WO2015111660A1 - Base material with anti-glare layer and production method therefor - Google Patents

Base material with anti-glare layer and production method therefor Download PDF

Info

Publication number
WO2015111660A1
WO2015111660A1 PCT/JP2015/051695 JP2015051695W WO2015111660A1 WO 2015111660 A1 WO2015111660 A1 WO 2015111660A1 JP 2015051695 W JP2015051695 W JP 2015051695W WO 2015111660 A1 WO2015111660 A1 WO 2015111660A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
convex parts
base material
antiglare layer
Prior art date
Application number
PCT/JP2015/051695
Other languages
French (fr)
Japanese (ja)
Inventor
あずさ ▲高▼井
敏 本谷
義美 大谷
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2015559105A priority Critical patent/JP6551235B2/en
Publication of WO2015111660A1 publication Critical patent/WO2015111660A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • G02B5/0221Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures the surface having an irregular structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/408Matt, dull surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective

Definitions

  • the present invention relates to a substrate with an antiglare layer and a method for producing the same.
  • an antiglare process is known in which an antiglare layer (hereinafter also referred to as an AG layer) is formed on a display surface to diffusely reflect external light.
  • Examples of the base material with an AG layer subjected to the anti-glare treatment include a base material with an AG layer in which an AG layer is formed by etching the surface of a glass plate using a reagent (hydrogen fluoride or the like).
  • a reagent hydrogen fluoride or the like.
  • it is necessary to use a reagent that is dangerous for the antiglare treatment in the base material with the AG layer the latent scratches are remarkable in the glass plate after etching, and the processing yield is bad, especially in the glass plate having a large area, the etching is not uniform. There are problems such as being easy to become.
  • a base material with an AG layer that solves the above problem
  • a base material with an AG layer in which an AG layer containing a silica-based matrix is formed on the base material has been proposed (for example, see Patent Document 1).
  • a method for forming the AG layer of the substrate with the AG layer for example, there is a method in which a coating liquid containing a silica-based matrix precursor (ethyl silicate, etc.) and a dispersion medium is applied to a heated substrate and then heated and cured. Can be mentioned.
  • a silica-based matrix precursor ethyl silicate, etc.
  • An object of the present invention is to provide a substrate with an AG layer that can sufficiently suppress glare and diffuse excellently diffuse external light with high efficiency, and has an excellent antiglare property, and a method for producing the substrate with an AG layer That is.
  • the present invention provides a substrate with an AG layer having the following configurations [1] to [9] and a method for producing the same.
  • convex parts measurement convex parts N P measured by the method is 37 or more, AG-layer-substrates. (Method for measuring the number of convex parts)
  • the difference in height relative to the minimum cross-section height is within a range of 500 ⁇ m in length in the horizontal axis direction.
  • a method for producing a base material with an AG layer having a base material and an AG layer formed on the base material including a silica-based matrix precursor and a dispersion medium and no silica fine particles liquid, said as convex parts N P of the AG layer surface measured by the convex parts measuring method is 37 or more, to form the AG layer was sprayed in a spraying method on a heated substrate, AG layer A manufacturing method of a substrate with a mark.
  • a method for producing a base material with an AG layer comprising a base material and an AG layer formed on the base material, wherein the silica-based matrix precursor and the average primary particle size are 0.1 to 1.
  • a coating solution containing a silica fine particles 0 ⁇ m and a dispersion medium, wherein as the convex parts N P of the AG layer surface measured by the convex parts measuring method is 37 or more, in spraying onto a heated substrate The manufacturing method of the base material with an AG layer which sprays and forms an AG layer.
  • the base material with an AG layer of the present invention can sufficiently suppress glare while efficiently reflecting external light with high efficiency, and has excellent antiglare properties. According to the method for producing a base material with an AG layer of the present invention, it is possible to obtain a base material with an AG layer that can sufficiently suppress glare and highly excellent anti-glare properties while efficiently reflecting external light with high efficiency. .
  • the substrate 1 with an AG layer of the present embodiment includes a substrate 10 and an AG layer 12 formed on the substrate 10.
  • Examples of the material of the substrate 10 include glass and plastic.
  • Examples of the glass include soda lime glass, aluminosilicate glass, alkali-free glass, borosilicate glass, and quartz glass.
  • Examples of the plastic include polycarbonate, polyethylene terephthalate, and triacetyl cellulose.
  • the surface of the base material 10 may be primed with a silane coupling agent or the like from the viewpoint of adhesion to the AG layer 12.
  • the shape of the substrate 10 is not particularly limited, and examples thereof include a plate shape, a film shape, a spherical shape, and a curved surface shape.
  • the thickness of the substrate 10 is preferably 0.05 to 2.5 mm, more preferably 0.1 to 2.2 mm.
  • a glass plate is preferable from the viewpoint of strength and scratch resistance, and a tempered glass plate having a thickness of 0.05 to 2.5 mm is particularly preferable.
  • the chemically strengthened glass which strengthened the aluminosilicate glass by the chemical strengthening process is preferable.
  • the AG layer 12 is classified into the following AG layer (i) or AG layer (ii) depending on whether or not it contains silica fine particles.
  • each of the AG layer (i) and the AG layer (ii) will be described.
  • the AG layer (i) is a layer that does not contain silica fine particles and satisfies the following conditions (1) and (2).
  • (1) Contains a silica-based matrix.
  • (2) convex parts N P measured by the convex parts measuring method described later in the AG layer surface is 37 or more.
  • silica-based matrix a known silica-based matrix used for the formation of the AG layer can be used.
  • a silica or silicone resin comprising a hydrolysis polymer of an alkoxysilane or a hydrolysis polymer of a silane coupling agent described later. Etc.
  • the method for measuring the number of convex portions is as follows.
  • the difference in height relative to the minimum cross-section height is within a range of 500 ⁇ m in length in the horizontal axis direction.
  • the number of protrusions having the above section height 100 nm, and the average value and the convex parts N P.
  • the height at the point a having the lowest height in the range of 500 ⁇ m in the horizontal axis direction is the lowest cross-sectional height
  • the cross-sectional height of the cross-sectional height is the minimum cross-sectional height.
  • the number of convex parts b by measuring the number of convex parts c and convex parts e having a height difference of 100 nm or more among convex parts b having a height difference of 50 nm, convex parts c having 120 nm, convex parts d having 80 nm, and convex parts e having 100 nm. Let it be NP .
  • Convex parts N P which is measured at the surface of the AG layer (i) is at 37 or more, more preferably 37 to 100, more preferably from 40 to 60, 44-55 amino are especially preferred. If convex parts N P is the lower limit or more, it can be suppressed to occur glare on AG layer surface. If convex parts N P is less than the upper limit, difficult compromise scratch resistance.
  • the AG layer (i) may contain components other than the silica-based matrix and the silica fine particles.
  • the other components include matrix and fine particles, metal fine particles, inorganic pigments and the like containing metal oxides such as titania, zirconia, alumina, indium tin oxide (ITO), and antimony tin oxide (ATO).
  • the glossiness of the AG layer (i) is an index of the AG effect.
  • the glossiness of the AG layer (i) is preferably 130 or less, and more preferably 110 or less.
  • the glossiness of the AG layer is measured by a method defined in 60 ° specular glossiness of JIS Z8741 (1997).
  • the surface roughness Ra of the AG layer (i) is preferably 0.01 ⁇ m or more, more preferably 0.01 to 1.0 ⁇ m, further preferably 0.03 to 0.5 ⁇ m, and particularly preferably 0.04 to 0.3 ⁇ m. preferable. If the surface roughness of the AG layer (i) is not less than the lower limit, the glossiness can be sufficiently suppressed and the AG effect is sufficiently exhibited. If the surface roughness Ra of the AG layer (i) is less than or equal to the above upper limit value, the resolution is hardly lowered and the haze tends to be sufficiently small.
  • the surface roughness Ra of the AG layer is an arithmetic average roughness measured according to JIS B0601 (2001).
  • the refractive index of the AG layer (i) is preferably 1.1 to 1.8, and more preferably 1.2 to 1.6. If the refractive index of the AG layer (i) is not less than the lower limit, a sufficient AG effect can be easily obtained. If the refractive index of the AG layer (i) is less than or equal to the upper limit value, the reflected light is unlikely to become strong.
  • the refractive index means a refractive index at 550 nm and is measured by a refractometer.
  • the AG layer (ii) contains silica fine particles and satisfies the following conditions (1) to (3).
  • (1) Contains a silica-based matrix.
  • (2) convex parts N P measured by the convex parts measuring method in AG layer surface is 37 or more.
  • (3) The average particle diameter of the silica fine particles contained in the AG layer (ii) is 0.1 to 1.0 ⁇ m.
  • Conditions (1) and (2) in the AG layer (ii) are the same as the conditions (1) and (2) in the AG layer (i), and preferred embodiments are also the same.
  • the AG layer (ii) contains silica fine particles having an average primary particle diameter of 0.1 to 1.0 ⁇ m (hereinafter also referred to as silica fine particles (P)), and therefore is more out of the AG layer (i).
  • silica fine particles (P) silica fine particles having an average primary particle diameter of 0.1 to 1.0 ⁇ m
  • the average primary particle diameter of the silica fine particles (P) is preferably from 0.1 to 1.0 ⁇ m, more preferably from 0.3 to 0.7 ⁇ m. If the average primary particle diameter of the silica fine particles (P) is within the above range, a sufficient glare suppressing effect is easily obtained.
  • silica fine particles (P) examples include solid silica fine particles, porous silica fine particles, and hollow silica fine particles.
  • the silica fine particles (P) may contain a metal other than Si. Examples of other metals include Al, Cu, Ce, Sn, Ti, Cr, Co, Fe, Mn, Ni, Zn, and Zr. Other metals may form a complex oxide with Si.
  • the ratio of the SiO 2 converted mass of the silica fine particles (P) to the SiO 2 converted mass of the silica-based matrix (hereinafter also referred to as SiO 2 ratio M1) is 0.01 to 20% by mass. Preferably, 0.1 to 10% by mass is more preferable. If the SiO 2 ratio M1 is equal to or greater than the lower limit, even if the surface roughness Ra of the AG layer is reduced, the AG effect of improving the visibility by irregularly reflecting external light is easily exhibited. If SiO 2 ratio M1 is less than the upper limit, adhesion strength between the base material of the AG layer tends to increase.
  • the AG layer (ii) may contain components other than the silica-based matrix and the silica fine particles. As this other component, the same thing as what was mentioned by AG layer (i) is mentioned, for example.
  • the haze of the substrate 1 with an AG layer is preferably 15% or less, and more preferably 10% or less. If the haze is less than or equal to the above upper limit value, it is easy to sufficiently suppress a decrease in image contrast.
  • the haze of the base material 1 with an AG layer is preferably as low as possible. The haze is measured using a commercially available haze meter according to JIS K7105 (1981).
  • the use of the substrate 1 with an AG layer is not particularly limited, and examples thereof include various image display devices (LCD, PDP, etc.), filters or protective plates for image display devices, and cover glasses for solar cells.
  • image display devices LCD, PDP, etc.
  • filters or protective plates for image display devices cover glasses for solar cells.
  • the base material with AG layer of this invention is not limited to the above-mentioned base material 1 with AG layer.
  • the base material with an AG layer of the present invention may be a base material with an AG layer in which AG layers are formed on both surfaces of the base material.
  • the substrate with an AG layer of the present invention may have one or more intermediate layers such as an antireflection layer, an alkali barrier layer, a colored layer, and an antistatic layer between the substrate and the AG layer. Good.
  • the substrate with an AG layer of the present invention has one or more upper layers such as an antireflection (AR) layer, a fingerprint adhesion prevention (AAFP) layer, a colored layer, and a scratch resistance improving layer on the surface of the AG layer. It may be.
  • AR antireflection
  • AAFP fingerprint adhesion prevention
  • the manufacturing method of the base material 1 with an AG layer will be described as an example of the manufacturing method of the base material with an AG layer.
  • the manufacturing method of the substrate 1 with an AG layer is classified into the following method (X) and method (Y) according to the type of the AG layer 12 to be formed.
  • (X) A method of forming the AG layer (i) as the AG layer 12.
  • (Y) A method of forming the AG layer (ii) as the AG layer 12.
  • the methods (X) and (Y) will be described.
  • Method (X) The method (X), wherein the precursor and the dispersion medium of the silica-based matrix, a coating solution containing no silica fine particles (hereinafter, the coating solution (Z1) and also referred.) And convex parts N P of the AG layer surface 37
  • the AG layer 12 is formed by spraying on the heated base material 10 by a spray method so as to be more than one, and heat curing as necessary.
  • the coating solution (Z1) is a dispersion containing a silica matrix precursor and a dispersion medium, and no silica fine particles.
  • the precursor of the silica-based matrix include a hydrolysis polymer of alkoxysilane, a hydrolysis polymer of silane coupling agent, and the like.
  • alkoxysilane examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, methyltrimethoxysilane, and ethyltriethoxysilane.
  • silane coupling agent examples include an alkoxysilane having a vinyl group (such as vinyltrimethoxysilane), an alkoxysilane having an epoxy group (such as 3-glycidoxypropyltrimethoxysilane), and an alkoxysilane having an acrylic group (3 -Acryloxypropyltrimethoxysilane, etc.).
  • dispersion medium examples include water, alcohols (methanol, ethanol, isopropanol, etc.), ketones (acetone, methyl ethyl ketone, etc.), ethers (tetrahydrofuran, 1,4-dioxane, etc.), esters (ethyl acetate, methyl acetate, etc.). Etc.), glycol ethers (ethylene glycol monoalkyl ether, etc.), nitrogen-containing compounds (N, N-dimethylacetamide, N, N-dimethylformamide, etc.), sulfur-containing compounds (dimethyl sulfoxide, etc.) and the like.
  • alcohols methanol, ethanol, isopropanol, etc.
  • ketones acetone, methyl ethyl ketone, etc.
  • ethers tetrahydrofuran, 1,4-dioxane, etc.
  • esters ethyl acetate, methyl acetate, etc.
  • the solid content concentration of the coating liquid (Z1) is preferably 0.3 to 6.0% by mass, and more preferably 1.0 to 5.0% by mass. If the solid content concentration of the coating solution (Z1) is equal to or higher than the lower limit, it is easy to form the AG layer 12 that exhibits a sufficient AG effect by the spray method. If the solid content concentration of the coating solution (Z1) is not more than the above upper limit value, the film thickness control of the AG layer 12 becomes easy.
  • Coating Solution (Z1) is convex parts N P of the AG layer surface which is formed such that 37 or more are sprayed with a spray method onto the heated substrate 10.
  • the droplet diameter of the coating liquid (Z1) can be appropriately adjusted by the type of spray nozzle, the spray pressure, the amount of liquid, etc. in the spray spraying apparatus. For example, in a two-fluid nozzle, the higher the spray pressure, the smaller the droplet, and the larger the liquid volume, the larger the droplet.
  • the conditions for spraying the coating liquid (Z1) are preferably such that the droplet diameter is 30 ⁇ m or less when water is sprayed. Is more preferable, and conditions of 3 to 15 ⁇ m are more preferable. If the droplet diameter is equal to or greater than the lower limit, the coating efficiency does not extremely decrease. If the droplet diameter is less than the upper limit, the convex parts N p tends to be 37 or more, thus easily obtained sufficient AG effect.
  • the droplet diameter is the Sauter average particle diameter measured by a laser measuring instrument.
  • the spray pressure is preferably from 0.1 to 0.7 MPa, more preferably from 0.2 to 0.5 MPa.
  • Examples of the nozzle in the spraying apparatus used for the spray method include a two-fluid spray nozzle and a one-fluid spray nozzle.
  • a spraying device having a two-fluid spray nozzle structure it is preferable to spray the coating solution by using a spraying device having a two-fluid spray nozzle structure.
  • the two-fluid spray nozzle here is a type having a nozzle that sprays a liquid by mixing it with a gas to form a fine mist, and a finer particle diameter is obtained than a one-fluid spray nozzle, and the liquid flow rate adjustment range Has the advantage of widening.
  • the distance between the tip of the spray nozzle and the substrate 10 when spraying the coating liquid onto the substrate is preferably 80 to 300 mm, more preferably 100 to 200 mm. If the distance between the tip of the spray nozzle and the substrate 10 is within the above range, an AG layer having excellent antiglare properties can be easily formed.
  • the heating temperature of the substrate 10 when the coating solution (Z1) is applied to the substrate surface is preferably 30 to 100 ° C., more preferably 40 to 95 ° C. If the heating temperature of the substrate 10 is the range, the convex parts N P tends to form a 37 or more AG layer 12. If the heating temperature of the base material 10 is equal to or higher than the lower limit value, the dispersion medium evaporates quickly, so that the AG layer 12 can be easily formed. If the heating temperature of the base material 10 is not more than the above upper limit value, it is easy to form the AG layer 12 having good adhesion to the base material 10.
  • a heated heat insulating plate may be disposed under the base material to suppress the temperature drop of the base material.
  • the heat curing temperature is preferably 100 to 700 ° C, more preferably 200 to 700 ° C.
  • Method (Y) The method (Y), the precursor and silica fine particles (P) and the coating liquid containing a dispersion medium of the silica-based matrix (hereinafter, the coating liquid (Z2) and also referred.) And convex parts N P of the AG layer surface 37
  • the AG layer 12 is formed by spraying on the heated base material 10 by a spray method so as to be more than one, and heat curing as necessary.
  • Coating solution (Z2) examples of the silica-based matrix precursor and the dispersion medium in the coating liquid (Z2) include the same ones as mentioned in the coating liquid (Z1).
  • the ratio of the SiO 2 equivalent mass of the silica fine particles (P) to the SiO 2 equivalent mass of the silica-based matrix precursor is preferably 0.01 to 20% by mass, preferably 0.1 to 10% by mass. Is more preferable.
  • the solid content concentration of the coating solution (Z2) is preferably 0.3 to 6.0% by mass, and more preferably 1.0 to 5.0% by mass. If the solid content concentration of the coating solution (Z2) is equal to or higher than the lower limit, it is easy to form the AG layer 12 that exhibits a sufficient AG effect by the spray method. If the solid content concentration of the coating solution (Z2) is equal to or lower than the upper limit, the film thickness control of the AG layer 12 becomes easy.
  • Application of the coating liquid (Z2) to the substrate surface in the method (Y) can be performed in the same manner as in the method (X) except that the coating liquid (Z2) is used instead of the coating liquid (Z1).
  • the preferred embodiment is also the same.
  • the convex parts N P is 37 or more AG layer is formed, by diffused reflection of external light at a high efficiency
  • the base material with an AG layer having an excellent antiglare property capable of sufficiently suppressing glare is obtained.
  • Examples 1 to 12 are examples, and examples 13 to 18 are comparative examples.
  • the AG layer As the glossiness of the AG layer, using a gloss meter (PG-3D type, manufactured by Nippon Denshoku Industries Co., Ltd.), the AG layer has a glossiness of 60 ° according to the method defined in JIS Z8741 (1997). The glossiness including the back surface reflection of the attached substrate was measured at the approximate center of the AG layer.
  • PG-3D type manufactured by Nippon Denshoku Industries Co., Ltd.
  • the glare of the base material with an AG layer was determined by visual observation according to the following criteria in a state where a green screen was displayed on an iPad (manufactured by Apple, Retina display model) and the base material with an AG layer was placed on the display. . “ ⁇ ”: No glare is observed. “ ⁇ ”: The glare is very slight. “ ⁇ ”: slight glare. “ ⁇ ”: Glare is recognized. “XX”: Glare is strongly recognized.
  • the surface roughness Ra of the AG layer was measured at substantially the center of the AG layer using a surface roughness measuring machine (Surfcom 130A, manufactured by Tokyo Seimitsu Co., Ltd.) in accordance with JIS B0601 (2001).
  • the measurement length was 4 mm, and the cut-off value was 0.25 mm.
  • a cross section of the AG layer of the obtained base material with an AG layer was cut out, the cross section was observed with a scanning electron microscope, the diameters of 10 silica fine particles were measured, and averaged to obtain an average primary particle diameter.
  • [Content of silica fine particles] The content of silica fine particles in the AG layer was measured as follows. The AG layer was observed with an optical microscope, the number of silica fine particles in three fields of 50 ⁇ m square in the observed image was measured, and the average value thereof was n. Next, the volume V 1 (%) occupied by the silica fine particles in a 50 ⁇ m square visual field was calculated by the following formula (1), and the content W of the silica fine particles was further calculated by the following formula (2). As the radius r of the silica fine particles, a value calculated from the average primary particle diameter of the silica fine particles in the AG layer was used.
  • Droplet diameter The droplet diameter during application of the coating liquid by the spray method was determined by measuring the Sauter average particle diameter when water was sprayed under the same conditions with a laser measuring instrument (manufactured by Malvern, Mastersizer S).
  • Solid silica fine particle dispersion ( ⁇ ) Solid silica fine particles (manufactured by Nippon Shokubai Co., Ltd., KE-P10 (trade name)) are mixed with dimethylacetamide so that the solid content concentration in terms of SiO 2 is 23% by mass, and a solid silica fine particle dispersion ( ⁇ ) (Hereinafter also referred to as dispersion ( ⁇ )).
  • Solid silica fine particle dispersion ( ⁇ ) Solid silica fine particles (manufactured by Nippon Shokubai Co., Ltd., KE-P30 (trade name)) are mixed with dimethylacetamide so that the solid content concentration in terms of SiO 2 is 23% by mass, and a solid silica fine particle dispersion ( ⁇ ) (Hereinafter also referred to as dispersion ( ⁇ )).
  • Solid silica fine particle dispersion ( ⁇ ) Solid silica fine particles (manufactured by Nippon Shokubai Co., Ltd., KE-P50 (trade name)) are mixed with dimethylacetamide so that the solid content concentration in terms of SiO 2 is 23% by mass, and a solid silica fine particle dispersion ( ⁇ ) (Hereinafter also referred to as dispersion ( ⁇ )).
  • Porous silica fine particle dispersion ( ⁇ ) Porous silica fine particles (manufactured by Nissan Chemical Industries, Light Star S23A (trade name)) are mixed with dimethylacetamide so that the solid content concentration in terms of SiO 2 is 23% by mass, and a porous silica fine particle dispersion ( ⁇ ) (Hereinafter also referred to as dispersion ( ⁇ )).
  • Solid silica fine particle dispersion ( ⁇ ) Solid silica fine particles (manufactured by Nippon Shokubai Co., Ltd., KE-P100 (trade name)) are mixed in a dimethylacetamide solution so that the solid content concentration in terms of SiO 2 is 23% by mass, and a solid silica fine particle dispersion ( ⁇ (Hereinafter also referred to as dispersion ( ⁇ )).
  • compositions of the coating solutions obtained in Production Examples 8 to 17 are shown in Table 1.
  • SiO 2 ratio M2 in Table 1 means the ratio of the SiO 2 equivalent mass of silica fine particles to the SiO 2 equivalent mass of the matrix precursor in the coating solution.
  • Example 1 A glass plate (soda lime glass, manufactured by Asahi Glass Co., Ltd., FL1.1, size: 300 mm ⁇ 300 mm, thickness 1.1 mm) was prepared as a transparent substrate. The surface of the glass plate was washed with sodium hydrogen carbonate water, rinsed with ion-exchanged water, and dried. Next, the glass plate was heated in an oven so that the surface temperature was 80 ° C., and the coating liquid (A) was applied onto the glass plate by the spray method under the following conditions. Spray pressure: 0.4 MPa Coating liquid amount: 7 mL / min, Nozzle moving speed: 750 mm / min, Spray pitch: 22mm, Distance between nozzle tip and glass plate: 115 mm Droplet diameter: 6.59 ⁇ m.
  • the spray pitch and spray pattern are as shown in FIG. 3, and the nozzle 20 is moved on the glass plate 10A so as to repeat the following (x1) to (x4) from the upper end to the lower end of the glass plate 10A.
  • the coating liquid (A) was applied to the entire surface of the plate 10A. This was used as a single-side coated product, and the same operation was further repeated 5 times to obtain a six-sided coated product, which was then heated and cured in an oven at 450 ° C. for 30 minutes to obtain a substrate with an AG layer.
  • (X1) The nozzle 20 is moved laterally from the first end 10a of the glass plate 10A to the second end 10b.
  • (X2) The nozzle 20 is moved 22 mm in the vertical direction.
  • the nozzle 20 is moved laterally from the second end 10b of the glass plate 10A to the second end 10b.
  • the nozzle 20 is moved 22 mm in the vertical direction.
  • a 6-axis coating robot manufactured by Kawasaki Robotics, JF-5 was used.
  • a SU1A nozzle manufactured by Spraying System Japan was used.
  • Examples 2 to 18 A base material with an AG layer was obtained in the same manner as in Example 1 except that the coating conditions were changed as shown in Tables 2 and 3.
  • Table 2 and Table 3 show the spray conditions and evaluation results in each example. Further, as a representative example of the cross-sectional curve graph obtained by measurement on the surface of the AG layer, a cross-sectional curve graph of the AG layer in the base material with an AG layer of Example 1 is shown in FIG. In FIG. 4, a solid line shows a roughness curve.
  • Examples 1 to 12 which are base materials with an AG layer of the present invention, had low gloss and good antiglare properties, and also suppressed glare. Further, in the substrates with AG layers of Examples 1 to 12, the haze that causes a decrease in contrast was sufficiently low. On the other hand, the glare was not sufficiently suppressed in the base material with an AG layer of Example 13 in which the average primary particle diameter of the silica fine particles contained in the AG layer was more than 1.0 ⁇ m. Also in AG layer substrate with the convex parts N Example P is less than 37 14-18 on the surface of the AG layer, glare is not sufficiently suppressed.
  • a base material with an anti-glare layer which can fully suppress glare, and has the outstanding anti-glare property can be provided while diffusely reflecting external light with high efficiency.
  • the base material with an antiglare layer of the present invention is useful for various image display devices (LCD, PDP, etc.), for image display device filters or protective plates, and for solar cell cover glasses.

Abstract

Provided are: a base material with anti-glare layer, that is capable of highly efficient diffuse reflection of external light, is capable of sufficiently suppressing glare, and has excellent anti-glare properties; and a production method for the base material with anti-glare layer. The base material (1) with anti-glare layer has a base material (10) and an anti-glare layer (12) formed upon the base material (10). The anti-glare layer (12) contains a silica-based matrix and does not contain silica microparticles or contains both a silica-based matrix and silica microparticles. The number of protrusions (NP) on the surface of the anti-glare layer (12), measured using a specific protrusion number measurement method, is at least 37. In the production method for the base material with anti-glare layer, a coating fluid including a silica-based matrix precursor and a dispersion medium is sprayed, using a spray method, on to the base material (10) that has been heated, and the anti-glare layer (12) is formed.

Description

アンチグレア層付き基材およびその製造方法Base material with antiglare layer and method for producing the same
 本発明は、アンチグレア層付き基材およびその製造方法に関する。 The present invention relates to a substrate with an antiglare layer and a method for producing the same.
 例えば、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)等の各種画像表示装置においては、室内照明(蛍光灯等)、太陽光等の外光が表示面に映り込むと、反射像によって視認性が低下する。反射像による視認性の低下を抑制する方法としては、表示面上にアンチグレア層(以下、AG層とも記す。)を形成して外光を乱反射させる、いわゆるアンチグレア処理が知られている。 For example, in various image display devices such as a liquid crystal display (LCD) and a plasma display (PDP), when external light such as indoor lighting (fluorescent lamps) and sunlight is reflected on the display surface, the reflected image provides visibility. descend. As a method for suppressing a reduction in visibility due to a reflected image, a so-called antiglare process is known in which an antiglare layer (hereinafter also referred to as an AG layer) is formed on a display surface to diffusely reflect external light.
 アンチグレア処理が施されたAG層付き基材としては、例えば、試薬(フッ化水素等)を用いてガラス板の表面をエッチングしてAG層を形成したAG層付き基材が挙げられる。しかし、該AG層付き基材では、アンチグレア処理に危険な試薬を用いる必要がある、エッチング後のガラス板で潜傷が顕著となり加工歩留まりが悪い、特に面積の大きいガラス板ではエッチングが不均一になりやすい等の問題がある。 Examples of the base material with an AG layer subjected to the anti-glare treatment include a base material with an AG layer in which an AG layer is formed by etching the surface of a glass plate using a reagent (hydrogen fluoride or the like). However, it is necessary to use a reagent that is dangerous for the antiglare treatment in the base material with the AG layer, the latent scratches are remarkable in the glass plate after etching, and the processing yield is bad, especially in the glass plate having a large area, the etching is not uniform. There are problems such as being easy to become.
 前記問題を解決するAG層付き基材としては、基材上にシリカ系マトリックスを含有するAG層を形成したAG層付き基材が提案されている(例えば、特許文献1参照)。
 該AG層付き基材のAG層を形成する方法としては、例えば、シリカ系マトリックスの前駆体(エチルシリケート等)と分散媒を含む塗布液を加熱した基材に塗布し、加熱養生する方法が挙げられる。
As a base material with an AG layer that solves the above problem, a base material with an AG layer in which an AG layer containing a silica-based matrix is formed on the base material has been proposed (for example, see Patent Document 1).
As a method for forming the AG layer of the substrate with the AG layer, for example, there is a method in which a coating liquid containing a silica-based matrix precursor (ethyl silicate, etc.) and a dispersion medium is applied to a heated substrate and then heated and cured. Can be mentioned.
特開昭60-109134号公報JP-A-60-109134
 しかし、特許文献1のようなAG層付き基材では、特に乱反射の効率を高めるために塗布液を塗り重ねてAG層の光沢度を低くした場合に、AG層表面にぎらつきが生じて視認性が低下することがある。 However, in the case of a substrate with an AG layer as in Patent Document 1, when the gloss of the AG layer is lowered by repeatedly applying a coating solution in order to increase the efficiency of irregular reflection, the surface of the AG layer is glaring and visibility is reduced. May decrease.
 本発明の目的は、外光を高効率に乱反射させつつ、ぎらつきを充分に抑制でき、優れた防眩性を有するAG層付き基材、および該AG層付き基材の製造方法を提供することである。 An object of the present invention is to provide a substrate with an AG layer that can sufficiently suppress glare and diffuse excellently diffuse external light with high efficiency, and has an excellent antiglare property, and a method for producing the substrate with an AG layer That is.
 本発明は、以下の[1]~[9]の構成を有するAG層付き基材およびその製造方法を提供する。
[1]基材と、該基材上に形成されたAG層とを有し、前記AG層がシリカ系マトリックスを含有し、かつシリカ微粒子を含有しない層であり、前記AG層の表面において下記の凸部数計測方法で計測される凸部数Nが37個以上である、AG層付き基材。
 (凸部数計測方法)
 AG層の表面の任意の3箇所について、JIS B0601(2001年)に準拠して測定されたそれぞれの断面曲線グラフにおいて、横軸方向に長さ500μmの範囲内で、最低断面高さに対する高低差が100nm以上の断面高さを有する凸部の数を計測し、その平均値を凸部数Nとする。
[2]基材と、該基材上に形成されたAG層とを有し、前記AG層が、シリカ系マトリックスおよびシリカ微粒子を含有し、前記シリカ微粒子の平均一次粒子径が0.1~1.0μmであり、前記AG層の表面において前記凸部数計測方法で計測される凸部数Nが37個以上である、AG層付き基材。
[3]前記AG層の表面の光沢度が130以下である、前記[1]または[2]のAG層付き基材。
[4]前記AG層の表面粗さRaが0.01μm以上である、前記[1]~[3]のいずれかのAG層付き基材。
[5]前記基材が、厚さ0.05~2.5mmの強化ガラス板である、前記[1]~[4]のいずれかのAG層付き基材。
[6]基材と、該基材上に形成されたAG層とを有するAG層付き基材の製造方法であって、シリカ系マトリックスの前駆体と分散媒を含み、シリカ微粒子を含まない塗布液を、前記凸部数計測方法で計測されるAG層表面の凸部数Nが37個以上となるように、加熱された基材上にスプレー法で噴霧してAG層を形成する、AG層付き基材の製造方法。
[7]基材と、該基材上に形成されたAG層とを有するAG層付き基材の製造方法であって、シリカ系マトリックスの前駆体と平均一次粒子径が0.1~1.0μmのシリカ微粒子と分散媒とを含む塗布液を、前記凸部数計測方法で計測されるAG層表面の凸部数Nが37個以上となるように、加熱された基材上にスプレー法で噴霧してAG層を形成する、AG層付き基材の製造方法。
[8]前記塗布液の固形分濃度が0.3~6.0質量%である、前記[6]または[7]のAG層付き基材の製造方法。
[9]前記塗布液を、二流体スプレーノズル構造を有するスプレー噴霧装置を用いて噴霧する、前記[6]~[8]のいずれかのアンチグレア層付き基材の製造方法。
The present invention provides a substrate with an AG layer having the following configurations [1] to [9] and a method for producing the same.
[1] A base material and an AG layer formed on the base material, wherein the AG layer contains a silica-based matrix and does not contain silica fine particles. convex parts measurement convex parts N P measured by the method is 37 or more, AG-layer-substrates.
(Method for measuring the number of convex parts)
In each cross-section curve graph measured in accordance with JIS B0601 (2001) at any three points on the surface of the AG layer, the difference in height relative to the minimum cross-section height is within a range of 500 μm in length in the horizontal axis direction. There was measured the number of protrusions having the above section height 100 nm, and the average value and the convex parts N P.
[2] A base material and an AG layer formed on the base material, wherein the AG layer contains a silica-based matrix and silica fine particles, and the average primary particle diameter of the silica fine particles is 0.1 to a 1.0 .mu.m, the convex parts N P measured by the convex parts measuring method on the surface of the AG layer is 37 or more, AG layer-substrate.
[3] The substrate with an AG layer according to [1] or [2], wherein the surface gloss of the AG layer is 130 or less.
[4] The substrate with an AG layer according to any one of [1] to [3], wherein the surface roughness Ra of the AG layer is 0.01 μm or more.
[5] The substrate with an AG layer according to any one of [1] to [4], wherein the substrate is a tempered glass plate having a thickness of 0.05 to 2.5 mm.
[6] A method for producing a base material with an AG layer having a base material and an AG layer formed on the base material, the method including a silica-based matrix precursor and a dispersion medium and no silica fine particles liquid, said as convex parts N P of the AG layer surface measured by the convex parts measuring method is 37 or more, to form the AG layer was sprayed in a spraying method on a heated substrate, AG layer A manufacturing method of a substrate with a mark.
[7] A method for producing a base material with an AG layer comprising a base material and an AG layer formed on the base material, wherein the silica-based matrix precursor and the average primary particle size are 0.1 to 1. a coating solution containing a silica fine particles 0μm and a dispersion medium, wherein as the convex parts N P of the AG layer surface measured by the convex parts measuring method is 37 or more, in spraying onto a heated substrate The manufacturing method of the base material with an AG layer which sprays and forms an AG layer.
[8] The method for producing a substrate with an AG layer according to [6] or [7], wherein the solid content concentration of the coating solution is 0.3 to 6.0% by mass.
[9] The method for producing a substrate with an antiglare layer according to any one of [6] to [8], wherein the coating liquid is sprayed using a spray spraying device having a two-fluid spray nozzle structure.
 本発明のAG層付き基材は、外光を高効率に乱反射させつつ、ぎらつきを充分に抑制でき、優れた防眩性を有している。
 本発明のAG層付き基材の製造方法によれば、外光を高効率に乱反射させつつ、ぎらつきを充分に抑制でき、優れた防眩性を有するAG層付き基材を得ることができる。
The base material with an AG layer of the present invention can sufficiently suppress glare while efficiently reflecting external light with high efficiency, and has excellent antiglare properties.
According to the method for producing a base material with an AG layer of the present invention, it is possible to obtain a base material with an AG layer that can sufficiently suppress glare and highly excellent anti-glare properties while efficiently reflecting external light with high efficiency. .
本発明のAG層付き基材の一例を示した断面図である。It is sectional drawing which showed an example of the base material with AG layer of this invention. 本発明における凸部数計測方法を説明する図である。It is a figure explaining the convex part number measuring method in this invention. 実施例におけるスプレーピッチおよびスプレーパターンを示した図である。It is the figure which showed the spray pitch and spray pattern in an Example. 例1のAG層付き基材のAG層の断面曲線グラフである。2 is a cross-sectional curve graph of an AG layer of a base material with an AG layer of Example 1.
<AG層付き基材>
 以下、本発明のAG層付き基材の一例を示して説明する。
 本実施形態のAG層付き基材1は、図1に示すように、基材10と、基材10上に形成されたAG層12とを有する。
<Base material with AG layer>
Hereinafter, an example of the substrate with an AG layer of the present invention will be described and described.
As shown in FIG. 1, the substrate 1 with an AG layer of the present embodiment includes a substrate 10 and an AG layer 12 formed on the substrate 10.
[基材]
 基材10の材質としては、ガラス、プラスチック等が挙げられる。
 ガラスとしては、ソーダライムガラス、アルミノシリケートガラス、無アルカリガラス、ホウ珪酸ガラス、石英ガラス等が挙げられる。
 プラスチックとしては、ポリカーボネート、ポリエチレンテレフタレート、トリアセチルセルロース等が挙げられる。基材10の材質がプラスチックの場合には、AG層12との密着性の点から、基材10の表面にシランカップリング剤等によるプライマー処理が施されていてもよい。
 基材10の形状としては、特に限定されず、板状、フィルム状、球状、曲面形状等が挙げられる。
[Base material]
Examples of the material of the substrate 10 include glass and plastic.
Examples of the glass include soda lime glass, aluminosilicate glass, alkali-free glass, borosilicate glass, and quartz glass.
Examples of the plastic include polycarbonate, polyethylene terephthalate, and triacetyl cellulose. When the material of the base material 10 is plastic, the surface of the base material 10 may be primed with a silane coupling agent or the like from the viewpoint of adhesion to the AG layer 12.
The shape of the substrate 10 is not particularly limited, and examples thereof include a plate shape, a film shape, a spherical shape, and a curved surface shape.
 基材10がガラス板の場合、基材10の厚さは、0.05~2.5mmが好ましく、0.1~2.2mmがより好ましい。
 基材10としては、強度や耐擦傷性の点からガラス板が好ましく、厚さが0.05~2.5mmの強化ガラス板が特に好ましい。また、基材10を厚みの薄い強化ガラス板とする場合は、アルミノシリケートガラスを化学強化処理により強化した化学強化ガラスが好ましい。
When the substrate 10 is a glass plate, the thickness of the substrate 10 is preferably 0.05 to 2.5 mm, more preferably 0.1 to 2.2 mm.
As the substrate 10, a glass plate is preferable from the viewpoint of strength and scratch resistance, and a tempered glass plate having a thickness of 0.05 to 2.5 mm is particularly preferable. Moreover, when making the base material 10 into a thin tempered glass board, the chemically strengthened glass which strengthened the aluminosilicate glass by the chemical strengthening process is preferable.
[AG層]
 AG層12は、シリカ微粒子を含有するか否かによって以下のAG層(i)またはAG層(ii)に分類される。
 (i)シリカ微粒子を含有しないAG層。
 (ii)シリカ微粒子を含有するAG層。
 以下、AG層(i)およびAG層(ii)についてそれぞれ説明する。
[AG layer]
The AG layer 12 is classified into the following AG layer (i) or AG layer (ii) depending on whether or not it contains silica fine particles.
(I) AG layer not containing silica fine particles.
(Ii) AG layer containing silica fine particles.
Hereinafter, each of the AG layer (i) and the AG layer (ii) will be described.
 (AG層(i))
 AG層(i)は、シリカ微粒子を含有しない層であり、以下の条件(1)および(2)を満たす。
 (1)シリカ系マトリックスを含有する。
 (2)AG層表面において後述の凸部数計測方法で計測される凸部数Nが37個以上である。
(AG layer (i))
The AG layer (i) is a layer that does not contain silica fine particles and satisfies the following conditions (1) and (2).
(1) Contains a silica-based matrix.
(2) convex parts N P measured by the convex parts measuring method described later in the AG layer surface is 37 or more.
 シリカ系マトリックスとしては、AG層の形成に使用される公知のシリカ系マトリックスが使用でき、例えば、後述のアルコキシシランの加水分解重合物またはシランカップリング剤の加水分解重合物からなるシリカ、シリコーン樹脂等が挙げられる。 As the silica-based matrix, a known silica-based matrix used for the formation of the AG layer can be used. For example, a silica or silicone resin comprising a hydrolysis polymer of an alkoxysilane or a hydrolysis polymer of a silane coupling agent described later. Etc.
 凸部数計測方法は、以下のとおりである。
 AG層の表面の任意の3箇所について、JIS B0601(2001年)に準拠して測定されたそれぞれの断面曲線グラフにおいて、横軸方向に長さ500μmの範囲内で、最低断面高さに対する高低差が100nm以上の断面高さを有する凸部の数を計測し、その平均値を凸部数Nとする。
 例えば、図2に例示した断面曲線グラフでは、横軸方向に長さ500μmの範囲内において、最も高さが低い点aにおける高さを最低断面高さとし、該最低断面高さとの断面高さの高低差が50nmの凸部b、120nmの凸部c、80nmの凸部d、100nmの凸部eのうち、高低差が100nm以上の凸部c、凸部eの数を計測して凸部数Nとする。
The method for measuring the number of convex portions is as follows.
In each cross-section curve graph measured in accordance with JIS B0601 (2001) at any three points on the surface of the AG layer, the difference in height relative to the minimum cross-section height is within a range of 500 μm in length in the horizontal axis direction. There was measured the number of protrusions having the above section height 100 nm, and the average value and the convex parts N P.
For example, in the cross-sectional curve graph illustrated in FIG. 2, the height at the point a having the lowest height in the range of 500 μm in the horizontal axis direction is the lowest cross-sectional height, and the cross-sectional height of the cross-sectional height is the minimum cross-sectional height. The number of convex parts b by measuring the number of convex parts c and convex parts e having a height difference of 100 nm or more among convex parts b having a height difference of 50 nm, convex parts c having 120 nm, convex parts d having 80 nm, and convex parts e having 100 nm. Let it be NP .
 AG層(i)の表面において計測される凸部数Nは、37個以上であり、37~100個がより好ましく、40~60個がさらに好ましく、44~55個が特に好ましい。凸部数Nが前記下限値以上であれば、AG層表面にぎらつきが生じることを抑制できる。凸部数Nが前記上限値以下であれば、耐傷性を損ないにくい。 Convex parts N P which is measured at the surface of the AG layer (i) is at 37 or more, more preferably 37 to 100, more preferably from 40 to 60, 44-55 amino are especially preferred. If convex parts N P is the lower limit or more, it can be suppressed to occur glare on AG layer surface. If convex parts N P is less than the upper limit, difficult compromise scratch resistance.
 AG層(i)は、シリカ系マトリックスおよびシリカ微粒子以外の他の成分を含有してもよい。該他の成分としては、例えば、チタニア、ジルコニア、アルミナ、酸化インジウムスズ(ITO)、酸化アンチモンスズ(ATO)等の酸化金属を成分とするマトリックスおよび微粒子、金属微粒子、無機顔料等が挙げられる。 The AG layer (i) may contain components other than the silica-based matrix and the silica fine particles. Examples of the other components include matrix and fine particles, metal fine particles, inorganic pigments and the like containing metal oxides such as titania, zirconia, alumina, indium tin oxide (ITO), and antimony tin oxide (ATO).
 AG層(i)の光沢度は、AG効果の指標となる。
 AG層(i)の光沢度は、130以下が好ましく、110以下がより好ましい。
 AG層の光沢度は、JIS Z8741(1997年)の60°鏡面光沢度に規定されている方法で測定される。
The glossiness of the AG layer (i) is an index of the AG effect.
The glossiness of the AG layer (i) is preferably 130 or less, and more preferably 110 or less.
The glossiness of the AG layer is measured by a method defined in 60 ° specular glossiness of JIS Z8741 (1997).
 AG層(i)の表面粗さRaは、0.01μm以上が好ましく、0.01~1.0μmがより好ましく、0.03~0.5μmがさらに好ましく、0.04~0.3μmが特に好ましい。AG層(i)の表面粗さが前記下限値以上であれば、光沢度を充分に抑えやすく、AG効果が充分に発揮される。AG層(i)の表面粗さRaが前記上限値以下であれば、解像度の低下が少なく、かつヘイズが充分に小さくなりやすい。
 AG層の表面粗さRaは、JIS B0601(2001年)に準拠して測定される算術平均粗さである。
The surface roughness Ra of the AG layer (i) is preferably 0.01 μm or more, more preferably 0.01 to 1.0 μm, further preferably 0.03 to 0.5 μm, and particularly preferably 0.04 to 0.3 μm. preferable. If the surface roughness of the AG layer (i) is not less than the lower limit, the glossiness can be sufficiently suppressed and the AG effect is sufficiently exhibited. If the surface roughness Ra of the AG layer (i) is less than or equal to the above upper limit value, the resolution is hardly lowered and the haze tends to be sufficiently small.
The surface roughness Ra of the AG layer is an arithmetic average roughness measured according to JIS B0601 (2001).
 AG層(i)の屈折率は、1.1~1.8が好ましく、1.2~1.6がより好ましい。AG層(i)の屈折率が前記下限値以上であれば、充分なAG効果が得られやすい。AG層(i)の屈折率が前記上限値以下であれば、反射光が強くなりにくい。
 屈折率は、550nmにおける屈折率を意味し、屈折率計により測定される。
The refractive index of the AG layer (i) is preferably 1.1 to 1.8, and more preferably 1.2 to 1.6. If the refractive index of the AG layer (i) is not less than the lower limit, a sufficient AG effect can be easily obtained. If the refractive index of the AG layer (i) is less than or equal to the upper limit value, the reflected light is unlikely to become strong.
The refractive index means a refractive index at 550 nm and is measured by a refractometer.
 (AG層(ii))
 AG層(ii)は、シリカ微粒子を含み、かつ以下の条件(1)~(3)を満たす。
 (1)シリカ系マトリックスを含有する。
 (2)AG層表面において前記凸部数計測方法で計測される凸部数Nが37個以上である。
 (3)AG層(ii)に含有されるシリカ微粒子の平均粒子径が0.1~1.0μmである。
 AG層(ii)における条件(1)および(2)は、AG層(i)における条件(1)および(2)と同じであり、好ましい態様も同じである。
(AG layer (ii))
The AG layer (ii) contains silica fine particles and satisfies the following conditions (1) to (3).
(1) Contains a silica-based matrix.
(2) convex parts N P measured by the convex parts measuring method in AG layer surface is 37 or more.
(3) The average particle diameter of the silica fine particles contained in the AG layer (ii) is 0.1 to 1.0 μm.
Conditions (1) and (2) in the AG layer (ii) are the same as the conditions (1) and (2) in the AG layer (i), and preferred embodiments are also the same.
 AG層(ii)は、平均一次粒子径が0.1~1.0μmのシリカ微粒子(以下、シリカ微粒子(P)とも記す。)を含有しているため、AG層(i)に比べて外光を高効率に乱反射させつつ、ぎらつきを充分に抑制する効果が高い。 The AG layer (ii) contains silica fine particles having an average primary particle diameter of 0.1 to 1.0 μm (hereinafter also referred to as silica fine particles (P)), and therefore is more out of the AG layer (i). The effect of sufficiently suppressing glare while reflecting light with high efficiency is high.
 シリカ微粒子(P)の平均一次粒子径は、0.1~1.0μmが好ましく、0.3~0.7μmがより好ましい。シリカ微粒子(P)の平均一次粒子径が前記範囲内であれば、充分なぎらつき抑制効果が得られやすい。 The average primary particle diameter of the silica fine particles (P) is preferably from 0.1 to 1.0 μm, more preferably from 0.3 to 0.7 μm. If the average primary particle diameter of the silica fine particles (P) is within the above range, a sufficient glare suppressing effect is easily obtained.
 シリカ微粒子(P)としては、例えば、中実シリカ微粒子、多孔質シリカ微粒子、中空シリカ微粒子等が挙げられる。
 シリカ微粒子(P)は、Si以外の他の金属を含んでいてもよい。他の金属としては、Al、Cu、Ce、Sn、Ti、Cr、Co、Fe、Mn、Ni、Zn、Zr等が挙げられる。他の金属は、Siとともに複合酸化物を形成していてもよい。
Examples of the silica fine particles (P) include solid silica fine particles, porous silica fine particles, and hollow silica fine particles.
The silica fine particles (P) may contain a metal other than Si. Examples of other metals include Al, Cu, Ce, Sn, Ti, Cr, Co, Fe, Mn, Ni, Zn, and Zr. Other metals may form a complex oxide with Si.
 AG層(ii)における、シリカ系マトリックスのSiO換算質量に対する、シリカ微粒子(P)のSiO換算質量の比率(以下、SiO比率M1とも記す。)は、0.01~20質量%が好ましく、0.1~10質量%がより好ましい。SiO比率M1が前記下限値以上であれば、AG層の表面粗さRaを小さくしても、外光を乱反射させて視認性を高めるAG効果が充分に発揮されやすい。SiO比率M1が前記上限値以下であれば、AG層の基材との密着強度が高くなりやすい。 In the AG layer (ii), the ratio of the SiO 2 converted mass of the silica fine particles (P) to the SiO 2 converted mass of the silica-based matrix (hereinafter also referred to as SiO 2 ratio M1) is 0.01 to 20% by mass. Preferably, 0.1 to 10% by mass is more preferable. If the SiO 2 ratio M1 is equal to or greater than the lower limit, even if the surface roughness Ra of the AG layer is reduced, the AG effect of improving the visibility by irregularly reflecting external light is easily exhibited. If SiO 2 ratio M1 is less than the upper limit, adhesion strength between the base material of the AG layer tends to increase.
 AG層(ii)は、シリカ系マトリックスおよびシリカ微粒子以外の他の成分を含有してもよい。該他の成分としては、例えば、AG層(i)で挙げたものと同じものが挙げられる。 The AG layer (ii) may contain components other than the silica-based matrix and the silica fine particles. As this other component, the same thing as what was mentioned by AG layer (i) is mentioned, for example.
[ヘイズ]
 AG層付き基材1のヘイズは、15%以下が好ましく、10%以下がより好ましい。ヘイズが前記上限値以下であれば、画像のコントラストの低下を充分に抑えやすい。AG層付き基材1のヘイズは、低ければ低いほどよい。
 ヘイズは、JIS K7105(1981年)に準拠し、市販のヘイズメーターを用いて測定される。
[Haze]
The haze of the substrate 1 with an AG layer is preferably 15% or less, and more preferably 10% or less. If the haze is less than or equal to the above upper limit value, it is easy to sufficiently suppress a decrease in image contrast. The haze of the base material 1 with an AG layer is preferably as low as possible.
The haze is measured using a commercially available haze meter according to JIS K7105 (1981).
[用途]
 AG層付き基材1の用途としては、特に限定されず、例えば、各種画像表示装置(LCD、PDP等)、画像表示装置用フィルタまたは保護板、太陽電池用カバーガラス等が挙げられる。
[Usage]
The use of the substrate 1 with an AG layer is not particularly limited, and examples thereof include various image display devices (LCD, PDP, etc.), filters or protective plates for image display devices, and cover glasses for solar cells.
[作用効果]
 以上説明した本発明のAG層付き基材にあっては、前記した条件(2)を満たすAG層が形成されているため、塗布液を塗り重ねて光沢度を低くしても、AG層表面がぎらつくことを抑制できる。そのため、外光を高効率に乱反射させつつ、ぎらつきを充分に抑制でき、優れた防眩性が得られる。このような効果が得られる要因は、以下のように考えられる。
 塗布液を塗り重ね、AG層表面を粗くして光沢度を低くしても、AG層が条件(2)を満たしていれば、AG層表面の凹凸の各部分で屈折した光同士がAG層の表面近傍で互いに干渉しにくくなると考えられる。その結果、外光を高効率に乱反射させつつ、ぎらつきを充分に抑制できると考えられる。また、さらにシリカ微粒子を含有する場合は、条件(2)および(3)を同時に満たすことにより、さらに高いぎらつき抑制効果が得られる。
[Function and effect]
In the base material with an AG layer of the present invention described above, since the AG layer satisfying the above condition (2) is formed, the surface of the AG layer can be obtained even when the coating liquid is applied and the glossiness is lowered. It is possible to suppress glare. Therefore, the glare can be sufficiently suppressed while externally reflecting external light with high efficiency, and excellent antiglare properties can be obtained. The factors for obtaining such an effect are considered as follows.
Even if the coating solution is applied repeatedly, the surface of the AG layer is roughened and the glossiness is lowered, if the AG layer satisfies the condition (2), the light refracted in each of the uneven portions on the surface of the AG layer is reflected in the AG layer. It is thought that it becomes difficult to interfere with each other in the vicinity of the surface. As a result, it is considered that glare can be sufficiently suppressed while externally reflecting external light with high efficiency. Further, when silica fine particles are further contained, a further high glare suppressing effect can be obtained by simultaneously satisfying the conditions (2) and (3).
 なお、本発明のAG層付き基材は、前記したAG層付き基材1には限定されない。例えば、本発明のAG層付き基材は、基材の両面にAG層が形成されたAG層付き基材であってもよい。
 また、本発明のAG層付き基材は、基材とAG層の間に、反射防止層、アルカリバリヤ層、着色層、帯電防止層等の中間層を1層ないし複数層有していてもよい。
 また、本発明のAG層付き基材は、AG層の表面に反射防止(AR)層、指紋付着防止(AAFP)層、着色層、耐傷性向上層等の上層を1層ないし複数層有していてもよい。
In addition, the base material with AG layer of this invention is not limited to the above-mentioned base material 1 with AG layer. For example, the base material with an AG layer of the present invention may be a base material with an AG layer in which AG layers are formed on both surfaces of the base material.
The substrate with an AG layer of the present invention may have one or more intermediate layers such as an antireflection layer, an alkali barrier layer, a colored layer, and an antistatic layer between the substrate and the AG layer. Good.
Further, the substrate with an AG layer of the present invention has one or more upper layers such as an antireflection (AR) layer, a fingerprint adhesion prevention (AAFP) layer, a colored layer, and a scratch resistance improving layer on the surface of the AG layer. It may be.
<AG層付き基材の製造方法>
 以下、AG層付き基材の製造方法の一例として、AG層付き基材1の製造方法について説明する。
 AG層付き基材1の製造方法としては、形成するAG層12の種類に応じて、以下の方法(X)および方法(Y)に分類される。
 (X)AG層12としてAG層(i)を形成する方法。
 (Y)AG層12としてAG層(ii)を形成する方法。
 以下、方法(X)および(Y)について説明する。
<Method for producing substrate with AG layer>
Hereinafter, the manufacturing method of the base material 1 with an AG layer will be described as an example of the manufacturing method of the base material with an AG layer.
The manufacturing method of the substrate 1 with an AG layer is classified into the following method (X) and method (Y) according to the type of the AG layer 12 to be formed.
(X) A method of forming the AG layer (i) as the AG layer 12.
(Y) A method of forming the AG layer (ii) as the AG layer 12.
Hereinafter, the methods (X) and (Y) will be described.
[方法(X)]
 方法(X)としては、シリカ系マトリックスの前駆体と分散媒を含み、シリカ微粒子を含まない塗布液(以下、塗布液(Z1)とも記す。)を、AG層表面の凸部数Nが37個以上となるように、加熱した基材10上にスプレー法で噴霧し、必要に応じて加熱養生してAG層12を形成する方法が挙げられる。
[Method (X)]
The method (X), wherein the precursor and the dispersion medium of the silica-based matrix, a coating solution containing no silica fine particles (hereinafter, the coating solution (Z1) and also referred.) And convex parts N P of the AG layer surface 37 There is a method in which the AG layer 12 is formed by spraying on the heated base material 10 by a spray method so as to be more than one, and heat curing as necessary.
(塗布液(Z1))
 塗布液(Z1)は、シリカ系マトリックスの前駆体と分散媒を含み、シリカ微粒子を含まない分散液である。
 シリカ系マトリックスの前駆体としては、例えば、アルコキシシランの加水分解重合物、シランカップリング剤の加水分解重合物等が挙げられる。
(Coating solution (Z1))
The coating solution (Z1) is a dispersion containing a silica matrix precursor and a dispersion medium, and no silica fine particles.
Examples of the precursor of the silica-based matrix include a hydrolysis polymer of alkoxysilane, a hydrolysis polymer of silane coupling agent, and the like.
 アルコキシシランとしては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、メチルトリメトキシシラン、エチルトリエトキシシラン等が挙げられる。 Examples of the alkoxysilane include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, methyltrimethoxysilane, and ethyltriethoxysilane.
 シランカップリング剤としては、例えば、ビニル基を有するアルコキシシラン(ビニルトリメトキシシラン等)、エポキシ基を有するアルコキシシラン(3-グリシドキシプロピルトリメトキシシラン等)、アクリル基を有するアルコキシシラン(3-アクリロキシプロピルトリメトキシシラン等)等が挙げられる。 Examples of the silane coupling agent include an alkoxysilane having a vinyl group (such as vinyltrimethoxysilane), an alkoxysilane having an epoxy group (such as 3-glycidoxypropyltrimethoxysilane), and an alkoxysilane having an acrylic group (3 -Acryloxypropyltrimethoxysilane, etc.).
 分散媒としては、例えば、水、アルコール類(メタノール、エタノール、イソプロパノール等)、ケトン類(アセトン、メチルエチルケトン等)、エーテル類(テトラヒドロフラン、1,4-ジオキサン等)、エステル類(酢酸エチル、酢酸メチル等)、グリコールエーテル類(エチレングリコールモノアルキルエーテル等)、含窒素化合物類(N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等)、含硫黄化合物類(ジメチルスルホキシド等)等が挙げられる。 Examples of the dispersion medium include water, alcohols (methanol, ethanol, isopropanol, etc.), ketones (acetone, methyl ethyl ketone, etc.), ethers (tetrahydrofuran, 1,4-dioxane, etc.), esters (ethyl acetate, methyl acetate, etc.). Etc.), glycol ethers (ethylene glycol monoalkyl ether, etc.), nitrogen-containing compounds (N, N-dimethylacetamide, N, N-dimethylformamide, etc.), sulfur-containing compounds (dimethyl sulfoxide, etc.) and the like.
 塗布液(Z1)の固形分濃度は、0.3~6.0質量%が好ましく、1.0~5.0質量%がより好ましい。塗布液(Z1)の固形分濃度が前記下限値以上であれば、スプレー法により充分なAG効果を発現するAG層12を形成しやすい。塗布液(Z1)の固形分濃度が前記上限値以下であれば、AG層12の膜厚制御が容易になる。 The solid content concentration of the coating liquid (Z1) is preferably 0.3 to 6.0% by mass, and more preferably 1.0 to 5.0% by mass. If the solid content concentration of the coating solution (Z1) is equal to or higher than the lower limit, it is easy to form the AG layer 12 that exhibits a sufficient AG effect by the spray method. If the solid content concentration of the coating solution (Z1) is not more than the above upper limit value, the film thickness control of the AG layer 12 becomes easy.
[塗布方法]
 塗布液(Z1)は、形成されるAG層表面の凸部数Nが37個以上となるように、加熱した基材10上にスプレー法で噴霧する。
 形成されるAG層12表面の凸部数Nは、噴霧する塗布液の液滴径、スプレーノズル先端と基材10との距離、スプレー法によるコート面数(重ね塗り回数)、基材10の加熱温度等を調節することにより制御できる。
[Coating method]
Coating Solution (Z1) is convex parts N P of the AG layer surface which is formed such that 37 or more are sprayed with a spray method onto the heated substrate 10.
Convex parts N P of the AG layer 12 surface to be formed, the coating liquid sprayed droplet diameter, the distance between the spray nozzle tip and the substrate 10, coating surface speed by a spray method (recoating times), the substrate 10 It can be controlled by adjusting the heating temperature or the like.
 塗布液(Z1)の液滴径は、スプレー噴霧装置において、スプレーノズルの種類、スプレー圧力、液量等により適宜調整できる。例えば、2流体ノズルでは、スプレー圧力が高くなるほど液滴は小さくなり、また、液量が多くなるほど液滴は大きくなる。
 塗布液(Z1)を噴霧する際のノズルの種類、スプレー圧力、液量等の噴霧条件は、水を噴霧した際にその液滴径が30μm以下となる条件が好ましく、2~20μmとなる条件がより好ましく、3~15μmとなる条件がさらに好ましい。液滴径が前記下限値以上であれば、塗着効率が極端に低下しない。液滴径が前記上限値以下であれば、凸部数Nが37個以上となりやすく、従って充分なAG効果が得られやすい。
 液滴径は、レーザ測定器によって測定されるザウター平均粒子径である。
The droplet diameter of the coating liquid (Z1) can be appropriately adjusted by the type of spray nozzle, the spray pressure, the amount of liquid, etc. in the spray spraying apparatus. For example, in a two-fluid nozzle, the higher the spray pressure, the smaller the droplet, and the larger the liquid volume, the larger the droplet.
The conditions for spraying the coating liquid (Z1), such as the type of nozzle, spray pressure, liquid volume, etc., are preferably such that the droplet diameter is 30 μm or less when water is sprayed. Is more preferable, and conditions of 3 to 15 μm are more preferable. If the droplet diameter is equal to or greater than the lower limit, the coating efficiency does not extremely decrease. If the droplet diameter is less than the upper limit, the convex parts N p tends to be 37 or more, thus easily obtained sufficient AG effect.
The droplet diameter is the Sauter average particle diameter measured by a laser measuring instrument.
 スプレー圧力は、0.1~0.7MPaが好ましく、0.2~0.5MPaがより好ましい。 The spray pressure is preferably from 0.1 to 0.7 MPa, more preferably from 0.2 to 0.5 MPa.
 スプレー法に用いるスプレー噴霧装置におけるノズルとしては、二流体スプレーノズル、一流体スプレーノズル等が挙げられる。本発明では、凸部数Nが37個以上のAG層12を形成しやすい点から、二流体スプレーノズル構造を有するスプレー噴霧装置を用いて塗布液を噴霧することが好ましい。ここにおける二流体スプレーノズルは、液体を気体と混合させることによって微細な霧にして噴霧するノズルを有するタイプのものであり、一流体スプレーノズルより微細な粒子径が得られ、液流量の調節範囲が広くするという利点がある。 Examples of the nozzle in the spraying apparatus used for the spray method include a two-fluid spray nozzle and a one-fluid spray nozzle. In the present invention, from the viewpoint of the convex parts N P tends to form a 37 or more AG layer 12, it is preferable to spray the coating solution by using a spraying device having a two-fluid spray nozzle structure. The two-fluid spray nozzle here is a type having a nozzle that sprays a liquid by mixing it with a gas to form a fine mist, and a finer particle diameter is obtained than a one-fluid spray nozzle, and the liquid flow rate adjustment range Has the advantage of widening.
 塗布液の基材へのスプレー時のスプレーノズル先端と基材10との距離は、80~300mmが好ましく、100~200mmがより好ましい。スプレーノズル先端と基材10との距離が前記範囲内であれば、防眩性に優れたAG層を形成しやすい。 The distance between the tip of the spray nozzle and the substrate 10 when spraying the coating liquid onto the substrate is preferably 80 to 300 mm, more preferably 100 to 200 mm. If the distance between the tip of the spray nozzle and the substrate 10 is within the above range, an AG layer having excellent antiglare properties can be easily formed.
 塗布液(Z1)を基材表面に塗布する際の基材10の加熱温度は、30~100℃が好ましく、40~95℃がより好ましい。基材10の加熱温度が前記範囲内であれば、凸部数Nが37個以上のAG層12を形成しやすい。基材10の加熱温度が前記下限値以上であれば、分散媒が早く蒸発するため、AG層12の形成が容易になる。基材10の加熱温度が前記上限値以下であれば、基材10との密着性が良好なAG層12を形成しやすい。 The heating temperature of the substrate 10 when the coating solution (Z1) is applied to the substrate surface is preferably 30 to 100 ° C., more preferably 40 to 95 ° C. If the heating temperature of the substrate 10 is the range, the convex parts N P tends to form a 37 or more AG layer 12. If the heating temperature of the base material 10 is equal to or higher than the lower limit value, the dispersion medium evaporates quickly, so that the AG layer 12 can be easily formed. If the heating temperature of the base material 10 is not more than the above upper limit value, it is easy to form the AG layer 12 having good adhesion to the base material 10.
 塗布液(Z1)を基材表面に塗布する際には、加熱した保温板を基材の下に配置して、基材の温度低下を抑えてもよい。
 塗布液(Z1)の塗布後に塗布層の加熱養生を行う場合、加熱養生温度は、100~700℃が好ましく、200~700℃がより好ましい。
When applying the coating solution (Z1) to the surface of the base material, a heated heat insulating plate may be disposed under the base material to suppress the temperature drop of the base material.
When the heat curing of the coating layer is performed after coating the coating solution (Z1), the heat curing temperature is preferably 100 to 700 ° C, more preferably 200 to 700 ° C.
[方法(Y)]
 方法(Y)としては、シリカ系マトリックスの前駆体とシリカ微粒子(P)と分散媒を含む塗布液(以下、塗布液(Z2)とも記す。)を、AG層表面の凸部数Nが37個以上となるように、加熱した基材10上にスプレー法で噴霧し、必要に応じて加熱養生してAG層12を形成する方法が挙げられる。
[Method (Y)]
The method (Y), the precursor and silica fine particles (P) and the coating liquid containing a dispersion medium of the silica-based matrix (hereinafter, the coating liquid (Z2) and also referred.) And convex parts N P of the AG layer surface 37 There is a method in which the AG layer 12 is formed by spraying on the heated base material 10 by a spray method so as to be more than one, and heat curing as necessary.
(塗布液(Z2))
 塗布液(Z2)におけるシリカ系マトリックスの前駆体および分散媒としては、例えば、塗布液(Z1)で挙げたものと同じものが挙げられる。
 塗布液(Z2)における、シリカ系マトリックスの前駆体のSiO換算質量に対するシリカ微粒子(P)のSiO換算質量の比率は、0.01~20質量%が好ましく、0.1~10質量%がより好ましい。
(Coating solution (Z2))
Examples of the silica-based matrix precursor and the dispersion medium in the coating liquid (Z2) include the same ones as mentioned in the coating liquid (Z1).
In the coating liquid (Z2), the ratio of the SiO 2 equivalent mass of the silica fine particles (P) to the SiO 2 equivalent mass of the silica-based matrix precursor is preferably 0.01 to 20% by mass, preferably 0.1 to 10% by mass. Is more preferable.
 塗布液(Z2)の固形分濃度は、0.3~6.0質量%が好ましく、1.0~5.0質量%がより好ましい。塗布液(Z2)の固形分濃度が前記下限値以上であれば、スプレー法により充分なAG効果を発現するAG層12を形成しやすい。塗布液(Z2)の固形分濃度が前記上限値以下であれば、AG層12の膜厚制御が容易になる。 The solid content concentration of the coating solution (Z2) is preferably 0.3 to 6.0% by mass, and more preferably 1.0 to 5.0% by mass. If the solid content concentration of the coating solution (Z2) is equal to or higher than the lower limit, it is easy to form the AG layer 12 that exhibits a sufficient AG effect by the spray method. If the solid content concentration of the coating solution (Z2) is equal to or lower than the upper limit, the film thickness control of the AG layer 12 becomes easy.
(塗布方法)
 方法(Y)における基材表面への塗布液(Z2)の塗布は、塗布液(Z1)の代わりに塗布液(Z2)を用いる以外は、方法(X)と同様にして行うことができ、好ましい態様も同じである。
(Application method)
Application of the coating liquid (Z2) to the substrate surface in the method (Y) can be performed in the same manner as in the method (X) except that the coating liquid (Z2) is used instead of the coating liquid (Z1). The preferred embodiment is also the same.
[作用効果]
 以上説明した本発明のAG層付き基材の製造方法(X)及び(Y)によれば、凸部数Nが37個以上のAG層が形成されるため、外光を高効率に乱反射させつつ、ぎらつきを充分に抑制できる、優れた防眩性を有するAG層付き基材が得られる。
[Function and effect]
According to the manufacturing method of the AG layer-substrate of the present invention described above (X) and (Y), the convex parts N P is 37 or more AG layer is formed, by diffused reflection of external light at a high efficiency On the other hand, the base material with an AG layer having an excellent antiglare property capable of sufficiently suppressing glare is obtained.
 以下、実施例によって本発明を詳細に説明するが、本発明は、以下の記載によっては限定されない。例1~12は実施例であり、例13~18は比較例である。 Hereinafter, the present invention will be described in detail by way of examples, but the present invention is not limited by the following description. Examples 1 to 12 are examples, and examples 13 to 18 are comparative examples.
[光沢度]
 AG層の光沢度としては、光沢度計(日本電色工業社製、PG-3D型)を用いて、JIS Z8741(1997年)の60゜鏡面光沢度に規定されている方法により、AG層付き基材の裏面反射を含む光沢度をAG層のほぼ中央部で測定した。
[Glossiness]
As the glossiness of the AG layer, using a gloss meter (PG-3D type, manufactured by Nippon Denshoku Industries Co., Ltd.), the AG layer has a glossiness of 60 ° according to the method defined in JIS Z8741 (1997). The glossiness including the back surface reflection of the attached substrate was measured at the approximate center of the AG layer.
[ヘイズ]
 AG層付き基材のヘイズは、ヘイズメーター(村上色彩研究所社製、HR-100型)を用いて、AG層のほぼ中央部で測定した。
[Haze]
The haze of the substrate with the AG layer was measured at a substantially central portion of the AG layer using a haze meter (manufactured by Murakami Color Research Laboratory, Model HR-100).
[ぎらつき]
 AG層付き基材のぎらつきは、iPad(アップル社製、Retinaディスプレイモデル)に緑画面を表示し、そのディスプレイ上にAG層付き基材を載せた状態で、目視により以下の基準で判定した。
 「◎」:ぎらつきが認められない。
 「○」:ぎらつきが極僅かである。
 「△」:ぎらつきが僅かである。
 「×」:ぎらつきが認められる。
 「××」:ぎらつきが強く認められる。
[Glitter]
The glare of the base material with an AG layer was determined by visual observation according to the following criteria in a state where a green screen was displayed on an iPad (manufactured by Apple, Retina display model) and the base material with an AG layer was placed on the display. .
“◎”: No glare is observed.
“◯”: The glare is very slight.
“Δ”: slight glare.
“×”: Glare is recognized.
“XX”: Glare is strongly recognized.
[顕微鏡観察]
 AG層付き基材のAG層の観察は、OLYMPUS社製システム顕微鏡BX51を用いて行い、倍率は500倍とした。走査型電子顕微鏡による観察には、日立製作所社製、型式:S-4300を用いた。
[Microscopic observation]
The observation of the AG layer of the substrate with the AG layer was performed using a system microscope BX51 manufactured by OLYMPUS, and the magnification was 500 times. For observation with a scanning electron microscope, model S-4300 manufactured by Hitachi, Ltd. was used.
[凸部数N
 AG層の表面の任意の3箇所について、東京精密社製SURFCOM1500DX2を用いてJIS B0601(2001年)に準拠して断面曲線を測定し、測定されたそれぞれの断面曲線グラフにおいて、横軸方向に長さ500μmの範囲内で、最低断面高さに対する高低差が100nm以上の断面高さを有する凸部の数を計測し、それらの平均値を凸部数Nとした。
[Number of convex portions N P ]
For any three locations on the surface of the AG layer, cross-sectional curves were measured using SURFCOM 1500DX2 manufactured by Tokyo Seimitsu Co., Ltd. in accordance with JIS B0601 (2001). in the range of 500 [mu] m, measured number of protrusions height difference for the lowest section height has more section height 100 nm, and the average value thereof and convex parts N P.
[表面粗さRa]
 AG層の表面粗さRaは、JIS B0601(2001年)に準拠し、表面粗さ測定機(東京精密社製、サーフコム130A)を用いて、AG層のほぼ中央部で測定した。測定長さは4mm、カットオフ値は0.25mmとした。
[Surface roughness Ra]
The surface roughness Ra of the AG layer was measured at substantially the center of the AG layer using a surface roughness measuring machine (Surfcom 130A, manufactured by Tokyo Seimitsu Co., Ltd.) in accordance with JIS B0601 (2001). The measurement length was 4 mm, and the cut-off value was 0.25 mm.
[AG層中のシリカ微粒子の平均一次粒子径]
 得られたAG層付き基材のAG層の断面を切り出し、該断面を走査型電子顕微鏡により観察し、10個のシリカ微粒子の直径を測定し、それらを平均して平均一次粒子径とした。
[Average primary particle diameter of silica fine particles in the AG layer]
A cross section of the AG layer of the obtained base material with an AG layer was cut out, the cross section was observed with a scanning electron microscope, the diameters of 10 silica fine particles were measured, and averaged to obtain an average primary particle diameter.
[シリカ微粒子の含有量]
 AG層中のシリカ微粒子の含有量を、以下のようにして測定した。
 AG層を光学顕微鏡により観察し、その観察像における50μm四方の3つの視野内のシリカ微粒子の粒子数を計測し、それらの平均値をnとした。次いで、50μm四方の視野内におけるシリカ微粒子の占める体積V(%)を下式(1)により算出し、さらに下式(2)によりシリカ微粒子の含有量Wを算出した。シリカ微粒子の半径rとしては、AG層中のシリカ微粒子の平均一次粒子径から算出した値を用いた。なお、後述の多孔質シリカ微粒子分散液(σ)を用いて形成したAG層では、多孔質シリカ微粒子の比重(1.15)とシリカマトリックスの比重(2.2)が大きく異なる。そのため、該AG層については、下式(1)の代わりに下式(3)によって50μm四方の視野内におけるシリカ微粒子の占める体積V(%)を算出した。
  V=n×4×π×r/3 ・・・(1)
  W=(100×V)/(2500×Ra) ・・・(2)
  V=n×4×π×r/3×(1.15/2.2) ・・・(3)
(ただし、式(1)および式(3)中、rはシリカ微粒子の半径である。また、式(2)中、RaはAG層の表面粗さである。)
[Content of silica fine particles]
The content of silica fine particles in the AG layer was measured as follows.
The AG layer was observed with an optical microscope, the number of silica fine particles in three fields of 50 μm square in the observed image was measured, and the average value thereof was n. Next, the volume V 1 (%) occupied by the silica fine particles in a 50 μm square visual field was calculated by the following formula (1), and the content W of the silica fine particles was further calculated by the following formula (2). As the radius r of the silica fine particles, a value calculated from the average primary particle diameter of the silica fine particles in the AG layer was used. In the AG layer formed using a porous silica fine particle dispersion (σ) described later, the specific gravity (1.15) of the porous silica fine particles and the specific gravity (2.2) of the silica matrix are greatly different. Therefore, for the AG layer, volume V 1 (%) occupied by silica fine particles in a 50 μm square field of view was calculated by the following equation (3) instead of the following equation (1).
V 1 = n × 4 × π × r 3/3 ··· (1)
W = (100 × V 1 ) / (2500 × Ra) (2)
V 1 = n × 4 × π × r 3 /3×(1.15/2.2) (3)
(In formula (1) and formula (3), r is the radius of the silica fine particles. In formula (2), Ra is the surface roughness of the AG layer.)
[液滴径]
 スプレー法による塗布液の塗布中の液滴径は、レーザ測定器(マルバーン社製、マスターサイザーS)により、同条件で水を噴霧したときのザウター平均粒子径を測定して求めた。
[Droplet diameter]
The droplet diameter during application of the coating liquid by the spray method was determined by measuring the Sauter average particle diameter when water was sprayed under the same conditions with a laser measuring instrument (manufactured by Malvern, Mastersizer S).
[製造例1]
(マトリックス前駆体の溶液(α)の調製)
 変性エタノール(日本アルコール販売社製、ソルミックスAP-11(商品名)、エタノールを主剤とした混合溶媒。以下同様。)の72.1gを撹拌しながら、これにイオン交換水の6.0gと61質量%硝酸の1.23gとの混合液を加え、さらに5分間撹拌した。次に、エチルシリケート40(SiO換算固形分濃度:40質量%)の9.0gを加え、室温で30分間撹拌して溶液(α1)とした。さらに、変性エタノールの7.2gを撹拌しながら、イオン交換水の0.7g、61質量%硝酸の0.15g、および1,6-ビストリメトキシシリルヘキサンを1.04g加えて5分間撹拌した後、60℃で15分撹拌して溶液(α2)とした。溶液(α1)に溶液(α2)を加え、さらにエチレングリコールの2.8gを加え、室温で30分間撹拌して、SiO換算固形分濃度が3.78質量%のマトリックス前駆体の溶液(α)(以下、溶液(α)とも記す。)を調製した。
 なお、SiO換算固形分濃度は、テトラエトキシシランのすべてのSiがSiOに転化したときの固形分濃度である。
[Production Example 1]
(Preparation of matrix precursor solution (α))
While stirring 72.1 g of denatured ethanol (manufactured by Nippon Alcohol Sales Co., Ltd., Solmix AP-11 (trade name), a mixed solvent containing ethanol as a main ingredient; the same shall apply hereinafter), 6.0 g of ion-exchanged water was added thereto. A mixed solution of 61 mass% nitric acid with 1.23 g was added, and the mixture was further stirred for 5 minutes. Next, 9.0 g of ethyl silicate 40 (solid content concentration of SiO 2 : 40% by mass) was added and stirred at room temperature for 30 minutes to obtain a solution (α1). Further, while stirring 7.2 g of denatured ethanol, 0.7 g of ion exchange water, 0.15 g of 61 mass% nitric acid, and 1.04 g of 1,6-bistrimethoxysilylhexane were added and stirred for 5 minutes. The solution (α2) was stirred at 60 ° C. for 15 minutes. Solution ([alpha] 1) solution ([alpha] 2) was added, further 2.8g of ethylene glycol was added, stirred for 30 minutes at room temperature, a solution of SiO 2 in terms solid concentration 3.78% by weight of the matrix precursor (alpha (Hereinafter also referred to as solution (α)).
Incidentally, SiO 2 in terms of solid concentration is a solid content concentration when all Si of tetraethoxysilane was converted to SiO 2.
[製造例2]
(中実シリカ微粒子分散液(β))
 中実シリカ微粒子(株式会社日本触媒製、KE-P10(商品名))を、SiO換算固形分濃度が23質量%となるようにジメチルアセトアミドに混合し、中実シリカ微粒子分散液(β)(以下、分散液(β)とも記す。)とした。
[Production Example 2]
(Solid silica fine particle dispersion (β))
Solid silica fine particles (manufactured by Nippon Shokubai Co., Ltd., KE-P10 (trade name)) are mixed with dimethylacetamide so that the solid content concentration in terms of SiO 2 is 23% by mass, and a solid silica fine particle dispersion (β) (Hereinafter also referred to as dispersion (β)).
[製造例3]
(中実シリカ微粒子分散液(γ))
 中実シリカ微粒子(株式会社日本触媒製、KE-P30(商品名))を、SiO換算固形分濃度が23質量%となるようにジメチルアセトアミドに混合し、中実シリカ微粒子分散液(γ)(以下、分散液(γ)とも記す。)とした。
[Production Example 3]
(Solid silica fine particle dispersion (γ))
Solid silica fine particles (manufactured by Nippon Shokubai Co., Ltd., KE-P30 (trade name)) are mixed with dimethylacetamide so that the solid content concentration in terms of SiO 2 is 23% by mass, and a solid silica fine particle dispersion (γ) (Hereinafter also referred to as dispersion (γ)).
[製造例4]
(中実シリカ微粒子分散液(δ))
 中実シリカ微粒子(株式会社日本触媒製、KE-P50(商品名))を、SiO換算固形分濃度が23質量%となるようにジメチルアセトアミドに混合し、中実シリカ微粒子分散液(δ)(以下、分散液(δ)とも記す。)とした。
[Production Example 4]
(Solid silica fine particle dispersion (δ))
Solid silica fine particles (manufactured by Nippon Shokubai Co., Ltd., KE-P50 (trade name)) are mixed with dimethylacetamide so that the solid content concentration in terms of SiO 2 is 23% by mass, and a solid silica fine particle dispersion (δ) (Hereinafter also referred to as dispersion (δ)).
[製造例5]
(多孔質シリカ微粒子分散液(σ))
 多孔質シリカ微粒子(日産化学工業社製、ライトスターS23A(商品名))を、SiO換算固形分濃度が23質量%となるようにジメチルアセトアミドに混合し、多孔質シリカ微粒子分散液(σ)(以下、分散液(σ)とも記す。)とした。
[Production Example 5]
(Porous silica fine particle dispersion (σ))
Porous silica fine particles (manufactured by Nissan Chemical Industries, Light Star S23A (trade name)) are mixed with dimethylacetamide so that the solid content concentration in terms of SiO 2 is 23% by mass, and a porous silica fine particle dispersion (σ) (Hereinafter also referred to as dispersion (σ)).
[製造例6]
(中実シリカ微粒子分散液(ε))
 中実シリカ微粒子(株式会社日本触媒製、KE-P100(商品名))を、SiO換算固形分濃度が23質量%となるようにジメチルアセトアミド液に混合し、中実シリカ微粒子分散液(ε)(以下、分散液(ε)とも記す。)とした。
[Production Example 6]
(Solid silica fine particle dispersion (ε))
Solid silica fine particles (manufactured by Nippon Shokubai Co., Ltd., KE-P100 (trade name)) are mixed in a dimethylacetamide solution so that the solid content concentration in terms of SiO 2 is 23% by mass, and a solid silica fine particle dispersion (ε (Hereinafter also referred to as dispersion (ε)).
[製造例7]
(マトリックス前駆体の溶液(ζ)の調製)
 変性エタノールの268gを撹拌しながら、イオン交換水の47gと61質量%硝酸の0.36gとの混合液を加え、5分間撹拌した。さらに、テトラエトキシシランの84gを加え、室温で90分間撹拌して、SiO換算固形分濃度が3質量%のマトリックス前駆体の溶液(ζ)(以下、溶液(ζ)とも記す。)を調製した。
[Production Example 7]
(Preparation of matrix precursor solution (ζ))
While stirring 268 g of denatured ethanol, a mixed solution of 47 g of ion exchange water and 0.36 g of 61% by mass nitric acid was added and stirred for 5 minutes. Furthermore, 84 g of tetraethoxysilane was added and stirred at room temperature for 90 minutes to prepare a matrix precursor solution (ζ) (hereinafter also referred to as solution (ζ)) having a solid content concentration of 3 mass% in terms of SiO 2 . did.
[製造例8]
(塗布液(A)の調製)
 溶液(α)をそのまま用いて、塗布液(A)とした。
[Production Example 8]
(Preparation of coating solution (A))
The solution (α) was used as it was to obtain a coating solution (A).
[製造例9]
(塗布液(B)の調製)
 溶液(α)と分散液(β)とを、溶液(α)のマトリックス前駆体のSiO換算質量に対する分散液(β)のシリカ微粒子のSiO換算質量の比率が1質量%となるように混合し、塗布液(B)を調製した。
[Production Example 9]
(Preparation of coating solution (B))
In the solution (α) and the dispersion liquid (β), the ratio of the SiO 2 converted mass of the silica fine particles of the dispersion liquid (β) to the SiO 2 converted mass of the matrix precursor of the solution (α) is 1% by mass. It mixed and the coating liquid (B) was prepared.
[製造例10~16]
(塗布液(C)~(I)の調製)
 分散液(β)を表1に示す分散液に変更した以外は、製造例9と同様にして塗布液(C)~(I)を調製した。
[Production Examples 10 to 16]
(Preparation of coating solutions (C) to (I))
Coating solutions (C) to (I) were prepared in the same manner as in Production Example 9, except that the dispersion (β) was changed to the dispersion shown in Table 1.
[製造例17]
(塗布液(J)の調製)
 溶液(ζ)をそのまま用いて、塗布液(J)とした。
[Production Example 17]
(Preparation of coating solution (J))
The solution (ζ) was used as it was to obtain a coating solution (J).
 製造例8~17で得られた塗布液の組成を表1に示す。なお、表1における「SiO比率M2」とは、塗布液中のマトリックス前駆体のSiO換算質量に対するシリカ微粒子のSiO換算質量の比率を意味する。 The compositions of the coating solutions obtained in Production Examples 8 to 17 are shown in Table 1. In addition, “SiO 2 ratio M2” in Table 1 means the ratio of the SiO 2 equivalent mass of silica fine particles to the SiO 2 equivalent mass of the matrix precursor in the coating solution.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[例1]
 透明基材として、ガラス板(ソーダライムガラス、旭硝子社製、FL1.1、サイズ:300mm×300mm、厚さ1.1mm。)を用意した。該ガラス板の表面を炭酸水素ナトリウム水で洗浄した後、イオン交換水でリンスし、乾燥させた。
 次に、ガラス板を表面温度が80℃になるようにオーブンで加熱し、塗布液(A)をスプレー法にて下記の条件でガラス板上に塗布した。
 スプレー圧力:0.4MPa、
 塗布液量:7mL/分、
 ノズル移動速度:750mm/分、
 スプレーピッチ:22mm、
 ノズル先端とガラス板との距離:115mm、
 液滴径:6.59μm。
[Example 1]
A glass plate (soda lime glass, manufactured by Asahi Glass Co., Ltd., FL1.1, size: 300 mm × 300 mm, thickness 1.1 mm) was prepared as a transparent substrate. The surface of the glass plate was washed with sodium hydrogen carbonate water, rinsed with ion-exchanged water, and dried.
Next, the glass plate was heated in an oven so that the surface temperature was 80 ° C., and the coating liquid (A) was applied onto the glass plate by the spray method under the following conditions.
Spray pressure: 0.4 MPa
Coating liquid amount: 7 mL / min,
Nozzle moving speed: 750 mm / min,
Spray pitch: 22mm,
Distance between nozzle tip and glass plate: 115 mm
Droplet diameter: 6.59 μm.
 スプレーピッチおよびスプレーパターンは、図3に示すとおりとし、ガラス板10Aの上端部から下端部まで、以下の(x1)~(x4)を繰り返すようにガラス板10A上でノズル20を移動させ、ガラス板10Aの全面に塗布液(A)を塗布した。これを1面コート品とし、さらに同様の操作を5回繰り返して6面コート品を得た後、450℃のオーブンで30分間加熱養生してAG層付き基材を得た。
 (x1)ノズル20をガラス板10Aの第1の端10aから第2の端10bまで横方向に移動させる。
 (x2)ノズル20を縦方向に22mm移動させる。
 (x3)ノズル20をガラス板10Aの第2の端10bから第2の端10bまで横方向に移動させる。
 (x4)ノズル20を縦方向に22mm移動させる。
 スプレー法による塗布には、6軸塗装用ロボット(川崎ロボティックス社製、JF-5)を用いた。また、ノズル20としては、SU1Aノズル(スプレーイングシステムジャパン社製)を用いた。
The spray pitch and spray pattern are as shown in FIG. 3, and the nozzle 20 is moved on the glass plate 10A so as to repeat the following (x1) to (x4) from the upper end to the lower end of the glass plate 10A. The coating liquid (A) was applied to the entire surface of the plate 10A. This was used as a single-side coated product, and the same operation was further repeated 5 times to obtain a six-sided coated product, which was then heated and cured in an oven at 450 ° C. for 30 minutes to obtain a substrate with an AG layer.
(X1) The nozzle 20 is moved laterally from the first end 10a of the glass plate 10A to the second end 10b.
(X2) The nozzle 20 is moved 22 mm in the vertical direction.
(X3) The nozzle 20 is moved laterally from the second end 10b of the glass plate 10A to the second end 10b.
(X4) The nozzle 20 is moved 22 mm in the vertical direction.
For application by the spray method, a 6-axis coating robot (manufactured by Kawasaki Robotics, JF-5) was used. As the nozzle 20, a SU1A nozzle (manufactured by Spraying System Japan) was used.
[例2~18]
 塗布条件を表2および表3に示すとおりに変更した以外は、例1と同様にしてAG層付き基材を得た。
[Examples 2 to 18]
A base material with an AG layer was obtained in the same manner as in Example 1 except that the coating conditions were changed as shown in Tables 2 and 3.
 各例におけるスプレー条件、および評価結果を表2および表3に示す。また、AG層の表面において測定して得られた断面曲線グラフの代表例として、例1のAG層付き基材におけるAG層の断面曲線グラフを図4に示す。図4において、実線は、粗さ曲線を示す。 Table 2 and Table 3 show the spray conditions and evaluation results in each example. Further, as a representative example of the cross-sectional curve graph obtained by measurement on the surface of the AG layer, a cross-sectional curve graph of the AG layer in the base material with an AG layer of Example 1 is shown in FIG. In FIG. 4, a solid line shows a roughness curve.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2および表3に示すように、本発明のAG層付き基材である例1~12では、光沢度が低く防眩性が良好であり、かつぎらつきも抑制されていた。また、例1~12のAG層付き基材では、コントラスト低下の要因となるヘイズも充分に低かった。
 一方、AG層に含有されるシリカ微粒子の平均一次粒子径が1.0μm超である例13のAG層付き基材では、ぎらつきが充分に抑制されなかった。
 また、AG層の表面における凸部数Nが37個未満の例14~18のAG層付き基材でも、ぎらつきが充分に抑制されなかった。
As shown in Tables 2 and 3, Examples 1 to 12, which are base materials with an AG layer of the present invention, had low gloss and good antiglare properties, and also suppressed glare. Further, in the substrates with AG layers of Examples 1 to 12, the haze that causes a decrease in contrast was sufficiently low.
On the other hand, the glare was not sufficiently suppressed in the base material with an AG layer of Example 13 in which the average primary particle diameter of the silica fine particles contained in the AG layer was more than 1.0 μm.
Also in AG layer substrate with the convex parts N Example P is less than 37 14-18 on the surface of the AG layer, glare is not sufficiently suppressed.
 本発明によれば、外光を高効率に乱反射させつつ、ぎらつきを充分に抑制でき、優れた防眩性を有するアンチグレア層付き基材を提供することができる。本発明のアンチグレア層付き基材は、各種画像表示装置(LCD、PDP等)用、画像表示装置用フィルタ用または保護板用、太陽電池用カバーガラス等用として有用である。
 なお、2014年1月24日に出願された日本特許出願2014-011674号の明細書、特許請求の範囲、図面および要約書の全内容をここに引用し、本発明の開示として取り入れるものである。
ADVANTAGE OF THE INVENTION According to this invention, a base material with an anti-glare layer which can fully suppress glare, and has the outstanding anti-glare property can be provided while diffusely reflecting external light with high efficiency. The base material with an antiglare layer of the present invention is useful for various image display devices (LCD, PDP, etc.), for image display device filters or protective plates, and for solar cell cover glasses.
The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2014-011674 filed on January 24, 2014 are incorporated herein as the disclosure of the present invention. .
 1 AG層付き基材
 10 基材
 10A ガラス板
 12 AG層
 20 ノズル
DESCRIPTION OF SYMBOLS 1 Base material with AG layer 10 Base material 10A Glass plate 12 AG layer 20 Nozzle

Claims (9)

  1.  基材と、該基材上に形成されたアンチグレア層とを有し、
     前記アンチグレア層がシリカ系マトリックスを含有し、かつシリカ微粒子を含有しない層であり、
     前記アンチグレア層の表面において下記の凸部数計測方法で計測される凸部数Nが37個以上である、アンチグレア層付き基材。
     (凸部数計測方法)
     アンチグレア層の表面の任意の3箇所について、JIS B0601(2001年)に準拠して測定されたそれぞれの断面曲線グラフにおいて、横軸方向に長さ500μmの範囲内で、最低断面高さに対する高低差が100nm以上の断面高さを有する凸部の数を計測し、その平均値を凸部数Nとする。
    A substrate and an antiglare layer formed on the substrate;
    The antiglare layer contains a silica-based matrix and does not contain silica fine particles;
    Convex parts N P measured by the convex parts measuring method described below is 37 or more at the surface of the antiglare layer, anti glare layer with the substrate.
    (Method for measuring the number of convex parts)
    In each of the cross-sectional curve graphs measured in accordance with JIS B0601 (2001) for any three points on the surface of the anti-glare layer, the height difference with respect to the minimum cross-section height is within a range of 500 μm in the horizontal axis direction. There was measured the number of protrusions having the above section height 100 nm, and the average value and the convex parts N P.
  2.  基材と、該基材上に形成されたアンチグレア層とを有し、
     前記アンチグレア層が、シリカ系マトリックスおよびシリカ微粒子を含有し、
     前記シリカ微粒子の平均一次粒子径が0.1~1.0μmであり、
     前記アンチグレア層の表面において下記の凸部数計測方法で計測される凸部数Nが37個以上である、アンチグレア層付き基材。
     (凸部数計測方法)
     アンチグレア層の表面の任意の3箇所について、JIS B0601(2001年)に準拠して測定されたそれぞれの断面曲線グラフにおいて、横軸方向に長さ500μmの範囲内で、最低断面高さに対する高低差が100nm以上の断面高さを有する凸部の数を計測し、その平均値を凸部数Nとする。
    A substrate and an antiglare layer formed on the substrate;
    The antiglare layer contains a silica-based matrix and silica fine particles,
    The silica fine particles have an average primary particle size of 0.1 to 1.0 μm,
    Convex parts N P measured by the convex parts measuring method described below is 37 or more at the surface of the antiglare layer, anti glare layer with the substrate.
    (Method for measuring the number of convex parts)
    In each of the cross-sectional curve graphs measured in accordance with JIS B0601 (2001) for any three points on the surface of the anti-glare layer, the height difference with respect to the minimum cross-section height is within a range of 500 μm in the horizontal axis direction. There was measured the number of protrusions having the above section height 100 nm, and the average value and the convex parts N P.
  3.  前記アンチグレア層の表面の光沢度が130以下である、請求項1または2に記載のアンチグレア層付き基材。 The base material with an antiglare layer according to claim 1 or 2, wherein the surface has a glossiness of 130 or less.
  4.  前記アンチグレア層の表面粗さRaが0.01μm以上である、請求項1~3のいずれか一項に記載のアンチグレア層付き基材。 The substrate with an antiglare layer according to any one of claims 1 to 3, wherein the antiglare layer has a surface roughness Ra of 0.01 µm or more.
  5.  前記基材が、厚さ0.05~2.5mmの強化ガラス板である、請求項1~4のいずれか一項に記載のアンチグレア層付き基材。 The substrate with an antiglare layer according to any one of claims 1 to 4, wherein the substrate is a tempered glass plate having a thickness of 0.05 to 2.5 mm.
  6.  基材と、該基材上に形成されたアンチグレア層とを有するアンチグレア層付き基材の製造方法であって、
     シリカ系マトリックスの前駆体と分散媒を含み、シリカ微粒子を含まない塗布液を、下記の凸部数計測方法で計測されるアンチグレア層表面の凸部数Nが37個以上となるように、加熱された基材上にスプレー法で噴霧してアンチグレア層を形成する、アンチグレア層付き基材の製造方法。
     (凸部数計測方法)
     アンチグレア層の表面の任意の3箇所について、JIS B0601(2001年)に準拠して測定されたそれぞれの断面曲線グラフにおいて、横軸方向に長さ500μmの範囲内で、最低断面高さに対する高低差が100nm以上の断面高さを有する凸部の数を計測し、その平均値を凸部数Nとする。
    A method for producing a substrate with an antiglare layer having a substrate and an antiglare layer formed on the substrate,
    It includes a precursor and the dispersion medium of the silica-based matrix, a coating solution containing no silica fine particles, as the convex parts N P of the anti-glare layer surface measured by the convex parts measuring method described below is 37 or more, is heated A method for producing a base material with an antiglare layer, wherein the antiglare layer is formed by spraying on the base material by a spray method.
    (Method for measuring the number of convex parts)
    In each of the cross-sectional curve graphs measured in accordance with JIS B0601 (2001) for any three points on the surface of the anti-glare layer, the height difference with respect to the minimum cross-section height is within a range of 500 μm in the horizontal axis direction. There was measured the number of protrusions having the above section height 100 nm, and the average value and the convex parts N P.
  7.  基材と、該基材上に形成されたアンチグレア層とを有するアンチグレア層付き基材の製造方法であって、
     シリカ系マトリックスの前駆体と平均一次粒子径が0.1~1.0μmのシリカ微粒子と分散媒とを含む塗布液を、下記の凸部数計測方法で計測されるアンチグレア層表面の凸部数Nが37個以上となるように、加熱された基材上にスプレー法で噴霧してアンチグレア層を形成する、アンチグレア層付き基材の製造方法。
     (凸部数計測方法)
     アンチグレア層の表面の任意の3箇所について、JIS B0601(2001年)に準拠して測定されたそれぞれの断面曲線グラフにおいて、横軸方向に長さ500μmの範囲内で、最低断面高さに対する高低差が100nm以上の断面高さを有する凸部の数を計測し、その平均値を凸部数Nとする。
    A method for producing a substrate with an antiglare layer having a substrate and an antiglare layer formed on the substrate,
    The coating liquid average primary particle diameter as the precursor of silica matrix containing a dispersion medium and the silica fine particles of 0.1 ~ 1.0 .mu.m, the convex parts N P of the anti-glare layer surface measured by the convex parts measuring method described below The manufacturing method of the base material with an anti-glare layer which sprays on a heated base material with a spray method so that it may become 37 or more and forms an anti-glare layer.
    (Method for measuring the number of convex parts)
    In each of the cross-sectional curve graphs measured in accordance with JIS B0601 (2001) for any three points on the surface of the anti-glare layer, the height difference with respect to the minimum cross-section height is within a range of 500 μm in the horizontal axis direction. There was measured the number of protrusions having the above section height 100 nm, and the average value and the convex parts N P.
  8.  前記塗布液の固形分濃度が0.3~6.0質量%である、請求項6または7に記載のアンチグレア層付き基材の製造方法。 The method for producing a substrate with an antiglare layer according to claim 6 or 7, wherein the solid concentration of the coating liquid is 0.3 to 6.0 mass%.
  9.  前記塗布液を、二流体スプレーノズル構造を有するスプレー噴霧装置を用いて噴霧する、請求項6~8のいずれか一項に記載のアンチグレア層付き基材の製造方法。 The method for producing a substrate with an antiglare layer according to any one of claims 6 to 8, wherein the coating liquid is sprayed using a spray spraying device having a two-fluid spray nozzle structure.
PCT/JP2015/051695 2014-01-24 2015-01-22 Base material with anti-glare layer and production method therefor WO2015111660A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015559105A JP6551235B2 (en) 2014-01-24 2015-01-22 Base material with antiglare layer and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014011674 2014-01-24
JP2014-011674 2014-01-24

Publications (1)

Publication Number Publication Date
WO2015111660A1 true WO2015111660A1 (en) 2015-07-30

Family

ID=53681461

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051695 WO2015111660A1 (en) 2014-01-24 2015-01-22 Base material with anti-glare layer and production method therefor

Country Status (2)

Country Link
JP (1) JP6551235B2 (en)
WO (1) WO2015111660A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106950722A (en) * 2017-04-12 2017-07-14 厦门腾诺光学科技有限公司 A kind of cloudy surface Sunglasses lenses sun clips and its production technology
WO2017130868A1 (en) * 2016-01-25 2017-08-03 旭硝子株式会社 Light diffusion plate
EP3300878A1 (en) * 2016-10-03 2018-04-04 Stephen M. Dillon Manufacturing method of a diffuse reflecting optical construction
JPWO2020067134A1 (en) * 2018-09-25 2021-09-02 日本電気硝子株式会社 Transparent goods
JP2022043255A (en) * 2019-09-26 2022-03-15 Agc株式会社 Board with print layer, display device using the same, and in-vehicle display device
WO2023151429A1 (en) * 2022-02-09 2023-08-17 惠州Tcl移动通信有限公司 Display screen and electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61293270A (en) * 1985-06-22 1986-12-24 Taiyo Bussan Kk Glare protection film-forming composition
JP2009058640A (en) * 2007-08-30 2009-03-19 Asahi Glass Co Ltd Article having antiglare layer and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60109134A (en) * 1983-11-17 1985-06-14 Asahi Glass Co Ltd Manufacture of cathode ray tube with light diffusing layer
JPH0652796A (en) * 1991-09-30 1994-02-25 Colcoat Eng Kk Method for forming silica coat film by low temperature baking
JP4510124B2 (en) * 2008-03-31 2010-07-21 日東電工株式会社 Anti-glare hard coat film for image display device, polarizing plate and image display device using the same
US8974066B2 (en) * 2013-03-14 2015-03-10 Intermolecular, Inc. Optical coatings with plate-shaped particles and methods for forming the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61293270A (en) * 1985-06-22 1986-12-24 Taiyo Bussan Kk Glare protection film-forming composition
JP2009058640A (en) * 2007-08-30 2009-03-19 Asahi Glass Co Ltd Article having antiglare layer and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017130868A1 (en) * 2016-01-25 2017-08-03 旭硝子株式会社 Light diffusion plate
EP3300878A1 (en) * 2016-10-03 2018-04-04 Stephen M. Dillon Manufacturing method of a diffuse reflecting optical construction
TWI745442B (en) * 2016-10-03 2021-11-11 史蒂芬M 狄倫 A method of manufacturing a diffuse reflecting optical construction
CN106950722A (en) * 2017-04-12 2017-07-14 厦门腾诺光学科技有限公司 A kind of cloudy surface Sunglasses lenses sun clips and its production technology
JPWO2020067134A1 (en) * 2018-09-25 2021-09-02 日本電気硝子株式会社 Transparent goods
JP2022043255A (en) * 2019-09-26 2022-03-15 Agc株式会社 Board with print layer, display device using the same, and in-vehicle display device
JP7302649B2 (en) 2019-09-26 2023-07-04 Agc株式会社 Cover glass for in-vehicle display device and in-vehicle display device
WO2023151429A1 (en) * 2022-02-09 2023-08-17 惠州Tcl移动通信有限公司 Display screen and electronic device

Also Published As

Publication number Publication date
JPWO2015111660A1 (en) 2017-03-23
JP6551235B2 (en) 2019-07-31

Similar Documents

Publication Publication Date Title
US10948633B2 (en) Translucent structure, method for manufacturing same, and article
WO2015111660A1 (en) Base material with anti-glare layer and production method therefor
JP6458804B2 (en) Translucent structure
JP6939573B2 (en) Translucent structure
JP2016018068A (en) Substrate with anti-glare film, and articles having the same
WO2015041257A1 (en) Tempered glass plate with low reflective coating and production method therfor
JP4893539B2 (en) Article having antiglare layer and method for producing the same
JP6855967B2 (en) Transparent substrate and its manufacturing method
EP2563731B1 (en) Anti-glare surface treatment method and articles thereof
WO2015186753A1 (en) Chemically toughened glass plate with function film, method for producing same, and article
WO2010018852A1 (en) Coating compositions and articles with formed coating films
EP2476656A1 (en) Article having low-reflection film on surface of base material
WO2015115492A1 (en) Glass plate with anti-glare function for solar cells
KR20140088862A (en) Method of manufacturing object with low reflection film
WO2015163330A1 (en) Anti-glare-layer substrate and article
JP2016041481A (en) Transparent base material with antiglare antireflection film, and article
JP7414524B2 (en) Glass substrate with film, article, and method for manufacturing glass substrate with film
US20180319132A1 (en) Transparent substrate with non-transparent film
TW202104938A (en) Cover glass and digital signage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15740551

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015559105

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15740551

Country of ref document: EP

Kind code of ref document: A1