Backlights including patterned reflectors
JP2008129319A (en) Light-transmissive substrate with light-scattering film
TW201937199A (en) LCD backlight unit comprising a solvent free micro-replication resin

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP